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Amir has had a profound influence on the three of us, as a teacher, an advisor, a mentor, and a
collaborator. His fundamental ideas on the temporal logicsof programs have, to a large extent,
set the course for our professional careers. His sudden passing away has deprived us of many

more years of wonderful interaction, intellectual engagement, and friendship. We miss him
profoundly. His wisdom and pleasantness will stay with us forever.

Abstract. In this paper we develop an automata-theoretic framework for reason-
ing about infinite-state sequential systems. Our frameworkis based on the obser-
vation that states of such systems, which carry a finite but unbounded amount of
information, can be viewed as nodes in an infinite tree, and transitions between
states can be simulated by finite-state automata. Checking that a system satisfies
a temporal property can then be done by an alternating two-way tree automaton
that navigates through the tree. We show how this framework can be used to solve
the model-checking problem forµ-calculus and LTL specifications with respect
to pushdown and prefix-recognizable systems. In order to handle model checking
of linear-time specifications, we introduce and studypath automata on trees. The
input to a path automaton is a tree, but the automaton cannot split to copies and
it can read only a single path of the tree.
As has been the case with finite-state systems, the automata-theoretic framework
is quite versatile. We demonstrate it by solving the realizability and synthesis
problems forµ-calculus specifications with respect to prefix-recognizable envi-
ronments, and extending our framework to handle systems with regular labeling
regular fairness constraintsandµ-calculus withbackward modalities.

1 Introduction

One of the most significant developments in the area of formaldesign verification is
the discovery of algorithmic methods for verifying temporal-logic properties offinite-
statesystems [CES86,LP85,QS82,VW86a]. In temporal-logicmodel checking, we ver-
ify the correctness of a finite-state system with respect to adesired behavior by check-
ing whether a labeled state-transition graph that models the system satisfies a temporal

⋆ The paper is based on the papers [KV00a,KPV02].



logic formula that specifies this behavior (for a survey, see[CGP99]). Symbolic meth-
ods that enable model checking of very large state spaces, and the great ease of use
of fully algorithmic methods, led to industrial acceptanceof temporal model checking
[BLM01,CFF+01].

An important research topic over the past decade has been theapplication of model
checking to infinite-state systems. Notable success in thisarea has been the application
of model checking to real-time and hybrid systems (cf. [HHWT95,LPY97]). Another
active thrust of research is the application of model checking toinfinite-state sequential
systems. These are systems in which a state carries a finite, but unbounded, amount of
information, e.g., a pushdown store. The origin of this thrust is the important result by
Müller and Schupp that the monadic second-order theory (MSO) of context-free graphs
is decidable [MS85]. As the complexity involved in that decidability result is nonele-
mentary, researchers sought decidability results of elementary complexity. This started
with Burkart and Steffen, who developed an exponential-time algorithm for model-
checking formulas in thealternation-freeµ-calculus with respect to context-free graphs
[BS92]. Researchers then went on to extend this result to theµ-calculus, on one hand,
and to more general graphs on the other hand, such aspushdown graphs[BS95,Wal96],
regular graphs[BQ96], andprefix-recognizable graphs[Cau96].

On the theoretical side, the limits of MSO decidability havebeen pushed forward.
Walukiewicz and Caucal show that MSO decidability is maintained under certain op-
erations on graphs [Wal02,Cau03]. Further studies of thesegraphs show that they are
the configuration graphs ofhigh-order pushdown automata[CW03], and provide an
elementary time solution for model checkingµ-calculus over these graphs [Cac03].
Recently, the decidability of MSO andµ-calculus with respect to graphs produced by
higher-order recursion was established [KNUW05,Ong06].

From a practical point of view, model checking of pushdown graphs (or push-
down systems) provides a framework for software model checking where the store of
the pushdown system corresponds to the function call stack.This led to the imple-
mentation of pushdown model-checkers such as Mops [CW02], Moped [ES01,Sch02],
and Bebop [BR00] (to name a few). Of the mentioned three, the industrial applica-
tion, Bebop, enables only model checking of safety properties. Successful applications
of these model-checkers to the verification of software are reported, for example, in
[BR01,CW02,EKS06]. Researchers then considered more expressive logics that are
tailored for pushdown graphs [AEM04]4 and showed how to handle restricted cases
of communicating pushdown systems [KIG05,BTP06,KG06,KGS06,KG07]. Recently,
model checking and analysis of pushdown systems has been shown to have uses also in
security and authentication [SSE06,JSWR06]. Extensions like module checking, prob-
abilistic model checking, and exact computational complexity of model checking with
respect to branching time logics were studied as well [BMP05,EE05,Boz06].

In this paper, we develop an automata-theoretic framework for reasoning about
infinite-state sequential systems. The automata-theoretic approach uses the theory of
automata as a unifying paradigm for system specification, verification, and synthesis

4 See also extensive research on visibly pushdown automata and visibly push-
down languages and games that resulted from the research of this logic
[AM04,LMS04,BLS06,AM06,ACM06].
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[WVS83,EJ91,Kur94,VW94,KVW00]. Automata enable the separation of the logical
and the algorithmic aspects of reasoning about systems, yielding clean and asymptot-
ically optimal algorithms. Automata are the key to techniques such as on-the-fly veri-
fication [GPVW95], and they are useful also for modular verification [KV98], partial-
order verification [GW94,WW96], verification of real-time systems and hybrid sys-
tems [HKV96,DW99], and verification of open systems [AHK97,KV99]. Many de-
cision and synthesis problems have automata-based solutions and no other solution
for them is known [EJ88,PR89,KV00b]. Automata-based methods have been imple-
mented in industrial automated-verification tools (c.f., COSPAN [HHK96] and SPIN
[Hol97,VB00]).

The automata-theoretic approach, however, has long been thought to be inapplica-
ble for effective reasoning about infinite-state systems. The reason, essentially, lies in
the fact that the automata-theoretic techniques involve constructions in which the state
space of the system directly influences the state space of theautomaton (e.g., when we
take the product of a specification automaton with the graph that models the system).
On the other hand, the automata we know to handle have finitelymany states. The key
insight, which enables us to overcome this difficulty, and which is implicit in all pre-
vious decidability results in the area of infinite-state sequential systems, is that in spite
of the somewhat misleading terminology (e.g., “context-free graphs” and “pushdown
graphs”), the classes of infinite-state graphs for which decidability is known can be de-
scribed by finite-state automata. This is explained by the fact the the states of the graphs
that model these systems can be viewed as nodes in an infinite tree and transitions be-
tween states can be expressed by finite-state automata. As a result, automata-theoretic
techniques can be used to reason about such systems. In particular, we show that vari-
ous problems related to the analysis of such systems can be reduced to the membership
and emptiness problems foralternating two-way tree automata, which was shown to be
decidable in exponential time [Var98].

We first show how the automata-theoretic framework can be used to solve theµ-
calculus model-checking problem with respect to pushdown and prefix-recognizable
systems. As explained, the solution is based on the observation that states of such sys-
tems correspond to a location in an infinite tree. Transitions of the system, can be sim-
ulated by a finite state automaton that reads the infinite tree. Thus, the model-checking
problem ofµ-calculus over pushdown and prefix-recognizable graphs is reduced to the
membership problem of 2-way alternating parity tree automata, namely, the question
whether an automaton accepts the tree obtained by unwindinga given finite labeled
graph. The complexity of our algorithm matches the complexity of previous algorithms.

Theµ-calculus is sufficiently strong to express all properties expressible in the lin-
ear temporal logic LTL (and in fact, all properties expressible by anω-regular language)
[Dam94]. Thus, by translating LTL formulas intoµ-calculus formulas we can use our
solution forµ-calculus model checking in order to solve LTL model checking. This
solution, however, is not optimal. This has to do both with the fact that the translation
of LTL to µ-calculus is exponential, as well as the fact that our solution forµ-calculus
model checking is based on tree automata. A tree automaton splits into several copies
when it runs on a tree. While splitting is essential for reasoning about branching proper-
ties, it has a computational price. For linear properties, it is sufficient to follow a single
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computation of the system, and tree automata seem too strongfor this task. For exam-
ple, while the application of the framework developed aboveto pushdown systems and
LTL properties results in an algorithm that is doubly-exponential in the formula and ex-
ponential in the system, the problem is known to be EXPTIME-complete in the formula
and polynomial in the system [BEM97].

In order to handle model checking of linear-time properties, we introducepath au-
tomata on trees. The input to a path automaton is a tree, but the automaton cannot split
to copies and it can read only a single path of the tree. In particular, two-waynonde-
terministic path automata enable exactly the type of navigation that is required in order
to check linear properties of infinite-state sequential systems. We study the expressive
power and the complexity of the decision problems for (two way) path automata. The
fact that path automata follow a single path in the tree makesthem very similar to
two-way nondeterministic automata on infinite words. This enables us to reduce the
membership problem (whether an automaton accepts the tree obtained by unwinding a
given finite labeled graph) of two-way nondeterministic path automata to the emptiness
problem of one-way alternating Büchi automata on infinite words, which was studied
in [VW86b]. This leads to a quadratic upper bound for the membership problem for
two-way nondeterministic path automata.

Using path automata we are able to solve the problem of LTL model checking with
respect to pushdown and prefix-recognizable systems by a reduction to the member-
ship problem of two-way nondeterministic path automata. Usually, automata-theoretic
solutions to model checking use the emptiness problem, namely whether an automa-
ton accepts some tree. We note that for (linear-time) model checking of sequential
infinite-state system both simplifications, to the membership problem vs. the empti-
ness problem, and to path automata vs. tree automata are crucial: as we prove the
emptiness problem for two-way nondeterministic Büchi path automata is EXPTIME-
complete, and the membership problem for two-way alternating Büchi tree automata is
also EXPTIME-complete5. Our automata-theoretic technique matches the known upper
bound for model-checking LTL properties on pushdown systems [BEM97,EHRS00]. In
addition, the automata-theoretic approach provides the first solution for the case where
the system is prefix-recognizable. Specifically, we show that we can solve the model-
checking problem of an LTL formulaϕ with respect to a prefix-recognizable system
R of sizen in time and space2O(n+|ϕ|). We also prove a matching EXPTIME lower
bound.

Usually, the labeling of the state depends on the internal state of the system and the
top of the store. Our framework also handlesregular labeling, where the label depends
on whether the word on the store is a member in some regular language. The complex-
ity is exponential in the nondeterministic automata that describe the labeling, matching
the known bound for pushdown systems and linear-time specifications [EKS01]. The

5 In contract, the membership problem for one-way alternating Büchi tree automata can be re-
duced to the emptiness problem of the 1-letter alternating word automaton obtained by taking
the product of the labeled graph that models the tree with theone-way alternating tree au-
tomaton [KVW00]. This technique cannot be applied to two-way automata, since they can
distinguish between a graph and its unwinding. For a relateddiscussion regarding past-time
connectives in branching temporal logics, see [KP95].
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automata-theoretic techniques for handling regular labeling and for handling the reg-
ular transitions of a prefix-recognizable system are very similar. This leads us to the
understanding that regular labeling and prefix-recognizability have exactly the same
power. Formally, we prove that model checking (for eitherµ-calculus or LTL) with re-
spect to a prefix-recognizable system can be reduced to modelchecking with respect
to a pushdown system with regular labeling, and vice versa. For linear-time proper-
ties, it is known that model checking of a pushdown system with regular labeling is
EXPTIME-complete [EKS01]. Hence, our reductions suggest an alternative proof of
the exponential upper and lower bounds for the problem of LTLmodel checking of
prefix-recognizable systems.

While most of the complexity results established for model checking of infinite-
state sequential systems using our framework are not new, itappears to be, like the
automata-theoretic framework for finite-state systems, very versatile, and it has fur-
ther potential applications. We proceed by showing how to solve therealizability and
synthesisproblem ofµ-calculus formulas with respect to infinite-state sequential envi-
ronments. Similar methods are used to solve realizability of LTL [ATM03]. We discuss
how to extend the algorithms to handle graphs withregular fairness constraints, and
to µ-calculus withbackward modalities. In both these problems all we demonstrate
is a (fairly simple) extension of the basic algorithm; the (exponentially) hard work
is then done by the membership-checking algorithm. The automata-theoretic frame-
work for reasoning about infinite-state sequential systemswas also extended to global
model checking [PV04] and to classes of systems that are moreexpressive than prefix-
recognizable [Cac03,PV03]. It can be easily extended to handle also CARET specifica-
tions [AEM04].

Since the publication of the preliminary versions of this work [KV00a,KPV02],
this method has been used extensively. Cachat uses the connection between pushdown-
systems and 2-way tree automata to show thatµ-calculus model checking over high-
order pushdown automata is decidable [Cac03]. Gimbert usesthese techniques to con-
sider games over pushdown arenas where the winning conditions are combination of
parity and unboundedness [Gim03]6. Serre shows how these techniques can achieve
better upper bounds in the restricted case of counter machines [Ser06].

2 Preliminaries

Given a finite setΣ, a word overΣ is a finite or infinite sequence of symbols from
Σ. We denote byΣ∗ the set of finite sequences overΣ and byΣω the set of infinite
sequences overΣ. Given a wordw = σ0σ1σ2 · · · ∈ Σ∗ ∪ Σω, we denote byw≥i the
suffix ofw starting atσi, i.e.,w≥i = σiσi+1 · · ·. Thelengthof w is denoted by|w| and
is defined to beω for infinite words.

6 See also [BSW03] for a different solution when the parity conditions are restricted to index
three.
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2.1 Labeled Transition Graphs and Rewrite Systems

A labeled transition graphis G = 〈Σ,S, L, ρ, s0〉, whereΣ is a finite set of labels,
S is a (possibly infinite) set of states,L : S → Σ is a labeling function,ρ ⊆ S × S
is a transition relation, ands0 ∈ S0 is an initial state. Whenρ(s, s′), we say thats′

is a successorof s, ands is a predecessorof s′. For a states ∈ S, we denote by
Gs = 〈Σ,S, L, ρ, s〉, the graphG with s as its initial state. Ans-computationis an
infinite sequence of statess0, s1, . . . ∈ Sω such thats0 = s and for alli ≥ 0, we have
ρ(si, si+1). An s-computations0, s1, . . . induces thes-traceL(s0) · L(s1) · · ·. Let Ts
be the set of alls-traces.

A rewrite systemis R = 〈Σ, V,Q,L, T, q0, x0〉, whereΣ is a finite set of labels,
V is a finite alphabet,Q is a finite set of states,L : Q × V ∗ → Σ is a labeling
function,T is a finite set of rewrite rules, to be defined below,q0 is an initial state,
andx0 ∈ V ∗ is an initial word. The set ofconfigurationsof the system isQ × V ∗.
Intuitively, the system has finitely many control states andan unbounded store. Thus,
in a configuration(q, x) ∈ Q × V ∗ we refer toq as thecontrol stateand tox as the
store. A configuration(q, x) ∈ Q × V ∗ indicates that the system is in control stateq
with storex. We consider here two types of rewrite systems. In apushdownsystem,
each rewrite rule is〈q, A, x, q′〉 ∈ Q × V × V ∗ × Q. Thus,T ⊆ Q × V × V ∗ × Q.
In a prefix-recognizablesystem, each rewrite rule is〈q, α, β, γ, q′〉 ∈ Q × reg(V ) ×
reg(V ) × reg(V ) × Q, wherereg(V ) is the set of regular expressions overV . Thus,
T ⊆ Q× reg(V )× reg(V )× reg(V )×Q. For a wordw ∈ V ∗ and a regular expression
r ∈ reg(V ) we writew ∈ r to denote thatw is in the language of the regular expression
r. We note that the standard definition of prefix-recognizablesystems does not include
control states. Indeed, a prefix-recognizable system without states can simulate a prefix-
recognizable system with states by having the state as the first letter of the unbounded
store. We use prefix-recognizable systems with control states for the sake of uniform
notation.

We consider two types of labeling functions,simpleandregular. The labeling func-
tion associates with a configuration(q, x) ∈ Q × V ∗ a symbol fromΣ. A simple
labeling function depends only on the first letter ofx. Thus, we may writeL : Q ×
(V ∪ {ǫ}) → Σ. Note that the label is defined also for the case thatx is the empty
word ǫ. A regular labeling function considers the entire wordx but can only refer to
its membership in some regular set. Formally, for every state q there is a partition of
V ∗ to |Σ| regular languagesR1, . . . R|Σ|, andL(q, x) depends on the regular set thatx
belongs to. For a letterσ ∈ Σ and a stateq ∈ Q we setRσ,q = {x | L(q, x) = σ} to
be the regular language of store contents that produce the labelσ (with stateq). We are
especially interested in the cases where the alphabetΣ is the powerset2AP of the set
of atomic propositions. In this case, we associate with every stateq and propositionp a
regular languageRp,q that contains all the wordsw for which the propositionp is true
in configuration(q, x). Thusp ∈ L(q, x) iff x ∈ Rp,q. Unless mentioned explicitly, the
system has a simple labeling.

The rewrite systemR induces the labeled transition graph whose states are the con-
figurations ofR and whose transitions correspond to rewrite rules. Formally, GR =
〈Σ,Q × V ∗, L, ρR, (q0, x0)〉, whereQ × V ∗ is the set of configurations ofR and
〈(q, z), (q′, z′)〉 ∈ ρR if there is a rewrite rulet ∈ T leading from configuration(q, z) to
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configuration(q′, z′). Formally, ifR is a pushdown system, thenρR((q, A·y), (q′, x·y))
if 〈q, A, x, q′〉 ∈ T ; and ifR is a prefix-recognizable system, thenρR((q, x · y), (q′, x′ ·
y)) if there are regular expressionsα, β, andγ such thatx ∈ α, y ∈ β, x′ ∈ γ, and
〈q, α, β, γ, q′〉 ∈ T . Note that in order to apply a rewrite rule in state(q, z) ∈ Q × V ∗

of a pushdown graph, we only need to match the stateq and the first letter ofz with
the second element of a rule. On the other hand, in an application of a rewrite rule in
a prefix-recognizable graph, we have to match the stateq and we should find a par-
tition of z to a prefix that belongs to the second element of the rule and a suffix that
belongs to the third element. A labeled transition graph that is induced by a pushdown
system is called apushdown graph. A labeled transition system that is induced by a
prefix-recognizable system is called aprefix-recognizable graph.

Example 1.The pushdown systemP = 〈2{p1,p2}, {A,B}, {q0}, L, T, q0, A〉, whereL
is defined byRq0,p1= {A,B}

∗ · B · B · {A,B}∗ andRq0,p2 = A · {A,B}∗ andT =
{〈q0, A,AB, q0〉, 〈q0, A, ε, q0〉, 〈q0, B, ε, q0〉}, induces the labeled transition graph be-
low.

p2 p2 p1, p2 p1, p2

p1 p1

(q0,AB) (q0,ABBB)

(q0, ε) (q0,B) (q0,BB) (q0,BBB)

(q0,ABB)(q0,A)

Example 2.The prefix-recognizable system〈2∅, {A}, {q}, L, T, q0, A〉, whereT =
{〈q, A∗, A∗, ε, q〉, 〈q, ε,A∗,A, q〉} induces the labeled transition graph below.

q qA qAA qAAA qAAAA

Consider a prefix-recognizable systemR = 〈Σ, V,Q,L, T, q0, x0〉. For a rewrite
rule ti = 〈s, αi, βi, γi, s′〉 ∈ T , let Uλ = 〈V,Qλ, ηλ, q0λ, Fλ〉, for λ ∈ {αi, βi, γi},
be the nondeterministic automaton for the language of the regular expressionλ. We
assume that all initial states have no incoming edges and that all accepting states have
no outgoing edges. We collect all the states of all the automata forα, β, andγ regular
expressions. Formally,Qα =

⋃

ti∈T
Qαi

,Qβ =
⋃

ti∈T
Qβi

, andQγ =
⋃

ti∈T
Qγi

. We
assume that we have an automaton whose language is{x0}. We denote the final state of
this automaton byx0 and add all its states toQγ . Finally, for a regular labeling function
L, a stateq ∈ Q, and a letterσ ∈ Σ, let Uσ,q = 〈V,Qσ,q, q0σ,q, ρσ,q, Fσ,q〉 be the
nondeterministic automaton for the languageRσ,q. In a similar way given a stateq ∈ Q
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and a propositionp ∈ AP , letUp,q = 〈V,Qp,q, q0p,q, ρp,q, Fp,q〉 be the nondeterministic
automaton for the languageRp,q.

We define thesize‖T ‖ of T as the space required in order to encode the rewrite
rules inT . Thus, in a pushdown system,‖T ‖ =

∑

〈q,A,x,q′〉∈T |x|, and in a prefix-
recognizable system,‖T ‖ =

∑

〈q,α,β,γ,q′〉∈T |Uα|+ |Uβ|+ |Uγ |. In the case of a regular
labeling function, we also measure the labeling function‖L‖ =

∑

q∈Q

∑

σ∈Σ |Uσ,q| or
‖L‖ =

∑

q∈Q

∑

p∈AP |Up,q|.

2.2 Temporal Logics

We give a short introduction to the tempora logics LTL [Pnu77] andµ-calculus [Koz83].
The logic LTL augments propositional logic with temporal quantifiers. Given a finite

setAP of propositions, an LTL formula is one of the following.

– true, false, p for all p ∈ AP ;
– ¬ϕ1, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, © ϕ1 andϕ1Uϕ2, for LTL formulasϕ1 andϕ2;

The semantics of LTL formulas is defined with respect to an infinite sequenceπ ∈
(2AP )ω and a locationi ∈ N. We use(π, i) |= ψ to indicate that the wordπ in the
designated locationi satisfies the formulaψ.

– For a propositionp ∈ AP , we have(π, i) |= p iff p ∈ πi;
– (π, i) |= ¬f1 iff not (π, i) |= f1;
– (π, i) |= f1 ∨ f2 iff (π, i) |= f1 or (π, i) |= f2;
– (π, i) |= f1 ∧ f2 iff (π, i) |= f1 and(π, i) |= f2;
– (π, i) |=©f1 iff (π, i+ 1) |= f1;
– (π, i) |= f1Uf2 iff there existsk ≥ i such that(π, k) |= f2 and for alli ≤ j < k, we

have(π, j) |= f1;

If (π, 0) |= ψ, then we say thatπ satisfiesψ. We denote byL(ψ) the set of sequences
π that satisfyψ.

Theµ-calculusis a modal logic augmented with least and greatest fixpoint opera-
tors. Given a finite setAP of atomic propositions and a finite setVar of variables, a
µ-calculus formula (in a positive normal form) overAP andVar is one of the follow-
ing:

– true, false, p and¬p for all p ∈ AP , or y for all y ∈ Var ;
– ϕ1 ∧ ϕ2 orϕ1 ∨ ϕ2, for µ-calculus formulasϕ1 andϕ2;
– 2ϕ or 3ϕ for aµ-calculus formulaϕ.
– µy.ϕ or νy.ϕ, for y ∈ Var and aµ-calculus formulaϕ.

A sentenceis a formula that contains no free variables fromVar (that is, every vari-
able is in the scope of some fixed-point operator that binds it). We define the semantics
of µ-calculus with respect to a labeled transition graphG = 〈2AP , S, L, ρ, s0〉 and a
valuationV : Var → 2S. Each formulaψ and valuationV then define a set[[ψ]]GV of
states ofG that satisfy the formula. For a valuationV , a variabley ∈ Var , and a set
S′ ⊆ S, we denote byV [y ← S′] the valuation obtained fromV by assigningS′ to y.
The mapping[[ψ]]GV is defined inductively as follows:

8



– [[true]]GV = S and[[false]]GV = ∅;
– Fory ∈ Var , we have[[y]]GV = V(y);
– Forp ∈ AP , we have[[p]]GV = {s | p ∈ L(s)} and[[¬p]]GV = {s | p /∈ L(s)};
– [[ψ1 ∧ ψ2]]GV = [[ψ1]]GV ∩ [[ψ2]]GV ;
– [[ψ1 ∨ ψ2]]GV = [[ψ1]]GV ∪ [[ψ2]]GV ;
– [[2ψ]]GV = {s ∈ S : for all s′ such thatρ(s, s′), we haves′ ∈ [[ψ]]GV };
– [[3ψ]]GV = {s ∈ S : there iss′ such thatρ(s, s′) ands′ ∈ [[ψ]]GV };
– [[µy.ψ]]GV =

⋂

{S′ ⊆ S : [[ψ]]GV[y←S′] ⊆ S
′};

– [[νy.ψ]]GV =
⋃

{S′ ⊆ S : S′ ⊆ [[ψ]]GV[y←S′]}.

Thealternation depthof a formula is the number of alternations in the nesting of least
and greatest fixpoints. For a full exposition ofµ-calculus we refer the reader to [Eme97].

Note that[[ψ]]GV depends only on the valuations of the free variables inψ. In partic-
ular, no valuation is required for a sentence and we write[[ψ]]G . For a states ∈ S and
a sentenceψ, we say thatψ holds ats in G, denotedG, s |= ψ iff s ∈ [[ψ]]G . Also,
G |= ψ iff G, s0 |= ψ. We say that a rewrite systemR satisfies aµ-calculus formulaψ
if GR |= ψ.

While LTL is a linear temporal logic and we have defined its semantics with respect
to infinite sequences, we often refer also to satisfaction ofLTL formulas in labeled
transition graphs. Intuitively, all the sequences inducedby computations of the graph
should satisfy the formula. Formally, given a graphG and a states of G, we say thats
satisfies an LTL formulaϕ, denoted(G, s) |= ϕ, iff Ts ⊆ L(ϕ). A graphG satisfies an
LTL formulaϕ, denotedG |= ϕ, iff its initial state satisfies it; that is(G, s0) |= ϕ.

The model-checking problemfor a labeled transition graphG and an LTL orµ-
calculus formulaϕ is to determine whetherG satisfiesϕ. Note that the transition re-
lation ofR need not be total. There may be finite paths but satisfaction is determined
only with respect to infinite paths. In particular, if the graph has only finite paths, its set
of traces is empty and the graph satisfies every LTL formula7. We say that a rewrite
systemR satisfies an LTL formulaϕ if GR |= ϕ. 8

Theorem 1. The model-checking problem for a pushdown systemR and a formulaϕ
is solvable

– in time‖T ‖3 · 2O(|ϕ|) and space‖T ‖2 · 2O(|ϕ|) in the caseϕ is an LTL formula and
L is a simple labeling function[EHRS00].

– in time ‖T ‖3 · 2O(‖L‖+|ϕ|) and space‖T ‖2 · 2O(‖L‖+|ϕ|) in the caseϕ is an LTL
formulas andL is a regular labeling function. The problem is EXPTIME-hardin
‖L‖ even for a fixed formula[EKS01].

– in time2O(‖T‖·|ψ|·k) in the caseϕ is a µ-calculus formula with alternation depthk
[Wal96,Bur97].

7 It is also possible to consider finite paths. In this case, thenondeterministic Büchi automaton
in Theorem 5 has to be modified so that it can recognize also finite words (cf. [GO03]). Our
results are easily extended to consider also finite paths.

8 Some work on verification of infinite-state system (e.g., [EHRS00]), consider properties given
by nondeterministic Büchi word automata, rather than LTL formulas. Since we anyway trans-
late LTL formulas to automata, we can easily handle also properties given by automata.
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2.3 Alternating Two-Way Automata

Given a finite setΥ of directions, anΥ -tree is a setT ⊆ Υ ∗ such that ifυ · x ∈ T ,
whereυ ∈ Υ andx ∈ Υ ∗, then alsox ∈ T . The elements ofT are callednodes, and the
empty wordε is theroot of T . For everyυ ∈ Υ andx ∈ T , the nodex is theparentof
υ ·x. Each nodex 6= ε of T has adirectionin Υ . The direction of the root is the symbol
⊥ (we assume that⊥ 6∈ Υ ). The direction of a nodeυ · x is υ. We denote bydir(x) the
direction of nodex. An Υ -treeT is a full infinite treeif T = Υ ∗. A pathπ of a treeT
is a setπ ⊆ T such thatε ∈ π and for everyx ∈ π there exists a uniqueυ ∈ Υ such
thatυ ·x ∈ π. Note that our definitions here reverse the standard definitions (e.g., when
Υ = {0, 1}, the successors of the node0 are00 and10 (rather than00 and01)9.

Given two finite setsΥ andΣ, aΣ-labeledΥ -tree is a pair〈T, τ〉 whereT is an
Υ -tree andτ : T → Σ maps each node ofT to a letter inΣ. WhenΥ andΣ are
not important or clear from the context, we call〈T, τ〉 a labeled tree. We say that an
((Υ ∪ {⊥}) × Σ)-labeledΥ -tree〈T, τ〉 is Υ -exhaustiveif for every nodex ∈ T , we
haveτ(x) ∈ {dir(x)} ×Σ.

A labeled tree isregular if it is the unwinding of some finite labeled graph. More
formally, atransducerD is a tuple〈Υ,Σ,Q, η, q0, L〉, whereΥ is a finite set of direc-
tions,Σ is a finite alphabet,Q is a finite set of states,η : Q×Υ → Q is a deterministic
transition function,q0 ∈ Q is a start state, andL : Q → Σ is a labeling function. We
defineη : Υ ∗ → Q in the standard way:η(ε) = q0 andη(ax) = η(η(x), a). Intuitively,
a transducer is a labeled finite graph with a designated startnode, where the edges are
labeled byΥ and the nodes are labeled byΣ. A Σ-labeledΥ -tree〈Υ ∗, τ〉 is regular if
there exists a transducerD = 〈Υ,Σ,Q, η, q0, L〉, such that for everyx ∈ Υ ∗, we have
τ(x) = L(η(x)). The size of〈Υ ∗, τ〉, denoted‖τ‖, is |Q|, the number of states ofD.

Alternating automataon infinite trees generalize nondeterministic tree automata and
were first introduced in [MS87]. Here we describe alternating two-waytree automata.
For a finite setX , let B+(X) be the set of positive Boolean formulas overX (i.e.,
boolean formulas built from elements inX using∧ and∨), where we also allow the
formulastrue andfalse, and, as usual,∧ has precedence over∨. For a setY ⊆ X and
a formulaθ ∈ B+(X), we say thatY satisfiesθ iff assigningtrue to elements inY
and assigningfalse to elements inX \ Y makesθ true. For a setΥ of directions, the
extensionof Υ is the setext(Υ ) = Υ ∪ {ε, ↑} (we assume thatΥ ∩ {ε, ↑} = ∅). An
alternating two-way automatonoverΣ-labeledΥ -trees is a tupleA = 〈Σ,Q, δ, q0, F 〉,
whereΣ is the input alphabet,Q is a finite set of states,δ : Q×Σ → B+(ext(Υ )×Q)
is the transition function,q0 ∈ Q is an initial state, andF specifies the acceptance
condition.

A run of an alternating automatonA over a labeled tree〈Υ ∗, τ〉 is a labeled tree
〈Tr, r〉 in which every node is labeled by an element ofΥ ∗ ×Q. A node inTr, labeled
by (x, q), describes a copy of the automaton that is in the stateq and reads the nodex
of Υ ∗. Note that many nodes ofTr can correspond to the same node ofΥ ∗; there is no
one-to-one correspondence between the nodes of the run and the nodes of the tree. The
labels of a node and its successors have to satisfy the transition function. Formally, a

9 As will get clearer in the sequel, the reason for that is that rewrite rules refer to the prefix of
words.
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run 〈Tr, r〉 is aΣr-labeledΓ -tree, for some setΓ of directions, whereΣr = Υ ∗ × Q
and〈Tr, r〉 satisfies the following:

1. ε ∈ Tr andr(ε) = (ε, q0).
2. Considery ∈ Tr with r(y) = (x, q) andδ(q, τ(x)) = θ. Then there is a (possibly

empty) setS ⊆ ext(Υ ) × Q, such thatS satisfiesθ, and for all〈c, q′〉 ∈ S, there is
γ ∈ Γ such thatγ · y ∈ Tr and the following hold:
– If c ∈ Υ , thenr(γ · y) = (c · x, q′).
– If c = ε, thenr(γ · y) = (x, q′).
– If c =↑, thenx = υ · z, for someυ ∈ Υ andz ∈ Υ ∗, andr(γ · y) = (z, q′).

Thus,ε-transitions leave the automaton on the same node of the input tree, and↑-
transitions take it up to the parent node. Note that the automaton cannot go up the
root of the input tree, as wheneverc =↑, we require thatx 6= ε.

A run 〈Tr, r〉 is acceptingif all its infinite paths satisfy the acceptance condition.
We consider hereparity acceptance conditions [EJ91]. A parity condition over a state
setQ is a finite sequenceF = {F1, F2, . . . , Fm} of subsets ofQ, whereF1 ⊆ F2 ⊆
. . . ⊆ Fm = Q. The numberm of sets is called theindexof A. Given a run〈Tr, r〉 and
an infinite pathπ ⊆ Tr, let inf (π) ⊆ Q be such thatq ∈ inf (π) if and only if there are
infinitely manyy ∈ π for which r(y) ∈ Υ ∗ × {q}. That is,inf (π) contains exactly all
the states that appear infinitely often inπ. A pathπ satisfies the conditionF if there is
an eveni for which inf (π) ∩ Fi 6= ∅ andinf (π) ∩ Fi−1 = ∅. An automaton accepts a
labeled tree if and only if there exists a run that accepts it.We denote byL(A) the set of
all Σ-labeled trees thatA accepts. The automatonA is nonemptyiff L(A) 6= ∅. Büchi
acceptance condition [Büc62] is a private case of parity ofindex 3. Büchi condition
F ⊆ Q is equivalent to parity condition〈∅, F,Q〉. A pathπ satisfies Büchi condition
F iff inf (π) ∩ F 6= ∅. Co-Büchi acceptance condition is the dual of Büchi. Co-Büchi
conditionF ⊆ Q is equivalent to parity condition〈F,Q〉. A pathπ satisfies co-Büchi
conditionF iff inf (π) ∩ F = ∅.

The size of an automaton is determined by the number of its states and the size of
its transition function. The size of the transition function is η = Σq∈QΣσ∈Σ |η(q, a)|
where, for a formula inB+(ext(Υ ) × Q) we define|(∆, q)| = |true| = |false| = 1
and|θ1 ∨ θ2| = |θ1 ∧ θ2| = |θ1|+ |θ2|+ 1.

We say thatA is advancing ifδ is restricted to formulas inB+((Υ ∪{ε})×Q), it is
one-way ifδ is restricted to formulas inB+(Υ ×Q). We say thatA is nondeterministic
if its transitions are of the form

∨

i∈I

∧

υ∈Υ (υ, qiυ)), in such cases we writeδ : Q×Σ →

2Q
|Υ |

. In particular, a nondeterministic automaton is 1-way. It is easy to see that a run
tree of a nondeterministic tree automaton visits every nodein the input tree exactly
once. Hence, a run of a nondeterministic tree automaton on tree〈T, τ〉 is 〈T, r〉 where
r : T → Q. Note, thatτ andr use the same domainT . In the case that|Υ | = 1, A
is a word automaton. In the run of a word automaton, the location of the automaton
on the word is identified by the length of its location. Hence,instead of marking the
location byυi, we mark it byi. Formally, a run of a word automaton is〈T, r〉 where
r : T → N×Q and a nodex ∈ T such thatr(x) = (i, q) signifies that the automaton
in stateq is reading theith letter of the word. In the case of word automata, there is
only one directionυ ∈ Υ . Hence, we replace the atoms(d, q) ∈ ext(Υ ) × Q in the
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transition ofA by atoms from{−1, 0, 1}×Qwhere−1 means read the previous letter,
0 means read again the same letter, and1 means read the next letter. Accordingly, the
pair (i, q), (j, q′) satisfies the transition ofA if there exists(d, q′) ∈ δ(q, wi) such that
j = i + d. In the case that the automaton is 1-way the length ofx uniquely identifies
the location in the word. That is, we user : T → Q andr(x) = q signifies that stateq
is reading letter|x|. In the case that a word automaton is nondeterministic, its run is an
infinite sequence of locations and states. Namely,r = (0, q0), (i1, q1), . . .. In addition,
if the automaton is 1-way the location in the sequence identifies the letter read by the
automaton and we writer = q0, q1, . . ..

Theorem 2. Given an alternating two-way parity tree automatonA with n states and
indexk, we can construct an equivalent nondeterministic one-way parity tree automa-
ton whose number of states is exponential innk and whose index is linear innk [Var98],
and we can check the nonemptiness ofA in time exponential innk [EJS93].

We use acronyms in{2, ε, 1}× {A,N,D}× {P,B,C, F}× {T,W} to denote the
different types of automata. The first symbol stands for the type of movement: 2 for
2-way automata,ε for advancing, and 1 for 1-way (we often omit the 1). The second
symbol stands for the branching mode:A for alternating,N for nondeterministic, and
D for deterministic. The third symbol stands for the type of acceptance:P for parity,
B for Büchi,C for co-Büchi, andF for finite (i.e., automata that read finite words or
trees), and the last symbol stands for the object the automaton is reading:T for trees
andW for words. For example, a 2APT is a 2-way alternating parity tree automaton
and an NBW is a 1-way nondeterministic Büchi word automaton.

The membership problemof an automatonA and a regular tree〈Υ ∗, τ〉 is to de-
termine whetherA accepts〈Υ ∗, τ〉; or equivalently whether〈Υ ∗, τ〉 ∈ L(A). It is not
hard to see that the membership problem for a 2APT can be solved by a reduction to
the emptiness problem. Formally we have the following.

Theorem 3. Given an alternating two-way parity tree automatonA with n states and
indexk, and a regular tree〈Υ ∗, τ〉 we can check whetherA accepts〈Υ ∗, τ〉 in time
(‖τ‖nk)O((nk)2).

Proof: LetA = 〈Σ,Q, δ, q0, F 〉 be a 2APT and〈Υ ∗, τ〉 be a regular tree. Let the trans-
ducer inducing the labeling ofτ beDτ = 〈Υ,Σ,D, η, d0, L〉. According to Theorem 2,
we construct a 1NPTN = 〈Σ,S, ρ, s0, α〉 that accepts the language ofA.

Consider the 1NPTN ′ = 〈{a}, D × S, ρ′, (d0, s0), α
′〉 whereρ′(d, s) is obtained

from ρ(s, L(d)) by replacing every atom(υ, s′) by (υ, (η(d, υ), s′)) andα′ is obtained
from α by replacing every setF by the setD × F . It follows that〈Υ ∗, τ〉 is accepted
byA iff N ′ is not empty. The number of states ofN ′ is ‖τ‖(nk)O(nk) and its index is
O(nk).

2.4 Alternating Automata on Labeled Transition Graphs

Consider a labeled transition graphG = 〈Σ,S, L, ρ, s0〉. Let∆ = {ε,2,3}. An alter-
nating automaton on labeled transition graphs (graph automaton, for short) [JW95]10 is
10 The graph automata in [JW95] are different than these definedhere, but this is only a technical

difference.
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a tupleS = 〈Σ,Q, δ, q0, F 〉, whereΣ, Q, q0, andF are as in alternating two-way au-
tomata, andδ : Q×Σ → B+(∆×Q) is the transition function. Intuitively, whenS is in
stateq and it reads a states of G, fulfilling an atom〈3, t〉 (or 3t, for short) requiresS
to send a copy in statet to some successor ofs. Similarly, fulfilling an atom2t requires
S to send copies in statet to all the successors ofs. Thus, like symmetric automata
[DW99,Wil99], graph automata cannot distinguish between the various successors of a
state and treat them in an existential or universal way.

Like runs of alternating two-way automata, a run of a graph automatonS over a
labeled transition graphG = 〈S,L, ρ, s0〉 is a labeled tree in which every node is
labeled by an element ofS × Q. A node labeled by(s, q), describes a copy of the
automaton that is in the stateq of S and reads the states of G. Formally, a run is a
Σr-labeledΓ -tree〈Tr, r〉, whereΓ is an arbitrary set of directions,Σr = S ×Q, and
〈Tr, r〉 satisfies the following:

1. ε ∈ Tr andr(ε) = (s0, q0).
2. Considery ∈ Tr with r(y) = (s, q) andδ(q, L(s)) = θ. Then there is a (possibly

empty) setS ⊆ ∆×Q, such thatS satisfiesθ, and for all〈c, q′〉 ∈ S, the following
hold:

– If c = ε, then there isγ ∈ Γ such thatγ · y ∈ Tr andr(γ · y) = (s, q′).
– If c = 2, then for every successors′ of s, there isγ ∈ Γ such thatγ · y ∈ Tr and
r(γ · y) = (s′, q′).

– If c = 3, then there is a successors′ of s andγ ∈ Γ such thatγ · y ∈ Tr and
r(γ · y) = (s′, q′).

A run 〈Tr, r〉 is acceptingif all its infinite paths satisfy the acceptance condition. The
graphG is accepted byS if there is an accepting run on it. We denote byL(S) the set
of all graphs thatS accepts. We denote bySq = 〈Σ,Q, δ, q, F 〉 the automatonS with
q as its initial state.

We say that a labeled transition graphG satisfies a graph automatonS, denoted
G |= S, if S acceptsG. It is shown in [JW95] that graph automata are as expressive as
µ-calculus. In particular, we have the following.

Theorem 4. [JW95] Given aµ-calculus formulaψ, of lengthn and alternation depth
k, we can construct a graph parity automatonSψ such thatL(Sψ) is exactly the set of
graphs satisfyingψ. The automatonSψ hasn states and indexk.

A graph automaton whose transitions are restricted to disjunctions over{3}×Q is
in fact a nondeterministic automaton. We freely confuse between such graph automata
with the Büchi acceptance condition and NBW. It is well known that every LTL formula
can be translated into an NBW that accepts all traces that satisfy the formula. Formally,
we have the following.

Theorem 5. [VW94] For every LTL formulaϕ, we can construct an NBWNϕ with
2O(|ϕ|) states such thatL(Nϕ) = L(ϕ).
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3 Model-Checking Branching-Time Properties

In this section we present an automata-theoretic approach solution to model-checking
branching-time properties of pushdown and prefix-recognizable graphs. We start by
demonstrating our technique on model checking of pushdown systems. Then we show
how to extend it to prefix-recognizable systems. Consider a rewrite systemR = 〈Σ, V ,
Q,L, T , q0, x0〉 and letGR = 〈Σ,Q×V ∗,L, ρR, (q0, x0)〉 be its induced graph. recall
that a configuration ofGR is a pair(q, x) ∈ Q× V ∗. Thus, the storex corresponds to
a node in the full infiniteV -tree. An automaton that reads the treeV ∗ can memorize in
its state space the state component of the configuration and refer to the location of its
reading head inV ∗ as the store. We would like the automaton to “know” the location of
its reading head inV ∗. A straightforward way to do so is to label a nodex ∈ V ∗ by x.
This, however, involves an infinite alphabet, and results intrees that are not regular.

We show that labeling every node inV ∗ by its direction is sufficiently informative to
provide the 2-way automaton with the information it needs inorder to simulate transi-
tions of the rewrite system. Thus, ifR is a pushdown system and we are at nodeA ·y of
theV -tree (with stateq memorized), an application of the transition〈q, A, x, q′〉 takes
us to nodex · y (with stateq′ memorized). IfR is a prefix-recognizable system and we
are at nodey of theV -tree (with stateq memorized), an application of the transition
〈q, α, β, γ, q′〉 takes us to nodexz (with stateq′ memorized) wherex ∈ γ, z ∈ β,
andy = z′z for somez′ ∈ α. Technically, this means that we first move up the tree,
and then move down. Such a navigation through theV -tree can be easily performed by
two-way automata.

3.1 Pushdown Graphs

We present our solution for pushdown graphs in details. Let〈V ∗, τ
V
〉 be theV -labeled

V -tree such that for everyx ∈ V ∗ we haveτ
V
(x) = dir(x) (〈V ∗, τ

V
〉 is the exhaustive

V -labeledV -tree). Note that〈V ∗, τ
V
〉 is a regular tree of size|V | + 1. We construct a

2APTA that reads〈V ∗, τ
V
〉. The state space ofA contains a component that memorizes

the current state of the rewrite system. The location of the reading head in〈V ∗, τ
V
〉

represents the store of the current configuration. Thus, in order to know which rewrite
rules can be applied,A consults its current state and the label of the node it reads (note
thatdir(x) is the first letter ofx). Formally, we have the following.

Theorem 6. Given a pushdown systemR = 〈Σ, V,Q,L, T, q0, x0〉 and a graph au-
tomatonS = 〈Σ, W , δ, w0, F 〉, we can construct a 2APTA over(V ∪ {⊥})-labeled
V -trees such thatA accepts〈V ∗, τ

V
〉 iff GR satisfiesS. The automatonA hasO(|W | ·

|Q| · ‖T ‖) states, and has the same index asS.

Proof: We defineA = 〈V ∪ {⊥}, P, η, p0, α〉 as follows.

– P = (W ×Q× heads(T )), whereheads(T ) ⊆ V ∗ is the set of all prefixes of words
x ∈ V ∗ for which there are statesq, q′ ∈ Q andA ∈ V such that〈q, A, x, q′〉 ∈ T .
Intuitively, whenA visits a nodex ∈ V ∗ in state〈w, q, y〉, it checks thatGR with
initial state(q, y · x) is accepted bySs. In particular, wheny = ε, thenGR with
initial state(q, x) (the node currently being visited) needs to be accepted bySw.
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States of the form〈w, q, ε〉 are calledaction states. From these statesA consultsδ
andT in order to impose new requirements on the exhaustiveV -tree. States of the
form 〈w, q, y〉, for y ∈ V +, are callednavigation states. From these statesA only
navigates downwardsy to reach new action states.

– In order to defineη : P × Σ → B+(ext(V ) × P ), we first define the function
applyT : ∆ × W × Q × V → B+(ext(V ) × P ). Intuitively, applyT transforms
atoms participating inδ to a formula that describes the requirements onGR when
the rewrite rules inT are applied to words of the formA · V ∗. For c ∈ ∆, w ∈ W ,
q ∈ Q, andA ∈ V we define

applyT (c, w, q, A) =





〈ε, (w, q, ε)〉 if c = ε
∧

〈q,A,y,q′〉∈T 〈↑, (w, q
′, y)〉 if c = 2

∨

〈q,A,y,q′〉∈T 〈↑, (w, q
′, y)〉 if c = 3

Note thatT may contain no tuples in{q} × {A} × V ∗ × Q (that is, the transition
relation ofGR may not be total). In particular, this happens whenA = ⊥ (that is, for
every stateq ∈ Q the configuration(q, ε) of GR has no successors). Then, we take
empty conjunctions astrue, and take empty disjunctions asfalse.
In order to understand the functionapplyT , consider the casec = 2. WhenS reads
the configuration(q, A · x) of the input graph, fulfilling the atom2w requiresS
to send copies in statew to all the successors of(q, A · x). The automatonA then
sends to the nodex copies that check whether all the configuration(q′, y · x), with
ρR((q, A · x), (q′, y · x)), are accepted byS with initial statew.
Now, for a formulaθ ∈ B+(∆×S), the formulaapplyT (θ, q, A) ∈ B+(ext(V )×P )
is obtained fromθ by replacing an atom〈c, w〉 by the atomapplyR(c, w, q, A). We
can now defineη for all A ∈ V ∪ {⊥} as follows.
• η(〈w, q, ε〉, A) = applyT (δ(w,L(q, A)), q, A).
• η(〈w, q, y · B〉, A) = (B, 〈w, q, y〉).
Thus, in action states,A reads the direction of the current node and applies the rewrite
rules ofR in order to impose new requirements according toδ. In navigation states,
A needs to go downwardsy ·B, so it continues in directionB.

– p0 = 〈w0, q0, x0〉. Thus, in its initial stateA checks thatGR with initial configuration
(q0, x0) is accepted byS with initial statew0.

– α is obtained fromF by replacing each setFi by the setS × Fi × heads(T ).

We show thatA accepts〈V ∗, τ
V
〉 iff R |= S. Assume thatA accepts〈V ∗, τ

V
〉.

Then, there exists an accepting run〈T, r〉 of A on 〈V ∗, τ
V
〉. Extract from this run the

subtree of nodes labeled by action states. That is, considerthe following tree〈T ′, r′〉
defined by induction. We know thatr(ε) = (ε, (w0, q0, x0)). It follows that there ex-
ists a unique minimal (according to the inverse lexicographic order on the nodes of
T ) nodey ∈ T labeled by an action state. In our case,r(y) = (x0, (w0, q0, ε)). We
add ε to T ′ and label itr′(ε) = ((q0, x0), w0). Consider a nodez′ in T ′ labeled
r′(z′) = ((q, x), w). By the construction of〈T ′, r′〉 there existsz ∈ T such that
r(z) = (x, (w, q, ǫ)). Let {z1 · z, . . . , zk · z} be the set of minimal nodes inT such
thatzi · z is labeled by an action state,r(zi · z) = (xi, (wi, qi, ε)). We addk successors
a1z

′, . . . akz
′ to z′ in T ′ and setr′(aiz′) = ((qi, xi), wi). By the definition ofη, the

tree〈T ′, r′〉 is a valid run tree ofS onGR. Consider an infinite pathπ′ in 〈T ′, r′〉. The
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labels of nodes inπ′ identify a unique pathπ in 〈T, r〉. It follows that the minimal rank
appearing infinitely often alongπ′ is the minimal rank appearing infinitely often along
π. Hence,〈T ′, r′〉 is accepting andS acceptsGR.

Assume now thatGR |= S. Then, there exists an accepting run tree〈T ′, r′〉 of S on
GR. The tree〈T ′, r′〉 serves as the action state skeleton to an accepting run tree of A
on 〈V ∗, τ

V
〉. A nodez ∈ T ′ labeled by((q, x), w) corresponds to a copy ofA in state

(w, q, ε) reading nodex of 〈V ∗, τ
V
〉. It is not hard to extend this skeleton into a valid

and accepting run tree ofA on 〈V ∗, τ
V
〉.

Pushdown systems can be viewed as a special case of prefix-recognizable systems.
In the next subsection we describe how to extend the construction described above to
prefix-recognizable graphs, and we also analyze the complexity of the model-checking
algorithm that follows for the two types of systems.

3.2 Prefix-Recognizable Graphs

We now extend the construction described in Subsection 3.1 to prefix-recognizable sys-
tems. The idea is similar: two-way automata can navigate through the fullV -tree and
simulate transitions in a rewrite graph by a chain of transitions in the tree. While in
pushdown systems the application of rewrite rules involvedone move up the tree and
then a chain of moves down, here things are a bit more involved. In order to apply
a rewrite rule〈q, α, β, γ, q′〉, the automaton has to move upwards along a word inα,
check that the remaining word leading to the root is inβ, and move downwards along
a word inγ. As we explain below,A does so by simulating automata for the regular
expressions participating inT .

Theorem 7. Given a prefix-recognizable rewrite systemR = 〈Σ, V,Q, T, L, q0, x0〉
and a graph automatonS = 〈Σ,W, δ, w0, F 〉, we can construct a 2APTA over(V ∪
{⊥})-labeledV -trees such thatA accepts〈V ∗, τ

V
〉 iff GR satisfiesS. The automaton

A hasO(|W | · |Q| · ‖T ‖) states, and its index is the index ofS plus 1.

Proof: As in the case of pushdown systems,A uses the labels on〈V ∗, τ
V
〉 in order

to learn the location inV ∗ that each node corresponds to. As there,A applies to the
transition functionδ of S the rewrite rules ofR. Here, however, the application of the
rewrite rules on atoms of the form3w and2w is more involved, and we describe
it below. Assume thatA wants to check whetherSw acceptsG(q,x)

R , and it wants to
proceed with an atom3w′ in δ(w,L(q, x)). The automatonA needs to check whether

Sw
′

acceptsG(q′,y)
R for some configuration(q′, y) reachable from(q, x) by applying

a rewrite rule. That is, a configuration(q′, y) for which there is〈q, α, β, γ, q′〉 ∈ T
and partitionsx′ · z andy′ · z, of x andy, respectively, such thatx′ is accepted by
Uα, z is accepted byUβ , andy′ accepted byUγ . The wayA detects such a statey is
the following. From the nodex, the automatonA simulates the automatonUα upwards
(that is,A guesses a run ofUα on the word it reads as it proceeds on direction↑ fromx
towards the root of theV -tree). Suppose that on its way up to the root,A encounters a
state inFα as it reads the nodez ∈ V ∗. This means that the word read so far is inα, and
can serve as the prefixx′ above. If this is indeed the case, then it is left to check thatthe
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word z is accepted byUβ, and that there is a state that is obtained fromz by prefixing
it with a wordy′ ∈ γ that is accepted bySw

′

. To check the first condition,A sends a
copy in direction↑ that simulates a run ofUβ, hoping to reach a state inFβ as it reaches
the root (that is,A guesses a run ofUβ on the word it reads as it proceeds fromz up
to the root of〈V ∗, τ

V
〉). To check the second condition,A simulates the automatonUγ

downwards starting fromFγ . A nodey′ · z ∈ V ∗ thatA reads as it encountersq0γ can
serve as the statey we are after. The case for an atom2w′ is similar, only that here

A needs to check whetherSw
′

acceptsG(q′,y)
R for all configurations(q′, y) reachable

from (q, x) by applying a rewrite rule, and thus the choices made byA for guessing the
partitionx′ ·z of x and the prefixy′ of y are now treated dually. More formally, we have
the following.

We defineA = 〈V ∪ {⊥}, P, η, p0, α〉 as follows.

– P = P1∪P2 whereP1 = {∃, ∀}×W×Q×T×(Qα∪Qγ) andP2 = {∃, ∀}×T×Qβ.
States inP1 serve to simulate automata forα andγ regular expressions and states
in P2 serve to simulate automata forβ regular expressions. A state marked by∃
participates in the simulation of a3s atom ofS, and a state marked by∀ participates
in the simulation of a2s atom ofS. A state inP1 marked by the transitionti =
〈q, αi, βi, γi, q′〉 and a states ∈ Qαi

participates in the simulation of a run ofUαi
.

Whens ∈ Fαi
(recall that states inFαi

have no outgoing transitions)A spawns a
copy (in a state inP2) that checks that the suffix is inβi and continues to simulate
Uγi

. A state inP1 marked by the transitionti = 〈q, αi, βi, γi, q′〉 and a states ∈ Qγi

participates in the simulation of a run ofUγi
. Whens = qγi

o (recall that the initial
stateq0γi

has no incoming transitions) the state is an action state, and A consultsδ
andT in order to impose new restrictions on〈V ∗, τ

V
〉. 11

– In order to defineη : P × Σ → B+(ext(V ) × P ), we first define the function
applyT : ∆ ×W ×Q× T × (Qα ∪Qγ) → B+(ext(V ) × P ). Intuitively, applyT
transforms atoms participating inδ to a formula that describes the requirements on
GR when the rewrite rules inT are applied to words fromV ∗. For c ∈ ∆, w ∈ W ,
q ∈ Q, ti = 〈q′, αi, βi, γi, q〉 ∈ T , ands = q0γi

we define

applyT (c, w, q, ti, s) =





〈ε, (∃, w, q, ti, s)〉 if c = ε
∧

ti′=〈q,αi′ ,βi′ ,γi′ ,q
′〉∈T (ε, (∀, w, q′, ti′ , q0αi′

)) if c = 2
∨

ti′=〈q,αi′ ,βi′ ,γi′ ,q
′〉∈T (ε, (∃, w, q′, ti′ , q

0
γi′

)) if c = 3

In order to understand the functionapplyT , consider the casec = 2. WhenS reads
the configuration(q, x) of the input graph, fulfilling the atom2w requiresS to send
copies in statew to all the successors of(q, x). The automatonA then sends copies
that check whether all the configurations(q′, y′) with ρR((q, x), (q′, y′)) are accepted
by S with initial statew.
For a formulaθ ∈ B+(∆ ×W ), the formulaapplyT (θ, q, ti, s) ∈ B+(ext(V )× P )
is obtained fromθ by replacing an atom〈c, w〉 by the atomapplyT (c, w, q, ti, s). We

11 Note that a straightforward representation ofP results inO(|W | · |Q| · |T | ·‖T‖) states. Since,
however, the states of the automata for the regular expressions are disjoint, we can assume that
the rewrite rule inT that each automaton corresponds to is uniquely defined from it.
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can now defineη for all w ∈ W , q ∈ Q, ti = 〈q′, αi, βi, γi, q〉 ∈ T , s ∈ Qαi
∪Qγi

,
andA ∈ V ∪ {⊥} as follows.
• η((∃, w, q, ti, s), A) =











applyT (δ(w,L(q, A)), q, ti, s) if s = q0γi
∨

B∈V

∨

s∈ηγi
(s′,B)(B, (∃, w, q, ti, s

′)) if s ∈ Qγi
\ {q0γi

}
∨

s′∈ηαi
(s,A)(↑, (∃, w, q, ti, s

′)) if s ∈ Qαi
\ Fαi

(ε, (∃, ti, q0βi
)) ∧

(

∨

s′∈Fγi
(ε, (∃, w, q, ti, s′))

)

if s ∈ Fαi

• η((∀, w, q, ti, s), A) =











applyT (δ(w,L(q, A)), q, ti, s) if s = q0γi

if
∧

B∈V

∧

s∈ηγi
(s′,B)(B, (∀, w, q, ti, s

′)) if s ∈ Qγi
\ {q0γi

}

if
∧

s′∈ηαi
(s,A)(↑, (∀, w, q, ti, s

′)) if s ∈ Qαi
\ Fαi

(ε, (∀, ti, q0βi
)) ∨

(

∧

s′∈Fγi
(ε, (∀, w, q, ti, s′))

)

if t ∈ Fαi

Thus, whens ∈ Qα the 2APTA either chooses a successors′ of s and goes up the
tree or in cases is an accepting state ofUαi

, it spawns a copy that checks that the
suffix is inβi and moves to a final state ofUγi

.
Whens ∈ Qγ the 2APTA either chooses a directionB and chooses a predecessor
s′ of s or in case thats = q0γi

is the initial state ofUγi
, the automatonA uses the

transitionδ to impose new restrictions on〈V ∗, τ
V
〉.

We defineη for all ti = 〈q′, αi, βi, γi, q〉, s ∈ Qβi
, andA ∈ V ∪ {⊥} as follows.

η((∃, ti, s), A) =





∨

s′∈ηβi
(s,A)(↑, (∃, ti, s

′)) if A 6= ⊥

true if s ∈ Fβi
andA = ⊥

false if s /∈ Fβi
andA = ⊥

η((∀, ti, s), A) =





∧

s′∈ηβi
(s,A)(↑, (∀, ti, s

′)) if A 6= ⊥

false if s ∈ Fβi
andA = ⊥

true if s /∈ Fβi
andA = ⊥

If s ∈ Qβ , then in existential mode, the automatonA makes sure that the suffix is in
β and in universal mode it makes sure that the suffix is not inβ.

– p0 = 〈∃, w0, q0, t, x0〉. Thus, in its initial stateA starts a simulation (backward) of
the automaton that accepts the unique wordx0. It follows thatA checks thatGR with
initial configuration(q0, x0) is accepted byS with initial statew0.

– Let Fγ =
⋃

ti∈T
Fγi

. The acceptance conditionα is obtained fromF by replacing
each setFi by the set{∃, ∀} × Fi × Q × T × Fγ . We add toα a maximal odd set
and include all the states in{∃} ×W ×Q× T × (Qγ \ Fγ) in this set. We add toα
a maximal even set and include all the states in{∀} ×W × Q× T × (Qγ \ Fγ) in
this set12. The states in{∃, ∀}×W ×Q×T ×Qα andP2 are added to the maximal
set (notice that states marked by a state inQα appear in finite sequences and states in
P2 appear only in suffixes of finite paths in the run tree).

12 Note that if the maximal set inF is even then we only add toα a maximal odd set. Dually, if
the maximal set inF is odd then we add toα a maximal even set.
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Thus, in a path that visits infinitely many action states, theaction states define it as
accepting or not accepting. A path that visits finitely many action states is either finite
or ends in an infinite sequence ofQγ labeled states. If these states are existential, then
the path is rejecting. If these states are universal, then the path is accepting.

We show thatA accepts〈V ∗, τ
V
〉 iff R |= S. Assume thatA accepts〈V ∗, τ

V
〉.

Then, there exists an accepting run〈T, r〉 of A on 〈V ∗, τ
V
〉. Extract from this run the

subtree of nodes labeled by action states. Denote this tree by 〈T ′, r′〉. By the definition
of δ, the tree〈T ′, r′〉 is a valid run tree ofS onGR. Consider an infinite pathπ′ in
〈T ′, r′〉. The labels of nodes inπ′ identify a unique pathπ in 〈T, r〉. Asπ′ is infinite, it
follows thatπ visits infinitely many action states. As all navigation states are added to
the maximal ranks the minimal rank visited alongπ must be equal to the minimal rank
visited alongπ′. Hence,〈T ′, r′〉 is accepting andS acceptsGR.

Assume now thatGR |= S. Then, there exists an accepting run tree〈T ′, r′〉 of S on
GR. The tree〈T ′, r′〉 serves as the action state skeleton to an accepting run tree of A
on 〈V ∗, τ

V
〉. A nodez ∈ T ′ labeled by((q, x), w) corresponds to a copy ofA in state

(d, w, q, t, s) reading nodex of 〈V ∗, τ
V
〉 for somed ∈ {∃, ∀}, ti = 〈q′, αi, βi, γi, q〉 ∈

T ands = q0γi
. In order to extend this skeleton into a valid and accepting run tree of

A on 〈V ∗, τ
V
〉 we have to complete the runs of the automata for the differentregular

expressions appearing inT .

The constructions described in Theorems 6 and 7 reduce the model-checking prob-
lem to the membership problem of〈V ∗, τ

V
〉 in the language of a 2APT. By Theorem 3,

we then have the following.

Theorem 8. The model-checking problem for a pushdown or a prefix-recognizable
rewrite systemR = 〈Σ, V,Q,L, T, q0, x0〉 and a graph automatonS = 〈Σ, W , δ,
w0, F 〉, can be solved in time exponential innk, wheren = |W | · |Q| · ‖T ‖ · |V | andk
is the index ofS.

Together with Theorem 4, we can conclude with an EXPTIME bound also for the
model-checking problem ofµ-calculus formulas matching the lower bound in [Wal96].
Note that the fact the same complexity bound holds for both pushdown and prefix-
recognizable rewrite systems stems from the different definition of ‖T ‖ in the two cases.

4 Path Automata on Trees

We would like to enhance the approach developed in Section 3 to linear time prop-
erties. The solution toµ-calculus model checking is exponential in both the system
and the specification and it is EXPTIME-complete [Wal96]. Onthe other hand, model-
checking linear-time specifications is polynomial in the system [BEM97]. As we dis-
cuss below, both the emptiness and membership problems for 2APT are EXPTIME-
complete. While 2APT can reason about many computation paths simultaneously, in
linear-time model-checking we need to reason about a singlepath that does not satisfy
a specification. It follows, that the extra power of 2APT comes at a price we cannot pay.
In this section we introducepath automataand study them. In Section 5 we show that
path automata give us the necessary tool in order to reason about linear specifications.
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Path automata resembletree walking automata. These are automata that read finite
trees and expect the nodes of the tree to be labeled by the direction and by the set of
successors of the node. Tree walking automata are used in XMLqueries. We refer the
reader to [EHvB99,Nev02].

4.1 Definition

Path automata on treesare a hybrid of nondeterministic word automata and nondeter-
ministic tree automata: they run on trees but have linear runs. Here we describetwo-way
nondeterministic Büchi path automata.

A two-way nondeterministic B̈uchi path automaton(2NBP, for short) onΣ-labeled
Υ -trees is in fact a 2ABT whose transitions are restricted to disjunctions. Formally,
P = 〈Σ,P, δ, p0, F 〉, whereΣ, P , p0, andF are as in an NBW, andδ : P × Σ →
2(ext(Υ )×P ) is the transition function. A path automaton that is in statep and reads the
nodex ∈ T chooses a pair(d, p′) ∈ δ(p, τ(x)), and then follows directiond and moves
to statep′. It follows that arun of a 2NBPP on a labeled tree〈Υ ∗, τ〉 is a sequence of
pairsr = (x0, p0), (x1, p1), . . . where for alli ≥ 0, xi ∈ Υ ∗ is a node of the tree and
pi ∈ P is a state. The pair(x, p) describes a copy of the automaton that reads the node
x of Υ ∗ and is in the statep. Note that many pairs inr may correspond to the same
node ofΥ ∗; Thus,S may visit a node several times. The run has to satisfy the transition
function. Formally,(x0, p0) = (ε, q0) and for alli ≥ 0 there isd ∈ ext(Υ ) such that
(d, pi+1) ∈ δ(pi, τ(xi)) and

– If ∆ ∈ Υ , thenxi+1 = ∆ · xi.
– If ∆ = ε, thenxi+1 = xi.
– If ∆ =↑, thenxi = υ · z, for someυ ∈ Υ andz ∈ Υ ∗, andxi+1 = z.

Thus,ε-transitions leave the automaton on the same node of the input tree, and↑-
transitions take it up to the parent node. Note that the automaton cannot go up the
root of the input tree, as wheneverd =↑, we require thatxi 6= ε. A run r is accepting
if it visits Υ ∗ × F infinitely often. An automaton accepts a labeled tree if and only if
there exists a run that accepts it. We denote byL(P) the set of allΣ-labeled trees that
P accepts. The automatonP is nonemptyiff L(P) 6= ∅. We measure the size of a 2NBP
by two parameters, the number of states and the size,|δ| = Σp∈PΣa∈Σ |δ(s, a)|, of the
transition function.

Readers familiar with tree automata know that the run of a tree automaton starts in
a single copy of the automaton reading the root of the tree, and then the copy splits to
the successors of the root and so on, thus the run simultaneously follows many paths in
the input tree. In contrast, a path automaton has a single copy at all times. It starts from
the root and it always chooses a single direction to go to. In two-way path automata, the
direction may be “up”, so the automaton can read many paths ofthe tree, but it cannot
read them simultaneously.

The fact that a 2NBP has a single copy influences its expressive power and the
complexity of its nonemptiness and membership problems. Wenow turn to study these
issues.
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4.2 Expressiveness

One-way nondeterministic path automata can read a single path of the tree, so it is easy
to see that they accept exactly all languagesT of trees such that there is anω-regular
languageL of words andT contains exactly all trees that have a path labeled by a word
in L. For two-way path automata, the expressive power is less clear, as by going up and
down the tree, the automaton can traverse several paths. Still, a path automaton cannot
traverse all the nodes of the tree. To see that, we prove that a2NBP cannot recognize
even very simple properties that refer to all the branches ofthe tree (universalproperties
for short).

Theorem 9. There are no 2NBPP1 andP2 over the alphabet{0, 1} such thatL(P1) =
L1 andL(P2) = L2 where|Υ | > 1 and

– L1 = {〈Υ ∗, τ〉 : τ(x) = 0 for all x ∈ T }.
– L2 = {〈Υ ∗, τ〉 : for every pathπ ⊆ T , there isx ∈ π with τ(x) = 0}.

Proof: Suppose that there exists a 2NBPP1 that acceptsL1. Let T = 〈Υ ∗, τ〉 ∈ L1

be some tree accepted byP1. There exists an accepting runr = (x0, p0), (x1, p1), . . .
of P1 onT . It is either the case thatr visits some node inΥ ∗ infinitely often or not.

– Suppose that there exists a nodex ∈ Υ ∗ visited infinitely often byr. There must exist
i < j such thatxi = xj = x, pi = pj , and there existsi ≤ k < j such thatpk ∈
F . Consider the runr′ = (x0, p0), . . . , (xi−1, pi−1) ((xi, pi), . . . , (xj−1, pj−1))

ω.
Clearly, it is a valid and accepting run ofP1 on T . However,r′ visits only a finite
number of nodes inT . LetW = {xi|xi visited byr′}. It is quite clear that the same
runr′ is an accepting run ofP1 on the tree〈Υ, τ ′〉 such thatτ ′(x) = τ(x) for x ∈W
andτ ′(x) = 1 for x /∈W . Clearly,〈Υ ∗, τ ′〉 /∈ L1.

– Suppose that every nodex ∈ Υ ∗ is visited only a finite number of times. Let(xi, pi)
be the last visit ofr to the root. It must be the case thatxi+1 = υ for someυ ∈ Υ .
Let υ′ 6= υ be a different element inΥ . LetW = {xi′ ∈ Υ ∗ · υ′ | xi′ visited byr} be
the set of nodes in the subtree ofυ′ visited byr. Clearly,W is finite and we proceed
as above.

The proof for the case ofP2 andL2 is similar.

There are, however, universal properties that a 2NBP can recognize. Consider a
languageL ⊆ Σω of infinite words over the alphabetΣ. A finite wordx ∈ Σ∗ is abad
prefix for L iff for all y ∈ Σω, we havex · y 6∈ L. Thus, a bad prefix is a finite word
that cannot be extended to an infinite word inL. A languageL is asafetylanguage iff
everyw 6∈ L has a finite bad prefix. A languageL ⊆ Σω is clopenif both L and its
complement are safety languages, or, equivalently,L corresponds to a set that is both
closed and open in Cantor space. It is known that a clopen language is bounded: there
is an integerk such that after reading a prefix of lengthk of a wordw ∈ Σω, one can
determine whetherw is in L [KV01]. A 2NBP can then traverse all the paths of the
input tree up to levelk (givenL, its boundk can be calculated), hence the following
theorem.
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Theorem 10. LetL ⊆ Σω be a clopen language. There is a 2NBPP such thatL(P) =
{〈Υ ∗, τ〉 : for all pathsπ ⊆ Υ ∗, we haveτ(π) ∈ L}.

Proof: Let k be the bound ofL andΥ = {υ1, . . . , υm}. Consider,w = w0, . . . , wr ∈
Υ ∗. Let i be the maximal index such thatwi 6= υm. Let succ(w) be as follows

succ(w) = w0, . . . wi−1, w
′
i, wi+1, . . . , wr ,

where ifwi = υj thenw′
i = υj+1. That is, if we takew = (υ1)

k then by using thesucc
function we pass on all elements inΥ k according to the lexicographic order (induced by
υ1 < υ2 < . . . < υm). LetN = 〈Σ,N, δ, n0, F 〉 be an NBW acceptingL. According
to [KV01], N is cycle-free and has a unique accepting sink state. Formally,N has an
accepting statenacc such that for everyσ ∈ Σ we haveδ(nacc, σ) = {nacc} and for
every runr = n0, n1, . . . and everyi < j eitherni 6= nj or ni = nacc.

We construct a 2NBP that scans all the paths inΥ k according to the order induced
by usingsucc. The 2NBP scans a path and simulatesN on this path. Once our 2NBP
ensures that this path is accepted byN it proceeds to the next path. Consider the fol-
lowing 2NBPP = 〈Σ,Q, η, q0, {qacc}〉 where

– Q = ({u, d}×Υ k×[k]×N)∪{qacc}. A state consists of 4 components. The symbols
u andd are acronyms forup anddown. A state marked byd means that the 2NBP
is going down the tree while scanning a path. A state marked byu means that the
2NBP is going up towards the root where it starts scanning thenext path. The word
w ∈ Υ k is the current explored path. The numberi ∈ [k] denotes the location in the
pathw. The staten ∈ N denotes the current state of the automatonN .

– For every stateq ∈ Q and letterσ ∈ Σ, the transition functionη : Q × Σ →
2ext(Υ )×Q is defined as follows:

η((d, w, i, n), σ) =








{(wi+1, (d, w, i+1, n′)) | n′ ∈ δ(n, σ)} if i 6= k
∅ if i = k andn 6= nacc
{(ε, (u, succ(w), i, n))} if i = k, n = nacc, andw 6= (υm)k

{(ε, qacc)} if i = k, n = nacc, andw = (υm)k

η((u,w, i, n), σ) =

[

{(↑, (u,w, i− 1, n))} if i 6= 0
{(ε, (d, w, 0, n0))} if i = 0

η(qacc, σ) = {(ε, qacc)}

Intuitively, in d-states the automaton goes in the direction dictated byw and simulates
N on the labeling of the pathw. Once the pathw is explored, if theN component is
not innacc this means the run ofN onw failed and the run is terminated. If theN
component reachesnacc this means that the run ofN onw succeeded and the 2NBP
proceeds to au-state withsucc(w). If succ(w) does not exist (i.e.,w = (υm)k) the
2NBP accepts. Inu-states the 2NBP goes up towards the root; when it reaches the
root it initiates a run ofN on the wordw.

– q0 = (d, (υ1)
k, 0, n0). Thus, in the initial state,P starts to simulateN on the first

path(υ1)
k.
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Let L = {〈Υ ∗, τ〉 : for all pathsπ ⊆ Υ ∗, we haveτ(π) ∈ L}. Consider a treet
in L. We show thatt is accepted byP . Consider a pathw in t. Let rw = n0 · · ·nk
be the accepting run ofN on the word labeling the pathw in t. We use the sequence
(d, w, n0, 0) · · · (d, w, nk, k) as part of the run ofP on t. We add the parts(u,w, k −
1, n) · · · (u,w, 0, n) that connect these different sequences and finally add an infinite
sequence ofqacc.

In the other direction consider a treet accepted byP . For a pathw in t we extract
from the accepting run ofP the part that relates tow. By the definition of the transition
it follows that if we project this segment on the states ofN we get an accepting run
of N on the word labelingw in t. Asw is arbitrary it follows that every path in tree is
labeled by a word inL and thatt ∈ L.

Recently, it was shown that deterministic walking tree automata are less expressive
than nondeterministic walking tree automata [BC04] and that nondeterministic walking
tree automata do not accept all regular tree languages [BC05]. That is, there exist lan-
guages recognized by nondeterministic walking tree automata that cannot be recognized
by deterministic walking tree automata and there exist languages accept by determinis-
tic tree automata that cannot be recognized by nondeterministic walking tree automata.
Using standard techniques to generalize results about automata over finite objects to
automata over infinite objects we can show that 2DBP are less expressive than 2NBP.
Similarly, the algorithms described in the next subsectioncan be modified to handle the
respective problems for walking tree automata.

4.3 Decision Problems

Given a 2NBPS, theemptiness problemis to determine whetherS accepts some tree,
or equivalently whetherL(S) = ∅. Themembership problemof S and a regular tree
〈Υ ∗, τ〉 is to determine whetherS accepts〈Υ ∗, τ〉, or equivalently〈Υ ∗, τ〉 ∈ L(S). The
fact that 2NBP cannot spawn new copies makes them very similar to word automata.
Thus, the membership problem for 2NBP can be reduced to the emptiness problem of
εABW over a 1-letter alphabet (cf. [KVW00]). The reduction yields a polynomial time
algorithm for solving the membership problem. In contrast,the emptiness problem of
2NBP is EXPTIME-complete.

We show a reduction from the membership problem of 2NBP to theemptiness prob-
lem of εABW with a 1-letter alphabet. The reduction is a generalization of a construc-
tion that translates 2NBW toεABW [PV03]. The emptiness ofεABW with a 1-letter
alphabet is solvable in quadratic time and linear space [KVW00]. We show that in our
case the membership problem of a 2NBP is solved in cubic time and quadratic space in
the size of the original 2NBP. Formally, we have the following.

Theorem 11. Consider a 2NBPP = 〈Σ,P, δ, p0, F 〉. The membership problem of the
regular tree〈Υ ∗, τ〉 in the language ofS is solvable in timeO(|P |2 · |δ| ·‖τ‖) and space
O(|P |2 · ‖τ‖).

Proof: We construct anεABW on 1-letter alphabetA = 〈{a}, Q, η, q0, α〉 such that
L(A) 6= ∅ iff 〈Υ ∗, τ〉 ∈ L(P). TheεABW A hasO(|P |2 · ‖τ‖) states and the size of
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its transition function isO(|P |2 · |δ| · ‖τ‖). As 〈Υ ∗, τ〉 is a regular tree, there exists a
transducer that produces it. In order to constructA we combine this transducer with a
construction that converts 2-way automata to 1-way automata. In [PV03] we show that
given a 2NBW we can construct anǫABW that accepts the same language. The conver-
sion of 2-way movement to 1-way movement relies on the following basic paradigm.
We check whether the 2-way automaton accepts the wordaw from states by checking
that it can get from states to statet readingaw and that it acceptsaw from statet. In
order to check that the 2-way automaton can get from states to statet reading a suffix
aw, the 1-way automaton either guesses that the 2-way automaton gets froms to some
statep and fromp to t, or that there is a transition froms readinga and going forward
to states′, a transition from some statet′ reading the first letter ofw going backward to
t, and that the 2-way automaton can get froms′ to t′ readingw. We use a similar idea
here. Consider a regular tree that is the unwinding of a transducer from stated. The
2NBP accepts this tree from states if there exists a statet such that the 2NBP reaches
from s to t reading the tree and accepts the tree starting fromt. In order to get froms
to t reading the tree the 2NBP either reaches the root again in statep (i.e., reach froms
to p and fromp to t) or there is a transition froms reading the label ofd and going in
directionγ to states′, a transition from some statet′ reading the label of theγ successor
of d going backward tot, and that the 2-way automaton can get froms′ to t′ reading
the regular tree that is the unwinding of the transducer fromstated′.

Let Dτ = 〈Υ,Σ,Dτ , ρτ , d
τ
0 , Lτ 〉 be the transducer that generates the labels ofτ .

For a wordw ∈ Υ ∗ we denote byρτ (w) the unique state thatDτ gets to after reading
w. We construct theεABW A = 〈{a}, Q, η, q0, α〉 as follows.

– Q = (P ∪ (P × P )) × Dτ × {⊥,⊤}. States inP × Dτ × {⊥,⊤}, which hold a
single state fromP , are calledsingleton states. Similarly, we call states inP × P ×
Dτ × {⊥,⊤} pair states.

– q0 = (p0, d
τ
0 ,⊥).

– α = (F ×Dτ × {⊥}) ∪ (P ×Dτ × {⊤}).

In order to define the transition function we have the following definitions. Two func-
tionsfα : P ×P → {⊥,⊤}whereα ∈ {⊥,⊤}, and for every statep ∈ P and alphabet
letterσ ∈ Σ the setCσp is the set of states from whichp is reachable by a sequence of
ǫ-transitions reading letterσ and one final↑-transition readingσ. Formally,

f⊥(p, p′) = ⊥.

f⊤(p, p′) =

[

⊥ if p ∈ F or p′ ∈ F
⊤ otherwise.

Cσp =

{

p′
∣

∣

∣

∣

∃t0, t1, . . . , tn ∈ P+ such thatt0 = p′, tn = p,
(ǫ, ti) ∈ δ(ti−1, σ) for all 0 < i < n, and(↑, pn) ∈ δ(pn−1, σ)

}

.

Now η is defined for every state inQ as follows (recall thatA is a word automaton,
hence we use directions0 and1 in the definition ofη, asΣ = {a}, we omit the lettera
from the definition ofη).
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η(p, d, α) =
∨

p′∈P

∨

β∈{⊥,⊤}

(0, (p, p′, d, β)) ∧ (0, (p′, d, β)) ∨

∨

υ∈Υ

∨

(υ,p′)∈δ(p,Lτ (d))

(1, (p′, ρτ (d, υ),⊥)) ∨

∨

〈ǫ,p′〉∈δ(p,Lτ (d))

(0, (p′, d,⊥))

η(p1, p2, d, α) =
∨

〈ǫ,p′〉∈δ(p1,Lτ (d))

(0, (p′, p2, d, fα(p′, p2))) ∨

∨

p′∈P

∨

β1+β2=α

(0, (p1, p
′, d, fβ1(p1, p

′)) ∧ (0, (p′, p2, d, fβ2(p
′, p2))) ∨

∨

υ∈Υ

∨

〈υ,p′〉∈δ(p1,Lτ (d))

∨

p′′∈C
Lτ (d)
p2

(1, (p′, p′′, ρτ (d, υ), fα(p′, p′′)))

Finally, we replace every state of the form{(p, p, d, α) | eitherp ∈ P andα =
⊥ or p ∈ F andα = ⊤} by true.

Claim. L(A) 6= ∅ iff 〈Υ ∗, τ〉 ∈ L(P).

The proof is very similar to the proof in [PV03] and is described in detail in Ap-
pendix A.

The emptiness of anεABW can be determined in linear space [EL86]. For anεABW
A with 1-letter alphabet, we have the following.

Theorem 12. [VW86b] Given anεABW over 1-letter alphabetA = 〈{a}, Q, η, q0, α〉
we can check whetherL(A) is empty in timeO(|Q| · |η|) and spaceO(|Q|).

Vardi and Wolper give an algorithm that solves the emptinessproblem of an ABW
over 1-letter alphabet [VW86b]. We note that emptiness ofεABW over 1-letter alphabet
can be reduced to that of an ABW over 1-letter alphabet by replacing everyǫ-transition
by a transition that advances to the next letter. As the inputword is infinite, there is no
difference between advancing and not advancing.

The automatonA constructed above has a special structure. The transition of A
from states of the formP × P ×Dτ × {⊥,⊤} includes only states of the same form.
In addition, all these states are not accepting. This suggests that if in the emptiness
algorithm we handle these states first, the quadratic part ofthe algorithm can be applied
only to the states of the formP ×Dτ ×{⊥,⊤}. Using these ideas, we show in [PV03]
that the emptiness ofA can be decided in timeO(|η|) and spaceO(|Q|).

Theorem 13. The emptiness problem for 2NBP is EXPTIME-complete.

Proof: The upper bound follows immediately from the exponential time algorithm for
the emptiness for 2APT [Var98].

For the lower bound we use the EXPTIME-hard problem of whether a linear space
alternating Turing machine accepts the empty tape [CKS81].We reduce this problem
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to the emptiness problem of a 2NBP with a polynomial number ofstates. We start with
definitions of alternating linear space Turing machines. Analternating Turing machine
is M = 〈Γ, Su, Se, 7→, s0, Facc, Frej〉, where the four sets of statesSu, Se, Facc, and
Frej are disjoint, and contain the universal, the existential, the accepting, and the reject-
ing states, respectively. We denote their union (the set of all states) byS. Our model of
alternation prescribes that7→⊆ S×Γ ×S×Γ ×{L,R} has a binary branching degree.
When a universal or an existential state ofM branches into two states, we distinguish
between the left and the right branches. Accordingly, we use(s, a) 7→l (sl, bl, ∆l) and
(s, a) 7→r (sr, br, ∆r) to indicate that whenM is in states ∈ Su ∪ Se reading input
symbola, it branches to the left with(sl, bl, ∆l) and to the right with(sr, br, ∆r). (Note
that the directions left and right here have nothing to do with the movement direction
of the head; these are determined by∆l and∆r.)

Recall that we consider here alternating linear-space Turing machines. Letf : N→
N be the linear function such thatM usesf(n) cells in its working tape in order to
process an input of lengthn. We encode a configuration ofM by a string in{♯} ·
Γ i · · · (S×Γ ) ·Γ f(n)−i−1. That is, a configuration starts with the symbol♯, all its other
letters are inΓ , except for one letter inS × Γ . The meaning of such a configuration is
that thejth cell in the configuration, for1 ≤ j ≤ f(n), is labeledγj , the reading head
points at celli+1, andM is in states. For example, the initial configuration ofM is
♯ · (s0, b)b · · · b (with f(n)−1 occurrences ofb’s) whereb stands for an empty cell. A
configurationc′ is a successor of configurationc if c′ is a left or right successor ofc.
We can encode now a computation ofM by a tree whose branches describe sequences
of configurations ofM . The computation is legal if a configuration and its successors
satisfy the transition relation.

Note that thoughM has an existential (thus nondeterministic) mode, there is asin-
gle computation tree that describes all the possible choices ofM . Each run ofM cor-
responds to a pruning of the computation tree in which all theuniversal configurations
have both successors and all the existential configurationshave at least one successor.
The run is accepting if all the branches in the pruned tree reach an accepting configura-
tion.

We encode the full run tree ofM into the labeling of the full infinite binary tree. We
construct a 2NBP that reads an input tree and checks that it isindeed a correct encoding
of the run tree ofM . In case the input tree is a correct encoding, the 2NBP further
checks that there exists a subtree that represents an accepting computation ofM .

We now explain how the labeling of the full binary tree is usedto encode the run tree
of M . Let ♯ · σ1 · · ·σf(n) be a configuration and♯ · σl1 · · ·σ

l
fn

be its left successor. We
setσ0 andσl0 to ♯. Formally, letV = {♯}∪Γ ∪ (S×Γ ) and letnextl : V 3 → V where
nextl(σi−1, σi, σi+1) denotes our expectation forσli. We definenextl(σ, ♯, σ′) = ♯ and

nextl(σ, σ
′, σ′′) =

















σ′ if {σ, σ′, σ′′} ⊆ {♯} ∪ Γ
σ′ if σ′′ = (s, γ) and(s, γ)→l (s′, γ′, R)
(s′, σ′) if σ′′ = (s, γ) and(s, γ)→l (s′, γ′, L)
σ′ if σ = (s, γ) and(s, γ)→l (s′, γ′, L)
(s′, σ′) if σ = (s, γ) and(s, γ)→l (s′, γ′, R)
γ′ if σ′ = (s, γ) and(s, γ)→l (s′, γ′, α)
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The expectationnextr : V 3 → V for the letters in the right successor is defined
analogously.

The run tree ofM is encoded in the full binary tree as follows. Every configuration
is encoded by a string of lengthf(n)+1 in {♯}×Γ ∗× (S×Γ )×Γ ∗. The encoding of
a configuration♯ · σ1 · · ·σf(n) starts in a nodex that is labeled by♯. The0 successor of
x, namely0 · x, is labeled byσ1 and so on until0f(n) · x that is labeled byσf(n). The
configuration♯ ·σ1 · · ·σf(n) has its right successor♯ ·σr1 · · ·σ

r
f(n) and its left successor

♯ · σl1 · · ·σ
l
f(n). The encoding of♯ · σr1 · · ·σ

r
f(n) starts in1 · 0f(n) · x (that is labeled by

♯) and the encoding of♯ · σl1 · · ·σ
l
f(n) starts in0 · 0f(n) · x (that is labeled by♯). We

also demand that every node be labeled by its direction. Thisway we can infer from
the label of the node labeled by♯ whether its the first letter in the left successor or the
first letter in the right successor. For example, the root of the tree is labeled by〈⊥, ♯〉,
the node0 is labeled by〈0, (s0, b)〉 and for every1 < i ≤ f(n) the node0i is labeled
by 〈0, b〉 (hereb stands for the blank symbol). We do not care about the labels of other
nodes. Thus, the labeling of ‘most’ nodes in the tree does notinterest us.

The 2NBP reads an infinite binary tree. All trees whose labeling does not conform
to the above are rejected. A tree whose labeling is a correct encoding of the run tree of
M is accepted only if there exists an accepting pruning tree. Thus, the language of the
2NBP is not empty iff the Turing machineM accepts the empty tape.

In order to check that the input tree is a correct encoding of the run tree ofM , the
2NBP has to check that every configuration is followed by its successor configurations.
When checking locationi in configurationa, the NBW memorizes the three letters
around locationi (i− 1, i, i + 1), it goesf(n) steps forward to the next configuration
and checks that it finds there the correctnextl or nextr successor. Then the 2NBP
returns to locationi+1 in configurationa and updates its three letters memory to check
consistency of this next location.

We now explain the construction in more detail. The 2NBP has two main modes
of operation. Inforward mode, the 2NBP checks that the next (right or left) configu-
ration is indeed the correct successor. Then it moves to check the next configuration.
If it reaches an accepting configuration, this means that thecurrently scanned prun-
ing tree may still be accepting. Then it moves tobackwardmode and remembers that
it should check other universal branches. If it reaches a rejecting configuration, this
means that the currently scanned pruning tree is rejecting.The 2NBP has to move to
the next pruning tree. It moves tobackwardmode and remembers that it has to check
other existential branches. Inbackward universalmode, the 2NBP goes backward un-
til it gets to a universal configuration and the only configuration to be visited below it
is the left successor. Then the 2NBP goes back to forward modebut remembers that
the next configuration to visit is the right successor. If theroot is reached in backward
universal mode then there are no more branches to check, the pruning tree is accepting
and the 2NBP accepts. Inbackward existentialmode, the 2NBP goes backward until it
gets to an existential configuration and the only configuration to be visited below it is
the left successor. Then the 2NBP goes to forward mode but remembers that the next
configuration to visit is the right successor. If the root is reached in backward existential
mode then there are no more pruning trees to check and the 2NBPrejects.

The full formal construction is given in Appendix B.
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We note that the membership problem for 2-way alternating B¨uchi automata on trees is
EXPTIME-complete. Indeed, CTL model checking of pushdown systems, proven to be
EXPTIME-hard in [Wal00], can be reduced to the membership problem of a regular tree
in the language of a 2ABT. Given a pushdown systemR = 〈Σ, V,Q,L, T, q0, x0〉 and
a CTL formulaϕ, we can construct a graph automatonS accepting the set of graphs
that satisfyϕ [KVW00]. This graph automaton is linear inϕ and it uses the Büchi
acceptance condition. Using the construction in Section 3,CTL model checking then
reduces to the membership problem of〈V ∗, τ

V
〉 in the language of a 2ABT. EXPTIME-

hardness follows. Thus, path automata capture the computational difference between
linear and branching specifications.

5 Model-Checking Linear-Time Properties

In this section we solve the LTL model-checking problem by a reduction to the member-
ship problem of 2NBP. We start by demonstrating our technique on LTL model checking
of pushdown systems. Then we show how to extend it to prefix-recognizable systems.
For an LTL formulaϕ, we construct a 2NBP that navigates through the full infiniteV -
tree and simulates a computation of the rewrite system that does not satisfyϕ. Thus, our
2NBP accepts theV -tree iff the rewrite system does not satisfy the specification. Then,
we use the results in Section 4: we check whether the givenV -tree is in the language
of the 2NBP and conclude whether the system satisfies the property. For pushdown
systems we show that the tree〈V ∗, τ

V
〉 gives sufficient information in order to let the

2NBP simulate transitions. For prefix-recognizable systems the label is more complex
and reflects the membership of a nodex in the regular expressions that are used in the
transition rules and the regular labeling.

5.1 Pushdown Graphs

Recall that in order to apply a rewrite rule of a pushdown system from configuration
(q, x), it is sufficient to knowq and the first letter ofx. We construct a 2NBPP that
reads〈V ∗, τ

V
〉. The state space ofP contains a component that memorizes the current

state of the rewrite system. The location of the reading headin 〈V ∗, τ
V
〉 represents the

store of the current configuration. Thus, in order to know which rewrite rules can be
applied,P consults its current state and the label of the node it reads (note thatdir(x)
is the first letter ofx). Formally, we have the following.

Theorem 14. Given a pushdown systemR = 〈2AP , V,Q, L, T, q0, x0〉 and an LTL
formulaϕ, there is a 2NBPP on V -trees such thatP accepts〈V ∗, τ

V
〉 iff GR 6|= ϕ.

The automatonP has|Q| · ‖T ‖ · 2O(|ϕ|) states and the size of its transition function is
‖T ‖ · 2O(|ϕ|).

Proof: According to Theorem 5, there is an NBWS¬ϕ = 〈2AP ,W, η¬ϕ, w0, F 〉 such
thatL(S¬ϕ) = (2AP )ω \ L(ϕ). The 2NBPP tries to find a trace inGR that satisfies
¬ϕ. The 2NBPP runsS¬ϕ on a guessed(q0, x0)-computation inR. Thus,P accepts
〈V ∗, τ

V
〉 iff there exists an(q0, x0)-trace inGR accepted byS¬ϕ. Such a(q0, x0)-trace

does not satisfyϕ, and it exists iffR 6|= ϕ. We defineP = 〈{V ∪ {⊥}, P, δ, p0, α〉,
where
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– P = W ×Q× heads(T ), whereheads(T ) ⊆ V ∗ is the set of all prefixes of words
x ∈ V ∗ for which there are statesq, q′ ∈ Q andA ∈ V such that〈q, A, x, q′〉 ∈ T .
Intuitively, whenP visits a nodex ∈ V ∗ in state〈w, q, y〉, it checks thatR with
initial configuration(q, y · x) is accepted bySw¬ϕ. In particular, wheny = ε, then
R with initial configuration(q, x) needs to be accepted bySw¬ϕ. States of the form
〈w, q, ε〉 are calledaction states. From these statesS consultsη¬ϕ andT in order to
impose new requirements on〈V ∗, τ

V
〉. States of the form〈w, q, y〉, for y ∈ V +, are

callednavigation states. From these statesP only navigates downwardsy to reach
new action states.

– The transition functionδ is defined for every state in〈w, q, x〉 ∈ S ×Q× heads(T )
and letter inA ∈ V as follows.
• δ(〈w, q, ǫ〉, A) =

{(↑, 〈w′, q′, y〉) : w′ ∈ η¬ϕ(w,L(q, A)) and〈q, A, y, q′〉 ∈ T }.

• δ(〈w, q, y · B〉, A) = {(B, 〈w, q, y〉)}.
Thus, in action states,P reads the direction of the current node and applies the rewrite
rules ofR in order to impose new requirements according toη¬ϕ. In navigation states,
P needs to go downwardsy · B, so it continues in directionB.

– p0 = 〈w0, q0, x0〉. Thus, in its initial stateP checks thatR with initial configuration
(q0, x0) contains a trace that is accepted byS with initial statew0.

– α = {〈w, q, ǫ〉 : w ∈ F and q ∈ Q}. Note that only action states can be accepting
states ofP .

We show thatP accepts〈V ∗, τ
V
〉 iff R 6|= ϕ. Assume first thatP accepts〈V ∗, τ

V
〉.

Then, there exists an accepting run(p0, x0), (p1, x1), . . . ofP on〈V ∗, τ
V
〉. Extract from

this run the subsequence of action states(pi1 , xi1), (pi2 , xi2 ), . . .. As the run is accept-
ing and only action states are accepting states, we know thatthis subsequence is infinite.
Let pij = 〈wij , qij , ε〉. By the definition ofδ, the sequence(qi1 , xi1), (qi2 , xi2 ), . . .
corresponds to an infinite path in the graphGR. Also, by the definition ofα, the run
wi1 , wi2 , . . . is an accepting run ofS¬ϕ on the trace of this path. Hence,GR contains a
trace that is accepted byS¬ϕ, thusR 6|= ϕ.

Assume now thatR 6|= ϕ. Then, there exists a path(q0, x0), (q1, x1), . . . in GR
whose trace does not satisfyϕ. There exists an accepting runw0, w1, . . . of S¬ϕ on this
trace. The combination of the two sequences serves as the subsequence of action states
in an accepting run ofP . It is not hard to extend this subsequence to an accepting run
of P on 〈V ∗, τ

V
〉.

5.2 Prefix-Recognizable Graphs

We now turn to consider prefix-recognizable systems. Again aconfiguration of a prefix-
recognizable systemR = 〈Σ, V,Q,L, T, q0, x0〉 consists of a state inQ and a word in
V ∗. So, the store content is still a node in the treeV ∗. However, in order to apply a
rewrite rule it is not enough to know the direction of the node. Recall that in order
to represent the configuration(q, x) ∈ Q × V ∗, our 2NBP memorizes the stateq as
part of its state space and it reads the nodex ∈ V ∗. In order to apply the rewrite rule
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ti = 〈q, αi, βi, γi, q′〉, the 2NBP has to go up the tree along a wordy ∈ αi. Then, if
x = y ·z, it has to check thatz ∈ βi, and finally guess a wordy′ ∈ γi and go downwards
y′ to y′ · z. Finding a prefixy of x such thaty ∈ αi, and a new wordy′ ∈ γi is not hard:
the 2NBP can emulate the run of the automatonUαi

while going up the tree and the run
of the automatonUγi

backwards while going down the guessedy′. How can the 2NBP
know thatz ∈ βi? In Subsection 3.2 we allowed the 2APT to branch to two states. The
first, checking thatz ∈ βi and the second, guessingy′. With 2NBP this is impossible
and we provide a different solution. Instead of labeling each nodex ∈ V ∗ only by its
direction, we can label it also by the regular expressionsβ for whichx ∈ β. Thus, when
the 2NBP runsUαi

up the tree, it can tell, in every node it visits, whetherz is a member
of βi or not. If z ∈ βi, the 2NBP may guess that time has come to guess a word inγi
and runUγi

down the guessed word.
Thus, in the case of prefix-recognizable systems, the nodes of the tree whose mem-

bership is checked are labeled by both their directions and information about the reg-
ular expressionsβ. Let {β1, . . . , βn} be the set of regular expressionsβi such that
there is a rewrite rule〈q, αi, βi, γi, q′〉 ∈ T . LetDβi

= 〈V,Dβi
, ηβi

, q0βi
, Fβi
〉 be the

deterministic automaton for the reverse of the language ofβi. For a wordx ∈ V ∗,
we denote byηβi

(x) the unique state thatDβi
reaches after reading the wordxR. Let

Σ = V ×Π1≤i≤nDβi
. For a letterσ ∈ Σ, let σ[i], for i ∈ {0, . . . n}, denote thei-th

element inσ (that is,σ[0] ∈ V andσ[i] ∈ Dβi
for i > 0). Let 〈V ∗, τβ〉 denote the

Σ-labeledV -tree such thatτβ(ǫ) = 〈⊥, q0β1
, . . . , q0βn

〉, and for every nodeA · x ∈ V +,
we haveτβ(A · x) = 〈A, ηβ1(A · x), . . . , ηβn

(A · x)〉. Thus, every nodex is labeled by
dir(x) and the vector of states that each of the deterministic automata reach after read-
ing x. Note thatτβ(x)[i] ∈ Fβi

iff x is in the language ofβi. Note also that〈V ∗, τβ〉 is
a regular tree whose size is exponential in the sum of the lengths of the regular expres-
sionsβ1, . . . , βn.

Theorem 15. Given a prefix-recognizable systemR = 〈Σ, V,Q,L, T, q0, x0〉 and an
LTL formulaϕ, there is a 2NBPP such thatP accepts〈V ∗, τβ〉 iff R 6|= ϕ. The au-
tomatonP has |Q| · (|Qα| + |Qγ |) · |T | · 2O(|ϕ|) states and the size of its transition
function is‖T ‖ · 2O(|ϕ|).

Proof: As before we use the NBWS¬ϕ = 〈2AP ,W, η¬ϕ, w0, F 〉.
We defineP = 〈Σ,P, δ, p0α〉 as follows.

– Σ = V ×Πn
i=1Dβi

.
– P = {〈w, q, ti, s〉 |w ∈ W, q ∈ Q, ti = 〈q′, αi, βi, γi, q〉 ∈ T, ands ∈ Qαi

∪Qγi
}

Thus,P holds in its state a state ofS¬ϕ, a state inQ, the current rewrite rule being
applied, and the current state inQα or Qγ . A state〈w, q, 〈q′, αi, βi, γi, q〉, s〉 is an
action state ifs is the initial state ofUγi

, that iss = q0γi
. In action states,P chooses

a new rewrite ruleti′ = 〈q, αi′ , βi′ , γi′ , q
′〉. ThenP updates theS¬ϕ component

according to the current location in the tree and moves toq0αi′
, the initial state of

Uαi′
. Other states are navigation states. Ifs ∈ Qγi

is a state inUγi
(that is not initial),

thenP chooses a direction in the tree, a predecessor of the state inQγi
reading the

chosen direction, and moves in the chosen direction. Ifs ∈ Qαi
is a state ofUαi

then
P moves up the tree (towards the root) while updating the stateof Uαi

. If s ∈ Fαi
is

an accepting state ofUαi
andτ(x)[i] ∈ Fβi

marks the current nodex as a member of
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the language ofβi thenP moves to some accepting states ∈ Fγi
of Uγi

(recall that
initial states and accepting states have no incoming / outgoing edges respectively).

– The transition functionδ is defined for every state inP and letter inΣ = V ×
Πn
i=1Dβi

as follows.
• If s ∈ Qα then

δ(〈w, q, ti, s〉, σ) =

{

(↑, 〈w, q, ti, s′〉)

∣

∣

∣

∣

ti = 〈q′, αi, βi, γi, q〉
s′ ∈ ηαi

(s, σ[0])

}

⋃







(ǫ, 〈w, q, ti, s′〉)

∣

∣

∣

∣

∣

∣

ti = 〈q′, αi, βi, γi, q〉,
s ∈ Fαi

, s′ ∈ Fγi
,

andσ[i] ∈ Fβi







• If s ∈ Qγ , then

δ(〈w, q, ti, s〉, σ) =

{

(B, 〈w, q, ti, s′〉)

∣

∣

∣

∣

ti = 〈q′, αi, βi, γi, q〉
s ∈ ηγi

(s′, B) andB ∈ V

}

⋃















(ǫ, 〈w′, q′′, ti′ , s0〉)

∣

∣

∣

∣

∣

∣

∣

∣

ti = 〈q′, αi, βi, γi, q〉,
ti′ = 〈q, αi′ , βi′ , γi′ , q′′〉,
w′ ∈ η¬ϕ(w,L(q, σ[0])),
s = q0γi

ands0 = q0αi′















Thus, whens ∈ Qα the 2NBPP either chooses a successors′ of s and goes up the
tree or in cases is the final state ofUαi

andσ[i] ∈ Fβi
thenP chooses an accepting

states′ ∈ Fγi
of Uγi

.
Whens ∈ Qγ the 2NBPP either guesses a directionB and chooses a predecessors′

of s readingB or in cases = q0γi
is the initial state ofUγi

, the automatonP updates
the state ofS¬ϕ, chooses a new rewrite ruleti′ = 〈q, αi′ , βi′ , γi′ , q′′〉 and moves to
q0αi′

, the initial state ofUαi′
.

– p0 = 〈w0, q0, t, x0〉, wheret is an arbitrary rewrite rule.
Thus,P navigates down the tree to the locationx0. There, it chooses a new rewrite
rule and updates the state ofS¬ϕ and theQ component accordingly.

– α = {〈w, q, ti, s〉 | w ∈ F, q ∈ Q, ti = 〈q′, αi, βi, γi, q〉, ands = q0γi
}

Only action states may be accepting. As initial states have no incoming edges, in an
accepting run, every navigation stage is finite.

As before we can show that a trace that violatesϕ and the rewrite rules used to create
this trace can be used to produce a run ofP on 〈V ∗, τβ〉

Similarly, an accepting run ofP on 〈V ∗, τβ〉 is used to find a trace inGR that
violatesϕ.

We can modify the conversion of 2NBP toǫABW described in Section 4 for this
particular problem. Instead of keeping in the state of theǫABW a component of the
direction of the nodeA ∈ V ∪ {⊥} we keep the letter fromΣ (that is, the tuple
〈A, q1, . . . , qn〉 ∈ V ×Πn

i=1Dβi
). When we take a move forward in the guessed direc-

tion B ∈ V we update〈A, q1, . . . , qn〉 to 〈B, ηβ1(q1, B), . . . , ηβn
(qn, B)〉. This way,

the state space of the resultingǫABW does not contain(Πn
i=1Dβi

)2 but onlyΠn
i=1Dβi

.
Combining Theorems 14, 15, and 11, we get the following.
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Theorem 16. The model-checking problem for a rewrite systemR and an LTL formula
ϕ is solvable in

– time‖T ‖3 · 2O(|ϕ|) and space‖T ‖2 · 2O(|ϕ|), if R is a pushdown system.
– time‖T ‖3 · 2O(|ϕ|+|Qβ|) and space‖T ‖2 · 2O(|ϕ|+|Qβ|), if R is a prefix-recognizable

system. The problem is EXPTIME-hard in|Qβ | even for a fixed formula.

For pushdown systems (the first setting), our complexity coincides with the one in
[EHRS00]. In Appendix C, we prove the EXPTIME lower bound in the second set-
ting by a reduction from the membership problem of a linear space alternating Turing
machine. Thus, our upper bounds are tight.

6 Relating Regular Labeling with Prefix-Recognizability

In this section we consider systems with regular labeling. We show first how to extend
our approach to handle regular labeling. Both for branching-time and linear-time, the
way we adapt our algorithms to handle regular labeling is very similar to the way we
handle prefix-recognizability. In the branching-time framework the 2APT guesses a la-
bel and sends a copy of the automaton for the regular label to the root to check its guess.
In the linear-time framework we include in the labels of the regular tree also data regard-
ing the membership in the languages of the regular labeling.Based on these observa-
tions we proceed to show that the two questions are intereducible. We describe a reduc-
tion fromµ-calculus (resp., LTL) model checking with respect to a prefix-recognizable
system with simple labeling function toµ-calculus (resp., LTL) model checking with
respect to a pushdown system with regular labeling. We also give reductions in the other
direction. We note that we cannot just replace one system by another, but we also have
to adjust theµ-calculus (resp., LTL) formula.

6.1 Model-Checking Graphs with Regular Labeling

We start by showing how to extend the construction in Subsection 3.2 to include also
regular labeling. In order to apply a transition of the graphautomatonS, from configu-
ration(q, x) our 2APTA has to guess a labelσ ∈ Σ, apply the transition ofS reading
σ, and send an additional copy to the root that checks that the guess is correct and that
indeedx ∈ Rσ,q. The changes to the construction in Subsection 3.1 are similar.

Theorem 17. Given a prefix-recognizable rewrite systemR = 〈Σ, V,Q, T, L, q0, x0〉
whereL is a regular labeling function and a graph automatonS = 〈Σ,W, δ, w0, F 〉,
we can construct a 2APTA over (V ∪ {⊥})-labeledV -trees such thatA accepts
〈V ∗, τ

V
〉 iff GR satisfiesS. The automatonA hasO(|Q| · (‖T ‖ + ‖L‖) · |V |) states,

and its index is the index ofS plus 1.

Proof: We take the automaton constructed for the case of prefix-recognizable systems
with simple labelingA = 〈V ∪{⊥}, P, η, p0, α〉 and modify slightly its state setP and
its transitionη.
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– P = P1 ∪ P2 ∪ P3 whereP1 = {∃, ∀} × W × Q × T × (Qα ∪ Qγ) andP2 =
{∃, ∀} × T × Qβ are just like in the previous proof andP3 =

⋃

σ∈Σ

⋃

q∈QQσ,q
includes all the states of the automata for the regular expressions appearing inL.

– The definition ofapplyT does not change and so does the transition of all navigation
states. In the transition of action states, we include a disjunction that guesses the
correct labeling. For a state(d, w, q, ti, s) ∈ P1 such thatti = 〈q′, αi, βi, γi, q〉 and
s = q0γi

we have

η((d, w, q, ti, s), A) =
∨

σ∈Σ

(

q0σ,q ∧ applyT (δ(w, σ), ti, s)
)

.

For a states ∈ Qσ,q and letterA ∈ V ∪ {⊥} we have

η(s,A) =





∨

s′∈ρσ,q(s,A)(↑, s
′) if A 6= ⊥

true if A = ⊥ ands ∈ Fσ,q
false if A = ⊥ ands /∈ Fσ,q

Theorem 18. The model-checking problem for a pushdown or a prefix-recognizable
rewrite systemR = 〈Σ, V,Q,L, T, q0, x0〉 with a regular labelingL and a graph
automatonS = 〈Σ,W, δ, w0, F 〉, can be solved in time exponential innk, where
n = |W | · |Q| · ‖T ‖ · |V |+ ‖L‖ · |V | andk is the index ofS.

We show how to extend the construction in Subsection 5.2 to include also regular
labeling. We add to the label of every node in the treeV ∗ also the states of the deter-
ministic automata that recognize the reverse of the languages of the regular expressions
of the labels. The navigation through theV -tree proceeds as before, and whenever the
2NBP needs to know the label of the current configuration (that is, in action states,
when it has to update the state ofS¬ϕ), it consults the labels of the tree.

Formally, let{R1, . . . , Rn} denote the set of regular expressionsRi such that there
exist some stateq ∈ Q and propositionp ∈ AP with Ri = Rp,q. Let DRi

=
〈V,DRi

, ηRi
, q0Ri

, FRi
〉 be the deterministic automaton for the reverse of the language

of Ri. For a wordx ∈ V ∗, we denote byηRi
(x) the unique state thatDRi

reaches
after reading the wordxR. Let Σ = V × Π1≤i≤nDRi

. For a letterσ ∈ Σ let σ[i],
for i ∈ {0, . . . , n}, denote thei-th element ofσ. Let 〈V ∗, τ

L
〉 be theΣ-labeledV -

tree such thatτ
L
(ǫ) = 〈⊥, q0R1

, . . . , q0Rn
〉 and for every nodeA · x ∈ V + we have

τ
L
(A · x) = 〈A, ηR1(A · x), . . . , ηRn

(A · x)〉. The 2NBPP reads〈V ∗, τ
L
〉. Note that

if the state space ofP indicates that the current state of the rewrite system isq and
P reads the nodex, then for every atomic propositionp, we have thatp ∈ L(q, x) iff
τ

L
(x)[i] ∈ FRi

, wherei is such thatRi = Rp,q. In action states,P needs to update
the state ofS¬ϕ, which reads the label of the current configuration. Based onits current
state andτ

L
, the 2NBPP knows the letter with whichS¬ϕ proceeds.

If we want to handle a prefix-recognizable system with regular labeling we have to
label the nodes of the treeV ∗ by both the deterministic automata for regular expressions
βi and the deterministic automata for regular expressionsRp,q. Let 〈V ∗, τ

β,L
〉 be the

composition of〈V ∗, τβ〉 with 〈V ∗, τ
L
〉. Note that〈V ∗, τ

L
〉 and〈V ∗, τ

β,L
〉 are regular,

with ‖τ
L
‖ = 2O(‖L‖) and‖τ

β,L
‖ = 2O(|Qβ |+‖L‖).
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Theorem 19. Given a prefix-recognizable systemR = 〈Σ, V,Q,L, T, q0, x0〉 whereL
is a regular labeling and an LTL formulaϕ, there is a 2NBPS such thatS accepts
〈V ∗, τβ,L〉 iff R 6|= ϕ. The automatonS has|Q| · (|Qα| + |Qγ |) · ‖T ‖ · 2O(|ϕ|) states
and the size of its transition function is‖T ‖ · 2O(|ϕ|).

Note that Theorem 19 differs from Theorem 15 only in the labeled tree whose mem-
bership is checked. Combining Theorems 19 and 11, we get the following.

Theorem 20. The model-checking problem for a prefix-recognizable system R with
regular labelingL and an LTL formulaϕ is solvable in time‖T ‖3 · 2O(|ϕ|+|Qβ|+‖L‖)

and space‖T ‖2 · 2O(|ϕ|+|Qβ|+‖L‖).

For pushdown systems with regular labeling an alternative algorithm is given in Theo-
rem 1. This, together with the lower bound in [EKS01], implies EXPTIME-hardness in
terms of‖L‖. Thus, our upper bound is tight.

6.2 Prefix-Recognizable to Regular Labeling

We reduceµ-calculus (resp., LTL) model checking of prefix-recognizable systems toµ-
calculus (resp., LTL) model checking of pushdown systems with regular labeling. Given
a prefix-recognizable system we describe a pushdown system with regular labeling that
is used in both reductions. We then explain how to adjust theµ-calculus or LTL formula.

Theorem 21. Given a prefix-recognizable systemR = 〈2AP , V,Q, L, T, q0, x0〉, a
graph automatonS, and an LTL formulaϕ, there is a pushdown systemR′ = 〈2AP

′

,
V , Q′, L′, T ′, q′0, x0〉 with a regular labeling function, a graph automatonS′, and an
LTL formulaϕ′, such thatR |= S iff R′ |= S′ andR |= ϕ iff R′ |= ϕ′. Furthermore,
|Q′| = |Q| × |T | × (|Qα| + |Qγ |), ‖T ′‖ = O(‖T ‖), ‖L‖ = |Qβ |, |S′| = O(|S|),
the index ofS′ equals the index ofS plus one, and|ϕ′| = O(|ϕ|). The reduction is
computable in logarithmic space.

The idea is to add to the configurations ofR labels that would enable the pushdown
system to simulate transitions of the prefix-recognizable system. Recall that in order to
apply the rewrite rule〈q, α, β, γ, q′〉 from configuration(q, x), the prefix-recognizable
system has to find a partitiony ·z of x such that the prefixy is a word inα and the suffix
z is a word inβ. It then replacesy by a wordy′ ∈ γ. The pushdown system can remove
the prefixy letter by letter, guess whether the remaining suffixz is a word inβ, and
addy′ letter by letter. In order to check the validity of guesses, the system marks every
configuration where it guesses that the remaining suffix is a word inβ. It then consults
the regular labeling function in order to single out traces in which a wrong guess is
made. For that, we add a new proposition,not wrong, which holds in a configuration
iff it is not the case that pushdown system guesses that the suffix z is in the language of
some regular expressionr and the guess turns out to be incorrect. The pushdown system
also marks the configurations where it finishes handling somerewrite rule. For that, we
add a new proposition,ch-rule, which is true only when the system finishes handling
some rewrite rule and starts handling another.

The pushdown systemR′ has four modes of operation when it simulates a transi-
tion that follows a rewrite rule〈q, α, β, γ, q′〉. In deletemode,R′ deletes letters from
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the storex while emulating a run ofUαi
. Delete mode starts from the initial state of

Uαi
, from whichR′ proceeds until it reaches a final state ofUαi

. Once the final state of
Uαi

is reached,R′ transitions tochange-directionmode, where it does not change the
store and just moves to a final state ofUγi

, and transitions towrite mode. In write mode,
R′ guesses letters inV and emulates the run ofUγi

on them backward, while adding
them to the store. From the initial state ofUγi

the pushdown systemR′ transitions to
change-rulemode, where it chooses a new rewrite rule〈q′, αi′ , βi′ , γi′ , q′′〉 and transi-
tions to delete mode. Note that if delete mode starts in configuration(q, x) it cannot last
indefinitely. Indeed, the pushdown system can remove only finitely many letters from
the store. On the other hand, since the store is unbounded, write mode can last forever.
Hence, traces along whichch-rule occurs only finitely often should be singled out.

Singling out of traces is done by the automatonS′ and the formulaϕ′ which re-
strict attention to traces in whichnot wrong is always asserted andch-rule is asserted
infinitely often.

Formally,R′ has the following components.

– AP ′ = AP ∪ {not wrong, ch-rule}.
– Q′ = Q × T × ({ch-dir , ch-rule} ∪ Qα ∪ Qγ). A state〈q, t, s〉 ∈ Q′ maintains

the stateq ∈ Q and the rewrite rulet currently being applied. the third elements
indicates the mode ofR′. Change-direction and change-rule modes are indicated by
a marker. In delete and write modes,R′ also maintains the current state ofUα and
Uγ .

– For every propositionp ∈ AP , we havep ∈ L′(q, x) iff p ∈ L(q, x). We now
describe the regular expression for the propositionsch-rule andnot wrong. The
propositionch-rule holds in all the configuration in which the system is in change-
rule mode. Thus, for everyq ∈ Q and t ∈ T , we haveR〈q,t,ch-rule〉,ch-rule =
V ∗ andR〈q,t,ζ〉,ch-rule = ∅ for ζ 6= ch-rule. The propositionnot wrong holds in
configurations in which we are not in change-direction mode,or configuration in
which we are in change-direction mode and the store is inβ, thus changing direction
is possible in the configuration. Formally, for everyq ∈ Q andt = 〈q′, α, β, γ, q〉 ∈
T , we haveR〈q,t,ch-dir〉,not wrong = β andR〈q,t,ζ〉,not wrong = V ∗ for ζ 6= ch-dir .

– q′0 = 〈q0, t, ch-rule〉 for some arbitrary rewrite rulet.

The transition function ofR′ includes four types of transitions according to the
four operation modes. In change-direction mode, in configuration (〈q, t, ch-dir〉, x )
that applies the rewrite rulet = 〈q′, αi, βi, γi, q〉, the systemR′ does not changex,
and moves to a final states ∈ Fγi

of Uγi
. In change rule mode, in configuration

(〈q, t, ch-rule〉, x ), the systemR′ does not changex, it chooses a new rewrite rule
t′ = 〈q, αi′ , βi′ , γi′ , q′〉, changes theQ component toq′, and moves to the initial state
q0αi′

of Uαi′
. In delete mode, in configuration(〈q, t, s〉, x), for t = 〈q′, αi, βi, γi, q〉

ands ∈ Qαi
, the systemR′ proceeds by either removing one letter fromx and con-

tinuing the run ofUαi
, or if s ∈ Fαi

is an accepting state ofUαi
thenR′ leavesx

unchanged, and changess to ch-dir . In write mode, in configuration(〈q, t, s〉, x), for
t = 〈q′, αi, βi, γi, q〉 ands ∈ Qγi

, the systemR′ proceeds by either extendingx with
a guessed symbol fromV and continuing the run ofUγi

backward using the guessed
symbol, or if s = q0γi

, thenR′ leavesx unchanged and just replacess by ch-rule.
Formally,T ′ = T ′

ch-rule ∪ T
′
ch-dir ∪ T

′
α ∪ T

′
γ , where
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– T ′
ch-rule =
{

(〈q, t, ch-rule〉,A,A, 〈q ′, t ′, s〉)
∣

∣ t ′ = 〈q, αi , βi , γi , q
′〉, s = q0

αi
andA ∈ V

}

.

– T ′
ch-dir =

{(〈q, t, ch-dir〉,A,A, 〈q, t , s〉) | t = 〈q ′, αi , βi , γi , q〉, s ∈ Fγi
, andA ∈ V } .

Note that the same letterA is removed from the store and added again. Thus, the store
content of the configuration does not change.

– T ′
α =

{

(〈q, t, s〉, A, ǫ, 〈q, t, s′〉)

∣

∣

∣

∣

t = 〈q′, αi, βi, γi, q〉, s ∈ Qα,
s′ ∈ ραi

(s,A), andA ∈ V

}

∪
{

(〈q, t, s〉, A,A, 〈q, t, ch-dir〉)

∣

∣

∣

∣

t = 〈q′, αi, βi, γi, q〉, s ∈ Qα,
s ∈ Fαi

, andA ∈ V

}

.

– T ′
γ =

{

(〈q, t, s〉, A,AB, 〈q, t, s′〉)

∣

∣

∣

∣

t = 〈q′, αi, βi, γi, q〉, s ∈ Qγ ,
s ∈ ργi

(s′, B), andA,B ∈ V

}

∪
{

(〈q, t, s〉, A,A, 〈q, t, ch-rule〉)

∣

∣

∣

∣

t = 〈q′, αi, βi, γi, q〉, s ∈ Qγ ,
s = q0γi

andA ∈ V

}

.

As final states have no outgoing edges, after a state〈q, 〈q′, αi, βi, γi, q〉, s〉 for
s ∈ Fαi

we always visit the state〈q, t, ch-dir〉. Recall that initial states have no in-
coming edges. It follows that we always visit the state〈q, t, ch-rule〉 after visiting a
state〈q, 〈q′, αi, βi, γi, q〉, q0γi

〉.
The automatonS′ adjustsS to the fact that every transition inR corresponds to

multiple transitions inR′. Accordingly, whenS branches universally, infinite naviga-
tion stages and states not marked bynot wrong are allowed. Dually, whenS branches
existentially, infinite navigation stages and states not marked bynot wrong are not
allowed.

Formally, letS = 〈Σ,W, δ, w0, F 〉. We define,S′ = 〈Σ,W ′, δ′, w0, α〉 where

– W ′ = W ∪ ({∀, ∃} ×W ) Intuitively, whenS′ reads configuration(q, x) and transi-
tions to∃w it is searching for a successor of(q, x) that is accepted bySw. The state
∃w navigates to some configuration reachable from(q, x) of R′ marked bych-rule.
Dually, whenS′ reads configuration(q, x) and transitions to∀w it is searching for
all successors of(q, x) and tries to ensure that they are accepted bySw. The state∀w
navigates to all configurations reachable from(q, x) of R′ marked bych-rule.

– For every statew ∈W and letterσ ∈ Σ, the transition functionδ′ is obtained fromδ
by replacing every atom of the form2w by 2(∀w) and every atom of the form3w
by 3(∃w).
For every statew ∈ W and letterσ ∈ Σ, we have

δ′(∀w, σ) =





true if σ 6|= not wrong

(ε, w) if σ |= not wrong ∧ ch-rule

(2, ∀w) if σ |= not wrong ∧ ¬ch-rule
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δ′(∃w, σ) =





false if σ 6|= not wrong

(ε, w) if σ |= not wrong ∧ ch-rule

(3, ∃w) if σ |= not wrong ∧ ¬ch-rule

– The setα is obtained fromF by including all states in{∀}×W as the maximal even
set and all states in{∃} ×W as the maximal odd set.

Claim. GR |= S iff GR′ |= S′

Proof: Assume thatGR′ |= S′. Let 〈T ′, r′〉 be an accepting run ofS′ onGR′ . We
construct an accepting run〈T, r〉 of S onGR based on the subtree of nodes inT ′ labeled
by states inW (it follows that these nodes are labeled by configurations with state
ch-rule). Formally, we have the following. We haver′(ε) = ((q0, x0), w0). We add to
T the nodeε and label itr(ε) = ((q0, x0), w0). Given a nodez ∈ T labeled byr(z) =
((q, x), w), it follows that there exists a nodez′ ∈ T ′ labeled byr′(z′) = ((q, x), w).
Let {((qi, xi), wi)}i∈I be the labels of the minimal nodes inT ′ labeled by states in
W . We add|I| successors{aiz}i∈I to z in T and label themr(aiz) = ((qi, xi), wi).
From the definition ofR′ it follows that 〈T, r〉 is a valid run ofS onGR. As every
infinite path inT corresponds to an infinite path inT ′ all whose nodes are marked by
configurations marked bynot wrong and infinitely many configurations are marked by
ch-rule it follows that〈T, r〉 is an accepting run.

In the other direction, we extend an accepting run tree〈T, r〉 of S onGR into an
accepting run tree ofS′ onGR′ by adding transitions to{∀, ∃} ×W type states.

Corollary 1. Given a prefix-recognizable systemR and a graph automatonS with n
states and indexk, we can model checkS with respect toR in time exponential in
n · k · ‖T ‖.

Finally, we proceed to the case of an LTL formulaϕ. The formulaϕ′ is the impli-
cationϕ′

1 → ϕ′
2 of two formulas. The formulaϕ′

1 holds in computations ofR′ that
correspond to real computations ofR. Thus,ϕ′

1 = 2not wrong ∧ 23ch-rule. Then,
ϕ′

2 adjustsϕ to the fact that a single transition inR corresponds to multiple transitions
in R′. Formally,ϕ′

2 = f(ϕ), for the functionf defined below.

– f(p) = p for a propositionp ∈ AP .
– f(¬a) = ¬f(a), f(a ∨ b) = f(a) ∨ f(b), andf(a ∧ b) = f(a) ∧ f(b).
– f(aUb) = (ch-rule → f (a))U(ch-rule ∧ f (b)).
– f(©a) =©((¬ch-rule)U(ch-rule ∧ f (a)).

Claim. GR |= ϕ iff GR′ |= ϕ′

We first need some definitions and notations. We define a partial function g from
traces inGR′ to traces inGR. Given a traceπ′ in GR′ , if π′ 6|= ϕ′

1 then g(π′) is
undefined. Otherwise, denoteπ′ = (p′0, w0), (p

′
1, w1), . . . and

g(π′) =

[

(p, w0), g(π
′
≥1) if p′0 = 〈p, t, ch-rule〉

g(π′
≥1) if p′0 = 〈p, t, α〉 andα 6= ch-rule
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Thus,g picks fromπ′ only the configurations marked bych-rule, it then takes the state
fromQ that marks those configurations and the store. Furthermore given two tracesπ′

andg(π′) we define a matching between locations inπ′ in which the configuration is
marked bych-rule and the locations ing(π′). Given a locationi in g(π′) we denote by
ch(i) the location inπ′ of thei-th occurrence ofch-rule alongπ′.

Lemma 1.1. For every traceπ′ ofGR′ , g(π′) is either not defined or a valid trace of
GR.

2. The functiong is a bijection betweendomain(g) and the traces ofGR.
3. For every traceπ′ ofGR′ such thatg(π′) is defined, we have(π′, ch(i)) |= f(ϕ) iff

(g(π′), i) |= ϕ

Proof: 1. Supposeg(π′) is defined, we have to show that it is a trace ofGR. The
first pair in π′ is (〈q0, t, ch-rule〉, x0 ). Henceg(π′) starts from(q0, x0). Assume
by induction that the prefix ofg(π′) up to locationi is the prefix of some com-
putation inGR. We show that also the prefix up to locationi+1 is a prefix of a
computation. Let(〈q, t, ch-rule〉, x ) be thei-th ch-rule appearing inπ′, then the
i-th location ing(π′) is (q, x). The computation ofR′ chooses some rewrite rule
ti = 〈q, αi, βi, γi, q′〉 ∈ T and moves to state〈q′, ti, s〉 wheres = q0αi

. It must be
the case that a state〈q′, ti, ch-dir〉 appears in the computation ofR′ after location
ch(i). Otherwise, the computation is finite and does not interest us. The systemR′

can move to a state marked bych-dir only from s ∈ Fαi
, an accepting state ofUαi

.
Hence, we conclude thatx = y · z wherey ∈ αi. As not wrong is asserted every-
where alongπ′ we know thatz ∈ βi. NowR′ adds a wordy′ in γi to z and reaches
state(〈q′, t′, ch-rule〉, y ′ · z ). Thus, the transitiont is possible also inR and can lead
from (q, y · z) to (q′, y′ · z).

2. It is quite clear thatg is an injection. As above, given a traceπ inGR we can construct
the traceπ′ in GR′ such thatg(π′) = π.

3. We prove that(π, i) |= ϕ iff (π′, ch(i)) |= ϕ by induction on the structure ofϕ.
– For a boolean combination of formulas the proof is immediate.
– For a propositionp ∈ AP , it follows from the proof above that if state(q, x)

appears in locationi in g(π′) then state(〈q, t, ch-rule〉, x ) appears in location
ch(i) in π′. By definitionp ∈ L(q, x) iff p ∈ L′(〈q, t, ch-rule〉, x ).

– For a formulaϕ = ψ1Uψ2. Suppose(g(π′), i) |= ϕ. Then there exists somej ≥ i
such that(g(π′), j) |= ψ2 and for all i ≤ k < j we have(g(π′), k) |= ψ1.
By the induction assumption we have that(π′, ch(j)) |= f(ψ2) (and clearly,
(π′, ch(j)) |= ch-rule), and for all i ≤ j < k we have(π′, ch(k)) |= ψ1.
Furthermore, as every location marked bych-rule is associated by the function
ch to some location ing(π′) all other locations are marked by¬ch-rule. Hence,
(π′, ch(i)) |= (ch-rule → f (ψ1 ))U(f (ψ2 ) ∧ ch-rule).
The other direction is similar.

– For a formulaϕ =©ψ the argument resembles the one above forU .

We note that for every traceπ′ andg(π′) we have thatch(0) = 0. Claim 6.2 follows
immediately.

If we use this construction in conjunction with Theorem 1, weget an algorithm
whose complexity coincides with the one in Theorem 16.
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Corollary 2. Given a prefix-recognizable systemR and an LTL formulaϕ we can
model checkϕwith respect toR in timeO(‖T ‖3)·2O(|Qβ |)·2O(|ϕ|) and spaceO(‖T ‖2)·
2O(|Qβ |) · 2O(|ϕ|).

Note that for LTL, we change the formula itself while forµ-calculus we change
the graph automaton resulting from the formula. Consider the following function from
µ-calculus formulas toµ-calculus formulas.

– Forp ∈ AP we havef(p) = ch-rule ∧ p.
– f(¬a) = ¬f(a), f(a ∨ b) = f(a) ∨ f(b), andf(a ∧ b) = f(a) ∧ f(b).
– f(2a) = 2νX(f(a) ∧ ch-rule ∨ ¬not wrong ∨ ¬ch-rule ∧ 2X ).
– f(3a) = 3µX(f(a) ∧ ch-rule ∧ not wrong ∨ ¬ch-rule ∧ not wrong ∧3X ).
– f(µXa(X)) = µX(ch-rule ∧ f (a(X ))).
– f(νXa(X)) = νX(ch-rule ∧ f (a(X ))).

We claim thatR |= ψ iff R′ |= f(ψ). However, the alternation depth off(ψ) my be
much larger than that ofψ. For example,ϕ = µX(p∧2(¬p∧2(X ∧ µY (q ∨2Y ))))
is alternation free, whilef(ϕ) is of alternation depth 3. This kind of transformation is
more appropriate with the equational form ofµ-calculus where we can declare all the
newly added fixpoints as minimal and incur only an increase of1 in the alternation
depth.

We note that since we end up with a pushdown system with regular labeling, it
is easy to extend the reduction to start with a prefix-recognizable system with regular
labeling. It is left to show the reduction in the other direction.

We can also reduce the problem ofµ-calculus (resp., LTL) model checking of push-
down graphs with regular labeling, to the problem ofµ-calculus (resp., LTL) model
checking of prefix-recognizable graphs. This is summarizedin the following two theo-
rems.

Theorem 22. Given a pushdown systemR = 〈Σ, V,Q, T, L, q0, x0〉 with a regular
labeling function and a graph automatonS, there is a prefix-recognizable systemR′ =
〈Σ, V,Q′, T ′, L′, q′0, x0〉with simple labeling and a graph automatonS′ such thatR |=
S iff R′ |= S′. Furthermore,|Q′| = |Q|+|Σ|, |Q′

α|+|Q
′
γ | = O(‖T ‖), and|Q′

β | = ‖L‖.
The reduction is computable in logarithmic space.

Theorem 23. Given a pushdown systemR = 〈2AP , V,Q, T, L, q0, x0〉 with a regular
labeling function and an LTL formulaϕ, there is a prefix-recognizable systemR′ =
〈2AP

′

, V,Q′, T ′, L′, q′0, x0〉 with simple labeling and an LTL formulaϕ′ such thatR |=
ϕ iff R′ |= ϕ′. Furthermore,|Q′| = O(|Q| · |AP |), |Q′

α| + |Q
′
γ | = O(‖T ‖), and

|Q′
β | = 2‖L‖ yet the automata forQ′

β are deterministic. The reduction is computable
in polynomial space.

For the full constructions and proofs we refer the reader to [Pit04].

7 Realizability and Synthesis

In this section we show that the automata-theoretic approach can be used also to solve
the realizability and synthesis problems for branching time and linear time specifica-
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tions of pushdown and prefix-recognizable systems. We startwith a definition of the re-
alizability and synthesis problems and then proceed to givealgorithms that solve these
problems forµ-calculus and LTL.

Given a rewrite systemR = 〈Σ, V,Q,L, T, q0, x0〉 and a partition{T1, . . . , Tm}
of T , a strategyof R is a functionf : Q × V ∗ → [m]. The functionf restricts the
graphGR so that from a configuration(q, x) ∈ Q × V ∗, only f(q, x) transitions are
taken. Formally,R andf together define the graphGR,f = 〈Σ,Q×V ∗, ρ, (q0, x0), L〉,
whereρ((q, x), (q′, y)) iff f(q, x)=i and there existst ∈ Ti such thatρt((q, x), (q′, y)).
GivenR and a specificationψ (either a graph automaton or an LTL formula), we say
that a strategyf of R is winningfor ψ iff GR,f satisfiesψ. GivenR andψ the problem
of realizability is to determine whether there is a winning strategy ofR for ψ. The
problem ofsynthesisis then to construct such a strategy.13 The setting described here
corresponds to the case where the system needs to satisfy a specification with respect
to environments modeled by a rewrite system. Then, at each state, the system chooses
the subset of transitions to proceed with and the environment provides the rules that
determine the successors of the state.

Similar to Theorems 7 and 15, we construct automata that solve the realizability
problem and provide winning strategies. The idea is simple:a strategyf : Q × V ∗ →
[m] can be viewed as aV × [m]-labeledV -tree. Thus, the realizability problem can be
viewed as the problem of determining whether we can augment the labels of the tree
〈V ∗, τ

V
〉 by elements in[m], and accept the augmented tree in a run ofA in which

wheneverA reads an entryi ∈ [m], it applies to the transition function of the specifica-
tion graph automaton only rewrite rules inTi.

We give the solution to the realizability and synthesis problems for branching-time
specifications. Given a rewrite systemR and a graph automatonS, we show how to
construct a 2APTA such that the language ofA is not empty iffS is realizable overR.

Theorem 24. Given a rewrite systemR = 〈Σ, V,Q,L, T, q0, x0〉, a partition {T1,
. . ., Tm} of T , and a graph automatonS = 〈Σ,W, δ, w0, F 〉, we can construct a
2APTA over((V ∪ {⊥})× [m])-labeledV -trees such thatL(A) contains exactly all
theV -exhaustive trees whose projection on[m] is a winning strategy ofR for S. The
automatonA hasO(|W | · |Q| · ‖T ‖ · |V |) states, and its index is the index ofS (plus 1
for a prefix-recognizable system).

13 Note that we define here only memoryless strategies. The strategy depends solely on the cur-
rent configuration and not on the history of the computations. In general, in order to realize
some specifications, strategies that depend on the history of the computation may be required.
In order to solve realizability and synthesis for specifications that require memory we have
to use a more complex algorithm. In the case of branching timespecifications, we have to
combine the rewrite system with the graph automaton for the specification and analyze the re-
sulting game. In the case of linear time specifications, we have to combine the rewrite system
with a deterministic parity automaton for the specificationand analyze the resulting game. In
both cases the analysis of the game can be done using 2-way tree automata. In the linear-time
framework, the deterministic automaton may be doubly exponential larger than the LTL for-
mula; and the total complexity of this algorithm is triple exponential. For further details and a
matching lower bound we refer the reader to [LMS04].
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Proof: Unlike Theorem 7 here we use the emptiness problem of 2APT instead of the
membership problem. It follows that we have to construct a 2APT that ensures that
its input tree isV -exhaustive and that the strategy encoded in the tree is winning. The
modification to the construction in the proof of Theorem 7 aresimple. LetA′ denote the
result of the construction in Theorem 6 or Theorem 7 with the following modification
to the functionapplyT . From action states we allow to proceed only with transitions
from Ti, wherei is the[m] element of the letter we read. For example, in the case of a
pushdown system, we would have forc ∈ ∆, w ∈ W , q ∈ Q, A ∈ V andi ∈ [m] (the
new parameter toapplyT , which is read from the input tree),

applyT (c, w, q, A, i) =





〈ε, (w, q, ε)〉 if c = ε
∧

〈q,A,y,q′〉∈Ti
〈↑, (w, q′, y)〉 if c = 2

∨

〈q,A,y,q′〉∈Ti
〈↑, (w, q′, y)〉 if c = 3

We now construct the automatonA′′ = 〈(V ∪{⊥}× [m]), (V ∪{⊥}), ρ, bot, {V }〉
of index1 (i.e., every valid run is an accepting run) such that for everyA,B ∈ V ∪{⊥}
andi ∈ [m] we have

ρ(A, (B, i) =

[
∧

C∈V (C,C) if A = B
false if A 6= B

It follows thatA′ accepts onlyV -exhaustive trees. Finally, we takeA = A′ ∧ A′′ the
conjunction of the two automata.

Letn = |W |·|Q|·‖T ‖·|V |, letk be the index ofS, and letΓ = (V ∪{⊥})×[m]. By
Theorem 2, we can transformA to a nondeterministic one-way parity tree automaton
N with 2O(nk) states and indexO(nk).14 By [Rab69,Eme85], ifN is nonempty, there
exists aΓ -labeledV -tree〈V ∗, f〉 such that for allγ ∈ Γ , the setXγ of nodesx ∈ V ∗

for which f(x) = γ is a regular set. Moreover, the nonemptiness algorithm ofN ,
which runs in time exponential innk, can be easily extended to construct, within the
same complexity, a deterministic word automatonUA overV such that each state ofUA
is labeled by a letterγ ∈ Γ , and for allx ∈ V ∗, we havef(x) = γ iff the state ofUA
that is reached by following the wordx is labeled byγ. The automatonUA is then the
answer to the synthesis problem. Note that since the transitions inGR,f take us from
a statex ∈ V ∗ to a statey ∈ V ∗ such thatx is not necessarily the parent ofy in the
V -tree, an application of the strategyf has to repeatedly run the automatonUA from its
initial state resulting in a strategy whose every move is computed in time proportional to
the length of the configuration. We can construct a strategy that computes the next step
in time proportional to the difference betweenx andy. This strategy uses a pushdown
store. It stores the run ofUA onx on the pushdown store. In order compute the strategy
in nodey, we retain on the pushdown store only the part of the run ofUA that relates to
the common suffix ofx andy. We then continue the run ofUA on the prefix ofy while
storing it on the pushdown store.

14 Note that the automatonA′′ is in fact a 1NPT of index 1. We can improve the efficiency of
the algorithm by first convertingA′ into a 1NPT and only then combining the result withA′′.
This would result in|V | being removed from the figure describing the index ofN .
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The construction described in Theorems 6 and 7 implies that the realizability and
synthesis problem is in EXPTIME. Thus, it is not harder than in the satisfiability prob-
lem for theµ-calculus, and it matches the known lower bound [FL79]. Formally, we
have the following.

Theorem 25. The realizability and synthesis problems for a pushdown or aprefix-
recognizable rewrite systemR = 〈Σ, V,Q,L, T, q0, x0〉 and a graph automatonS =
〈Σ,W, δ, w0, F 〉, can be solved in time exponential innk, wheren = |W |·|Q|·‖T ‖·|V |,
andk is the index ofS.

By Theorem 4, if the specification is given by aµ-calculus formulaψ, the bound is
the same, withn = |ψ| · |Q| · ‖T ‖ · |V |, andk being the alternation depth ofψ.

In order to use the above algorithm for realizability of linear-time specifications we
cannot use the ‘usual’ translations of LTL toµ-calculus [Dam94,dAHM01]. The prob-
lem is with the fact that these translations are intended to be used inµ-calculus model
checking. The translation from LTL toµ-calculus used for model checking [Dam94]
cannot be used in the context of realizability [dAHM01]. We have to use a doubly ex-
ponential translation intended for realizability [dAHM01], this, however, results in a
triple exponential algorithm which is, again, less than optimal.

Alur et al. show that LTL realizability and synthesis can be exponentially reduced
to µ-calculus realizability [ATM03]. Given an LTL formulaϕ, they construct a graph
automatonSϕ such thatSϕ is realizable overR iff ϕ is realizable overR. The con-
struction of the graph automaton proceeds as follows. According to Theorem 5, for
every LTL formulaψ we can construct an NBWNψ such thatL(Nψ) = L(ψ). We
construct an NBWN¬ϕ = 〈Σ,W, η, w0, F 〉 from ¬ϕ. We then construct the graph
automatonSϕ = 〈Σ,W, ρ, w0, {F,W}〉 whereρ(w, σ) =

∧

w′∈η(w,σ) 2w′ and the
parity condition{F,W} is equivalent to the co-Büchi conditionF . It follows thatSϕ
is a universal automaton and has a unique run over every trace. Alur et al. show that
the fact thatSϕ has a unique run over every trace makes it adequate for solving the re-
alizability of ϕ [ATM03]. The resulting algorithm is exponential in the rewrite system
and doubly exponential in the LTL formula. As synthesis of LTL formulas with respect
to finite-state environments is already 2EXPTIME-hard [PR89], this algorithm is op-
timal. Note that realizability with respect to LTL specifications is exponential in the
system already for pushdown systems and exponential in all components of the system
for prefix-recognizable systems.

8 Discussion

The automata-theoretic approach has long been thought to beinapplicable for effective
reasoning about infinite-state systems. We showed that infinite-state systems for which
decidability is known can be described by finite-state automata, and therefore, the states
and transitions of such systems can be viewed as nodes in an infinite tree and transitions
between states can be expressed by finite-state automata. Asa result, automata-theoretic
techniques can be used to reason about such systems. In particular, we showed that var-
ious problems related to the analysis of such systems can be reduced to the membership
or emptiness problems for alternating two-way tree automata. Our framework achieves
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the same complexity bounds of known model-checking algorithms and gives the first
solution to model-checking LTL with respect to prefix-recognizable systems. In [PV04]
we show how to extend it also to global model checking. In [Cac03,PV04] the scope of
automata-theoretic reasoning is extended beyond prefix-recognizable systems.

We have shown that the problems of model checking with respect to pushdown
systems with regular labeling and model checking with respect to prefix-recognizable
systems are intimately related. We give reductions betweenmodel checking of push-
down systems with regular labeling and model checking of prefix-recognizable systems
with simple labeling.

The automata-theoretic approach offers several extensions to the model checking
setting. The systems we want to reason about are often augmented with fairness con-
straints. Like state properties, we can define aregular fairness constraintby a regular
expressionα, where a computation of the labeled transition graph is fairiff it contains
infinitely many states inα (this corresponds to weak fairness; other types of fairness
can be defined similarly). It is easy to extend our model-checking algorithm to han-
dle fairness (that is, let the path quantification in the specification range only on fair
paths15). In the branching-time framework, the automatonA can guess whether the
state currently visited is inα, and then simulate the word automatonUα upwards, hop-
ing to visit an accepting state when the root is reached. WhenA checks an existential
property, it has to make sure that the property is satisfied along a fair path, and it is
therefore required to visit infinitely many states inα. WhenA checks a universal prop-
erty, it may guess that a path it follows is not fair, in which caseA eventually always
send copies that simulate the automaton for¬α. In the linear-time framework, we add
the automata for the fairness constraints to the tree whose membership is checked. The
guessed path violating the property must visit infinitely many fair states. The complex-
ity of the model-checking algorithm stays the same.

Another extension is the treatment ofµ-calculus specifications withbackwards
modalities. While forward modalities express weakest precondition, backward modal-
ities express strongest postcondition, and they are very useful for reasoning about the
past [LPZ85]. In order to adjust graph automata to backward reasoning, we add to∆ the
“directions” 3

− and2
−. This enables the graph automata to move to predecessors of

the current state. More formally, if a graph automaton readsa statex of the input graph,
then fulfilling an atom3

−t requiresS to send a copy in statet to some predecessor
of x, and dually for2−t. Theorem 4 can then be extended toµ-calculus formulas and
graph automata with both forward and backward modalities [Var98]. Extending our so-
lution to graph automata with backward modalities is simple. Consider a configuration
(q, x) ∈ Q×V ∗ in a prefix-recognizable graph. The predecessors of(q, x) are configu-
rations(q′y) for which there is a rule〈q′, αi, βi, γi, q〉 ∈ T and partitionsx′ ·z andy′ ·z,
of x andy, respectively, such thatx′ is accepted byUγi

, z is accepted byUβi
, andy′ is

accepted byUαi
. Hence, we can define a mappingT− such that〈q, γ, β, α, q′〉 ∈ T−

iff 〈q, α, β, γ, q〉 ∈ T , and handle atoms3−t and2
−t exactly as we handle3t and2t,

15 The exact semantics offair graph automataas well asfair µ-calculusis not straightforward, as
they enable cycles in which we switch between existential and universal modalities. To make
our point here, it is simpler to assume in the branching-timeframework, say, graph automata
that correspond to CTL⋆ formulas.
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only that for them we apply the rewrite rules inT− rather than these inT . The com-
plexity of the model-checking algorithm stays the same. Note that the simple solution
relies on the fact that the structure of the rewrite rules in aprefix-recognizable rewrite
system is symmetric (that is, switchingα andγ results in a well-structured rule), which
is not the case for pushdown systems16.

Recently, Alur et al. suggested the logic CARET, that can specify non-regular prop-
erties [AEM04]. Our algorithm generalizes to CARET specifications as well. Alur et
al. show how to combine the specification with a pushdown system in a way that en-
ables the application of our techniques. The logic CARET is tailored for use in con-
junction with pushdown systems. It is not clear how to modifyCARET in order to
apply to prefix-recognizable systems. Other researchers have used the versatility of the
automata-theoretic framework for reasoning about infinite-state systems. Cachat shows
how to model checkµ-calculus specifications with respect to high order pushdown
graphs [Cac03]. Gimbert shows how to solve games over pushdown graphs where the
winning conditions are combinations of parity and unboundedness [Gim03].
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[BLS06] V. Bárány, C. Löding, and O. Serre. Regularity problem for visibly pushdown lan-
guages. InProc. 23rd Symp. on Theoretical Aspects of Computer Science, volume
3884 ofLecture Notes in Computer Science, pages 420–431. Springer, 2006.

[BMP05] L. Bozzelli, A. Murano, and A. Peron. Pushdown module checking. InProc. 12th
Int. Conf. on Logic for Programming Artificial Intelligenceand Reasoning, Lecture
Notes in Artificial Intelligence, pages 504–518. Springer,2005.

[Boz06] L. Bozzelli. Complexity results on branching-timepushdown model checking. In
Proc. 7th Int. Conf. on Verification, Model Checking, and Abstract Interpretation,
volume 3855 ofLecture Notes in Computer Science, pages 65–79. Springer, 2006.

[BQ96] O. Burkart and Y.-M. Quemener. Model checking of infinite graphs defined by graph
grammars. InProc. 1st Int. workshop on verification of infinite states systems, vol-
ume 6 ofENTCS, page 15. Elsevier, 1996.

[BR00] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs. In
Proc. 7th Int. SPIN Workshop, volume 1885 ofLecture Notes in Computer Science,
pages 113–130. Springer, 2000.

[BR01] T. Ball and S. Rajamani. The SLAM toolkit. InProc 13th Int. Conf. on Computer
Aided Verification, volume 2102 ofLecture Notes in Computer Science, pages 260–
264. Springer, 2001.

[BS92] O. Burkart and B. Steffen. Model checking for context-free processes. In3rd Int.
Conf. on Concurrency Theory, volume 630 ofLecture Notes in Computer Science,
pages 123–137. Springer, 1992.

[BS95] O. Burkart and B. Steffen. Composition, decomposition and model checking of push-
down processes.Nordic J. Comut., 2:89–125, 1995.

[BSW03] A.-J. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness
and regular conditions. InProc. 23rd Conf. on Foundations of Software Technol-
ogy and Theoretical Computer Science, volume 2914 ofLecture Notes in Computer
Science, pages 88–99. Springer, 2003.

[BTP06] L. Bozzelli, S. La Torre, and A. Peron. Verification of well-formed communicating
recursive state machines. InProc. 7th Int. Conf. on Verification, Model Checking, and
Abstract Interpretation, volume 3855 ofLecture Notes in Computer Science, pages
412–426. Springer, 2006.
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A Proof of Claim 4.3

The proof of the claim is essentially equivalent to the same proof in [PV03].

Claim. L(A) 6= ∅ iff 〈Υ ∗, τ〉 ∈ L(P).

Proof: We prove that〈Υ ∗, τ〉 ∈ L(P) impliesL(A) 6= ∅. Let r = (p0, w0) · (p1, w1) ·
(p2, w2) · · · be an accepting run ofP on〈Υ ∗, τ〉. We add the annotation of the locations
in the run(p0, w0, 0) · (p1, w1, 1) · (p2, w2, 2) · · ·. We construct the run〈T ′, r′〉 of A.
For every nodex ∈ T ′, if x is labeled by a singleton state we add a tag tox some triplet
from the runr. If x is labeled by a pair state we add two tags tox, two triplets from the
runr. The labeling and the tagging conform to the following.

– Given a nodex labeled by state(p, d, α) and tagged by the triplet(p′, w, i) from
r, we buildr′ so thatp = p′ andd = ρτ (w). Furthermore all triplets inr whose
third element is greater thani have their second element greater or equal tow (Υ ∗ is
ordered according to the lexical order on the reverse of the words).

– Given a nodex labeled by state(q, p, d, α) and tagged by the triplets(q′, w, i) and
(p′, w′, j) from r, we build r′ so thatq = q′, p = p′, w = w′, d = ρτ (w), and
i < j. Furthermore all triplets inr whose third elementk is betweeni andj, have
their second element greater or equal tow. Also, if j > i+ 1 thenwj−1 = υ ·wj for
someυ ∈ Υ .

Construct the run tree〈T ′, r′〉 of A as follows. Label the root ofT ′ by (p0, d
0
τ ,⊥) and

tag it by (p0, ε, 0). Given a nodex ∈ T ′ labeled by(p, d, α) tagged by(p, w, i). Let
(pj , wj , j) be the minimalj > i such thatwj = w. If j = i+ 1 then add one son tox,
label it (pj , d,⊥) and tag it(pj , w, j). If j > i+ 1, thenwj−1 = υ ·wi for someυ ∈ Υ
and we add two sons tox, label them(p, pj, d, β) and(pj , d, β). We tag(pi, pj, d, β)
by (p, w, i) and(pj , w, j), and tag(pj , d, β) by (pj , w, j), β is⊤ if there is a visit toF
between locationsi andj in r. If there is no other visit tow thenwi+1 = υ ·w for some
υ ∈ Υ . We add one son tox and label it(pi+1, ρτ (d, υ),⊥) and tag it(pi+1, υ ·w, i+1).
Obviously the labeling and the tagging conform to the assumption.

Given a nodex labeled by a state(p, q, d, α) and tagged by(p, w, i) and(q, w, j).
Let (pk, w, k) be the first visit tow betweeni andj. If k = i + 1 then add one son
to x, label it (pk, q, d, fα(pk, q)), and tag it by(pk, w, k) and(q, w, j). If k > i + 1
then add two sons tox and label them(p, pk, d, fβ1(p, pk)) and(pk, q, d, fβ2(pk, q))
whereβ1, β2 are determined according to the visits toF betweeni andj. We tag the
state(p, pk, d, fβ1(p, pk)) by (p, w, i) and (pk, w, k) and tag(pk, t, d, fβ2(pk, q)) by
(pk, w, k) and(q, w′, j).

If there is no visit tow betweeni andj it must be the case that all triplets inr
betweeni andj have the same suffixυ · w for someυ ∈ Υ (otherwisew is visited).
We add a son tox labeled(pi+1, qj−1, ρτ (d, υ), fα(p′, q′)) and tagged by(pi+1, υ ·
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w, i+1) and(pj−1, υ ·w, j− 1). We are ensured thatpj−1 ∈ C
Lτ (ρτ (d,υ))
q as(↑, pj) ∈

δ(pj−1, τ(υ · w)).
In the other direction, given an accepting run〈T ′, r′〉 of A we use the recursive

algorithm in Figure 1 to construct a run ofP on 〈Υ ∗, τ〉.
A nodex · a in T ′ is advancingif the transition fromx to x · a results from an atom

(1, r′(x·a)) that appears inη(r′(x)). An advancing node that is the immediate successor
of a singleton state satisfies the disjunct

∨

υ∈Υ

∨

(υ,p′)∈δ(p,L(d))(1, (p
′, ρτ (d, υ),⊥)) in

η. We tag this node by the letterυ that was used to satisfy the transition. Similarly,
an advancing node that is the immediate successor of a pair state satisfies the disjunct
∨

υ∈Υ

∨

〈υ,p′〉∈δ(p1,Lτ(d))

∨

p′′∈C
Lτ (d)
p2

(1, (p′, p′′, ρτ (d, υ), fα(p′, p′′)) in η. We tag this

node by the letterυ that was used to satisfy the transition. We use these tags in order
to build the run ofP . When handling advancing nodes we update the location on the
treeΥ ∗ according to the tag. For an advancing nodex we denote bytag(x) the letter in
Υ that tags it. A node isnon advancingif the transition fromx to x · a results from an
atom(0, r′(x · a)) that appears inη(r′(x)).

The functionbuild run uses the variablew to hold the location in the tree〈Υ ∗, τ〉.
Working on a singleton(p, d, α) the variableaddl is used to determine whetherp was
already added to the run. Working on a pair(p, q, d, α) the variableaddl is used to
determine whetherp was already added to the run and the variableaddr is used to
determine whetherq was already added to the run.

The intuition behind the algorithm is quite simple. We startwith a nodex labeled
by a singleton(p, d, α). If the node is advancing we updatew by tag(x). Now we
addp to r (if needed). The case wherex has one son matches a transition of the form
(∆, p′) ∈ δ(p, Lτ (d)). In this case we move to handle the son ofx and clearlyp′ has
to be added to the runr. In case∆ = ε the son ofx is non advancing andp′ reads the
same locationw. Otherwise,w is updated by∆ andp′ reads∆ · w. The case where
x has two sons matches a guess that there is another visit tow. Thus, the computation
splits into two sons(p, q, d, β) and(q, d, β). Both sons are non advancing. The statep
was already added tor andq is added tor only in the first son.

With a nodex labeled by a pair(p, q, d, α), the situation is similar. The case where
x has one non advancing son matches a transition of the form(ǫ, s′) ∈ δ(p,A). Then
we move to the son. The statep′ is added tor butq is not. The case wherex has two non
advancing sons matches a split to(p, p′, d, α1) and(p′, q, d, α2). Onlyp′ is added tor as
p andq are added by the current call to buildrun or by an earlier call to buildrun. The
case wherex has one advancing son matches the move to the state(p′, q′, ρτ (d, υ), α)

and checking thatq′ ∈ C
Lτ (ρτ (d,υ))
q . Both p′ andq′ are added tor andhandle Cq

handles the sequence ofε transitions that connectsq′ to q.
It is quite simple to see that the resulting run is a valid and accepting run ofP on

〈Υ ∗, τ〉.

B Lower bound on Emptiness of 2NBP

We give the full details of the construction in the proof of Theorem 13 Formally,P =
〈Σ,P, δ, p0, F 〉 where
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build run (x, r′(x) = (p, d, α), w, addl, build run (x, r′(x) = (p, q, d, α), w, addl,

addr) addr)
if (advancing(x)) if (advancing(x))

w := tag(x) · w; w := tag(x) · w;
if (addl) if (addl)

r := r · (w, p); r := r · (w, p);
if (x has one sonx · a) if (x has one non advancing sonx · a)

build run (x · a, r′(x · a), w, 1, 0) build run (x · a, r′(x · a), w, 1, 0)
if (x has two sonsx · a andx · b) if (x has two sonsx · a andx · b)

build run (x · a, r′(x · a), w, 0, 1) build run (x · a, r′(x · a), w, 0, 1)
build run (x · b, r′(x · b), w, 0, 0) build run (x · b, r′(x · b), w, 0, 0)

if (x has one advancing sonx · a)
handle Cq (r′(x) = (p′, p, d, α), q, w) build run (x · a, r′(x · a), w, 1, 1)

Let t0, . . . , tn ∈ P+ be the sequence of handleCq (r′(x · a), q, tag(x · a) · w)
ε-transitions connectingp to q if (addr)

r := r · (w, t1), · · · , (w, tn−1) r := r · (w, q);

Fig. 1.Converting a run of A into a run of P

– Σ = {0, 1,⊥}× ({♯} ∪ Γ ∪ (S × Γ )).
Thus, the letters are pairs consisting of a direction and either a♯, a tape symbol of
M , or a tape symbol ofM marked by a state ofM .

– P = F ∪B∪I ∪{acc} whereF is the set of forward states,B is the set of backward
states, andI is the set of states that check that the tree starts from the initial configu-
ration ofM . All three sets are defined formally below. The stateacc is an accepting
sink.

– F = {acc}.

The transition functionδ and the initial statep0 are described below.
We start with forward mode. In forward mode, every state is flagged by eitherl

or r, signaling whether the next configuration to be checked is the left successor or
the right successor of the current configuration. The 2NBP starts by memorizing the
current location it is checking and the environment of this location (that is for checking
locationi, memorize the letters in locationsi − 1, i, andi + 1). For checking the left
(resp. right) successor it continuesf(n) − i steps in direction 0 then it progresses one
step in direction 0 (resp. 1) and then takesi steps in direction0. Finally, it checks that
the letter it is reading is indeed thenextl (resp.nextr) successor of the memorized
environment. It then goesf(n)− 1 steps back, increases the location that it is currently
checking and memorizes the environment of the new location.It continues zigzagging
between the two configurations until completing the entire configuration and then it
starts checking the next.

Thus, the forward states areF = {f} × {l, r} × [f(n)]× V 3 × [f(n)]× {x, v} ×
{0, 1,⊥}. Every state is flagged byf and eitherr or l (next configuration to be checked
is either right or left successor). Then we have the current locationi ∈ [f(n)] we are
trying to check, the environment(σ, σ′, σ′′) ∈ V 3 of this location. Then a counter
for advancingf(n) steps. Finally, we havex for still-checkingandv for checked(and
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going backward to the next letter). We also memorize the direction we went to in order
to check that every node is labeled by its direction (thus, wehave0 or 1 for forward
moves and⊥ for backward moves).

The transition of these states is as follows.

– For0 ≤ i ≤ f(n) and0 ≤ j < f(n) we have
δ(〈f, d, i, σ, σ′, σ′′, j, x,∆〉, 〈∆,σ′′′〉) =

[

{(1, 〈f, d, i, σ, σ′, σ′′, j + 1, x, 1〉} if i+ j = f(n) andd = r
{(0, 〈f, d, i, σ, σ′, σ′′, j + 1, x, 0〉} otherwise

Continue going forward while increasing the counter. If reached the end of configu-
ration and next configuration is the right configuration go indirection 1. Otherwise
go in direction 0.

– For0 ≤ i ≤ f(n) we have
δ(〈f, d, i, σ, σ′, σ′′, f(n), x,∆〉, 〈∆,σ′′′〉) =

[

∅ if σ′′′ 6= nextd(σ, σ
′, σ′′)

{(↑, 〈f, d, (i+ 1)f(n), σ
′, σ′′,⊥, f(n)− 1, v,⊥〉)} if σ′′′ = nextd(σ, σ

′, σ′′)

If σ′′′ is not thenextd letter, then abort. Otherwise, change the mode tov and start
going back. Pushσ′ andσ′′ to the first two memory locations and empty the third
memory location.

– For0 ≤ i ≤ f(n) and1 < j ≤ f(n) we have
δ(〈f, d, i, σ, σ′,⊥, j, v,⊥〉, 〈∆,σ′′〉) = {(↑, 〈f, d, i, σ, σ′,⊥, j − 1, v,⊥〉)}.
Continue going backward while updating the counter.

– For0 ≤ i ≤ f(n) we have
δ(〈f, d, i, σ, σ′,⊥, 1, v,⊥〉, 〈∆,σ′′〉) =





{(↑, 〈b∀,⊥, x〉)} if σ′′ ∈ Fa × Γ
{(↑, 〈b∃,⊥, x〉)} if σ′′ ∈ Fr × Γ
{(ǫ, 〈f, d, i, σ, σ′, σ′′, 0, x,⊥〉)} otherwise

Stop going backward. If the configuration that is checked is either accepting or re-
jecting go to backward mode (recall that the configuration isalready verified as the
correct successor of the previous configuration). Otherwise memorize the third letter
of the environment and initialize the counter to 0.

– δ(〈f, d, 0, ♯, ♯,⊥, 0, x,∆〉, 〈∆,σ〉) = {(0, 〈f, d, 0, ♯, ♯, σ, 1, x, 0〉)}
This is the first forward state after backward mode and after the initial phase. It starts
checking the first letter of the configuration. The 2NBP already knows that the letter
it has to check is♯, it memorizes the current letter (the third letter of the environment)
and moves forward while updating the counter.
Note that also the first letter is marked as♯, this is because when checking location0
of a configuration we are only checking that the length of the configuration isf(n)+1
and that afterf(n) + 1 locations there is another♯.

Backward mode (either universal or existential) is again flagged byl or r, signaling
whether the last configuration the 2NBP saw was the left or right successor. Backward
mode starts in a node labeled by a state ofM . As the 2NBP goes backward, whenever it
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passes a♯ it memorizes its direction. When the 2NBP gets again to a letter that is marked
with a state ofM , if the memorized direction isl and the type of the state the 2NBP
is reading matches the type of backward mode (universal state of M and backward
universal or existential state ofM and backward existential) then the 2NBP continues
going up until the♯, then it moves to forward mode again (marked byr). Otherwise
(i.e. if the memorized direction isr or the type of the state the 2NBP is reading does
not match the type of backward mode) then the 2NBP stays in backward mode, when
it passes the next♯ it memorizes the current direction, and goes on moving backward.
When returning to the root in backward existential mode, this means that the 2NBP
is trying to find a new pruning tree. As no such pruning tree exists the 2NBP rejects.
When returning to the root in backward universal mode, this means that all universal
choices of the currently explored pruning tree were checkedand found accepting. Thus,
the pruning tree is accepting and the 2NBP accepts.

The set of backward states isB = {b∀, b∃}×{l, r,⊥}×{x, v}. Every state is flagged
by∀ (for universal) or∃ (for existential) and by eitherl or r (the last configuration seen
is left successor or right successor, or⊥ for unknown). Finally, every state is flagged
by eitherx or v. A state marked byv means that the 2NBP is about to move to forward
mode and that it is just going backward until the♯.

The transition of backward states is as follows.

– δ(〈b∀, d, x〉, 〈∆,σ〉) =













{(↑, 〈b∀, l, x〉)} if σ = ♯ and∆ = 0
{(↑, 〈b∀, r, x〉)} if σ = ♯ and∆ = 1
{(ǫ, acc)} if ∆ = ⊥
{(↑, 〈b∀, l, v〉)} if σ ∈ Su × Γ andd = l
{(↑, 〈b∀, d, x〉)} otherwise

In backward universal mode reading a♯ we memorize its direction. If reading the
root, we accept. If reading a universal state ofM and the last configuration was the
left successor then change thex to v. Otherwise, just keep going backward.

– δ(〈b∃, d, x〉, 〈∆,σ〉) =













{(↑, 〈b∃, l, x〉)} if σ = ♯ and∆ = 0
{(↑, 〈b∃, r, x〉)} if σ = ♯ and∆ = 1
∅ if ∆ = ⊥
{(↑, 〈b∃, l, v〉)} if σ ∈ Se × Γ andd = l
{(↑, 〈b∀, d, x〉)} otherwise

In backward existential mode reading a♯ we memorize its direction. If reading the
root, we reject. If reading an existential state ofM and the last configuration was the
left successor then changex to v. Otherwise, just keep going backward.

– δ(〈b, l, v〉, 〈∆,σ〉) =

[

{(↑, 〈b, l, v〉)} if σ 6= ♯
{(ε, 〈f, r, 0, ♯, ♯,⊥, 0, x, 0〉)} if σ = ♯

In backward mode marked byv we go backward until we read♯. When reading♯ we
return to forward mode. The next configuration to be checked is the right successor.
The location we are checking is location 0, thus the letter before is not interesting
and is filled by♯. The counter is initialized to 0.

Finally, the setI of ‘initial’ states makes sure that the first configuration inthe tree
is indeed♯ · (s0, b) · bf(n)−1. When finished checking the first configurationS returns
to the node0 and moves to forward mode.

Formally,I = {i} × [f(n)]× {x, v} with transition as follows.
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– δ(〈i, 0, x〉, 〈∆,σ〉) =

[

{(0, 〈i, 1, x〉)} if σ = ♯ and∆ = ⊥
∅ otherwise

Make sure that the root is labeled by〈⊥, ♯〉.

– δ(〈i, 1, x〉, 〈∆,σ〉) =

[

{(0, 〈i, 2, x〉)} if σ = (s0, b) and∆ = 0
∅ otherwise

Make sure that the first letter is(s0, b).
– For1 < j < f(n) we have

δ(〈i, j, x〉, 〈∆,σ〉) =

[

{(0, 〈i, j + 1, x〉)} if σ = b and∆ = 0
∅ otherwise

Make sure that all other letters areb.

– δ(〈i, f(n), x〉, 〈∆,σ〉) =

[

{(↑, 〈i, f(n)− 1, v〉)} if σ = b and∆ = 0
∅ otherwise

Make sure that the last letter isb. The first configuration is correct, start going back
to node0. Changex to v.

– For2 < j < f(n) we haveδ(〈i, j, v〉, 〈∆,σ〉) = {(↑, 〈i, j − 1, v〉)}
Continue going backward while updating the counter.

– δ(〈i, 2, v〉, 〈0, σ〉) = {(↑, 〈f, l, 0, ♯, ♯,⊥, 0, x, 0〉)}.
Finished checking the first configuration. Go up to node0 in the first state of forward
mode.

Last but not least the initial state isp0 = 〈i, 0, x〉.
Finally, we analyze the reduction. Given an alternating Turing machine withn states

and alphabet of sizem we get a 2NBP withO(n · m) states, that reads an alphabet
with O(n · m) letters. The 2NBP is actually deterministic. Clearly, the reduction is
polynomial.

We note that instead of checking emptiness ofP , we can check the membership
of some correct encoding of the run tree ofM in the language ofP . However, the
transducer that generates a correct encoding ofM is exponential.

C Lower Bound for Linear Time Model-Checking on
Prefix-Recognizable Systems

It was shown by [BEM97] that the problem of model-checking anLTL formula with
respect to a pushdown graph is EXPTIME-hard in the size of theformula. The problem
is polynomial in the size of the pushdown system inducing thegraph. Our algorithm
for model-checking an LTL formula with respect to a prefix-recognizable graph is ex-
ponential both in the size of the formula and in|Qβ |.

As prefix-recognizable systems are a generalization of pushdown systems the expo-
nential resulting from the formula cannot be improved. We show that also the exponent
resulting fromQβ cannot be removed. We use the EXPTIME-hard problem of whether
a linear space alternating Turing machine accepts the emptytape [CKS81]. We reduce
this question to the problem of model-checking a fixed LTL formula with respect to the
graph induced by a prefix-recognizable system with a constant number of states and
transitions. FurthermoreQα andQγ depend only on the alphabet of the Turing ma-
chine. The componentQβ does ‘all the hard work’. Combining this with Theorem 15
we get the following.
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Theorem 26. The problem of linear-time model-checking the graph induced by the
prefix-recognizable systemR = 〈2AP , V,Q, L, T, q0, x0〉 is EXPTIME-complete in
|Qβ |.

Proof: LetM = 〈Γ, Su, Se, 7→, s0, Facc, Frej〉 be an alternating linear-space Turing
machine. Letf : N → N be the linear function such thatM usesf(n) cells in its
working tape in order to process an input of lengthn. In order to make sure thatM does
not accept the empty tape, we have to check that every legal pruning of the computation
tree ofM contains one rejecting branch.

Given such an alternating linear-space Turing machineM , we construct a prefix-
recognizable systemR and an LTL formulaϕ such thatGR |= ϕ iff M does not accept
the empty tape. The systemR has a constant number of states and rewrite rules. For
every rewrite rule〈q, αi, βi, γi, q′〉, the languages of the regular expressionsαi andγi
are subsets ofΓ ∪ ({↓} × Γ ) ∪ S ∪ {ǫ}. The language of the regular expressionβi,
can be encoded by a nondeterministic automaton whose size islinear inn. The LTL
formulaϕ does not depend on the structure ofM .

The graph induced byR has one infinite trace. This trace searches for rejecting
configurations in all the pruning trees. The trace first explores the left son of every con-
figuration. If it reaches an accepting configuration, the trace backtracks until it reaches
a universal configuration for which only the left son was explored. It then goes forward
again and explores under the right son of the universal configuration. If the trace returns
to the root without finding such a configuration then the currently explored pruning
tree is accepting. Once a rejecting configuration is reached, the trace backtracks until
it reaches an existential configuration for which only the left son was explored. It then
explores under the right son of the existential configuration. In this mode, if the trace
backtracks all the way to the root, it means that all pruning trees were checked and that
there is no accepting pruning tree forM .

We change slightly the encoding of a configuration by including with the state of
M a symboll or r denoting whether the next explored configuration is the right or left
successor. LetV = {♯} ∪ Γ ∪ (S × Γ × {l, r}) and let♯ · σ1 · · ·σf(n) · ♯σ

d
1 . . . σ

d
f(n)

be a configuration ofM and itsd-successor (whered is eitherl or r). We also setσ0

andσd0 to ♯. Givenσi−1, σi, andσi+1 we know, by the transition relation ofM , what
σdi should be. In addition the symbol♯ should repeat exactly everyf(n) + 1 letters.
Let next : V 3 → V denote our expectation forσdi . Note that whenever the triplet
σi−1, σi, andσi+1 does not include the reading head of the Turing machine, it does
not matter whetherd is l or r. In both cases the expectation forσdi is the same. We set
next(σ, ♯, σ′) = ♯, and

next(σ, σ′, σ′′) =

















σ′ if {σ, σ′, σ′′} ⊆ {♯} ∪ Γ
σ′ if σ′′ = (s, γ, d) and(s, γ)→d (s′, γ′, R)
(s′, σ′, d′) if σ′′ = (s, γ, d), (s, γ)→d (s′, γ′, L), andd′ ∈ {l, r}
σ′ if σ = (s, γ, d) and(s, γ)→d (s′, γ′, L)
(s′, σ′, d′) if σ = (s, γ, d), (s, γ)→d (s′, γ′, R), andd′ ∈ {l, r}
γ′ if σ′ = (s, γ, d) and(s, γ)→d (s′, γ′, α)
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Consistency withnext now gives us a necessary condition for a sequence inV ∗ to
encode a branch in the computation tree ofM . Note that whennext(σ, σ′, σ′′) ∈ S ×
Γ × {l, r} then marking it by bothl andr is correct.

The prefix-recognizable system starts from the initial configuration ofM . It has
two main modes, aforward mode and abackwardmode. In forward mode, the system
guesses a new configuration. The configuration is guessed oneletter at a time, and this
letter should match the functionsnextl or nextr. If the computation reaches an ac-
cepting configuration, this means that the currently explored pruning tree might still be
accepting. The system moves to backward mode and remembers that it should explore
other universal branches until it finds a rejecting state. Inbackward universal mode,
the system starts backtracking and removes configurations.Once it reaches a universal
configuration that is marked byl, it replaces the mark byr, moves to forward mode,
and explores the right son. If the root is reached (in backward universal mode), the
computation enters a rejecting sink. If in forward mode, thesystem reaches a rejecting
configuration, then the currently explored pruning tree is rejecting. The system moves
to backward mode and remembers that it has to explore existential branches that were
not explored. Hence, in backward existential mode, the system starts backtracking and
removes configurations. Once it reaches an existential configuration that is marked byl,
the mark is changed tor and the system returns to forward mode. If the root is reached
(in backward existential mode) all pruning trees have been explored and found to be
rejecting. Then the system enters an accepting sink. All that the LTL formula has to
check is that there exists an infinite computation of the system and that it reaches the
accepting sink. Note that the prefix-recognizable system accepts, when the alternating
Turing machine rejects and vice versa.

More formally, the LTL formula is3reject and the rewrite system isR = 〈2AP ,
V ,Q, L, T , q0, x0〉, where

– AP = {reject}

– V = {♯} ∪ Γ ∪ (S × Γ × {l, r})
– Q = {forward , backward∃, backward∀, sinka , sinkr}

– L(q, α) =

[

∅ if q 6= sinka
{reject} if q = sinka

– q0 = forward

– x0 = b · · · b · (s0, b, l) · ♯

In order to define the transition relation we use the following languages.

– L1
egal =

{

next(σ, σ′, σ′′) · V f(n)−1σ · σ′ · σ′′
}

L2
egal =

{

w ∈ V f(n)+1 | w /∈ V ∗ · ♯ · V ∗ · ♯ · V ∗
}

L3
egal =

{

w ∈ V f(n)+1 | w /∈ V ∗ · (S × Γ × {l, r}) · V ∗ · (S × Γ × {l, r}) · V ∗
}

Legal = (L1
egal ∩ L

2
egal ∩ L

3
egal) · V

∗

Thus, this language contains all words whose suffix of lengthf(n) + 1 contains at
most one♯ and at most one symbol fromS×Γ ×{l, r} and the last letter is thenext
correct successor of the previous configuration.

– Accept = V · ({Facc} × Γ × {l, r}) · V ∗
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Thus, this language contains all words whose one before lastletter is marked by an
accepting state17.

– Reject = V · ({Frej} × Γ × {l, r}) · V
∗

Thus, this language contains all words whose one before lastletter is marked by a
rejecting state.

– R
Su×{l}
emove = V \ (Su × Γ × {l})

Thus, this language contains all the letters that are not marked by universal states and
the directionl.

– R
Se×{l}
emove = V \ (Se × Γ × {l}).

Thus, this language contains all the letters that are not marked by existential states
and the directionl.

Clearly the languagesLegal, Accept, andReject can be accepted by nondeterministic
automata whose size is linear inf(n).

The transition relation includes the following rewrite rules:

1. 〈forward , {ǫ},Legal ,V \ (S ×Γ ×{r}), forward〉 - guess a new letter and put it on
the store. States are guessed only with directionl. The fact thatLegal is used ensures
that the currently guessed configuration (and in particularthe previously guessed
letter) is the successor of the previous configuration on thestore.

2. 〈forward , {ǫ},Accept , {ǫ}, backward∀〉 - reached an accepting configuration. Do not
change the store and move to backward universal mode.

3. 〈forward , {ǫ},Reject , {ǫ}, backward∃〉 - reached a rejecting configuration. Do not
change the store and move to backward existential mode.

4. 〈backward∀, R
Su×{l}
emove , V ∗, {ǫ}, backward∀〉 - remove one letter that is not inSu ×

Γ × {l} from the store.
5. 〈backward∀, Su × Γ × {l}, V ∗, Su × Γ ×{r}, forward〉 - replace the markingl by

the markingr and move to forward mode. The states does not change18.
6. 〈backward∀, ǫ, ǫ, ǫ, sinkr〉 - when the root is reached in backward universal mode

enter the rejecting sink
7. 〈backward∃, R

Se×{l}
emove , V ∗, {ǫ}, backward∃〉 - remove one letter that is not inSe ×

Γ × {l} from the store.
8. 〈backward∃, Se × Γ × {l}, V ∗, Se × Γ × {r}, forward〉 - replace the markingl by

the markingr and move to forward mode. The states does not change.
9. 〈backward∃, ǫ, ǫ, ǫ, sinka〉 - when the root is reached in backward existential mode

enter the accepting sink.
10. 〈sinka, ǫ, ǫ, ǫ, sinka〉 - remain in accepting sink.
11. 〈sinkr, ǫ, ǫ, ǫ, sinkr〉 - remain in rejecting sink.

17 It is important to use the one before last letter so that the state itself is already checked to be
the correct next successor of previous configuration.

18 Actually, we guess all states inSu. As we change state intoforward , the next transition verifies
that indeed the state is the same state.
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