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Amir has had a profound influence on the three of us, as a teahadvisor, a mentor, and a
collaborator. His fundamental ideas on the temporal logi€programs have, to a large extent,
set the course for our professional careers. His suddenipgssvay has deprived us of many
more years of wonderful interaction, intellectual engagetmand friendship. We miss him
profoundly. His wisdom and pleasantness will stay with usvier.

Abstract. In this paper we develop an automata-theoretic framewarketmson-
ing about infinite-state sequential systems. Our framevgblased on the obser-
vation that states of such systems, which carry a finite bbbunded amount of
information, can be viewed as nodes in an infinite tree, aaasttions between
states can be simulated by finite-state automata. Chedka@gtsystem satisfies
a temporal property can then be done by an alternating twotkea automaton
that navigates through the tree. We show how this framewamnkoe used to solve
the model-checking problem for-calculus and LTL specifications with respect
to pushdown and prefix-recognizable systems. In order tdleanodel checking
of linear-time specifications, we introduce and stpdyh automata on tree3he
input to a path automaton is a tree, but the automaton capiibtescopies and
it can read only a single path of the tree.

As has been the case with finite-state systems, the autdheieetic framework
is quite versatile. We demonstrate it by solving the redlig and synthesis
problems foru-calculus specifications with respect to prefix-recogrizamvi-
ronments, and extending our framework to handle systentsregular labeling
regular fairness constraintand u-calculus withbackward modalities

1 Introduction

One of the most significant developments in the area of fodwalgn verification is
the discovery of algorithmic methods for verifying tempdric properties ofinite-
statesystems [CES86,LP85,Q582,VW864a]. In temporal-lagadel checkingve ver-
ify the correctness of a finite-state system with respectdesared behavior by check-
ing whether a labeled state-transition graph that modelsystem satisfies a temporal

* The paper is based on the papers [KV00a,KPV02].



logic formula that specifies this behavior (for a survey, [§g8P99]). Symbolic meth-

ods that enable model checking of very large state spacdsthengreat ease of use
of fully algorithmic methods, led to industrial acceptardégéemporal model checking
[BLMO1,CFFt01].

An important research topic over the past decade has beapptieation of model
checking to infinite-state systems. Notable success iratieia has been the application
of model checking to real-time and hybrid systems (cf. [HHYBIJLPY97]). Another
active thrust of research is the application of model chegkbinfinite-state sequential
systemsThese are systems in which a state carries a finite, but unleol) amount of
information, e.g., a pushdown store. The origin of this ¢hig the important result by
Muller and Schupp that the monadic second-order theory@M8 context-free graphs
is decidable [MS85]. As the complexity involved in that ddadbility result is nonele-
mentary, researchers sought decidability results of edang complexity. This started
with Burkart and Steffen, who developed an exponentiakteifgorithm for model-
checking formulas in thalternation-freeu-calculus with respect to context-free graphs
[BS92]. Researchers then went on to extend this result tptteculus, on one hand,
and to more general graphs on the other hand, suphstedown graphl8S95,Wal96],
regular graphgdBQ96], andprefix-recognizable grapH€au96].

On the theoretical side, the limits of MSO decidability hénezn pushed forward.
Walukiewicz and Caucal show that MSO decidability is mdmed under certain op-
erations on graphs [Wal02,Cau03]. Further studies of tigesphs show that they are
the configuration graphs dfigh-order pushdown automaf€WO03], and provide an
elementary time solution for model checkipgcalculus over these graphs [Cac03].
Recently, the decidability of MSO ane-calculus with respect to graphs produced by
higher-order recursion was established [KNUWO05,0ng06].

From a practical point of view, model checking of pushdowapdrs (or push-
down systems) provides a framework for software model cingckhere the store of
the pushdown system corresponds to the function call sfHais. led to the imple-
mentation of pushdown model-checkers such as Mops [CWO0&ghdd [ES01,Sch02],
and Bebop [BROO] (to name a few). Of the mentioned three, tidestrial applica-
tion, Bebop, enables only model checking of safety propgruccessful applications
of these model-checkers to the verification of software aported, for example, in
[BR01,CW02,EKS06]. Researchers then considered moreessipe logics that are
tailored for pushdown graphs [AEM0%hnd showed how to handle restricted cases
of communicating pushdown systems [KIG05,BTP06,KG06,RG&G07]. Recently,
model checking and analysis of pushdown systems has beam shdave uses also in
security and authentication [SSE06,JSWRO06]. Extensi@ashodule checking, prob-
abilistic model checking, and exact computational comipteof model checking with
respect to branching time logics were studied as well [BMBEDS5,B0z06].

In this paper, we develop an automata-theoretic frameworkdasoning about
infinite-state sequential systems. The automata-theaspfiroach uses the theory of
automata as a unifying paradigm for system specificationficaion, and synthesis

4“See also extensive research on visibly pushdown automath sibly push-
down languages and games that resulted from the research hisf Ibgic
[AMO04,LMS04,BLS06,AM06,ACMO06].



[WVS83,EJ91,Kur94,YW9o4,KVWO0O0]. Automata enable the sefian of the logical
and the algorithmic aspects of reasoning about systemsgjngeclean and asymptot-
ically optimal algorithms. Automata are the key to techmigjguch as on-the-fly veri-
fication [GPVW95], and they are useful also for modular vesifion [KV98], partial-
order verification [GW94,WW096], verification of real-timgstems and hybrid sys-
tems [HKV96,DW99], and verification of open systems [AHKRY99]. Many de-
cision and synthesis problems have automata-based swutiod no other solution
for them is known [EJ88,PR89,KV00b]. Automata-based meshisave been imple-
mented in industrial automated-verification tools (c.fQ®€PAN [HHK96] and SPIN
[Hol97,vBO00]).

The automata-theoretic approach, however, has long beeglhto be inapplica-
ble for effective reasoning about infinite-state systenige fieason, essentially, lies in
the fact that the automata-theoretic techniques involvestactions in which the state
space of the system directly influences the state space afitbenaton (e.g., when we
take the product of a specification automaton with the graphmodels the system).
On the other hand, the automata we know to handle have fimitaly states. The key
insight, which enables us to overcome this difficulty, andalihis implicit in all pre-
vious decidability results in the area of infinite-statelsattial systems, is that in spite
of the somewhat misleading terminology (e.g., “conterefgraphs” and “pushdown
graphs”), the classes of infinite-state graphs for whichdidality is known can be de-
scribed by finite-state automata. This is explained by tbetFe the states of the graphs
that model these systems can be viewed as nodes in an infedtand transitions be-
tween states can be expressed by finite-state automata.essilg automata-theoretic
techniques can be used to reason about such systems. bufzartive show that vari-
ous problems related to the analysis of such systems camlbeeg® to the membership
and emptiness problems falternating two-way tree automatarhich was shown to be
decidable in exponential time [Var98].

We first show how the automata-theoretic framework can bd tssolve theu-
calculus model-checking problem with respect to pushdomeh @refix-recognizable
systems. As explained, the solution is based on the obgamthat states of such sys-
tems correspond to a location in an infinite tree. Transi#tioithe system, can be sim-
ulated by a finite state automaton that reads the infinite Trees, the model-checking
problem ofu-calculus over pushdown and prefix-recognizable graphesigaed to the
membership problem of 2-way alternating parity tree autamaamely, the question
whether an automaton accepts the tree obtained by unwiradgfigen finite labeled
graph. The complexity of our algorithm matches the compyediprevious algorithms.

The p-calculus is sufficiently strong to express all propertigsressible in the lin-
ear temporal logic LTL (and in fact, all properties exprbbsby anv-regular language)
[Dam94]. Thus, by translating LTL formulas inje-calculus formulas we can use our
solution for p-calculus model checking in order to solve LTL model chegkimhis
solution, however, is not optimal. This has to do both witl tact that the translation
of LTL to p-calculus is exponential, as well as the fact that our sotufor p-calculus
model checking is based on tree automata. A tree automalitsispo several copies
when it runs on a tree. While splitting is essential for redsg about branching proper-
ties, it has a computational price. For linear propertids,sufficient to follow a single



computation of the system, and tree automata seem too dtotiys task. For exam-
ple, while the application of the framework developed abimveushdown systems and
LTL properties results in an algorithm that is doubly-expotial in the formula and ex-
ponential in the system, the problem is known to be EXPTIMEplete in the formula
and polynomial in the system [BEM97].

In order to handle model checking of linear-time properties introducepath au-
tomata on treesThe input to a path automaton is a tree, but the automatarotaplit
to copies and it can read only a single path of the tree. Iriquéat, two-waynonde-
terministic path automata enable exactly the type of naiMigahat is required in order
to check linear properties of infinite-state sequentialesys. We study the expressive
power and the complexity of the decision problems for (twyWzath automata. The
fact that path automata follow a single path in the tree makem very similar to
two-way nondeterministic automata on infinite words. Thiglges us to reduce the
membership problem (whether an automaton accepts thetitamed by unwinding a
given finite labeled graph) of two-way nondeterministidpatitomata to the emptiness
problem of one-way alternating Biichi automata on infiniterae, which was studied
in [VW86b]. This leads to a quadratic upper bound for the mersbip problem for
two-way nondeterministic path automata.

Using path automata we are able to solve the problem of LTLehduecking with
respect to pushdown and prefix-recognizable systems byuwtied to the member-
ship problem of two-way nondeterministic path automataudlly, automata-theoretic
solutions to model checking use the emptiness problem, lyantesther an automa-
ton accepts some tree. We note that for (linear-time) motetking of sequential
infinite-state system both simplifications, to the membigrginoblem vs. the empti-
ness problem, and to path automata vs. tree automata analciag we prove the
emptiness problem for two-way nondeterministic Buchihpatitomata is EXPTIME-
complete, and the membership problem for two-way altemgaBiichi tree automata is
also EXPTIME-complete Our automata-theoretic technique matches the known upper
bound for model-checking LTL properties on pushdown systBEM97,EHRSO00]. In
addition, the automata-theoretic approach provides thesfiution for the case where
the system is prefix-recognizable. Specifically, we showweacan solve the model-
checking problem of an LTL formula with respect to a prefix-recognizable system
R of sizen in time and space®("t|¥)), We also prove a matching EXPTIME lower
bound.

Usually, the labeling of the state depends on the interaét if the system and the
top of the store. Our framework also handiegular labeling where the label depends
on whether the word on the store is a member in some regulguéaye. The complex-
ity is exponential in the nondeterministic automata thad&e the labeling, matching
the known bound for pushdown systems and linear-time spatidns [EKSO01]. The

5 In contract, the membership problem for one-way altergaBiichi tree automata can be re-
duced to the emptiness problem of the 1-letter alternatiogh@utomaton obtained by taking
the product of the labeled graph that models the tree witlotieeway alternating tree au-
tomaton [KVWO0O]. This technique cannot be applied to twopveaitomata, since they can
distinguish between a graph and its unwinding. For a reldtedussion regarding past-time
connectives in branching temporal logics, see [KP95].



automata-theoretic techniques for handling regular iabednd for handling the reg-
ular transitions of a prefix-recognizable system are vamilai. This leads us to the
understanding that regular labeling and prefix-recogrilinalhave exactly the same
power. Formally, we prove that model checking (for eitheralculus or LTL) with re-

spect to a prefix-recognizable system can be reduced to noshdeking with respect
to a pushdown system with regular labeling, and vice verea.liRear-time proper-
ties, it is known that model checking of a pushdown systenm wegular labeling is
EXPTIME-complete [EKSO01]. Hence, our reductions suggesaléernative proof of
the exponential upper and lower bounds for the problem of hiddel checking of
prefix-recognizable systems.

While most of the complexity results established for modedaking of infinite-
state sequential systems using our framework are not neppitars to be, like the
automata-theoretic framework for finite-state systemsy wersatile, and it has fur-
ther potential applications. We proceed by showing how teestherealizability and
synthesigroblem ofyu-calculus formulas with respect to infinite-state sequ®invi-
ronments. Similar methods are used to solve realizabifityfa [ATMO03]. We discuss
how to extend the algorithms to handle graphs wétular fairness constraintsand
to p-calculus withbackward modalitiesin both these problems all we demonstrate
is a (fairly simple) extension of the basic algorithm; thegenentially) hard work
is then done by the membership-checking algorithm. Theraata-theoretic frame-
work for reasoning about infinite-state sequential systems also extended to global
model checking [PV04] and to classes of systems that are exgnmessive than prefix-
recognizable [Cac03,PV03]. It can be easily extended tdlesaiso CARET specifica-
tions [AEMOA4].

Since the publication of the preliminary versions of thisrkvfKVV00a,KPV02],
this method has been used extensively. Cachat uses thectiomigetween pushdown-
systems and 2-way tree automata to show thatlculus model checking over high-
order pushdown automata is decidable [Cac03]. Gimbertthese techniques to con-
sider games over pushdown arenas where the winning conslitice combination of
parity and unboundedness [GimB3Berre shows how these techniques can achieve
better upper bounds in the restricted case of counter mesh8er06].

2 Preliminaries

Given a finite set™, a word over X is a finite or infinite sequence of symbols from
J). We denote by~* the set of finite sequences ovErand by X the set of infinite
sequences oveY. Given a wordw = ogoi02--- € X* U X%, we denote byws; the
suffix of w starting aio;, i.e.,w>; = 0,011 - - -. Thelengthof w is denoted byw| and

is defined to bev for infinite words.

® See also [BSWO3] for a different solution when the parityditions are restricted to index
three.



2.1 Labeled Transition Graphs and Rewrite Systems

A labeled transition graphs G = (X, S, L, p, so), whereX' is a finite set of labels,
S is a (possibly infinite) set of stateg,: S — X' is a labeling functionp C S x S
is a transition relation, angy € Sy is an initial state. Whemp(s, s’), we say thats’
is a successonf s, ands is a predecessoof s’. For a states € S, we denote by
G* = (X,S,L,p,s), the graphG with s as its initial state. Ars-computationis an
infinite sequence of stateg, s1,... € S“ such thatsy = s and for alli > 0, we have
p(si, six1). An s-computationsy, s1, ... induces thes-trace L(so) - L(s1) - -. Let 7
be the set of als-traces.

A rewrite systems R = (X, V,Q, L, T, qo, z0), WhereX' is a finite set of labels,
V is a finite alphabet() is a finite set of stated, : @ x V* — X is a labeling
function, T' is a finite set of rewrite rules, to be defined belagw,is an initial state,
andxzy € V* is an initial word. The set ofonfigurationsof the system ig) x V*.
Intuitively, the system has finitely many control states andunbounded store. Thus,
in a configurationq, z) € @ x V* we refer tog as thecontrol stateand tox as the
store A configuration(q, ) € @ x V* indicates that the system is in control state
with storex. We consider here two types of rewrite systems. fuahdowrsystem,
each rewrite rule igq, A,z,¢') € Q@ x V x V* x Q. Thus,T C Q x V x V* x Q.

In a prefix-recognizablesystem, each rewrite rule {g, o, 5,7v,¢') € Q x reg(V') x
reg(V) x reg(V) x @, wherereg(V) is the set of regular expressions ovér Thus,

T CQxreg(V) xreg(V) xreg(V) x Q. Forawordw € V* and a regular expression
r € reg(V) we writew € r to denote that is in the language of the regular expression
r. We note that the standard definition of prefix-recognizapttems does not include
control states. Indeed, a prefix-recognizable system witstates can simulate a prefix-
recognizable system with states by having the state as #tddfiter of the unbounded
store. We use prefix-recognizable systems with controéstir the sake of uniform
notation.

We consider two types of labeling functiorsimpleandregular. The labeling func-
tion associates with a configuratign, ) € @ x V* a symbol fromX. A simple
labeling function depends only on the first letteraofThus, we may writel, : @Q X
(V U {e}) — X. Note that the label is defined also for the case tha the empty
word e. A regular labeling function considers the entire wartbut can only refer to
its membership in some regular set. Formally, for everyesjahere is a partition of
V* to|X| regular languageR;, . . . R, x|, andL(q, x) depends on the regular set that
belongs to. For a letter € X' and a state € () we setR, , = {z | L(¢,z) = o} to
be the regular language of store contents that producelieedgwith stateg). We are
especially interested in the cases where the alphBhstthe powerse24? of the set
of atomic propositions. In this case, we associate withyestateg and propositionp a
regular languag®,, , that contains all the words for which the propositiom is true
in configuration(q, z). Thusp € L(q, z) iff z € R, 4. Unless mentioned explicitly, the
system has a simple labeling.

The rewrite systenk induces the labeled transition graph whose states are the co
figurations of R and whose transitions correspond to rewrite rules. Fogn@lk =
(X,Q x V*,L,pr, (g0, o)), where@ x V* is the set of configurations aR and
((q,2), (¢, 2")) € prifthereis arewrite ruleé € T leading from configuratiofy, z) to



configurationq’, z'). Formally, if R is a pushdown system, ther ((q, A-v), (¢, z-y))

if (¢, A,z,q') € T;andif R is a prefix-recognizable system, ther((q, = - y), (¢, =’ -
y)) if there are regular expressions 3, and~v such thatr € o, y € 3, 2/ € v, and
(q,,8,7,q") € T. Note that in order to apply a rewrite rule in stédtez) € Q x V*
of a pushdown graph, we only need to match the sfaad the first letter of with
the second element of a rule. On the other hand, in an applicat a rewrite rule in
a prefix-recognizable graph, we have to match the stated we should find a par-
tition of z to a prefix that belongs to the second element of the rule anfia that
belongs to the third element. A labeled transition graphithznduced by a pushdown
system is called @aushdown graphA labeled transition system that is induced by a
prefix-recognizable system is callegheefix-recognizable graph

Example 1.The pushdown systel® = (2{P1:r2} LA B} {q}, L, T, qo, A), whereL

is defined byR,, ,,= {4,B}* - B-B-{A,B}*andR,, ,, = A-{A,B}* andT =
{{qo, A, AB, q0), (g0, 4, €, q0), {0, B, €, qo) }, induces the labeled transition graph be-
low.

P2 P2 p1,p2 p1,p2
(90,A) —(q0,ABy—>(q0,ABB)——(q0,ABBB) - - -

I

(90, €) (90,B) (q0,BB) =— (q0,BBB) - - -
P1 p1

Example 2.The prefix-recognizable system@,{A}, {¢},L,T,qo, A), whereT =
{{q, A*, A*,e,q),{q, €, A*, A, ¢)} induces the labeled transition graph below.

q gA gAA ———>gAAA —>QqAAAA oeeee >

Consider a prefix-recognizable systdin= (X, V,Q, L, T, qo, zo). For a rewrite
rule t, = <S, [o78 ﬁi, Yi 8/> cT, Ietuk = <V, QA,UX,QQ\,F)\% for A € {Oéi,ﬁi,’yi},
be the nondeterministic automaton for the language of tgelae expression\. We
assume that all initial states have no incoming edges anclihaccepting states have
no outgoing edges. We collect all the states of all the autarfeac, 3, and~y regular
expressions. Formall, = U, cr Qo Qs = U,,er @p:» andQy = U, o1 Q~,- We
assume that we have an automaton whose langudgg jsWe denote the final state of
this automaton by, and add all its states 19.,. Finally, for a regular labeling function
L, astateg € Q, and a letter € X, letUyq = (V,Qo.4, 45 ¢» Pog: Foq) b€ the
nondeterministic automaton for the langudgg, . In a similar way given a statee @



and a propositiop € AP, leti, , = (V,Qp.q, 45 Pp.g> Fp.q) be the nondeterministic
automaton for the language, ,.

We define thesize||T'|| of T" as the space required in order to encode the rewrite
rules in7T". Thus, in a pushdown systefil’|| = >_, 4 . ,yer 2], @nd in a prefix-
recognizable systenl'l| = >_, . 5. oyer [Ua|+1Us|+[U,]. Inthe case of a regular
labeling function, we also measure the labeling funciéfj = >° ., > s [Us | OF

||LH = quQ ZpEAP |up7q|-

2.2 Temporal Logics

We give a short introduction to the tempora logics LTL [Pnjaivd ;:-calculus [Koz83].
The logic LTL augments propositional logic with temporabaqtifiers. Given a finite
set AP of propositions, an LTL formula is one of the following.

— true, false, p forallp € AP;
— 21, 1 V2, 01 Apa, O 1 andp;Ueps, for LTL formulase; andps;

The semantics of LTL formulas is defined with respect to amitdfisequence €
(247)» and a location € N. We use(r,4) = 1 to indicate that the wore in the
designated locatiohsatisfies the formula.

— For a propositiop € AP, we have(r, i) | piff p € m;;

— (m,4) | ~fy iffnot (7,i) E fi;

- (W’i) ': fl \/f2 iff (W’i) ’: fl Or(ﬂ—vi) ’: f2;

= (m4) | fi A foiff (m,0) = fr and(7, i) | fo;

= (mi) E Of iff (m,i+1) = fi;

— (m,4) = fild 2 iff there existsk > i such tha(r, k) |= f, and foralli < j < k, we
have(r, j) = fi;

If (w,0) = 1, then we say that satisfies). We denote by.(v) the set of sequences
m that satisfyi).

The u-calculusis a modal logic augmented with least and greatest fixpoiatap
tors. Given a finite sel P of atomic propositions and a finite sétr of variables, a
p-calculus formula (in a positive normal form) ova® and Var is one of the follow-

ing:
— true, false, pand—p forallp € AP, ory forall y € Var;
— (1 A s OF 1 V g, for u-calculus formulagy; andeps;

— Oy or Oy for a p-calculus formulap.
— uy.p orvy.p, fory € Var and au-calculus formulap.

~

A sentencés a formula that contains no free variables fréfar- (that is, every vari-
able is in the scope of some fixed-point operator that bindg define the semantics
of u-calculus with respect to a labeled transition gréph= (2475, L, p, so) and a
valuationV : Var — 2. Each formulay and valuation) then define a sefy]]¢ of
states ofG that satisfy the formula. For a valuatidh a variabley € Var, and a set
S’ C S, we denote by[y < S’] the valuation obtained from by assigningS’ to y.
The mappind[¥]]$ is defined inductively as follows:



— [[true]]§ = S and[[false]]§ =

— Fory € Var, we have[y]]$ = V(y);

— Forp € AP, we have[[p]] { |p e L(s)} and[[-pllY ={s[p ¢ L(s)};
= ([ A]]S = [[n ]IS N [0S

Y1 Vo]l = [[n]l§ U [[¢2]]5;
0Y))g ={se€ S : forall s such thap(s, s’), we haves’ € [[¢]]$ };
I3

=l
=l
— [[OY]]§ = {s € S: thereiss’ such thap(s, s") ands’ € [[¢]|S };
= [y ]S =S €S [[WIIY, sy € S'h
= vy ylls =U{S" €S8 C[Yll§, s}

Thealternation depthof a formula is the number of alternations in the nesting aéte
and greatest fixpoints. For a full expositiorystalculus we refer the reader to [Eme97].

Note that[[«)]]$ depends only on the valuations of the free variables.im partic-
ular, no valuation is required for a sentence and we Wfitg< . For a states € .S and
a sentence), we say thaty holds ats in G, denoteda, s = ¢ iff s € [[¢]]¢. Also,
G E ¢ iff G,so = 1. We say that a rewrite systeR satisfies au-calculus formula)
if Gr E .

While LTL is a linear temporal logic and we have defined its aatits with respect
to infinite sequences, we often refer also to satisfactiohTaf formulas in labeled
transition graphs. Intuitively, all the sequences induogatomputations of the graph
should satisfy the formula. Formally, given a gra@land a state of G, we say thak
satisfies an LTL formule, denoted G, s) k= ¢, iff 7, C L(y). A graphG satisfies an
LTL formula ¢, denoted= |= , iff its initial state satisfies it; that i3, so) E .

The model-checking problerfor a labeled transition grapy and an LTL oru-
calculus formulay is to determine whethea® satisfiesy. Note that the transition re-
lation of R need not be total. There may be finite paths but satisfactiaieiermined
only with respect to infinite paths. In particular, if the ghehas only finite paths, its set
of traces is empty and the graph satisfies every LTL formulde say that a rewrite
systemR satisfies an LTL formula if G |= ¢. 8

Theorem 1. The model-checking problem for a pushdown sysiand a formulap
is solvable

— intime||T||? - 290D and space|T||? - 2°(¢]) in the casep is an LTL formula and
L is a simple labeling functiofEHRS00]

— in time ||T'||* - 20UILI+I#D and spacd|T'||? - 20UILI+1#D) in the casep is an LTL
formulas andL is a regular labeling function. The problem is EXPTIME-hand
||L|| even for a fixed formulfEKS01]

— in time 2@UTI-1¥1'k) in the casep is a p-calculus formula with alternation depti
[Wal96,Bur97]

"1t is also possible to consider finite paths. In this casenthveleterministic Biichi automaton
in Theorem 5 has to be modified so that it can recognize alge fivords (cf. [GOO03]). Our
results are easily extended to consider also finite paths.

8 Some work on verification of infinite-state system (e.g., E$00]), consider properties given
by nondeterministic Blichi word automata, rather than Latnfulas. Since we anyway trans-
late LTL formulas to automata, we can easily handle alsognt@gs given by automata.



2.3 Alternating Two-Way Automata

Given a finite seft” of directions, arl'-treeis a setl” C 7 such thatifv - z € T,
wherev € 7 andx € T*, then alsar € T'. The elements df' are callechodesand the
empty wordz is theroot of T'. For everyv € T andx € T, the noder is theparentof
v-z. Each node: # € of T' has adirectionin 7. The direction of the root is the symbol
1 (we assume that ¢ 7). The direction of a node - x is v. We denote bylir(x) the
direction of nodex. An T-treeT is afull infinite treeif 7' = T™*. A pathx of a treeT’

is a setr C T such that € 7 and for everyr € 7 there exists a unique € 7 such
thatv - z € 7. Note that our definitions here reverse the standard deifirsifie.g., when
T = {0, 1}, the successors of the nodare00 and10 (rather thard0 and01)®.

Given two finite set®” and Y/, a X-labeledY -tree is a pair(T, 7) whereT is an
T-tree andr : T — X maps each node df to a letter inY. When? and X are
not important or clear from the context, we cdll, ) a labeled tree. We say that an
(YU {Ll}) x X)-labeledY-tree (T, 7) is T-exhaustivef for every noder € T, we
haver(z) € {dir(z)} x X.

A labeled tree igegularif it is the unwinding of some finite labeled graph. More
formally, atransducerD is a tuple(Y, X, Q, n, qo, L), whereY" is a finite set of direc-
tions, Y is a finite alphabet) is a finite set of states,: Q x " — @ is a deterministic
transition functiong, € @ is a start state, anfl : Q — X' is a labeling function. We
definen : T* — @ in the standard wayj(¢) = go andn(azx) = n(n(zx), a). Intuitively,

a transducer is a labeled finite graph with a designatedrstaet, where the edges are
labeled byY" and the nodes are labeled By A X-labeledY-tree (T, 7) is regular if
there exists a transducer= (1, X', Q, 1, qo, L), such that for every: € 7, we have
7(x) = L(n(x)). The size of ™, 7), denoted|7||, is |Q|, the number of states @.

Alternating automatan infinite trees generalize nondeterministic tree autaraad
were first introduced in [MS87]. Here we describe alterrgatimo-waytree automata.
For a finite setX, let BT(X) be the set of positive Boolean formulas ov€r(i.e.,
boolean formulas built from elements & using A andV), where we also allow the
formulastrue andfalse, and, as usuakl has precedence over For a set” C X and
a formulad € BT (X), we say that” satisfies) iff assigningtrue to elements i
and assignindalse to elements inX \ Y makesd true. For a set” of directions, the
extensiorof 7" is the setezt(T7) = T U {¢, 1} (we assume thd¥ N {e, 7} = 0). An
alternating two-way automataover X-labeled) -trees is a tupled = (X, Q, 6, qo, F),
whereX is the input alphabet is a finite set of states,: Q x X — Bt (ext(7) x Q)
is the transition functiongy, € @ is an initial state, and” specifies the acceptance
condition.

A run of an alternating automatad over a labeled tre€l™, 7) is a labeled tree
(T, r) in which every node is labeled by an elemenftfx Q. A node inT;., labeled
by (z, q), describes a copy of the automaton that is in the stated reads the node
of T*. Note that many nodes @f. can correspond to the same nod@df there is no
one-to-one correspondence between the nodes of the ruh@anddes of the tree. The
labels of a node and its successors have to satisfy thettmmnginction. Formally, a

9 As will get clearer in the sequel, the reason for that is tearite rules refer to the prefix of
words.
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run (T,.,r) is a X,-labeledl-tree, for some sef’ of directions, wherel, = 7 x @
and(T,, r) satisfies the following:

1. e e T, andr(e) = (g, qo)-

2. Considery € T, with r(y) = (x,¢) anddé(q,7(x)) = 6. Then there is a (possibly
empty) setS C ezt(Y") x @, such thatS satisfied, and for all{c, ¢’) € S, there is
~ € I" such thaty - y € T, and the following hold:

—Ifce?, thenr(y-y) = (c-z,¢).
— If c = ¢, thenr(vy - y) = (z,¢).
— If ¢ =1, thenz = v - 2z, for somev € T andz € T*, andr(v - y) = (2,¢).

Thus, e-transitions leave the automaton on the same node of the trge; and?-
transitions take it up to the parent node. Note that the aatomcannot go up the
root of the input tree, as whenewver=T, we require that # «.

A run (T, r) is acceptingif all its infinite paths satisfy the acceptance condition.
We consider herparity acceptance conditions [EJ91]. A parity condition over &esta
setQ is a finite sequenc& = {F, F5, ..., F,,} of subsets of), whereF;, C F;, C
... C F,, = Q. The numbern of sets is called thindexof 4. Given a run(7T,., r) and
an infinite pathr C T, letinf (7) C @ be such thag € inf () if and only if there are
infinitely manyy € = for whichr(y) € T* x {¢}. That is,inf (7) contains exactly all
the states that appear infinitely ofteninA path« satisfies the conditiof’ if there is
an even for which inf () N F; # 0 andinf(7) N F;_1 = (. An automaton accepts a
labeled tree if and only if there exists a run that accepWétdenote byC(A) the set of
all X-labeled trees thal accepts. The automatohis nonemptyff £(A) # 0. Buchi
acceptance condition [Buc62] is a private case of paritindéx 3. Buchi condition
F C @ is equivalent to parity conditiofi), F, Q). A pathr satisfies Buichi condition
Fiff inf(7) N F # (. Co-Buchiacceptance condition is the dual of Biichi. Co-Blichi
condition F' C @ is equivalent to parity conditiofF, Q). A pathr satisfies co-Buchi
conditionF iff inf(7) N F = 0.

The size of an automaton is determined by the number of itssstand the size of
its transition function. The size of the transition functis n = X,coXsex|n(q, a)]
where, for a formula ilBB* (ext(T") x Q) we define|/(4, q)| = |true| = |false| = 1
and|01 \/02| = |91 /\02| = |91| + |02| + 1.

We say thatd is advancing ifj is restricted to formulas iB* (T U{e}) x Q), itis
one-way ifd is restricted to formulas iB* (7" x Q). We say that4 is nondeterministic
ifits transitions are of the forry,_; A\, c1-(v, ¢.,)), in such cases we write: Q x ¥ —

20" In particular, a nondeterministic automaton is 1-waysleéasy to see that a run
tree of a nondeterministic tree automaton visits every nodée input tree exactly
once. Hence, a run of a nondeterministic tree automatoneeddt, 7) is (T, ) where

r : T — Q. Note, thatr andr use the same domaih. In the case thafl’| = 1, A

is a word automaton. In the run of a word automaton, the lonatif the automaton
on the word is identified by the length of its location. Heniostead of marking the
location byv?, we mark it byi. Formally, a run of a word automaton (&, ) where

r: T — Nx @ and a node: € T such that(z) = (4, q) signifies that the automaton
in stateq is reading theth letter of the word. In the case of word automata, there is
only one directiorv € 1. Hence, we replace the atorfi§ ¢) € ext(?) x Q in the
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transition of A by atoms from{—1, 0,1} x Q where—1 means read the previous letter,
0 means read again the same letter, Amdeans read the next letter. Accordingly, the
pair (i, q), (j, ¢’) satisfies the transition od if there exists(d, ¢') € (¢, w;) such that

j = i+ d. In the case that the automaton is 1-way the length ohiquely identifies
the location in the word. That is, we use T — @ andr(x) = ¢ signifies that state

is reading lettefz|. In the case that a word automaton is nondeterministicyitds an
infinite sequence of locations and states. Nameby, (0, qo), (¢1,¢1), - - .. In addition,

if the automaton is 1-way the location in the sequence ifleatthe letter read by the
automaton and we write = qo, q1, - - ..

Theorem 2. Given an alternating two-way parity tree automatdnwith »n states and
indexk, we can construct an equivalent nondeterministic one-veaityptree automa-
ton whose number of states is exponentialirand whose index is linear ink [Var98],
and we can check the nonemptinesglah time exponential imk [EJS93]

We use acronyms ifi2,e,1} x {A, N, D} x {P, B,C, F} x {T, W} to denote the
different types of automata. The first symbol stands for fpe tof movement: 2 for
2-way automatag for advancing, and 1 for 1-way (we often omit the 1). The secon
symbol stands for the branching modgfor alternating,V for nondeterministic, and
D for deterministic. The third symbol stands for the type afegtanceP for parity,

B for Biichi, C for co-Biichi, andF' for finite (i.e., automata that read finite words or
trees), and the last symbol stands for the object the automstreadingT” for trees
andW for words. For example, a 2APT is a 2-way alternating par#ge tautomaton
and an NBW is a 1-way nondeterministic Buichi word automaton

The membership probleraf an automatond and a regular treél’™, 7) is to de-
termine whetherd acceptg7™*, 7); or equivalently whethe{Y™, 7) € L(A). Itis not
hard to see that the membership problem for a 2APT can bedblya reduction to
the emptiness problem. Formally we have the following.

Theorem 3. Given an alternating two-way parity tree automatdrwith n states and
indexk, and a regular tree(Y™*, ) we can check whethed accepts(T™*, 7) in time
(7))

Proof: LetA = (X, Q, 4, qo, F) bea2APTandY™, 7) be aregulartree. Let the trans-
ducer inducing the labeling efbeD.. = (T, X, D, ), dy, L). According to Theorem 2,
we constructa INPTV = (X S, p, so, ) that accepts the language 4f

Consider the INPIN' = ({a}, D x S, ¢, (do, s0), @’) wherep’(d, s) is obtained
from p(s, L(d)) by replacing every atorfv, s") by (v, (n(d, v), s’)) anda’ is obtained
from « by replacing every seff’ by the setD x F'. It follows that (7™, ) is accepted
by A iff N’ is not empty. The number of states§f is || 7||(nk)°("*) and its index is
O(nk). O

2.4 Alternating Automata on Labeled Transition Graphs

Consider a labeled transition graph= (X', S, L, p, so). Let A = {¢, 0, ¢} An alter-
nating automaton on labeled transition gragraph automatoyfor short) [JW95{° is

10 The graph automata in [JW95] are different than these defireg| but this is only a technical
difference.
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atupleS = (¥, Q, 6, qo, F), whereX, Q, qo, andF are as in alternating two-way au-
tomata, and : Q x X — B*(Ax Q) is the transition function. Intuitively, whefi is in
stateg and it reads a stateof G, fulfilling an atom(<, ¢) (or <t, for short) requiress

to send a copy in stateo some successor 8f Similarly, fulfilling an atomO¢ requires
S to send copies in stateto all the successors af Thus, like symmetric automata
[DW99,Wil99], graph automata cannot distinguish betwédenvarious successors of a
state and treat them in an existential or universal way.

Like runs of alternating two-way automata, a run of a graptomatonS over a
labeled transition graptiy = (S, L, p, so) is a labeled tree in which every node is
labeled by an element & x Q. A node labeled by(s, ¢), describes a copy of the
automaton that is in the stateof S and reads the stateof G. Formally, a run is a
XY .-labeledI"-tree(T,., ), wherel is an arbitrary set of directiong;,. = S x @, and
(T, r) satisfies the following:

1. e €T, andr(e) = (s0,qo)-

2. Considery € T, with r(y) = (s,q) andd(q, L(s)) = 6. Then there is a (possibly
empty) setS C A x @, such thatS satisfied, and for all{c, ¢’) € S, the following
hold:

— If ¢ = ¢,thenthereisy € I' such thaty - y € T, andr(~v - y) = (s, ¢).

— If ¢ = 0, then for every successef of s, there isy € I' such thaty - y € T, and
r(y-y)=(s',q).

— If ¢ = O, then there is a successdrof s and~y € I' such thaty - y € T, and
r(y-y) = (s'.q).

A run (T,.,r) is acceptingf all its infinite paths satisfy the acceptance conditioheT
graphG is accepted bys if there is an accepting run on it. We denote&S) the set
of all graphs thatS accepts. We denote 7 = (¥, Q, §, ¢, F') the automatos with
q as its initial state.

We say that a labeled transition graghsatisfies a graph automatdh) denoted
G = S, if S accepts. Itis shown in [JW95] that graph automata are as expressive a
p-calculus. In particular, we have the following.

Theorem 4. [JW95] Given au-calculus formulay, of lengthn and alternation depth
k, we can construct a graph parity automat8p such thatZ(S,) is exactly the set of
graphs satisfying). The automatos,, hasn states and indek.

A graph automaton whose transitions are restricted tomfisjons ove{ <} x @ is
in fact a nondeterministic automaton. We freely confuseben such graph automata
with the Biichi acceptance condition and NBW. It is well kmmotlvat every LTL formula
can be translated into an NBW that accepts all traces thafysdte formula. Formally,
we have the following.

Theorem 5. [VW94] For every LTL formulap, we can construct an NBW,, with
200D states such thak(N,,) = L(y).
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3 Model-Checking Branching-Time Properties

In this section we present an automata-theoretic apprazatian to model-checking
branching-time properties of pushdown and prefix-recagiez graphs. We start by
demonstrating our technique on model checking of pushdgstess. Then we show
how to extend it to prefix-recognizable systems. Considenaite systenz = (¥, V,
Q,L,T,q,xo)and letGr = (X, Q x V*, L, pr, (qo0, z0)) be its induced graph. recall
that a configuration of7 ; is a pair(q, z) € @ x V*. Thus, the store corresponds to
a node in the full infinitd/-tree. An automaton that reads the tiéecan memorize in
its state space the state component of the configurationededto the location of its
reading head i * as the store. We would like the automaton to “know” the |laatf
its reading head ifv*. A straightforward way to do so is to label a nade V* by .
This, however, involves an infinite alphabet, and resultsdas that are not regular.
We show that labeling every nodelifi by its direction is sufficiently informative to
provide the 2-way automaton with the information it needsnder to simulate transi-
tions of the rewrite system. Thus,/ifis a pushdown system and we are at ndde of
the V-tree (with statey memorized), an application of the transitian A, z, ¢') takes
us to noder - y (with stateq’ memorized). IfR is a prefix-recognizable system and we
are at nodey of the V-tree (with state; memorized), an application of the transition
{(q,,3,7,q") takes us to nodez (with state¢’ memorized) where: € ~, z € 3,
andy = 2’z for somez’ € «. Technically, this means that we first move up the tree,
and then move down. Such a navigation throughithgee can be easily performed by
two-way automata.

3.1 Pushdown Graphs

We present our solution for pushdown graphs in details{L&t 7., ) be theV-labeled
V-tree such that for every € V* we haver,, (z) = dir(z) ((V*, 7, ) is the exhaustive
V-labeledV-tree). Note thatV*, 7, ) is a regular tree of sizg/| + 1. We construct a
2APT AthatreadgV*, ). The state space of contains a componentthat memorizes
the current state of the rewrite system. The location of #aling head i{V*, r,,)
represents the store of the current configuration. Thus;dardo know which rewrite
rules can be applie4 consults its current state and the label of the node it rezate (
thatdir(z) is the first letter ofc). Formally, we have the following.

Theorem 6. Given a pushdown systel = (X, V,Q, L, T, qv, o) and a graph au-
tomatonS = (X, W, §, wo, F'), we can construct a 2APR over (V U { L })-labeled
V-trees such thatl acceptV*, 7, ) iff Gr satisfiesS. The automatotd hasO (|| -
|Q| - |IT|) states, and has the same indexSas

Proof: We defined = (VU {Ll}, P,n,po, a) as follows.

— P = (W xQ X heads(T)), whereheads(T') C V* is the set of all prefixes of words
x € V* for which there are stateg ¢’ € @ andA € V such thatlq, A, z,¢') € T.
Intuitively, when A visits a noder € V* in state(w, ¢, y), it checks thaG r with
initial state(q,y - ) is accepted bys*. In particular, wheny = ¢, thenGr with
initial state (¢, z) (the node currently being visited) needs to be acceptedby
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States of the formw, ¢, ) are calledaction statesFrom these stated consultsd
andT in order to impose new requirements on the exhaudtisteee. States of the
form (w, q,y), fory € VT, are calledhavigation statesFrom these stated only
navigates downwardgto reach new action states.

— In order to definey : P x ¥ — Bt(ext(V) x P), we first define the function
applyr : A x W x Q x V — Bt(ezt(V) x P). Intuitively, apply, transforms
atoms participating i to a formula that describes the requirementshn when
the rewrite rules irf” are applied to words of the for;d - V*. Forc € A, w € W,

q € Q,andA € V we define

(e, (w,q,€)) ife—=c
applyT(CﬂU, q, A) = /\(Q7A,y,q’>eT<T7 (,w7 quy)> |f c=0
(fI7A,y,q/>eT<Tv (w,q,y)) ife=2<

Note thatT" may contain no tuples ifig} x {A} x V* x @ (that is, the transition
relation ofGr may not be total). In particular, this happens wher- L (that s, for
every statey € (@ the configuratior{q, ) of Gr has no successors). Then, we take
empty conjunctions asrue, and take empty disjunctions &slse.
In order to understand the functiapply -, consider the case= O. WhenS reads
the configuration(q, A - ) of the input graph, fulfilling the atortw requiresS
to send copies in state to all the successors @f, A - z). The automatomd then
sends to the node copies that check whether all the configuratigh y - ), with
pr((¢, A-2),(q,y - x)), are accepted b§ with initial statew.
Now, for a formulad € BT (A x S), the formulaapply (0, q, A) € BT (ext(V) x P)
is obtained fron® by replacing an atonfc, w) by the atomapply (¢, w, q, A). We
can now defing forall A € V U {_L} as follows.
b 77(<w’ q, €>7 A) = applyT(d(w, L(q’ A))v q, A)
e n({w,q,y - B), A) = (B, (w, ¢, y)).
Thus, in action states] reads the direction of the current node and applies theteswri
rules of R in order to impose new requirements according.ttn navigation states,
A needs to go downwards- B, so it continues in directiofs.

— po = {(wo, qo, o). Thus, inits initial stated checks that? ; with initial configuration
(qo, o) is accepted by§ with initial statewy.

— « is obtained from¥' by replacing each séf; by the setS x F; x heads(T).

We show thatd accepts(V*, 7, ) iff R = S. Assume thatd accepts(V*, 7, ).
Then, there exists an accepting r{if r) of A on (V*, 7, ). Extract from this run the
subtree of nodes labeled by action states. That is, considebpllowing tree(T”, r')
defined by induction. We know thate) = (e, (wo, g0, zo)). It follows that there ex-
ists a unigue minimal (according to the inverse lexicogiamnder on the nodes of
T) nodey € T labeled by an action state. In our casgy) = (xo, (wo, go,€)). We
adde to 77 and label itr'(¢) = ((qo,%0),wo). Consider a node’ in T" labeled
r(z") = ((¢,z),w). By the construction of7”,r’) there existsz € T such that
r(z) = (z,(w,q,€)). Let{z1 - z,..., z; - z} be the set of minimal nodes ifi such
thatz; - z is labeled by an action state(z; - z) = (z;, (w;, ¢;, €)). We addk successors
a12',...a2' 10 2 in T" and set”’(a;2") = ((gi, ), w;). By the definition ofy, the
tree(T”,r’) is a valid run tree o6 on G . Consider an infinite path’ in (I, r'). The
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labels of nodes in’ identify a unique pathr in (T, r). It follows that the minimal rank
appearing infinitely often along’ is the minimal rank appearing infinitely often along
7. Hence(T", ") is accepting and accepts7y.

Assume now thafiz = S. Then, there exists an accepting run t(&& ') of S on
Gr. The tree(T”, ') serves as the action state skeleton to an accepting runftrde o
on(V* 7). Anodez € T" labeled by((¢, z), w) corresponds to a copy of in state
(w, q,¢) reading node: of (V*, 7). Itis not hard to extend this skeleton into a valid
and accepting run tree of on (V*, 7, ). U

Pushdown systems can be viewed as a special case of prefixriezable systems.
In the next subsection we describe how to extend the conigtnudescribed above to
prefix-recognizable graphs, and we also analyze the cotitplEihe model-checking
algorithm that follows for the two types of systems.

3.2 Prefix-Recognizable Graphs

We now extend the construction described in Subsectiorodfefix-recognizable sys-
tems. The idea is similar: two-way automata can navigatutin the fullV-tree and
simulate transitions in a rewrite graph by a chain of tramsg in the tree. While in
pushdown systems the application of rewrite rules involved move up the tree and
then a chain of moves down, here things are a bit more involvedrder to apply

a rewrite rule(q, a, 3,7, ¢'), the automaton has to move upwards along a word, in
check that the remaining word leading to the root ig/jrand move downwards along
a word in~. As we explain belowA does so by simulating automata for the regular
expressions participating ifi.

Theorem 7. Given a prefix-recognizable rewrite systedin= (X, V,Q,T, L, qo, o)
and a graph automatos§ = (X', W, §, wo, F'), we can construct a 2AP over (V U
{L})-labeledV -trees such tha#l accepts(V*, 7, ) iff G satisfiesS. The automaton
AhasO(|W|-|Q| - ||T|) states, and its index is the index®plus 1.

Proof: As in the case of pushdown systerpsuses the labels ofi’*, ,,) in order
to learn the location i/* that each node corresponds to. As theteapplies to the
transition functiony of S the rewrite rules ofk. Here, however, the application of the
rewrite rules on atoms of the forfrw and Ow is more involved, and we describe
it below. Assume thaid wants to check whethe$" acceptngg’””), and it wants to
proceed with an aton®w’ in 6(w, L(q, z)). The automatom needs to check whether

Ssv' acceptsnlg’y) for some configuratioriq’, y) reachable fromg, =) by applying
a rewrite rule. That is, a configuratiqn’, y) for which there is(q, o, 3,7,¢') € T
and partitionst’ - z andy’ - z, of x andy, respectively, such that' is accepted by
U, z is accepted byfg, andy’ accepted bys,. The way.A detects such a staieis
the following. From the node, the automatotd simulates the automatas, upwards
(that is,.A guesses a run éf, on the word it reads as it proceeds on directidrom z
towards the root of th& -tree). Suppose that on its way up to the rodtencounters a
state inF,, as it reads the nodee V*. This means that the word read so far igirand
can serve as the prefix above. If this is indeed the case, then it is left to checktthat
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word z is accepted b¥{g, and that there is a state that is obtained froby prefixing
it with a wordy’ € ~ that is accepted b§*’. To check the first conditiond sends a
copy in direction| that simulates a run @fz, hoping to reach a state #; as it reaches
the root (that is,A guesses a run @fz on the word it reads as it proceeds frenup
to the root of(V*, 7, )). To check the second conditiad, simulates the automatas,
downwards starting froni’,. A nodey’ - z € V* that.A reads as it encounteg§ can
serve as the statgwe are after. The case for an atam’ is similar, only that here

A needs to check whetheér*’ acceptngfl’y) for all configurationgq’, y) reachable
from (¢, ) by applying a rewrite rule, and thus the choices madelligr guessing the
partitionz’ - z of z and the prefix/’ of y are now treated dually. More formally, we have
the following.

We defined = (VU {L}, P,n, po, c) as follows.

— P = PiUP, whereP, = {3,V} xWxQxT x(QaUQ,) andP, = {3,V} xT'xQg.
States inP; serve to simulate automata farand~ regular expressions and states
in P, serve to simulate automata forregular expressions. A state marked by
participates in the simulation ofés atom ofS, and a state marked hyparticipates
in the simulation of &3ds atom of S. A state inP, marked by the transition, =
{q, i, Biyvi, ¢') and a state € Q,,, participates in the simulation of a run &f,,.
Whens € F,, (recall that states i, have no outgoing transitions} spawns a
copy (in a state in,) that checks that the suffix is ifi, and continues to simulate
U.,. A state inP; marked by the transitioty = (g, o, 3;, v, ¢') and a state € Q,
participates in the simulation of a run of,. Whens = ¢J* (recall that the initial
statqui has no incoming transitions) the state is an action stat,/anonsultss
andT in order to impose new restrictions oW *, 7). 1

— In order to definey : P x ¥ — Bt(ext(V) x P), we first define the function
applyr : Ax W x Q@ x T x (Qa U Q) — BT (ext(V) x P). Intuitively, apply
transforms atoms patrticipating into a formula that describes the requirements on
G r when the rewrite rules iffi’ are applied to words frolr*. Forc € A, w € W,
g€ Q,ti={¢ i, 0i,vi,q) € T,ands = qgi we define

<€7 (Elawantias» ifc=¢
applyr(c, w, q,t;,8) = /\tw:<(17%/ﬂi/ﬂ,i/?q’)GT(E’ VY, w,q , tir, qu)) if c=0
\/ti/:<Q:ai/ Bir i ;ql>€T(E’ (El’ w, q/’ tirs qgﬂ )) ifc=2<

In order to understand the functiapply -, consider the case= 0. WhenS reads
the configuratioriq, =) of the input graph, fulfilling the atoriiw requiressS to send
copies in statev to all the successors ¢f, 2). The automatond then sends copies
that check whether all the configuratida, y') with pr((q, ), (¢, y')) are accepted
by S with initial statew.

For a formulad € B+ (A x W), the formulaapply (0, q,t;, s) € BT (ext(V) x P)
is obtained fron® by replacing an aton, w) by the atomapply (¢, w, g, t;, s). We

" Note that a straightforward representatiorPofesults inO(|W|-|Q|-|T'|-||T'||) states. Since,

however, the states of the automata for the regular expressie disjoint, we can assume that
the rewrite rule inl” that each automaton corresponds to is uniquely defined from i
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can now defing forallw e W, ¢ € Q,t; = (¢, 04, 5i,vi,9) € T, s € Qa, U Q-+,
andA € V U{L} as follows.
° 77((37 w, g, ti; S)a A) =

apply r(6(w, L(q, A)), ¢, ti, s) if s =qj,
\/BGV \/senw (s',B) (B7 (EI’ w, g, i, 5/)) ifse Q’Yz' \ {qul}
\/s’Enai(s,A)(Ta (Elv w,q, ti, Sl)) if s € Q(L \ Fu,

(57 (Ela ti7 qgl)) A (\/S’EF% (65 (37 w, q, ti7 SI))) if s € FO@

hd n((v7w7Qati; S)aA) =

applyr(6(w, L(q, A)), g, ti, ) if s = q,
If /\BEV /\5677,“ (s’,B) (B) (v7 w, q, ti) 8/)) If S Q'Yi \ {q’?ﬁ}
If /\Slena,’,(S:A)(T7 (v)w)Q7ti)8/)) If ERS Q()fl \Foh

(65 (\V/, tia Qgi)) \ (/\S’EF% (57 (va w, q, ti; 8/))) if t € FOu

Thus, whers € Q,, the 2APTA either chooses a successbof s and goes up the
tree or in case is an accepting state of,,, it spawns a copy that checks that the
suffix is in 3; and moves to a final state &f,.

Whens € @ the 2APTA either chooses a directidi and chooses a predecessor
s’ of s or in case thas = ¢, is the initial state ot/,,, the automatond uses the
transitiond to impose new restrictions ofv*, 7, ).

We definen for all t; = (¢/, aii, Bi, 74, q), s € Qp,, andA € V U {L} as follows.

'\/S,EWi(&A)(T, (F,t;,8")) if A#£ L
n((3,t:,8), A) = | true if s € Fg, andA =1
| false if s¢ Fg, andA =1
_/\Sle"]ﬁi(st)(T7 (va ti, S/)) if A # 1
n((¥,t;,s), A) = | false if s € Fg, andA = L
| true if s¢ Fg, andA =1

If s € Qg, then in existential mode, the automatdrmakes sure that the suffix is in
6 and in universal mode it makes sure that the suffix is n@tin

— po = (3, wo, qo,t,x0). Thus, in its initial stated starts a simulation (backward) of
the automaton that accepts the unique waydt follows that.A checks tha& z with
initial configuration(go, =) is accepted by with initial statewy.

- Let F, = U,,er P4, The acceptance conditienis obtained from/” by replacing
each sef; by the set{3,V} x F; x Q x T' x F,. We add toor a maximal odd set
and include all the states {8} x W x @ x T x (Q~ \ F5) in this set. We add tex
a maximal even set and include all the state$i x W x Q x T' x (Q4 \ F5) in
this set2. The states iH3,V} x W x Q x T x Q, and P, are added to the maximal
set (notice that states marked by a stat@ inappear in finite sequences and states in
P, appear only in suffixes of finite paths in the run tree).

12 Note that if the maximal set i is even then we only add ® a maximal odd set. Dually, if
the maximal set i is odd then we add ta a maximal even set.
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Thus, in a path that visits infinitely many action states,dbgon states define it as
accepting or not accepting. A path that visits finitely mactyan states is either finite
or ends in an infinite sequence@f, labeled states. If these states are existential, then
the path is rejecting. If these states are universal, thepdlth is accepting.

We show thatd accepts(V*, 7, ) iff R = S. Assume thatd accepts(V*, 7, ).
Then, there exists an accepting r{if r) of A on (V*, 7,.). Extract from this run the
subtree of nodes labeled by action states. Denote this yréE’br’). By the definition
of 4, the tree(T”,r’) is a valid run tree ofS on Gg. Consider an infinite path’ in
(T",r"). The labels of nodes in’ identify a unique path in (T, 7). As 7’ is infinite, it
follows thatr visits infinitely many action states. As all navigation etatire added to
the maximal ranks the minimal rank visited alomgnust be equal to the minimal rank
visited alongr’. Hence(T”, r') is accepting an& acceptsir.

Assume now thafir = S. Then, there exists an accepting run t&¢ ') of S on
Gr. The tree(T”,r") serves as the action state skeleton to an accepting runfttde o
on(V* r,). Anodez € T’ labeled by((q, ), w) corresponds to a copy of in state
(d,w,q,t,s) reading node: of (V*, 7,.) for somed € {3,V}, t; = (¢, a4, Bi, Vi, q) €
T ands = qgi. In order to extend this skeleton into a valid and acceptingtree of
Aon(V* 7,) we have to complete the runs of the automata for the differegular
expressions appearingin ]

The constructions described in Theorems 6 and 7 reduce tHelmbecking prob-
lem to the membership problem §f*, 7, ) in the language of a 2APT. By Theorem 3,
we then have the following.

Theorem 8. The model-checking problem for a pushdown or a prefix-rezadpe
rewrite systemR = (X, V,Q, L, T, qo,z0) and a graph automatos = (X, W, 4,
wo, F'), can be solved in time exponentiahik, wheren = |W| - |Q| - ||T|| - |V| andk
is the index ofS.

Together with Theorem 4, we can conclude with an EXPTIME lbalso for the
model-checking problem gi-calculus formulas matching the lower bound in [Wal96].
Note that the fact the same complexity bound holds for botshgawn and prefix-
recognizable rewrite systems stems from the different diefimof || 7’| in the two cases.

4 Path Automata on Trees

We would like to enhance the approach developed in Sectianl®ear time prop-
erties. The solution t-calculus model checking is exponential in both the system
and the specification and it is EXPTIME-complete [Wal96]. e other hand, model-
checking linear-time specifications is polynomial in theteyn [BEM97]. As we dis-
cuss below, both the emptiness and membership problemsART 2re EXPTIME-
complete. While 2APT can reason about many computationsggthultaneously, in
linear-time model-checking we need to reason about a spagtethat does not satisfy

a specification. It follows, that the extra power of 2APT caraéa price we cannot pay.
In this section we introduceath automatand study them. In Section 5 we show that
path automata give us the necessary tool in order to reast kear specifications.
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Path automata resembitee walking automatarhese are automata that read finite
trees and expect the nodes of the tree to be labeled by thaiditeand by the set of
successors of the node. Tree walking automata are used in g{Mties. We refer the
reader to [EHvB99,Nev02].

4.1 Definition

Path automata on treegre a hybrid of nondeterministic word automata and nondeter
ministic tree automata: they run on trees but have lineas.ftdere we descriltgvo-way
nondeterministic Buchi path automata.

A two-way nondeterministicighi path automatof2NBP, for short) on¥'-labeled
T-trees is in fact a 2ABT whose transitions are restrictedisjudctions. Formally,
P = (X,Pd,po, F), whereX, P, py, andF are as in an NBW, and : P x ¥ —
2(eat(T)xP) s the transition function. A path automaton that is in sgagad reads the
nodex € T chooses a paild, p’) € §(p, 7(x)), and then follows directiod and moves
to statep’. It follows that arun of a 2NBPP on a labeled tre€Y™, 7) is a sequence of
pairsr = (xo,p0), (x1,p1), ... Where for alli > 0, z; € T* is a node of the tree and
p; € Pis a state. The pairr, p) describes a copy of the automaton that reads the node
x of T* and is in the stat@. Note that many pairs in may correspond to the same
node ofT™*; Thus,S may visit a node several times. The run has to satisfy thaitian
function. Formally,(zo, po) = (&, q0) and for alli > 0 there isd € ext(Y) such that
(d,pit1) € 6(pi, 7(x:)) and

- IfAeT, thenxiH =A- .
—If A=c¢, thenxiH = ;.
— If A=7,thenz; = v -z, forsomev € T andz € T*, andz;;1 = z.

Thus, e-transitions leave the automaton on the same node of the trge, and?-
transitions take it up to the parent node. Note that the aatomcannot go up the
root of the input tree, as whenewér=1, we require that;; # . A runr is accepting
if it visits T* x F' infinitely often. An automaton accepts a labeled tree if anly
there exists a run that accepts it. We denotebip?) the set of all¥-labeled trees that
P accepts. The automat@his nonemptyff £(P) # 0. We measure the size of a 2NBP
by two parameters, the number of states and the gize; X,c p Xycx|0(s, a)|, of the
transition function.

Readers familiar with tree automata know that the run of @ &tomaton starts in
a single copy of the automaton reading the root of the tree tlaen the copy splits to
the successors of the root and so on, thus the run simultalydollows many paths in
the input tree. In contrast, a path automaton has a singheatogdl times. It starts from
the root and it always chooses a single direction to go tovtaway path automata, the
direction may be “up”, so the automaton can read many pattisedfee, but it cannot
read them simultaneously.

The fact that a 2NBP has a single copy influences its expeggwer and the
complexity of its nonemptiness and membership problemsndVeturn to study these
issues.
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4.2 Expressiveness

One-way nondeterministic path automata can read a sintheopthe tree, so it is easy

to see that they accept exactly all langua@esf trees such that there is anregular
languagéel of words and?” contains exactly all trees that have a path labeled by a word
in L. For two-way path automata, the expressive power is less, @s by going up and
down the tree, the automaton can traverse several pattisa®i@th automaton cannot
traverse all the nodes of the tree. To see that, we prove tRhB&® cannot recognize
even very simple properties that refer to all the branchésafree gniversalproperties

for short).

Theorem 9. There are no 2NBFP; andP, over the alphabef0, 1} such thatZ(P;) =
L, and L(P2) = Ly where|Y'| > 1 and

- L ={*71):7(x)=0forallz € T}.
— Ly = {{T*,7) : for every pathr C T, there isz € 7 with 7(z) = 0}.

Proof: Suppose that there exists a 2NBP that acceptd;. LetT = (Y*,7) € L,
be some tree accepted By . There exists an accepting run= (zg,po), (z1,p1), - - -
of P, onT. Itis either the case thatvisits some node ifi"™* infinitely often or not.

— Suppose that there exists a nade 7 visited infinitely often byr. There must exist
i < jsuchthat; = z; = z, p; = p;, and there exists < k < j such thalpy, €
F. Consider the run’ = ({E(),po), ey ("El‘,l,pl‘,l) (({Ei,pi), ey ({Ejfl,pjfl))w.
Clearly, it is a valid and accepting run &f onT. However,r’ visits only a finite
number of nodes if". Let W = {z;|z; visited byr’}. Itis quite clear that the same
runr’ is an accepting run dP; on the tred?’, 7’) such that’(z) = 7(x) forz € W
and7’(z) = 1 forz ¢ W. Clearly,(T*,7') ¢ L.

— Suppose that every nodec 7" is visited only a finite number of times. Lét;, p;)
be the last visit of- to the root. It must be the case that ; = v for somev € 7.
Letv’ # v be a differentelement itf. LetW = {z;; € T - v’ | z;» visited byr} be
the set of nodes in the subtreedivisited byr. Clearly, W is finite and we proceed
as above.

The proof for the case ¢P; and L, is similar. |

There are, however, universal properties that a 2NBP cavgréze. Consider a
languagel. C X of infinite words over the alphabét. A finite wordz € X* is abad
prefixfor L iff for all y € XY“, we haver - y ¢ L. Thus, a bad prefix is a finite word
that cannot be extended to an infinite word/inA languagel is asafetylanguage iff
everyw ¢ L has a finite bad prefix. A languade C X is clopenif both L and its
complement are safety languages, or, equivalebtigprresponds to a set that is both
closed and open in Cantor space. It is known that a clopemutgeyis bounded: there
is an integefk such that after reading a prefix of lengdttof a wordw € X*, one can
determine whethew is in L [KV01]. A 2NBP can then traverse all the paths of the
input tree up to levek (given L, its boundk can be calculated), hence the following
theorem.
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Theorem 10. Let L C X* be a clopen language. There is a 2NBRuch thatL (P) =
{{r*, ) : for all pathsw C T™*, we haver(n) € L}.

Proof: Letk be the bound of. andY" = {v1, ..., v, }. Considerw = wo, ..., w, €
T*. Let: be the maximal index such that # v,,. Let succ(w) be as follows

/
succ(w) = wo, ... Wi—1, Wiy Wit1, - .-, Wy,

where ifw; = v; thenw] = v;1. Thatis, if we takev = (v1)* then by using theucc
function we pass on all elementsiif according to the lexicographic order (induced by
v < Vg < ... < Upy). LetN = (XN, 3§, ng, F') be an NBW acceptindg.. According

to [KVO01], AV is cycle-free and has a unique accepting sink state. Foynidlhas an
accepting state,.. such that for every € X we haved(ngce, o) = {naqc.} and for
every runr = ng, nq, ... and everyi < j eithern; # n; orn;, = ngec.

We construct a 2NBP that scans all the path¥inaccording to the order induced
by usingsucc. The 2NBP scans a path and simulatén this path. Once our 2NBP
ensures that this path is acceptedMyit proceeds to the next path. Consider the fol-
lowing 2NBPP = (X, Q, 1, qo, {qacc}) Where

- Q= ({u,d} xT* x[k] x N)U{qacc}- A state consists of 4 components. The symbols
u andd are acronyms foup anddown. A state marked byl means that the 2NBP
is going down the tree while scanning a path. A state marked means that the
2NBP is going up towards the root where it starts scanningnéx¢ path. The word
w € T* is the current explored path. The numbet [k] denotes the location in the
pathw. The statex € N denotes the current state of the automatan

— For every statey € @ and lettero € X/, the transition functiom; : Q@ x ¥ —
2¢2t(T)xQ jg defined as follows:

n((d,w,i,n),o) =
{(wiy1, (d,w,i+1,n")) | n’ € §(n,0)} ifi#k

0 if i =k andn # ngec
{(e, (u, succ(w),i,n))} if i = k,n = Ngee, andw # (v, )"
{(g, Gace) } if i =k,n=nge, andw = (vm)k
. _ {(1, (u,w,i—1,m))} ifi#£0
(s w6m),0) = E G w, 0,m0))Y i =0
U(Qacm U) = {(57 Qacc)}

Intuitively, in d-states the automaton goes in the direction dictated Agyd simulates
N on the labeling of the patly. Once the pathy is explored, if the\ component is
not in nq.. this means the run of/ onw failed and the run is terminated. If thié
component reaches,.. this means that the run 8f onw succeeded and the 2NBP
proceeds to a-state withsucc(w). If succ(w) does not exist (i.ey = (v,,)*) the
2NBP accepts. Ini-states the 2NBP goes up towards the root; when it reaches the
root it initiates a run of\" on the wordw.

— qo = (d, (v1)*,0,n0). Thus, in the initial stateP starts to simulatéV” on the first
path(v)*.
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Let £ = {(T*,7) : forall pathst C ™, we haver(w) € L}. Consider a tre¢
in £. We show that is accepted byP. Consider a pathw in ¢. Letr, = ng---ng
be the accepting run of/ on the word labeling the path in t. We use the sequence
(d,w,ngp,0)---(d,w,ng, k) as part of the run oP ont¢. We add the partéu, w, k —
1,n)---(u,w,0,n) that connect these different sequences and finally add ariténfi
sequence Ofqcc.

In the other direction consider a treaccepted byP. For a pathw in ¢t we extract
from the accepting run dP the part that relates to. By the definition of the transition
it follows that if we project this segment on the states\éfive get an accepting run
of A on the word labelingv in t. As w is arbitrary it follows that every path in tree is
labeled by a word ir. and that € L. l

Recently, it was shown that deterministic walking tree edta are less expressive
than nondeterministic walking tree automata [BC04] antinloadeterministic walking
tree automata do not accept all regular tree languages [BChA&t is, there exist lan-
guages recognized by nondeterministic walking tree autathat cannot be recognized
by deterministic walking tree automata and there existlaggs accept by determinis-
tic tree automata that cannot be recognized by nondetesticimialking tree automata.
Using standard techniques to generalize results abouiratidoover finite objects to
automata over infinite objects we can show that 2DBP are lgaessive than 2NBP.
Similarly, the algorithms described in the next subseatimmbe modified to handle the
respective problems for walking tree automata.

4.3 Decision Problems

Given a 2NBPS, theemptiness probleris to determine whethe$ accepts some tree,
or equivalently whethe£(S) = (. Themembership problerof S and a regular tree
(Yr*,7) is to determine whethe§ acceptg7™, ), or equivalentl(Y™*, ) € £L(S). The
fact that 2NBP cannot spawn new copies makes them very sitoilaord automata.
Thus, the membership problem for 2NBP can be reduced to tipéiress problem of
eABW over a 1-letter alphabet (cf. [KVWOO]). The reductiorelds a polynomial time
algorithm for solving the membership problem. In contrést, emptiness problem of
2NBP is EXPTIME-complete.

We show a reduction from the membership problem of 2NBP tethptiness prob-
lem of cABW with a 1-letter alphabet. The reduction is a generaiiradf a construc-
tion that translates 2NBW teABW [PV03]. The emptiness ofABW with a 1-letter
alphabet is solvable in quadratic time and linear space [K\@JWWe show that in our
case the membership problem of a 2NBP is solved in cubic timegaadratic space in
the size of the original 2NBP. Formally, we have the folloguin

Theorem 11. Consider a 2NBFP = (X, P, , po, F'). The membership problem of the
regular tree(T*, ) in the language of is solvable in time)(| | -|§|- ||7||) and space
o(|P? - |I7[])-

Proof: We construct asABW on 1-letter alphabel = ({a}, Q,n, g0, &) such that
L(A) # 0iff (T*,7) € L(P). TheeABW A hasO(|P|? - ||7||) states and the size of
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its transition function iO(|P|2 - ] - ||7]|). As (T*,7) is a regular tree, there exists a
transducer that produces it. In order to consttdate combine this transducer with a
construction that converts 2-way automata to 1-way autaniafPV03] we show that
given a 2NBW we can construct aABW that accepts the same language. The conver-
sion of 2-way movement to 1-way movement relies on the fdhowbasic paradigm.
We check whether the 2-way automaton accepts the warfiom states by checking
that it can get from state to statet readingaw and that it acceptsw from statet. In
order to check that the 2-way automaton can get from statestatet reading a suffix
aw, the 1-way automaton either guesses that the 2-way autorgate froms to some
statep and fromp to ¢, or that there is a transition fromreadinga and going forward
to states’, a transition from some statereading the first letter afy going backward to
t, and that the 2-way automaton can get frento ¢’ readingw. We use a similar idea
here. Consider a regular tree that is the unwinding of a thacer from statel. The
2NBP accepts this tree from statéf there exists a statesuch that the 2NBP reaches
from s to t reading the tree and accepts the tree starting froim order to get froms
to ¢t reading the tree the 2NBP either reaches the root againtaysfae., reach froms
to p and fromp to t) or there is a transition from reading the label off and going in
directionry to states’, a transition from some statereading the label of the successor
of d going backward td, and that the 2-way automaton can get frehto ¢’ reading
the regular tree that is the unwinding of the transducer fstated’.

LetD, = (T, X, D,, p-,di, L-) be the transducer that generates the labels of
For a wordw € T* we denote by (w) the unique state tha?, gets to after reading
w. We construct theABW A = ({a}, Q, n, qo, ) as follows.

- Q=(PU(PxP))x D, x{L, T} StatesinP x D, x {L, T}, which hold a
single state fronP, are callecsingleton statesSimilarly, we call states i® x P x
D, x {L, T} pair states

— qo = (pOadan—)

—a=(FxD;x{L})U(PxD,x{T}).

In order to define the transition function we have the follogvdefinitions. Two func-
tionsf, : Px P — {1, T}wherea € {L, T}, and for every statg € P and alphabet
lettero € X' the setCy is the set of states from whighis reachable by a sequence of
e-transitions reading letter and one final-transition reading-. Formally,

fJ_(pvpl) =1
~n_|LifpeForp eF
fre:P) =17 otherwise.
co— L Jto,t1,...,t, € PT suchthaty =o', t, = p,
r P (e,t;) € §(ti—1,0) forall0 < i < n,and(T,pn) € 6(pn-1,0)

Now 7 is defined for every state i) as follows (recall tha#d is a word automaton,
hence we use directiofisandl in the definition ofy, asX = {a}, we omit the letter:
from the definition ofy).
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n(p,d,a) = V V 0.@p.dp) A0, d8) v
p'EP Be{Ll, T}
V V (L, (¥, pr(d,v), L)) Vv
v€EY (v,p’)ES(p,L+(d))
Vo 0.0,d 1)

(e,p")€6(p,L~(d))

n(p1,p2. d, ) = \ (0, (¢, p2,d, fo(p',p2))) v
(e,;p")€6(p1,L~(d))
\/ \/ (Oa (p1,p/,d, fﬂ1(p17p/))/\ (07 (p/ap27d7 fﬁ2(p/7p2))) \
p'EP f1+P2=a
V V Vo @@ e (d o), fa@p"))

vET (v,p’)€(p1,L-(d)) p”EC{,‘;(‘”

Finally, we replace every state of the foff(p, p, d, «) | eitherp € P anda =
Lorpe Fanda = T} by true.

Claim. L(A) # 0iff (T*,7) € L(P).

The proof is very similar to the proof in [PV03] and is desedhin detail in Ap-
pendix A.

The emptiness of a#?ABW can be determined in linear space [EL86]. FoeaBW
A with 1-letter alphabet, we have the following.

Theorem 12. [VW86b] Given ansABW over 1-letter alphabed = ({a}, Q,n, g0, &)
we can check whethdr(A) is empty in timeD(|Q)] - |n|) and space)(|Q)|).

Vardi and Wolper give an algorithm that solves the emptimeeblem of an ABW
over 1-letter alphabet [VW86b]. We note that emptiness"®BW over 1-letter alphabet
can be reduced to that of an ABW over 1-letter alphabet byasipd everye-transition
by a transition that advances to the next letter. As the immuitl is infinite, there is no
difference between advancing and not advancing.

The automaton4 constructed above has a special structure. The transifiof o
from states of the fornP x P x D, x {L, T} includes only states of the same form.
In addition, all these states are not accepting. This sugdkat if in the emptiness
algorithm we handle these states first, the quadratic paneadlgorithm can be applied
only to the states of the forl® x D, x { L, T}. Using these ideas, we show in [PV03]
that the emptiness o4 can be decided in timé@(|n|) and spac®(|Q|). O

Theorem 13. The emptiness problem for 2NBP is EXPTIME-complete.

Proof: The upper bound follows immediately from the exponentiaktialgorithm for
the emptiness for 2APT [Var98].

For the lower bound we use the EXPTIME-hard problem of wheghaear space
alternating Turing machine accepts the empty tape [CKS8%&]reduce this problem
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to the emptiness problem of a 2NBP with a polynomial numbetates. We start with
definitions of alternating linear space Turing machinesahernating Turing machine
is M = (I, Sy, Se,—, 50, Face, Frej), Where the four sets of statés, Se, Foce, and
F,.; are disjoint, and contain the universal, the existentia gccepting, and the reject-
ing states, respectively. We denote their union (the sell sfates) byS. Our model of
alternation prescribes thatC S x I' x S x I' x { L, R} has a binary branching degree.
When a universal or an existential stateMddfbranches into two states, we distinguish
between the left and the right branches. Accordingly, we(sse) —' (s, by, 4;) and
(s,a) —" (s, b, A,) to indicate that whed/ is in states € S,, U S, reading input
symbola, it branches to the left withs;, b;, 4;) and to the right with{(s,., b,-, A,.). (Note
that the directions left and right here have nothing to ddwhie movement direction
of the head; these are determineddyyand A,..)

Recall that we consider here alternating linear-spacenguriachines. Lef : N —

N be the linear function such that’ usesf(n) cells in its working tape in order to
process an input of length. We encode a configuration & by a string in{t} -
I'-..(SxI)-rf™=i=1 Thatis, a configuration starts with the sympadll its other
letters are i, except for one letter ity x I". The meaning of such a configuration is
that thejth cell in the configuration, fot < j < f(n), is labeledy;, the reading head
points at celli+1, and M is in states. For example, the initial configuration af is

- (s0,b)b---b (with f(n)—1 occurrences ob's) whereb stands for an empty cell. A
configurationc’ is a successor of configuratienf ¢’ is a left or right successor of
We can encode now a computation/dfby a tree whose branches describe sequences
of configurations of\/. The computation is legal if a configuration and its successo
satisfy the transition relation.

Note that though\/ has an existential (thus nondeterministic) mode, theresin-a
gle computation tree that describes all the possible ce@m€d/. Each run ofd/ cor-
responds to a pruning of the computation tree in which aluthigersal configurations
have both successors and all the existential configuratians at least one successor.
The run is accepting if all the branches in the pruned treglraa accepting configura-
tion.

We encode the full run tree @ff into the labeling of the full infinite binary tree. We
construct a 2NBP that reads an input tree and checks thandégd a correct encoding
of the run tree ofM. In case the input tree is a correct encoding, the 2NBP furthe
checks that there exists a subtree that represents an iaccemthputation of\/.

We now explain how the labeling of the full binary tree is usedncode the run tree
of M. Letf- oy -0, be aconfiguration ang- ol - oﬁc be its left successor. We
setog anda} to §. Formally, letV = {#} U'U (S x I') and letnext; : V? — V where
next;(o;_1,0;,0;11) denotes our expectation fof. We definenext, (o, 1, 0') = £ and

ol if {o,0',0"}y C{}UT
o if o = (s,7)and(s,~) = (s,9, R)
_ ooy _ | (810") if o = (s,7) and(s, ) —' (5,7, L)
nethz(U,U , O ) P if o = (3,7) and(s,y) N (3/,7/,L)
(8/’0_/) if o = (S,"/) and(s"‘/) —)l (S/a'Y/’R)
A if o' = (s,7) and(s,y) = (s, a)
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The expectatiomext, : V3 — V for the letters in the right successor is defined
analogously.

The run tree of\/ is encoded in the full binary tree as follows. Every configiora
is encoded by a string of lengff{n) + 1 in {#} x I'* x (S x I') x I'*. The encoding of
a configuratiory - o - - - 0 4(,,) Starts in a node that is labeled by. The( successor of
z, namely0 - z, is labeled by, and so on untib/(™ . z that is labeled by ;). The
configuratiort - o1 - - - 0 4(,,) has its right successgr o7 - - - 0 ) and its left successor
£-01- 0%, The encoding of - o7 - -- 0%, startsinl - 0/ . z (that is labeled by
£) and the encoding of - o} - -- o', starts in0 - 0/(") - z (that is labeled by). We
also demand that every node be labeled by its direction. Whiswe can infer from
the label of the node labeled ljywhether its the first letter in the left successor or the
first letter in the right successor. For example, the roohefttee is labeled byl ),
the node) is labeled by(0, (s, b)) and for everyl < i < f(n) the node)’ is labeled
by (0,b) (hereb stands for the blank symbol). We do not care about the lalielther
nodes. Thus, the labeling of ‘most’ nodes in the tree doeft@test us.

The 2NBP reads an infinite binary tree. All trees whose laigetioes not conform
to the above are rejected. A tree whose labeling is a cornattding of the run tree of
M is accepted only if there exists an accepting pruning treesTthe language of the
2NBP is not empty iff the Turing maching accepts the empty tape.

In order to check that the input tree is a correct encodingeftn tree of\/, the
2NBP has to check that every configuration is followed bytuitscessor configurations.
When checking location in configurationa, the NBW memorizes the three letters
around location (: — 1, i, 4 + 1), it goesf(n) steps forward to the next configuration
and checks that it finds there the correetct; or next, successor. Then the 2NBP
returns to locatiori+ 1 in configuratiorn and updates its three letters memory to check
consistency of this next location.

We now explain the construction in more detail. The 2NBP kas main modes
of operation. Inforward mode, the 2NBP checks that the next (right or left) configu-
ration is indeed the correct successor. Then it moves tokctihecnext configuration.

If it reaches an accepting configuration, this means thattheently scanned prun-
ing tree may still be accepting. Then it movestackwardmode and remembers that
it should check other universal branches. If it reaches ectiejg configuration, this
means that the currently scanned pruning tree is rejeciing.2NBP has to move to
the next pruning tree. It moves tckwardmode and remembers that it has to check
other existential branches. backward universamode, the 2NBP goes backward un-
til it gets to a universal configuration and the only configiorato be visited below it
is the left successor. Then the 2NBP goes back to forward rbotleemembers that
the next configuration to visit is the right successor. Ifithet is reached in backward
universal mode then there are no more branches to checkiuhing tree is accepting
and the 2NBP accepts. rackward existentiainode, the 2NBP goes backward until it
gets to an existential configuration and the only configaratd be visited below it is
the left successor. Then the 2NBP goes to forward mode bugndrars that the next
configuration to visit is the right successor. If the roogached in backward existential
mode then there are no more pruning trees to check and the P&j&d?s.

The full formal construction is given in Appendix B. l
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We note that the membership problem for 2-way alternatingiBautomata on trees is
EXPTIME-complete. Indeed, CTL model checking of pushdoystems, proven to be

EXPTIME-hard in [Wal00], can be reduced to the membershifplam of a regular tree

in the language of a 2ABT. Given a pushdown systems (X, V,Q, L, T, qo, xo) and

a CTL formulay, we can construct a graph automat®raccepting the set of graphs
that satisfyp [KVWO0O]. This graph automaton is linear ip and it uses the Bichi

acceptance condition. Using the construction in Sectio@Td, model checking then

reduces to the membership problem{Bf, ) in the language of a 2ABT. EXPTIME-

hardness follows. Thus, path automata capture the connatifference between

linear and branching specifications.

5 Model-Checking Linear-Time Properties

In this section we solve the LTL model-checking problem bgd@uction to the member-
ship problem of 2NBP. We start by demonstrating our teche@uLTL model checking
of pushdown systems. Then we show how to extend it to prefiggeizable systems.
For an LTL formulap, we construct a 2NBP that navigates through the full infikite
tree and simulates a computation of the rewrite system thedt dot satisfyp. Thus, our
2NBP accepts th& -tree iff the rewrite system does not satisfy the specificafi hen,
we use the results in Section 4: we check whether the dgii«tree is in the language
of the 2NBP and conclude whether the system satisfies theegyof-or pushdown
systems we show that the tré€*, 7.} gives sufficient information in order to let the
2NBP simulate transitions. For prefix-recognizable systém label is more complex
and reflects the membership of a nadi the regular expressions that are used in the
transition rules and the regular labeling.

5.1 Pushdown Graphs

Recall that in order to apply a rewrite rule of a pushdowneaysfrom configuration
(¢, ), it is sufficient to knowg and the first letter of.. We construct a 2NBFP that
reads(V*, 7., ). The state space @f contains a component that memorizes the current
state of the rewrite system. The location of the reading &t ™, 7, ) represents the
store of the current configuration. Thus, in order to knowachkihiewrite rules can be
applied,P consults its current state and the label of the node it reaate thatdir(x)

is the first letter of). Formally, we have the following.

Theorem 14. Given a pushdown syste® = (247 V,Q, L, T, qo, zo) and an LTL
formula ¢, there is a 2NBPP on V-trees such thaP accepts(V*, 7, ) iff Gr £ .
The automatorP has|Q| - ||T|| - 22U+ states and the size of its transition function is
sl 20(l¢l)

Proof: According to Theorem 5, there is an NB$V,, = (24F W, 0=y, wo, F') such
that L(S-,) = (247)« \ L(p). The 2NBPP tries to find a trace it/ that satisfies
—p. The 2NBPP runsS-,, on a guessetl, xo)-computation inR. Thus,P accepts
(V*,7,) iff there exists ar{qo, 7o)-trace inG'r accepted bys_,. Such aqo, =0 )-trace
does not satisfy, and it exists iffR = ¢. We defineP = ({V U {L}, P, 4, po, a),
where
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— P =W x @ x heads(T'), whereheads(T) C V* is the set of all prefixes of words
x € V* for which there are states ¢’ € Q andA € V such that(q, A,z,¢') € T.
Intuitively, whenP visits a noder € V* in state(w, ¢,y), it checks thatR with
initial configuration(q, y - x) is accepted bys¥,. In particular, whery = ¢, then
R with initial configuration(q, z) needs to be accepted I8§,,. States of the form
(w, g, €) are calledaction statesFrom these state$ consults)-, and" in order to
impose new requirements ¢k *, 7, ). States of the fornfw, ¢, y), fory € V', are
callednavigation statesFrom these stateB only navigates downwardgto reach
new action states.

— The transition function is defined for every state ifw, ¢, z) € S x Q x heads(T)
and letter inA € V as follows.

o i((w,q.€),A) =
{0, (W', ¢ y) + w en-p(w, Lig, A)) and(q, A,y,q') € T}.

hd 5(<wa q,Y - B>5 A) = {(B7 <’LU, q, y>)}
Thus, in action state$) reads the direction of the current node and applies thetewri
rules of R in order to impose new requirements accordingg. In navigation states,
‘P needs to go downwards: B, so it continues in directiofs.

— po = {wo, qo, o). Thus, in its initial staté® checks thai? with initial configuration
(g0, o) contains a trace that is accepted®yvith initial statewy.

- a={{w,q,¢) : we Fandqe Q}. Note that only action states can be accepting
states ofP.

We show thatP accepts(V*, 1) iff R £ ¢. Assume first tha® accepts(V*, 7, ).
Then, there exists an accepting i@, zo), (p1, 1), ...0of Pon(V* 7). Extractfrom
this run the subsequence of action stdes, x;, ), (pi,, i, ), - - .- As the run is accept-
ing and only action states are accepting states, we knowhisatubsequence is infinite.
Let p;, = (wy,,qi;,<). By the definition ofd, the sequencéy;, , x4, ), (¢iy, Tiy ), - - -
corresponds to an infinite path in the gra@h. Also, by the definition ofy, the run
Wi, , Wiy, . - . IS @n accepting run a$-,, on the trace of this path. Hena@x contains a
trace that is accepted I8, thusR F~ ¢.

Assume now thaR? [~ ¢. Then, there exists a patho, xo), (¢1,21),... in Gr
whose trace does not satisfy There exists an accepting rug, wy, ... of S, on this
trace. The combination of the two sequences serves as teequdnce of action states
in an accepting run oP. It is not hard to extend this subsequence to an accepting run
of Pon(V*,1,). U

5.2 Prefix-Recognizable Graphs

We now turn to consider prefix-recognizable systems. Agawmndiguration of a prefix-
recognizable syste® = (X, V,Q, L, T, qo, xo) consists of a state iy and a word in
V*. So, the store content is still a node in the tié& However, in order to apply a
rewrite rule it is not enough to know the direction of the noRecall that in order
to represent the configuratidn, ) € @ x V*, our 2NBP memorizes the staeas
part of its state space and it reads the node V*. In order to apply the rewrite rule
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t; = (¢, s, Bi,7i,q'), the 2NBP has to go up the tree along a wgrd «;. Then, if
x = y-z,ithasto check that € 3;, and finally guess aworg € ~; and go downwards
y' toy - 2. Finding a prefixy of 2 such thaty € «;, and a new worg’ € ~; is not hard:
the 2NBP can emulate the run of the automaignwhile going up the tree and the run
of the automatoiy,, backwards while going down the guesggdHow can the 2NBP
know thatz € 3;? In Subsection 3.2 we allowed the 2APT to branch to two states
first, checking that € 3; and the second, guessipf With 2NBP this is impossible
and we provide a different solution. Instead of labelingheaadez € V* only by its
direction, we can label it also by the regular expressipfes whichz € 5. Thus, when
the 2NBP rung/{,,, up the tree, it can tell, in every node it visits, whethés a member
of 8; or not. If z € 3;, the 2NBP may guess that time has come to guess a woyd in
and runl{,, down the guessed word.

Thus, in the case of prefix-recognizable systems, the nddbs tree whose mem-
bership is checked are labeled by both their directions afatration about the reg-
ular expressions. Let {,...,5,} be the set of regular expressiofis such that
there is a rewrite ruléq, cvi, 6;,7i,¢') € T. Let Dy, = (V, Dg,, 13,43, F3,) be the
deterministic automaton for the reverse of the languagg; ofor a wordz € V*,
we denote by, (z) the unique state tha®g, reaches after reading the wardf. Let
Y =V x II<i<nDg,. For alettero € X, letol[i], fori € {0,...n}, denote the-th
element ino (that is,c[0] € V ando[i] € Dg, for i > 0). Let (V*, 73) denote the
Y-labeledV-tree such thats(€) = (L, q5,,...,q3, ), and for every nodel - z € V¥,
we haverg(A - x) = (A,ng, (A-x),...,n8,(A-x)). Thus, every node is labeled by
dir(z) and the vector of states that each of the deterministic aatftneach after read-
ing z. Note thatrg(x)[i] € Fj, iff z is in the language of;. Note also thatV*, 73) is
a regular tree whose size is exponential in the sum of theheraf the regular expres-
sionsfy, . .., Bn.

Theorem 15. Given a prefix-recognizable systein= (¥, V,Q, L, T, qo, o) and an
LTL formula, there is a 2NBPP such thatP accepts(V*, 73) iff R [~ ¢. The au-
tomaton? has|Q| - (|Qa| + |Q-|) - |T| - 2°U¢)) states and the size of its transition
function is||T'|| - 20(I#D,

Proof: As before we use the NBW_, = (247, W, n_,, wo, F).
We defineP = (X, P, §, ppcx) as follows.

- XY=V xII,Dg,.

-P= {<vaatiaS> | w e VV, qe Qa t; = <qlvaivﬂia"/z‘aQ> e, ands € QaiUQ%‘}
Thus,P holds in its state a state 6t.,, a state inQ, the current rewrite rule being
applied, and the current state @i, or Q.. A state(w, ¢, (¢, o, B:, 7i, q), s) is an
action state ifs is the initial state ot{,,, thatiss = ¢J,. In action statesp chooses
a new rewrite rulet;; = (g, o, Bir,7vir,¢'). ThenP updates theS_, component
according to the current location in the tree and moveglto the initial state of
U, . Other states are navigation states. ¢ @, is a state iruL% (thatis not initial),
then” chooses a direction in the tree, a predecessor of the stélg, ireading the
chosen direction, and moves in the chosen directiondfQ),,, is a state ot{,,, then
‘P moves up the tree (towards the root) while updating the stidig,,. If s € F,,, is
an accepting state of,, andr(z)[i] € Fj, marks the current nodeas a member of
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the language of}; then’ moves to some accepting state £, of i/, (recall that
initial states and accepting states have no incoming / dndgedges respectively).

— The transition functiory is defined for every state i and letter inY) = V x
II | Dg, as follows.

(3

e If s € Q, then

5wy, ts,5), 7) = {(T, (w,q, 11, 7))

ti = <qlaaiaﬁia’yi7q> U
s’ € 1, (s, 0[0])

ti = <(]/704i,5i,"/z‘7Q>,

(65 <waQ7tiaS/>) s e Fai’ s’ € F’Yi’

andoli] € Fpg,

o If s € Q,,then

0({w,q,t;,8),0) = {(B, (w,q,t;,s"))

ti = (¢, i, Bi, 74, Q) } U
s €ny,(s',B)andB € V

ti = (d', s, B, vi, 4),

tir = (g, ar, Bir,vir s q")s

w' € n-y(w, L(g, 0[0])),

s = qgi andsg = qgi,

(67 <wl7 q//7 ti’; 80>)

Thus, whers € @, the 2NBPP either chooses a successbof s and goes up the
tree or in case is the final state of{,, ando[i] € Fj3, thenP chooses an accepting
states’ € F,, of U,,,.
Whens € @, the 2NBPP either guesses a directidhand chooses a predecessor
of s readingB or in cases = q?h is the initial state ot{,,, the automatof® updates
the state ofS-,, chooses a new rewrite rute = (g, v, Bir, vir, ¢”") and moves to
47, the initial state ot4,,, .
— po = {(wo, qo, t, xo), Wheret is an arbitrary rewrite rule.
Thus,P navigates down the tree to the locatien There, it chooses a new rewrite
rule and updates the state®f, and the) component accordingly.
—a={{w,qty,s)|weF qgeQ, ti=(¢, o, B, v, q), ands = ¢9 }
Only action states may be accepting. As initial states havi@ecoming edges, in an
accepting run, every navigation stage is finite.

As before we can show that a trace that violatemnd the rewrite rules used to create
this trace can be used to produce a rufPain (V*, 73)

Similarly, an accepting run oP on (V* 73) is used to find a trace it'r that
violatesp. U

We can modify the conversion of 2NBP ¢&BW described in Section 4 for this
particular problem. Instead of keeping in the state ofdARBW a component of the
direction of the noded € V U {L} we keep the letter fron¥’ (that is, the tuple
(A,q1,...,qn) € V x I Dg,). When we take a move forward in the guessed direc-
tion B € V we update(A, q1, ..., ¢n) 10 (B,na,(q1, B), ..., 1, (¢n, B)). This way,
the state space of the resulti§BW does not contaifi/I", Dg, ) butonly II7, Dg, .

Combining Theorems 14, 15, and 11, we get the following.
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Theorem 16. The model-checking problem for a rewrite systerand an LTL formula
w is solvable in

— time||T||? - 2°U¢1) and space|T'||? - 22U, if R is a pushdown system.
— time||T||? - 20U#I+1@sD) and spacd| T||? - 20U#I+1QsD if R is a prefix-recognizable
system. The problem is EXPTIME-hard {ps| even for a fixed formula.

For pushdown systems (the first setting), our complexitpcidies with the one in
[EHRSOQ]. In Appendix C, we prove the EXPTIME lower bound fretsecond set-
ting by a reduction from the membership problem of a linearcspalternating Turing
machine. Thus, our upper bounds are tight.

6 Relating Regular Labeling with Prefix-Recognizability

In this section we consider systems with regular labeling.shbw first how to extend
our approach to handle regular labeling. Both for branchimg and linear-time, the
way we adapt our algorithms to handle regular labeling iy g&milar to the way we
handle prefix-recognizability. In the branching-time frwork the 2APT guesses a la-
bel and sends a copy of the automaton for the regular lableétmibt to check its guess.
In the linear-time framework we include in the labels of tegular tree also data regard-
ing the membership in the languages of the regular labeBaged on these observa-
tions we proceed to show that the two questions are inteileléu¥Ve describe a reduc-
tion from u-calculus (resp., LTL) model checking with respect to a predicognizable
system with simple labeling function fo-calculus (resp., LTL) model checking with
respect to a pushdown system with regular labeling. We al&xrgductions in the other
direction. We note that we cannot just replace one systermbghar, but we also have
to adjust theu-calculus (resp., LTL) formula.

6.1 Model-Checking Graphs with Regular Labeling

We start by showing how to extend the construction in Subse& 2 to include also
regular labeling. In order to apply a transition of the grapkomatorS, from configu-
ration(q, z) our 2APT.A has to guess a label € X, apply the transition of reading
o, and send an additional copy to the root that checks thatubesjis correct and that
indeedz € R, 4. The changes to the construction in Subsection 3.1 aressimil

Theorem 17. Given a prefix-recognizable rewrite systdin= (X, V, Q, T, L, qo, xo)
whereL is a regular labeling function and a graph automatSn= (X, W, §, wo, F),
we can construct a 2APH over (V U {L})-labeledV-trees such thatd accepts
(V*,1,) iff G satisfiesS. The automatotd hasO(|Q| - (||T]| + ||L]]) - |V]) states,
and its index is the index & plus 1.

Proof: We take the automaton constructed for the case of prefixgrézable systems

with simple labeling4d = (V U{L}, P,n, po, @) and modify slightly its state sét and
its transitiony.

32



— P =P UP,UPswhereP, = {3V} x W x Q xT x (Qa UQ,) and P, =
{3,V} x T x Qp are just like in the previous proof ans = J, ., quQ Qo.q
includes all the states of the automata for the regular espyas appearing ib.

— The definition ofapply - does not change and so does the transition of all navigation
states. In the transition of action states, we include audajon that guesses the
correct labeling. For a state, w, ¢, t;, s) € P, such that; = (¢, a;, 8;,7i, ¢) and
5 = ¢, we have

n(dw,,ti,5), 4) = \/ (2,4 A applyr (3w, 0), ti,5)).
ocy

For a states € ., and letterA € V' U { L} we have

Viepsaisay(1:8") iFAFEL
n(s, A) = | true if A= 1 ands € Fy,
false if A= _1ands ¢ Fy 4

O

Theorem 18. The model-checking problem for a pushdown or a prefix-reizadphe
rewrite systemR = (¥, V,Q, L, T, qo,x0) With a regular labelingL and a graph
automatonS = (X, W, 6, wy, F'), can be solved in time exponential ik, where
n=|W|-1Q|-|T| -|V|+ L] -|V|andk is the index ofS.

We show how to extend the construction in Subsection 5.2dludle also regular
labeling. We add to the label of every node in the tv&ealso the states of the deter-
ministic automata that recognize the reverse of the langgiafthe regular expressions
of the labels. The navigation through tietree proceeds as before, and whenever the
2NBP needs to know the label of the current configurationt (iain action states,
when it has to update the state$f,), it consults the labels of the tree.

Formally, let{ Ry, ..., R, } denote the set of regular expressidtssuch that there
exist some statg < () and propositiorp € AP with R; = R, . Let Dr, =
(V,Dg,,nr,,q%,. . Fr,) be the deterministic automaton for the reverse of the laggua
of R;. For a wordz € V*, we denote by, (x) the unique state thar, reaches
after reading the word®. Let ¥ = V x Il <;<, Dg,. For a letteroc € X let ofi],
for i € {0,...,n}, denote the-th element ofs. Let (V*,7,) be theX-labeledV -
tree such that, (¢) = (L,q%,,...,q%, ) and for every noded - = € V* we have
T, (A-z)=(Anr, (A -2),...,nr,(A-x)). The 2NBPP reads(V*, 7, ). Note that
if the state space dP indicates that the current state of the rewrite system asd
P reads the node, then for every atomic propositign we have thap € L(q, x) iff
7, (z)[i] € Fg,, wherei is such that?; = R, 4. In action statesP needs to update
the state of5-,,, which reads the label of the current configuration. Baseitamurrent
state and-, , the 2NBPP knows the letter with whicls_, proceeds.

If we want to handle a prefix-recognizable system with reglalaeling we have to
label the nodes of the tréé* by both the deterministic automata for regular expressions
B; and the deterministic automata for regular expressigpg. Let (V*, 7, ) be the
composition of(V*, 75) with (V*, 7, ). Note that(V*, 7, ) and(V*, 7, , ) are regular,
with ||, || = 20(IL1l) and||7, , | = 20(1Qsl+ILI)
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Theorem 19. Given a prefix-recognizable systdin= (¥, V, Q, L, T, qo, zo) WhereL
is a regular labeling and an LTL formulea, there is a 2NBRS such thatS accepts
(V*,75.1) iff R [~ . The automatos has|Q| - (|Qa| +1Q,) - I - 20D states
and the size of its transition function j§|| - 20(1¥

Note that Theorem 19 differs from Theorem 15 only in the laétee whose mem-
bership is checked. Combining Theorems 19 and 11, we gettioavfng.

Theorem 20. The model-checking problem for a prefix-recognizable aydfewith
regular labelingZ and an LTL formulap is solvable in timg|T'||* - 20(lel+1Qgal+IILI)
and space|T||? - 20Uel+IQsI+ILID,

For pushdown systems with regular labeling an alternatiyersthm is given in Theo-
rem 1. This, together with the lower bound in [EKSO01], implEXPTIME-hardness in
terms of|| L||. Thus, our upper bound is tight.

6.2 Prefix-Recognizable to Regular Labeling

We reduce:-calculus (resp., LTL) model checking of prefix-recognieegystems tqu-
calculus (resp., LTL) model checking of pushdown systentls meigular labeling. Given
a prefix-recognizable system we describe a pushdown sysimegular labeling that
is used in both reductions. We then explain how to adjustthalculus or LTL formula.

Theorem 21. Given a prefix-recognizable systef = (247, V,Q, L, T, qo, o), a
graph automatorS, and an LTL formulap, there is a pushdown systeRi = <2AP/,
V,Q', L', T', q}, zo) with a regular labeling function, a graph automatét, and an
LTL formulay’, such that? = Siff R’ = &’ andR [ ¢ iff R’ = ¢'. Furthermore,
Q' = 1Q1 x |T] x (1Qal + Q). IT’Il = O(ITI). L] = |Qal. IS = O(IS]),
the index ofS’ equals the index of plus one, andy’| = O(|¢]). The reduction is
computable in logarithmic space.

The idea is to add to the configurationsi®fabels that would enable the pushdown
system to simulate transitions of the prefix-recognizajétesn. Recall that in order to
apply the rewrite ruléq, «, 3,~, ¢') from configuration(q, =), the prefix-recognizable
system has to find a partition z of z such that the prefiy is a word ina and the suffix
zis aword ing. It then replaceg by a wordy’ € ~. The pushdown system can remove
the prefixy letter by letter, guess whether the remaining suffiis a word ing3, and
addy’ letter by letter. In order to check the validity of guesshe,tystem marks every
configuration where it guesses that the remaining suffix isadwn 3. It then consults
the regular labeling function in order to single out traaesvhich a wrong guess is
made. For that, we add a new propositiant_wrong, which holds in a configuration
iff it is not the case that pushdown system guesses that ffie sus in the language of
some regular expressiorand the guess turns out to be incorrect. The pushdown system
also marks the configurations where it finishes handling sawete rule. For that, we
add a new proposition;h-rule, which is true only when the system finishes handling
some rewrite rule and starts handling another.

The pushdown systerit’ has four modes of operation when it simulates a transi-
tion that follows a rewrite ruldq, a, 3, v, ¢'). In deletemode, R’ deletes letters from
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the storex while emulating a run o#{,,. Delete mode starts from the initial state of
U.,, from which R’ proceeds until it reaches a final statéfqf . Once the final state of
U, is reachedR’ transitions tochange-directiormode, where it does not change the
store and just moves to a final staté£f, and transitions tarite mode. In write mode,
R’ guesses letters il and emulates the run &f,, on them backward, while adding
them to the store. From the initial stateidf, the pushdown syster?’ transitions to
change-rulemode, where it chooses a new rewrite ri4€ o/, By, vir, ¢"') and transi-
tions to delete mode. Note that if delete mode starts in cordigpn(g, =) it cannot last
indefinitely. Indeed, the pushdown system can remove oniigfjnmany letters from
the store. On the other hand, since the store is unboundid,made can last forever.
Hence, traces along whicth-rule occurs only finitely often should be singled out.

Singling out of traces is done by the automait®nand the formulay’ which re-
strict attention to traces in whiclot_wrong is always asserted an@-rule is asserted
infinitely often.

Formally, R’ has the following components.

— AP' = AP U {not_wrong, ch-rule}.

- Q = Q xT x ({ch-dir, ch-rule} U Qo U Q). A state(q,t,s) € Q' maintains
the stateg € @ and the rewrite rulé currently being applied. the third element
indicates the mode d®’. Change-direction and change-rule modes are indicated by
a marker. In delete and write modd®, also maintains the current stateléf and
Uu,.

- Fgr every propositiop € AP, we havep € L'(q,z) iff p € L(q,z). We now
describe the regular expression for the propositiansule and not_wrong. The
propositionch-rule holds in all the configuration in which the system is in change
rule mode. Thus, for every € Q andt € T, we haveR ; ch-rule),ch-rule =
V*and Ry ¢y, ch-rue = 0 for ¢ # ch-rule. The propositiomot_wrong holds in
configurations in which we are not in change-direction martegonfiguration in
which we are in change-direction mode and the store % thus changing direction
is possible in the configuration. Formally, for eveng @ andt = (¢, o, 8,7, q) €
T, we haveR(q,t,ch-dir},not_wmng = ﬁ andR(q,t,C),not-wmng =V~ for ¢ # ch-dir.

— q4 = {qo, t, ch-rule) for some arbitrary rewrite rule

The transition function of?’ includes four types of transitions according to the
four operation modes. In change-direction mode, in condigom ((g, ¢, ch-dir), z)
that applies the rewrite rule = (¢, o;, i, Vi, q), the systemR’ does not change,
and moves to a final state ¢ F,, of I/,,. In change rule mode, in configuration
({g,t, ch-rule), z), the systemR’ does not change, it chooses a new rewrite rule
t' = {(q, i, Bir,vir, ¢'), changes th€) component tay’, and moves to the initial state
qgi, of U, . In delete mode, in configuratiorq, ¢, s), x), for t = (¢, as, Bs,7i, q)
ands € Q,,, the systemR’ proceeds by either removing one letter franand con-
tinuing the run ofi,,, or if s € F,, is an accepting state &f,, then R’ leavesz
unchanged, and changes$o ch-dir. In write mode, in configuratiof(q, ¢, s), z), for
t = (¢, o, B, v, q) ands € Q.,, the systemR’ proceeds by either extendingwith
a guessed symbol frovi and continuing the run d¥,, backward using the guessed
symbol, or ifs = qgi, then R’ leavesz unchanged and just replacesy ch-rule.
Formally, 7’ =T UT - UTG UT,, where

ch-rule
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— T

ch-rule —

{((%t, Ch_TUIe>7 Aa Av <qla tla 5>) ‘ tl = <Qaai7ﬂia"/ia q/>a § = qoott and4 e V} .
= Tip-air =

{(<Q7ta Ch'di’l">,A, A7 <Q7 ta 8>) | t= <q/aai76i77ia q>a ERS F’Ym andA S V} .

Note that the same lettet is removed from the store and added again. Thus, the store
content of the configuration does not change.

— T =
/ t= <ql7aivﬂia"/iaQ>v SEQOU
(.8, 5), 4 € (.1, 57) s € pa,(s,A), andA e V -
s t= <qlaaiaﬁi77i7q>a SEQO[?
({q,t,s), A, A, (q,t, ch-dir)) ’ scF,, andAcV .
— T’; =
/ t= <ql,@i,ﬁi,’}/¢,q>, s c Q’w
(lg: 00, A AB {0 1.50) | e ) (5 B), andA, B eV .

(<Q7 ta S>, A7 A, <q, t, Ch"f'ul€>)

t= <ql7ai7ﬁiafyiaQ>7 s € Q’w
s=q) andA eV '

As final states have no outgoing edges, after a staté&’, o, 5i,7v:, q), s) for
s € F,, we always visit the statéy, ¢, ch-dir). Recall that initial states have no in-
coming edges. It follows that we always visit the st&det, ch-rule) after visiting a
state(q, (¢', cvi, Bi, vi, 4), 45, )-

The automators’ adjustsS to the fact that every transition iR corresponds to
multiple transitions inR’. Accordingly, whenS branches universally, infinite naviga-
tion stages and states not markeday_wrong are allowed. Dually, whe& branches
existentially, infinite navigation stages and states notketh by not_wrong are not
allowed.

Formally, letS = (X, W, 6, wq, F'). We defineS’ = (X, W’ §, wq, o) where

- W' =W U ({Vv,3} x W) Intuitively, whenS’ reads configuratiofy, =) and transi-
tions toJw it is searching for a successor @f, «) that is accepted bg*. The state
Jw navigates to some configuration reachable ffgnx) of R’ marked bych-rule.
Dually, whenS’ reads configuratiofy, =) and transitions t&/w it is searching for
all successors dfy, ) and tries to ensure that they are accepted¥yThe state/w
navigates to all configurations reachable frgmz) of R’ marked bych-rule.

— For every statev € W and letters € X, the transition functio’ is obtained fromd
by replacing every atom of the formw by O(Vw) and every atom of the formrw
by ¢ (Fw).

For every statev € W and letters € X, we have

true if o }£ not_wrong
8 (Vw,0) = | (e,w) if o |= not_wrong A ch-rule
(O0,Vw) if o = not_wrong A —ch-rule
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false if o j£ not_wrong
¥ (Fw,o) = | (e,w) if o = not_wrong A ch-rule
(€, 3w) if o |= not_wrong A —ch-rule

— The setn is obtained from¥ by including all states ifV} x W as the maximal even
set and all states ifd} x W as the maximal odd set.

Claim. Gg = Siff Gr E S’

Proof: Assume thaGr | S'. Let (I7,+') be an accepting run &' on Gr.. We
construct an accepting ryft’, ) of S onG based on the subtree of nodedfrlabeled
by states inl¥ (it follows that these nodes are labeled by configuratiorth wiate
ch-rule). Formally, we have the following. We havé&(e) = ((go, o), wo). We add to
T the nodes and label itr(¢) = ((qo, z0), wo). Given a node € T labeled byr(z) =
((q,z),w), it follows that there exists a nodé € T’ labeled byr'(2') = ((q, z), w).
Let {((g:, ), w;) }icr be the labels of the minimal nodes 1rf labeled by states in
W. We add|I| successor$a;z}icr to z in T and label them(a;2) = ((¢i, z;), w;).
From the definition ofR’ it follows that (T, r) is a valid run ofS on Gg. As every
infinite path inT" corresponds to an infinite path i all whose nodes are marked by
configurations marked byot_wrong and infinitely many configurations are marked by
ch-rule it follows that (7', r) is an accepting run.

In the other direction, we extend an accepting run {fEe-) of S on G into an
accepting run tree @’ on G/ by adding transitions t¢V, 3} x W type states. [

Corollary 1. Given a prefix-recognizable systeihand a graph automatos with n
states and index, we can model checK with respect toR in time exponential in
n-k- |7

Finally, we proceed to the case of an LTL formyaThe formulay’ is the impli-
cationy) — ), of two formulas. The formula) holds in computations oR’ that
correspond to real computations Bf Thus,¢} = Onot_wrong A OO ch-rule. Then,
% adjustsy to the fact that a single transition i corresponds to multiple transitions
in R’. Formally,, = f(), for the functionf defined below.

f(p) = pfor apropositiorp € AP.

f(ma) = =f(a), f(aVb) = f(a) vV f(b), andf(a A b) = f(a) A f(b).
flalddb) = (ch-rule — f(a))U(ch-rule A f(b)).

F(Oa) = O((—ch-rule)(ch-rule A f(a)).

Claim. Gg E ¢iff Gr E ¢
We first need some definitions and notations. We define a paurtiation g from

traces inG ' to traces inGg. Given a tracer’ in Gg/, if @' [~ ¢} theng(n') is
undefined. Otherwise, denaté= (p{, wo), (p}, w1), ... and

(7‘(’) _ (p7 w0)7g(ﬂ-/21) if p6 = <p7ta ch-rule)
g g(m5) if p{ = (p,t, @) anda # ch-rule
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Thus,g picks from#’ only the configurations marked ky-rule, it then takes the state
from (Q that marks those configurations and the store. Furthernieea gvo tracess’
andg(n’) we define a matching between locationstnin which the configuration is
marked bych-rule and the locations ig(r’). Given a locationi in g(7') we denote by
ch(i) the location int’ of thei-th occurrence oth-rule alongz’.

Lemma 1.1. For every tracer’ of Gr/, g(n') is either not defined or a valid trace of
Gr.

2. The functiory is a bijection betweeromain(g) and the traces of .

3. For every tracer’ of G/ such thaty(x’) is defined, we haver’, ch(i)) = f(y) iff
(9('),i) E ¢

Proof: 1. Supposeg(n’) is defined, we have to show that it is a trace(®f. The
first pair in 7’ is ({qo,t, ch-rule), zp). Henceg(n') starts from(qo, zo). Assume
by induction that the prefix of (') up to location: is the prefix of some com-
putation inGr. We show that also the prefix up to locationl is a prefix of a
computation. Let({q, ¢, ch-rule), z) be thei-th ch-rule appearing int’, then the
i-th location ing(n’) is (¢, x). The computation oR’ chooses some rewrite rule
t; = {q, o, Bi,vi,q') € T and moves to statéy’, ¢;, s) wheres = qgi. It must be
the case that a state’, ¢;, ch-dir) appears in the computation & after location
ch(i). Otherwise, the computation is finite and does not interesThe systenk’
can move to a state marked by-dir only from s € F,,, an accepting state of,,, .
Hence, we conclude that= y - z wherey € «;. As not_wrong is asserted every-
where alongr’ we know thatz € 3;. Now R’ adds a word,’ in v; to z and reaches
state((q’,t’, ch-rule), y’ - z). Thus, the transitionis possible also iR and can lead
from (q,y - 2) to (¢, y - 2).

2. ltis quite clear thag is an injection. As above, given a tracén Gz we can construct
the tracer’ in G such thay (') = .

3. We prove thatr, i) = ¢ iff (7', ch(i)) = ¢ by induction on the structure of.

— For a boolean combination of formulas the proof is immediate

— For a propositiorp € AP, it follows from the proof above that if statg, )
appears in locatior in g(7’) then state((q, t, ch-rule), z) appears in location
ch(i) in «’. By definitionp € L(q, z) iff p € L'({q, t, ch-rule), z).

— For a formulap = ¥1Uv,. Supposég(n’),i) = ¢. Then there exists sonmje> i
such that(g(7’),j) & 2 and for alli < k < j we have(g(7’), k) &= 1.
By the induction assumption we have that,ch(j)) &= f(v2) (and clearly,
(7',ch(j)) = ch-rule), and for alli < j < k we have(n’,ch(k)) E 1.
Furthermore, as every location marked &y rule is associated by the function
ch to some location iry(7’) all other locations are marked bych-rule. Hence,
(7', ch(i)) E (ch-rule — f(1))U(f (¥2) N ch-rule).

The other direction is similar.
— For a formulap = (O the argument resembles the one abovéfor
[

We note that for every trace€ andg(n’) we have thath(0) = 0. Claim 6.2 follows
immediately.

If we use this construction in conjunction with Theorem 1, get an algorithm
whose complexity coincides with the one in Theorem 16.
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Corollary 2. Given a prefix-recognizable systeRand an LTL formulapy we can

model check with respect taz in timeO( || T||3)-20(QsD.200¢D and space (|| T||?)-
20(1Qsl) . 20(l¢l)

Note that for LTL, we change the formula itself while fprcalculus we change
the graph automaton resulting from the formula. Considerféfiowing function from
p-calculus formulas tgi-calculus formulas.

— Forp € AP we havef(p) = ch-rule A p.

= f(ma) ==f(a), flaVb) = f(a) V f(b), andf(a Ab) = f(a) A f(b).

— f(Oa) = OvX(f(a) A ch-rule V =not_wrong V —ch-rule A 0X).

— f(Ca) = OuX(f(a) A ch-rule A not_wrong V —ch-rule A not_wrong A GX).
— f(uXa(X)) = pX(ch-rule A f(a(X))).

- f(wvXa(X)) =vX(ch-rule A f(a(X))).

We claim thatR = ¢ iff R’ &= f(¢). However, the alternation depth ¢fy)) my be
much larger than that af. For examplepy = uX (p AO(—-p AO(X A pY (¢ vV OY))))
is alternation free, whilg'(y) is of alternation depth 3. This kind of transformation is
more appropriate with the equational formoftalculus where we can declare all the
newly added fixpoints as minimal and incur only an increasé of the alternation
depth.

We note that since we end up with a pushdown system with redpleling, it
is easy to extend the reduction to start with a prefix-recxasie system with regular
labeling. It is left to show the reduction in the other dirent

We can also reduce the problenyotalculus (resp., LTL) model checking of push-
down graphs with regular labeling, to the probleme€alculus (resp., LTL) model
checking of prefix-recognizable graphs. This is summariaele following two theo-
rems.

Theorem 22. Given a pushdown systeR = (¥, V,Q, T, L, qo, zo) With a regular
labeling function and a graph automatdh there is a prefix-recognizable systéth=
(X2, V,Q', T, L, ¢, xo) with simple labeling and a graph automatsShsuch that? =
Siff R’ = &'. Furthermore|Q'| = Q|+, |Q4|+1Q}| = O(|T|), and|Q}| = ||L].
The reduction is computable in logarithmic space.

Theorem 23. Given a pushdown systeR= (247 V,Q, T, L, qo, zo) With a regular
labeling function and an LTL formula, there is a prefix-recognizable systdh =
<2AP', V,Q,T', L, q}, xo) with simple labeling and an LTL formulg such thatk |=
piff R | ¢'. Furthermore|Q'| = O(|Q| - [AP]), |QL] + |Q}| = O(|TIl), and
|Q}| = 2l yet the automata fof); are deterministic. The reduction is computable
in polynomial space.

For the full constructions and proofs we refer the readePtt®g].

7 Realizability and Synthesis

In this section we show that the automata-theoretic approan be used also to solve
the realizability and synthesis problems for branchingetiamd linear time specifica-
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tions of pushdown and prefix-recognizable systems. Wewttirta definition of the re-
alizability and synthesis problems and then proceed to @iyerithms that solve these
problems foru-calculus and LTL.

Given a rewrite systenk = (¥, V,Q, L, T, qo, zo) and a partition{Ty, ..., T}
of T, astrategyof R is a functionf : Q x V* — [m]. The functionf restricts the
graphGr so that from a configuratiofy, z) € @ x V*, only f(q, x) transitions are
taken. FormallyR and f together define the grafihz ; = (X, Q xV*, p, (g0, z0), L),
wherep((¢, z), (¢',v)) iff f(q,x)=iand there existse T; such thap;((q, z), (¢, y))-
Given R and a specificationy (either a graph automaton or an LTL formula), we say
that a strategy’ of R is winningfor v iff G ; satisfies). Given R andq the problem
of realizability is to determine whether there is a winning strategyRofor ). The
problem ofsynthesiss then to construct such a stratégylhe setting described here
corresponds to the case where the system needs to satiségificgtion with respect
to environments modeled by a rewrite system. Then, at eath, $he system chooses
the subset of transitions to proceed with and the environpevides the rules that
determine the successors of the state.

Similar to Theorems 7 and 15, we construct automata thaegbk realizability
problem and provide winning strategies. The idea is simgplrategyf : Q x V* —
[m] can be viewed as ® x [m]-labeledV-tree. Thus, the realizability problem can be
viewed as the problem of determining whether we can augnhentabels of the tree
(V*,7,) by elements infm|, and accept the augmented tree in a rundoi which
wheneverd reads an entry € [m], it applies to the transition function of the specifica-
tion graph automaton only rewrite rulesii.

We give the solution to the realizability and synthesis peots for branching-time
specifications. Given a rewrite systefhand a graph automata$, we show how to
construct a 2APTA such that the language &f is not empty iffS is realizable oveR.

Theorem 24. Given a rewrite systenR = (X,V,Q, L, T, qo, xo), & partition {71,
..., T} of T, and a graph automatos = (X, W, d,wo, F), we can construct a
2APT A over((V U {L}) x [m])-labeledV -trees such that (A) contains exactly all
the V-exhaustive trees whose projection [om] is a winning strategy of: for S. The
automatond hasO(|W| - |Q| - ||T|| - |V]) states, and its index is the index®{plus 1
for a prefix-recognizable system).

13 Note that we define here only memoryless strategies. Theegyrdepends solely on the cur-
rent configuration and not on the history of the computatidmgeneral, in order to realize
some specifications, strategies that depend on the histding computation may be required.
In order to solve realizability and synthesis for specifinad that require memory we have
to use a more complex algorithm. In the case of branching spezifications, we have to
combine the rewrite system with the graph automaton for pleeification and analyze the re-
sulting game. In the case of linear time specifications, we lha combine the rewrite system
with a deterministic parity automaton for the specificatéor analyze the resulting game. In
both cases the analysis of the game can be done using 2-vesgutemata. In the linear-time
framework, the deterministic automaton may be doubly egptial larger than the LTL for-
mula; and the total complexity of this algorithm is triplepexential. For further details and a
matching lower bound we refer the reader to [LMS04].
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Proof: Unlike Theorem 7 here we use the emptiness problem of 2AR€adf the
membership problem. It follows that we have to construct &#2Ahat ensures that
its input tree isl -exhaustive and that the strategy encoded in the tree isimgniihe
modification to the construction in the proof of Theorem 7saneple. LetA’ denote the
result of the construction in Theorem 6 or Theorem 7 with tk#ing modification

to the functionapply-. From action states we allow to proceed only with transgion
from T;, wherei is the[m] element of the letter we read. For example, in the case of a
pushdown system, we would have foe A, w € W, q € Q, A € V andi € [m] (the
new parameter topply -, which is read from the input tree),

(e, (w, q,€)) ifc=¢
G/pplyT(C;IU;Q7A;Z.) = /\<q7A,y,q’>€Ti <Ta (waq/7y)> If c=10
(q,Ay,q')ET; <T’ (w’ qlv y)> ifc=2<

We now construct the automatotl’ = (V U{L} x [m]), (VU{L}), p, bot, {V})
of index1 (i.e., every valid run is an accepting run) such that foreverB € VU{ L}
andi € [m] we have

- [Acev(C.C) ifA=B
A (B:1) = | false if A+ B
It follows that. A" accepts onlyi’-exhaustive trees. Finally, we takke = A’ A A” the
conjunction of the two automata. ]

Letn = [W|-|Q|-|T]|-|V|, letk be the index oF, and letl” = (VU{L}) x [m]. By
Theorem 2, we can transforph to a nondeterministic one-way parity tree automaton
N with 20("%) states and inde® (nk).* By [Rab69,Eme85], if\" is nonempty, there
exists al"-labeledV -tree(V*, f) such that for ally € I', the setX, of nodesz € V*
for which f(z) = ~ is a regular set. Moreover, the nonemptiness algorithm\/of
which runs in time exponential ink, can be easily extended to construct, within the
same complexity, a deterministic word automaitgnoverV such that each state &fy
is labeled by a lettet € I', and for allz € V*, we havef(z) = ~ iff the state oft/ 4
that is reached by following the wordis labeled byy. The automatoi/ 4 is then the
answer to the synthesis problem. Note that since the transiin G, ; take us from
a stater € V* to a statey € V* such thate is not necessarily the parent gfin the
V-tree, an application of the strategyhas to repeatedly run the automaton from its
initial state resulting in a strategy whose every move ispoted in time proportional to
the length of the configuration. We can construct a strateglydomputes the next step
in time proportional to the difference betweermndy. This strategy uses a pushdown
store. It stores the run &f 4, onx on the pushdown store. In order compute the strategy
in nodey, we retain on the pushdown store only the part of the rud pthat relates to
the common suffix of andy. We then continue the run &4 on the prefix ofy while
storing it on the pushdown store.

14 Note that the automatar” is in fact a INPT of index 1. We can improve the efficiency of
the algorithm by first convertingl’ into a INPT and only then combining the result witH.
This would result ifV| being removed from the figure describing the index\af
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The construction described in Theorems 6 and 7 implies Heatdalizability and
synthesis problem is in EXPTIME. Thus, it is not harder thathie satisfiability prob-
lem for thep-calculus, and it matches the known lower bound [FL79]. Falynwe
have the following.

Theorem 25. The realizability and synthesis problems for a pushdown qrefix-
recognizable rewrite syste® = (¥, V,Q, L, T, qo, o) and a graph automatos§ =
(X, W, 6, wq, F), can be solved in time exponentiakik, wheren = |W|-|Q|-|T||-|V],
andk is the index ofs.

By Theorem 4, if the specification is given byecalculus formulap, the bound is
the same, witm = || - |Q| - |T|| - |V'|, andk being the alternation depth g¢f

In order to use the above algorithm for realizability of Bm¢ime specifications we
cannot use the ‘usual’ translations of LTL gecalculus [Dam94,dAHMO01]. The prob-
lem is with the fact that these translations are intendecetoded inu-calculus model
checking. The translation from LTL tp-calculus used for model checking [Dam94]
cannot be used in the context of realizability [dAHMO1]. Wavk to use a doubly ex-
ponential translation intended for realizability [dAHMQ£1his, however, results in a
triple exponential algorithm which is, again, less thariropt.

Alur et al. show that LTL realizability and synthesis can kpanentially reduced
to u-calculus realizability [ATMO3]. Given an LTL formula, they construct a graph
automatonS,, such thatS,, is realizable over? iff ¢ is realizable over?. The con-
struction of the graph automaton proceeds as follows. Atingrto Theorem 5, for
every LTL formulay we can construct an NBW,;, such thatL(Ny,) = L(¢). We
construct an NBWN_, = (X, W, n,w, F') from —¢. We then construct the graph
automatonsS, = (X, W, p, wo, { ¥, W}) wherep(w,o) = A, Ow' and the
parity condition{ ¥, W'} is equivalent to the co-Blichi conditidfi. It follows thatS,,
is a universal automaton and has a unique run over every. ttdgeet al. show that
the fact thatS, has a unique run over every trace makes it adequate for gatvinre-
alizability of ¢ [ATMO3]. The resulting algorithm is exponential in the rét@rsystem
and doubly exponential in the LTL formula. As synthesis of lidrmulas with respect
to finite-state environments is already 2EXPTIME-hard [PR&is algorithm is op-
timal. Note that realizability with respect to LTL specifims is exponential in the
system already for pushdown systems and exponential imadponents of the system
for prefix-recognizable systems.

8 Discussion

The automata-theoretic approach has long been thoughtit@pplicable for effective
reasoning about infinite-state systems. We showed thaiteyitate systems for which
decidability is known can be described by finite-state a@ti@rand therefore, the states
and transitions of such systems can be viewed as nodes ifiiteitree and transitions
between states can be expressed by finite-state automataefuslt, automata-theoretic
techniques can be used to reason about such systems. bufartive showed that var-
ious problems related to the analysis of such systems casdeed to the membership
or emptiness problems for alternating two-way tree autarr@ur framework achieves
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the same complexity bounds of known model-checking alljorit and gives the first
solution to model-checking LTL with respect to prefix-renaable systems. In [PV04]
we show how to extend it also to global model checking. In [2aBV04] the scope of
automata-theoretic reasoning is extended beyond prefbpgrézable systems.

We have shown that the problems of model checking with résjgepushdown
systems with regular labeling and model checking with respeprefix-recognizable
systems are intimately related. We give reductions betweedel checking of push-
down systems with regular labeling and model checking dixrecognizable systems
with simple labeling.

The automata-theoretic approach offers several extemsmthe model checking
setting. The systems we want to reason about are often augdheith fairness con-
straints Like state properties, we can defineegular fairness constrainby a regular
expressiony, where a computation of the labeled transition graph isiffaiir contains
infinitely many states i (this corresponds to weak fairness; other types of fairness
can be defined similarly). It is easy to extend our model-kimgcalgorithm to han-
dle fairness (that is, let the path quantification in the #jmation range only on fair
pathg$®). In the branching-time framework, the automatdncan guess whether the
state currently visited is in, and then simulate the word automatgnupwards, hop-
ing to visit an accepting state when the root is reached. Whehecks an existential
property, it has to make sure that the property is satisfiedgah fair path, and it is
therefore required to visit infinitely many statesiinWhen.A checks a universal prop-
erty, it may guess that a path it follows is not fair, in whidse. A eventually always
send copies that simulate the automaton-ar In the linear-time framework, we add
the automata for the fairness constraints to the tree whesetrarship is checked. The
guessed path violating the property must visit infinitelypéair states. The complex-
ity of the model-checking algorithm stays the same.

Another extension is the treatment pfcalculus specifications witbhackwards
modalities While forward modalities express weakest preconditi@tkiavard modal-
ities express strongest postcondition, and they are vesfulfor reasoning about the
past [LPZ85]. In order to adjust graph automata to backweaidaning, we add td the
“directions” &~ andO~. This enables the graph automata to move to predecessors of
the current state. More formally, if a graph automaton reestsiter of the input graph,
then fulfilling an atom®~¢ requiresS to send a copy in stateto some predecessor
of x, and dually ford~¢. Theorem 4 can then be extended.tgalculus formulas and
graph automata with both forward and backward modalities98]. Extending our so-
lution to graph automata with backward modalities is sim@@lensider a configuration
(¢, ) € Q x V* in a prefix-recognizable graph. The predecesso(g,af) are configu-
rations(q’y) for which there isaruléy’, «;, 8;,vi, q) € T and partitions’ -z andy’- z,
of z andy, respectively, such that is accepted b¥/,,, z is accepted b¥/s,, andy’ is
accepted by/,,. Hence, we can define a mappifig such thatq,~, 3, «,¢') € T~
iff (¢,,8,7,q) € T, and handle atom&~t andO~ ¢ exactly as we handlet andOt,

15 The exact semantics &dir graph automataas well adair p-calculusis not straightforward, as
they enable cycles in which we switch between existentidlariversal modalities. To make
our point here, it is simpler to assume in the branching-tiramework, say, graph automata
that correspond to CTiformulas.
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only that for them we apply the rewrite rulesTrr rather than these . The com-
plexity of the model-checking algorithm stays the same eNbat the simple solution
relies on the fact that the structure of the rewrite rules jprefix-recognizable rewrite
system is symmetric (that is, switchingand~ results in a well-structured rule), which
is not the case for pushdown systéfns

Recently, Alur et al. suggested the logic CARET, that carc§paon-regular prop-
erties [AEMO4]. Our algorithm generalizes to CARET speaifions as well. Alur et
al. show how to combine the specification with a pushdownesgsh a way that en-
ables the application of our techniques. The logic CARETaikted for use in con-
junction with pushdown systems. It is not clear how to modi#RET in order to
apply to prefix-recognizable systems. Other researcheesused the versatility of the
automata-theoretic framework for reasoning about infisitge systems. Cachat shows
how to model check:-calculus specifications with respect to high order pushdow
graphs [Cac03]. Gimbert shows how to solve games over pughdeaphs where the
winning conditions are combinations of parity and unboutmaess [GimO03].
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A Proof of Claim 4.3

The proof of the claim is essentially equivalent to the sano®fin [PVO03].
Claim. L(A) # Qiff (T*,7) € L(P).

Proof: We prove thatY™, 7) € L(P) impliesL(A) # 0. Letr = (po, wo) - (p1,w1) -
(p2,w2) - - - be an accepting run @ on (T™*, 7). We add the annotation of the locations
in the run(po, wo,0) - (p1, w1, 1) - (p2,we,2) - - -. We construct the rufz”, »’) of A.
For every node: € T”, if x is labeled by a singleton state we add a tag smme triplet
from the runr. If z is labeled by a pair state we add two tags fdwo triplets from the
runr. The labeling and the tagging conform to the following.

— Given a noder labeled by statép, d, «) and tagged by the triplgp’, w, i) from
r, we builds’ so thatp = p’ andd = p,(w). Furthermore all triplets in whose
third element is greater tharhave their second element greater or equal (@™ is
ordered according to the lexical order on the reverse of ihrels).

— Given a nodex labeled by statéq, p, d, @) and tagged by the tripletg’, w, ) and
(', w', ) fromr, we buildr’ so thatg = ¢/, p = p/, w = w', d = p,(w), and
1 < j. Furthermore all triplets im whose third element is betweeri andj, have
their second element greater or equalktdAlso, if j > i + 1 thenw;_; = v - w; for
somev € 1.

Construct the run tre€l”, r’) of A as follows. Label the root 6f” by (pg,d?, 1) and
tag it by (po, €,0). Given a nodex € T’ labeled by(p, d, «) tagged by(p, w, 7). Let
(pj,w;,7) be the minimalj > i such thatv; = w. If j = i 4 1 then add one son te,
label it (p;,d, L) and tag it(p;, w, j). If j > i+ 1, thenw;_; = v - w, forsomev € T
and we add two sons te, label them(p, p;,d, 8) and(p;, d, 5). We tag(p;, p;, d, B)
by (p,w, %) and(p;,w, j), and tag(p;, d, 3) by (p;,w, j), 5 is T if there is a visit toF'
between locationsandj in r. If there is no other visit taw thenw; 1 = v -w for some
v € 1. We add one son teand label it p;+1, p-(d,v), L) and tag it(p;+1, v-w, i+1).
Obviously the labeling and the tagging conform to the asgiomp

Given a noder: labeled by a statép, ¢, d, «) and tagged byp, w, i) and(q, w, j).
Let (pr, w, k) be the first visit tow between: andj. If k = i 4+ 1 then add one son
to x, label it (pr, ¢, d, fo(pk.q)), and tag it by(ps, w, k) and (g, w,j). If & > i +1
then add two sons to and label then{(p, px, d, f3, (p, px)) and(px, q, d, fs, Pk, 7))
wheref;, B2 are determined according to the visitsKobetween; andj. We tag the
State(pvpkv d, fﬁ1 (pvpk)) by (pa w, Z) and (pkv w, k) and tag(pkv t.d, fﬂz (pka Q)) by
(pk’ w, k) and(Qv w/vj)'

If there is no visit tow betweeni andj it must be the case that all triplets in
betweeni and;j have the same suffix - w for somev € T (otherwisew is visited).
We add a son te: labeled(p;+1, g1, p-(d,v), fa(p',¢")) and tagged byp;i1,v -
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w,i+1) and(p;_1,v-w,j —1). We are ensured tha_; € CL~? () as(1,p,) €
6(pj—1,7(v - w)).

In the other direction, given an accepting r{ifY, ') of A we use the recursive
algorithm in Figure 1 to construct a run®fon (7™, 7).

Anodez - a in T" is advancingf the transition frome to z - a results from an atom
(1,7'(x-a)) that appearsin(r’(z)). An advancing node that is the immediate successor
of a singleton state satisfies the disjuiftcy V., 1y es(p, 0.y (L (P pr(d; v), L)) in
n. We tag this node by the letter that was used to satisty the transition. Similarly,
an advancing node that is the immediate successor of a p#érstisfies the disjunct
Voer Vv s iy Vprecry@ L 00", pr(d v), fa(p',p")) inn. We tag this
node by the letter that was used to satisfy the transition. We use these tagsler o
to build the run ofP. When handling advancing nodes we update the location on the
tree?™ according to the tag. For an advancing nedee denote byag(x) the letter in
T that tags it. A node ison advancingf the transition fromz to z - a results from an
atom(0,7'(z - a)) that appears in(r’(x)).

The functionbuild _run uses the variable to hold the location in the tre@™, 7).
Working on a singletorip, d, «) the variablendd; is used to determine whethgmwas
already added to the run. Working on a p@it ¢, d, o) the variableadd; is used to
determine whethep was already added to the run and the variahld, is used to
determine whethey was already added to the run.

The intuition behind the algorithm is quite simple. We staith a nodex labeled
by a singleton(p, d, «). If the node is advancing we update by tag(z). Now we
addp to r (if needed). The case whetehas one son matches a transition of the form
(A,p") € 6(p, L, (d)). In this case we move to handle the sonzadnd clearlyp’ has
to be added to the run In caseA = ¢ the son ofx is non advancing angd reads the
same locationv. Otherwisew is updated byA andp’ readsA - w. The case where
x has two sons matches a guess that there is another visitTous, the computation
splits into two songp, ¢, d, §) and(q, d, 3). Both sons are non advancing. The state
was already added toandgq is added to- only in the first son.

With a noder labeled by a paifp, q, d, ), the situation is similar. The case where
x has one non advancing son matches a transition of the farsh) € §(p, A). Then
we move to the son. The statkis added to- butq is not. The case wherehas two non
advancing sons matches a splitop’, d, o1 ) and(p’, q, d, a2). Onlyp’ is added ta- as
p andq are added by the current call to buildn or by an earlier call to buildun. The
case where: has one advancing son matches the move to the @tatg, p,(d, v), «)
and checking thay’ ¢ O(IL*(”T(d’“)). Both p’ and¢’ are added to- and handle_C,
handles the sequenceaofransitions that connecis to q.

It is quite simple to see that the resulting run is a valid aockating run ofP on
(I, 7).

]

B Lower bound on Emptiness of 2NBP

We give the full details of the construction in the proof ofebinem 13 FormallyP =
(X, P, 4, po, F) where
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build _run (z,7'(x) = (p,d, ), w, add;, build_run (z,r'(z) = (p,q,d, @), w, add;,

addr) addr)
if (advancingf)) if (advancingg))
w:= tag(x) - w; w = tag(x) - w;
if (add;) if (add;)
ro=r- (w,p); re=r-(w,p);
if (z has one son - a) if (x has one non advancing sen a)
build_-run @ - a,7'(z - a), w, 1,0) build_run @@ - a,7'(z - a), w, 1,0)
if (x has two sons: - a andzx - b) if (xz has two sons: - a andzx - b)
build_run @@ - a,7'(z - a), w,0,1) build_run @ - a,7'(z - a), w, 0, 1)
build_run @ - b,7'(z - b), w, 0, 0) build_run @ - b,7'(z - b), w, 0, 0)
if (z has one advancing san- a)
handle C, (v'(x) = (p’, p,d, ), q, w) build_run @ - a,7'(z - a),w, 1, 1)
Letto,...,t, € PT be the sequence of handig, (r'(z - a), ¢, tag(x - a) - w)
e-transitions connecting to ¢ if (add;)
ri=r-(w,t1), -, (w,tn-1) r:=r-(w,q);

Fig. 1. Converting a run of A into a run of P

-2 ={0,1, L} x {s}ulruU(sSxrI)).

Thus, the letters are pairs consisting of a direction arftkeiaf, a tape symbol of
M, or a tape symbol oM marked by a state a¥/.

— P = FUBUI U{acc} whereF is the set of forward states is the set of backward
states, and is the set of states that check that the tree starts from iti& itonfigu-
ration of M. All three sets are defined formally below. The state is an accepting
sink.

— F = {acc}.

The transition function and the initial state, are described below.

We start with forward mode. In forward mode, every state igg&d by eithell
or r, signaling whether the next configuration to be checked ésléft successor or
the right successor of the current configuration. The 2NBRtssby memorizing the
current location it is checking and the environment of tbisttion (that is for checking
locationi, memorize the letters in locations- 1, 4, andi + 1). For checking the left
(resp. right) successor it continugé:) — ¢ steps in direction O then it progresses one
step in direction O (resp. 1) and then takeseps in directiond. Finally, it checks that
the letter it is reading is indeed the:xt; (resp.next,) successor of the memorized
environment. It then goef(n) — 1 steps back, increases the location that it is currently
checking and memaorizes the environment of the new locali@mentinues zigzagging
between the two configurations until completing the entmafiguration and then it
starts checking the next.

Thus, the forward states afe= {f} x {l,7} x [f(n)] x V3 x [f(n)] x {z,v} x
{0,1, L}. Every state is flagged bfand either or I (next configuration to be checked
is either right or left successor). Then we have the curmgdtioni € [f(n)] we are
trying to check, the environmeiit, o', o”) € V3 of this location. Then a counter
for advancingf(n) steps. Finally, we have for still-checkingandv for checkedand
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going backward to the next letter). We also memorize thectior we went to in order
to check that every node is labeled by its direction (thushaee0 or 1 for forward
moves andL for backward moves).

The transition of these states is as follows.

— For0 <i < f(n)and0 < j < f(n) we have
5(<f7 d7i707 0/,0”,j,x,A>, <A70///>) =

{(1,{f.d,i,o,0",0",j+1,2,1)} ifi4j= f(n)andd =r
{(0,{f,d,i,o,0',0",j+1,2,0)} otherwise

Continue going forward while increasing the counter. Ifateed the end of configu-
ration and next configuration is the right configuration galirection 1. Otherwise
go in direction 0.

— For0 < i < f(n) we have
0({f,d,i,o,0" 0", f(n),xz, A), (A, ")) =

0 if o’ £ nexty(o,0’,0")
{(0,{f,d, (i + 1) p(ny, 0", 0", L, f(n) = 1,0, 1))} if 6" = nexty(o,0',0")

If o' is not thenext, letter, then abort. Otherwise, change the mode émd start
going back. Pusl’ andcs” to the first two memory locations and empty the third
memory location.

— For0 <i< f(n)andl < j < f(n) we have
5((f,d,i,o,0", L, j,v, LY, (A, 6”)) ={(1,{f,d,i,0,0, L5 —1,v, L))}
Continue going backward while updating the counter.

— For0 <4 < f(n) we have
5((f,d,yiyo,0, L, 1,0, 1),(A, 0"

))

{1, (bw, L, z))} if o € F, x I
{1, (b3, L, z))} if o € F, x I
{(e,(f,d,i,0o,0",6",0,z, 1))} otherwise

Stop going backward. If the configuration that is checkedtlsee accepting or re-
jecting go to backward mode (recall that the configuratioalieady verified as the
correct successor of the previous configuration). Otherwiemorize the third letter
of the environment and initialize the counter to 0.

- 5(<f7 d,0.4,4, 1,0,z A>7 <A7 U>) = {(Oa <fa d,0,4.4,0,1, 2, O>)}
This is the first forward state after backward mode and dfieirtitial phase. It starts
checking the first letter of the configuration. The 2NBP alseknows that the letter
it has to check ig, it memorizes the current letter (the third letter of theismvment)
and moves forward while updating the counter.
Note that also the first letter is markedfashis is because when checking locatibn
of a configuration we are only checking that the length of thafiguration isf (n)+1
and that afterf (n) + 1 locations there is anothgr

Backward mode (either universal or existential) is agaigdtad byl or r, signaling
whether the last configuration the 2NBP saw was the left ditSgccessor. Backward
mode starts in a node labeled by a statd/fAs the 2NBP goes backward, whenever it
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passes ait memorizes its direction. When the 2NBP gets again to addtiat is marked
with a state of)M, if the memorized direction isand the type of the state the 2NBP
is reading matches the type of backward mode (universa stad/ and backward
universal or existential state @ff and backward existential) then the 2NBP continues
going up until thed, then it moves to forward mode again (marked®)yOtherwise
(i.e. if the memorized direction is or the type of the state the 2NBP is reading does
not match the type of backward mode) then the 2NBP stays ikvierd mode, when

it passes the nextit memorizes the current direction, and goes on moving bacttw
When returning to the root in backward existential modes theans that the 2NBP
is trying to find a new pruning tree. As no such pruning treetsxihe 2NBP rejects.
When returning to the root in backward universal mode, théans that all universal
choices of the currently explored pruning tree were cheeketfound accepting. Thus,
the pruning tree is accepting and the 2NBP accepts.

The set of backward statesis= {by, b3} x{l,r, L} x{x, v}. Every state is flagged
by V (for universal) o (for existential) and by eithdror r (the last configuration seen
is left successor or right successor, offor unknown). Finally, every state is flagged
by eitherz or v. A state marked by means that the 2NBP is about to move to forward
mode and that it is just going backward until the

The transition of backward states is as follows.

[{(T, (by,1,2))} if o =fandA =0

{(7,{by,r,x))} ifc=tandA =1

— 0((by,d,z),{A,0)) = | {(e,acc)} if A= 1

{(7,{by,l,v))} ifoceS,xTandd =1

{(1,(by,d,x))} otherwise

In backward universal mode reading ave memorize its direction. If reading the

root, we accept. If reading a universal stateléfand the last configuration was the

left successor then change théo v. Otherwise, just keep going backward.

[{(T, (ba,l,2))} if o =4andA =0

{(7,(bg,r,x))} ifoc=tandA =1

- 0((ba,d,z),{A,0)) = | 0 if A= 1

{(1,(b3,l,v))} foeS., xI'andd =1

L{(T,(bv,d,x))} otherwise
In backward existential mode reading ave memorize its direction. If reading the
root, we reject. If reading an existential stateléfand the last configuration was the
left successor then changdo v. Otherwise, just keep going backward.

1,(b,l,v if o £ 4

SRR PR A U St
In backward mode marked hywe go backward until we regd When reading we
return to forward mode. The next configuration to be checkebe right successor.
The location we are checking is location 0, thus the lettdordeeis not interesting
and is filled byg. The counter is initialized to 0.

Finally, the setl of ‘initial’ states makes sure that the first configuratiorttie tree
is indeed - (so,b) - b/ (™ ~1. When finished checking the first configurati§meturns
to the nodd) and moves to forward mode.

Formally,7 = {i} x [f(n)] x {z,v} with transition as follows.
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. i if o = =

— 0((i,0,2), (A, 0)) = é{)(O’ et Iotﬁerwﬁi:lendA -
Make sure that the root is Iabeled by, £).

01,2, (A, o)) = é(O7 (i,2,2))} if 0 = (sp,b)andA =0

otherwise
Make sure that the first letter (s, b).
— Forl < j < f(n) we have

o {0, (i,j + 1,2))} if o = bandA = 0
0((i-g,), (A, 0)) = {@ ’ otherwise

Make sure that all other letters dre

- 5((i, f(n), z), (A, 0)) = [é(T, (i, f(n) —1,v))} if o =bandA =0

otherwise
Make sure that the last letter s The first configuration is correct, start going back
to node0. Changer to v.
— For2 < j < f(n) we haves((i, j,v), (A, ) = {(1,(i,j — 1,0))}
Continue going backward while updating the counter.
- 5(<l7 2) U>a <O7 U>) = {(T7 <f7 l7 Oa ﬂ7 ﬁa J—a 07 €, O>)}
Finished checking the first configuration. Go up to nodiethe first state of forward
mode.

Last but not least the initial statejig = (i, 0, ).

Finally, we analyze the reduction. Given an alternatingrigimachine with states
and alphabet of sizex we get a 2NBP withO(n - m) states, that reads an alphabet
with O(n - m) letters. The 2NBP is actually deterministic. Clearly, tieeluction is
polynomial.

We note that instead of checking emptinessPofwe can check the membership
of some correct encoding of the run tree idf in the language of°. However, the
transducer that generates a correct encodiny @ exponential.

C Lower Bound for Linear Time Model-Checking on
Prefix-Recognizable Systems

It was shown by [BEM97] that the problem of model-checkingldih formula with
respect to a pushdown graph is EXPTIME-hard in the size ofdiraula. The problem
is polynomial in the size of the pushdown system inducinggregph. Our algorithm
for model-checking an LTL formula with respect to a preficggnizable graph is ex-
ponential both in the size of the formula and s |.

As prefix-recognizable systems are a generalization ofgmgh systems the expo-
nential resulting from the formula cannot be improved. Wavsthat also the exponent
resulting from@ 3 cannot be removed. We use the EXPTIME-hard problem of whethe
a linear space alternating Turing machine accepts the etapg/[CKS81]. We reduce
this question to the problem of model-checking a fixed LTLata with respect to the
graph induced by a prefix-recognizable system with a cohstamber of states and
transitions. Furthermor€, and @, depend only on the alphabet of the Turing ma-
chine. The componert)s does ‘all the hard work’. Combining this with Theorem 15
we get the following.
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Theorem 26. The problem of linear-time model-checking the graph indubg the
prefix-recognizable syste® = (247, V,Q, L, T, qo, 7o) is EXPTIME-complete in
Qs

Proof: Let M = (I, Sy, Se, =, S0, Face, Frej) b€ an alternating linear-space Turing
machine. Letf : N — N be the linear function such thatl usesf(n) cells in its
working tape in order to process an input of lengthn order to make sure thatl does
not accept the empty tape, we have to check that every legaimy of the computation
tree of M contains one rejecting branch.

Given such an alternating linear-space Turing machifhewe construct a prefix-
recognizable systerR and an LTL formulap such thatG i |= ¢ iff M does not accept
the empty tape. The systeR has a constant number of states and rewrite rules. For
every rewrite rule(q, a4, 5;, i, ¢'), the languages of the regular expressiopand-y;
are subsets of U ({|} x I') U S U {e}. The language of the regular expressigin
can be encoded by a nondeterministic automaton whose siime# inn. The LTL
formulay does not depend on the structure\df

The graph induced by? has one infinite trace. This trace searches for rejecting
configurations in all the pruning trees. The trace first esgddhe left son of every con-
figuration. If it reaches an accepting configuration, thedraacktracks until it reaches
a universal configuration for which only the left son was exedl. It then goes forward
again and explores under the right son of the universal coraign. If the trace returns
to the root without finding such a configuration then the autityeexplored pruning
tree is accepting. Once a rejecting configuration is reactiedtrace backtracks until
it reaches an existential configuration for which only thfieé $en was explored. It then
explores under the right son of the existential configuratio this mode, if the trace
backtracks all the way to the root, it means that all pruniegs were checked and that
there is no accepting pruning tree fof.

We change slightly the encoding of a configuration by inatgdivith the state of
M a symboll or r denoting whether the next explored configuration is thetrigheft
successor. Le¥’ = {f} UI"U (S x I' x {l,r}) and letf - o1 ---of(n) - f0f ... oG,
be a configuration of\/ and itsd-successor (wherg is either! or ). We also setr
ando{ to §. Giveno,_1, 0y, anda; 1 we know, by the transition relation dff, what
o¢ should be. In addition the symbglshould repeat exactly everf(n) + 1 letters.
Let next : V3 — V denote our expectation far!. Note that whenever the triplet
oi—1, 05, ando; 1 does not include the reading head of the Turing machine,ésdo
not matter whethed is [ or r. In both cases the expectation fef is the same. We set
next(o,t,0') = t, and

next(o,0’,0") =

~

o if{oo o’y C{ftur

o’ if 0" = (s,7,d) and(s,y) —¢ (s',', R)

(s',0',d") if 0" = (s,7,d), (s,7) = (s',9',L), andd’ € {l,r}
o’ if 0 =1(s,7,d) and(s v) =4 (s',9/,L)

(s',0',d") if o = (s,7,d), (s,7) =% (s .7, R), andd’ € {I,r}
y i o' = (5,7, d) and(s,) — (5., a)
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Consistency withnext now gives us a necessary condition for a sequendé*irio
encode a branch in the computation tree\6f Note that whemezt(o,o’,0”) € S x
I x {l,r} then marking it by botfi andr is correct.

The prefix-recognizable system starts from the initial @unfation of M. It has
two main modes, forward mode and dackwardmode. In forward mode, the system
guesses a new configuration. The configuration is guesselgteieat a time, and this
letter should match the functions:xt; or next,. If the computation reaches an ac-
cepting configuration, this means that the currently exgaigruning tree might still be
accepting. The system moves to backward mode and remenhla¢isghould explore
other universal branches until it finds a rejecting statebdokward universal mode,
the system starts backtracking and removes configuratimse it reaches a universal
configuration that is marked by it replaces the mark by, moves to forward mode,
and explores the right son. If the root is reached (in baclwariversal mode), the
computation enters a rejecting sink. If in forward mode,sistem reaches a rejecting
configuration, then the currently explored pruning treeejsating. The system moves
to backward mode and remembers that it has to explore efigtbranches that were
not explored. Hence, in backward existential mode, theesystarts backtracking and
removes configurations. Once it reaches an existentialgunafiion that is marked bly
the mark is changed toand the system returns to forward mode. If the root is reached
(in backward existential mode) all pruning trees have begroeed and found to be
rejecting. Then the system enters an accepting sink. Atlttha LTL formula has to
check is that there exists an infinite computation of theesysand that it reaches the
accepting sink. Note that the prefix-recognizable systecefs, when the alternating
Turing machine rejects and vice versa.

More formally, the LTL formula isCreject and the rewrite system B = (247,
V,Q, L, T, q, xo), where

— AP = {reject}

- V={turu(Sxrxdir})

— @ = {forward, backwards, backwardy, sink,, sink, }
|0 if g # sink,

- Lig,0) = {reject} if ¢ = sink,

— qo = forward

—xog=0b---b-(s0,b,1) -4
In order to define the transition relation we use the follapenguages.

— Ll,o = {neat(o,0’,0") - VI "lg. o' . 5"

L ={we VIO Jwg Ve g v g v}

L3 ={we VIt [wg Ve (Sx I x{l,r})-V*-(Sx I x{l,r}) - V*}
Lega,l = (Légal n ngal N ngal) -V

Thus, this language contains all words whose suffix of lerfgih) + 1 contains at
most ongf and at most one symbol fro§ix I" x {l, r} and the last letter is theext
correct successor of the previous configuration.

— Accept =V - {Face} X I’ x{l,7r})-V*
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Thus, this language contains all words whose one befordelftdst is marked by an
accepting stafé.

- Reject =V ({Frej} x I' x {l,’f’}) -V

Thus, this language contains all words whose one beforddtist is marked by a
rejecting state.

— RO — i\ (8, x T x {1})

Thus, this language contains all the letters that are nokedesy universal states and
the direction.

RIS = v\ (S, x T x {1}).

Thus, this language contains all the letters that are nokedalpy existential states
and the direction.

Clearly the languageb.gai, Accept, aNd Rejec: Can be accepted by nondeterministic
automata whose size is linear fifn).

1.

10.
11.

The transition relation includes the following rewritees!

(forward, {€}, Legar, V' \ (S x I' x {r}), forward) - guess a new letter and put it on
the store. States are guessed only with diredtidie fact that_.,,; is used ensures
that the currently guessed configuration (and in partictilarpreviously guessed
letter) is the successor of the previous configuration orstbie.

. (forward, {€}, Accept, {€}, backwardy) - reached an accepting configuration. Do not

change the store and move to backward universal mode.

. (forward, {€}, Reject, {€}, backwards) - reached a rejecting configuration. Do not

change the store and move to backward existential mode.
S x{l}

. (backwardy, Resove , V*,{€}, backwardy) - remove one letter that is not i}, x

I' x {l} from the store.

. (backwardy, S, x I x {I},V*, S, x I" x {r}, forward) - replace the markingby

the marking- and move to forward mode. The statdoes not chand&

. (backwardy, e, €, €, sink,) - when the root is reached in backward universal mode

enter the rejecting sink

. (backwards, Rf&ﬁié}, V*, {e}, backwards) - remove one letter that is not i}, x

I' x {l} from the store.

. (backwards, S x I' x {l},V*, S, x I x {r}, forward) - replace the markingby

the marking- and move to forward mode. The statdoes not change.

. (backwards, e, €, €, sink,) - when the root is reached in backward existential mode

enter the accepting sink.
(sinkq, €, €, €, sink,) - remain in accepting sink.
(sink,, €, €, €, sink,) - remain in rejecting sink.

1t is important to use the one before last letter so that thtestself is already checked to be

the correct next successor of previous configuration.

18 Actually, we guess all states B,. As we change state inforward, the next transition verifies

that indeed the state is the same state.
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