
Proving stabilization of biological systems

Byron Cook1,2, Jasmin Fisher1, Elzbieta Krepska1,3, and Nir Piterman4

1 Microsoft Research
2 Queen Mary, University of London

3 VU University Amsterdam
4 University of Leicester

Abstract. We describe an efficient procedure for proving stabilization of
biological systems modeled as qualitative networks or genetic regulatory
networks. For scalability, our procedure uses modular proof techniques,
where state-space exploration is applied only locally to small pieces of
the system rather than the entire system as a whole. Our procedure ex-
ploits the observation that, in practice, the form of modular proofs can
be restricted to a very limited set. For completeness, our technique falls
back on a non-compositional counterexample search. Using our new pro-
cedure, we have solved a number of challenging published examples, in-
cluding: a 3-D model of the mammalian epidermis; a model of metabolic
networks operating in type-2 diabetes; a model of fate determination of
vulval precursor cells in the C. elegans worm; and a model of pair-rule
regulation during segmentation in the Drosophila embryo. Our results
show many orders of magnitude speedup in cases where previous stabi-
lization proving techniques were known to succeed, and new results in
cases where tools had previously failed.

1 Introduction

Biologists are increasingly turning to computer-science techniques in the quest to
understand and predict the behavior of complex biological systems [1–3]. In par-
ticular, application of formal verification tools to models of biological processes
is gaining impetus among biologists. In some cases known formal verification
techniques work well (e.g. [4–7]). Unfortunately in other cases—such as proving
stabilization [8]—we find existing abstractions and heuristics to be ineffective.

In this paper we address the open challenge to find scalable algorithms for
proving stabilization of biological systems. A proof of stabilization elucidates
system robustness with respect to time, while stabilization counterexamples give
insight into system homeostasis – in both cases the result is useful to biologists.
In computer science terms, stabilization means the existence of a unique fixpoint
state that is always eventually reached. We are trying to prove this property of
large parallel systems, where the size of these systems forces us to use some
form of modular reasoning. Since stabilization is formally a liveness property,
we must be careful when using the powerful cyclic modular proof rules (e.g.
[9, 10]), as they are only sound in the context of safety [11]. Furthermore, we
find that the complex temporal interactions between the modules are crucial to

the stabilization of the system as a whole; meaning that we cannot use scalable
techniques that simply abstract away the interactions altogether.

In this paper we present a procedure for proving stabilization of biologi-
cal systems modeled as communicating components in the qualitative networks
formalism [12] with synchronous updates of variables, or a genetic regulatory
networks [13], where updates are asynchronous. We compose these stabilization
proofs out of small lemmas that can be solved using quick local proof techniques
on the components. The key to our tool’s performance is the observation that it
suffices to take the lemmas only of a very limited form: [FG(p1)∧. . .∧FG(pk)]⇒
FG(q), where p1 . . . pk are atomic formulae over inputs of a small component that
we want to reason about, q is a atomic formula about this component’s output,
F denotes “eventually” in LTL [16], and G denotes “always”. We compute the
set of all provable lemmas of this form by iterative strengthening. After this
procedure, if for each component v its lemma implies FG(v = kv) for some con-
stant kv, that means that we have proved stabilization. If some component is left
unfixed, then we use the lemmas to restrict the counterexample search space.

Our stabilization proving procedure is sound and complete. We experimen-
tally confirm that it is scalable. We find that our lemma generation procedure
accelerates both the proving as well as the disproving of stabilization. Section 4
demonstrates with experimental evidence how our lemma generation procedure
leads to many orders of magnitude speedup in cases where known previous tech-
niques work, and new results in cases where known techniques fail. These in-
clude challenging published examples such as: a 3-D model of the mammalian
epidermis based on [12]; a model of metabolic networks operating in type-2
diabetes [17]; a model of fate determination of vulval precursor cells in C. el-
egans [18]; and a model of pair-rule cross-regulation during segmentation in
Drosophila fly embryo [19]. Applying our procedure to the multidimensional
model of epidermis revealed a bug in the model from [12], as we proved the
system non-stabilizing. Consulting the biological papers corroborated that the
model was, in fact, in disagreement with the biological evidence. After fixing the
bug we could then prove the system stabilizing (see Section 2).

Related work. With the exception of [12], no tools have been previously reported
that are directly tailored to the problem of proving stabilization or other liveness
properties of large biological systems modeled as discrete systems (e.g. qualita-
tive networks). Classic theory of stability of differential equations is applied to
continuous systems, e.g. in [20]. Recent work is known on the stability of hybrid
systems, e.g. [21–23]. In the context of stabilization for discrete systems, [12]
uses the compositional structure of a system modeled as qualitative network
to accelerate the computation of a fixpoint-based computation of the reachable
states. However, the final check is not modular, and thus is less scalable than
our approach. Genetic regulatory networks [13] have been extensively studied,
e.g. in [13, 19], but the analysis relies on state space enumeration, which is not
scalable, or stable states computation that does not account for reachability [14].

The current state-of-the-art amongst biologists interested in stabilization is
to use either techniques from [12] or other off-the-shelf model checking tools

2

for finite-state systems. Recently developed tools for proving liveness of infinite-
state systems (e.g. [24]) could also be used. As we show in Section 4, our proce-
dure is many orders of magnitude faster than previously known approaches. The
challenge is that biological models are very large, causing timeouts and out-of-
memory failures for most tools not based on modular proof strategies. Note also
that stabilization is not directly expressible in popular temporal logics, e.g. CTL
or LTL, unless support for quantifiers is added, making the encoding of stabiliza-
tion tricky in most formal verification tools. Qualitative networks could be imple-
mented in Lustre [15], which however supports checking only safety properties.

We are not the first to attempt to address the difficulty of modular reason-
ing for liveness. For example, several previous papers have reported on heuris-
tics tailored to the problem of proving liveness of non-blocking concurrent pro-
grams [24, 25]. Their motivation is the same as here, but the approaches used
differ as they are tailored to different problems. Another technique, as found
in [26], is to use induction over time to facilitate the modular proving of live-
ness properties of finite-state models. In [26] the modular decomposition is given
manually, whereas in our work we use the structure of the biological system to
our advantage when automating the search for the modular decomposition. To
show that our proofs are non-circular we use an argument similar to that of [26].

Our algorithm depends on a domain L over which lemmas range. When han-
dling qualitative networks and genetic regulatory networks all variables range
over domains of the form {0, . . . , n}. Furthermore, the updates of variables are
always in increments or decrements of 1. As our aim is to prove stabilization,
lemmas that restrict variables to one subrange of their domain turn out to be
sufficient. This insight is the basis for an optimization of the lemma generation
algorithm, which works extremely fast in practice. When considering this opti-
mization, our technique can be thought of as analyzing the system using abstract
interpretation over the interval domain [27]. A similar usage of abstract inter-
pretation to produce tail invariants used for termination proofs appears in [28].
Limitations and advantages. Our technique is geared towards the efficient prov-
ing of stabilization where the proof can be teased out by examining the system’s
compositional structure. This lemma-generation strategy comes with an over-
head that can potentially hinder rather than help performance in some cases. In
Section 4 we demonstrate an example of this.

An advantage of our procedure is compositionality: the local stabilization
lemmas give a specification that, when established for new components, implies
the whole system’s stabilization without re-running the entire procedure. This
can lead to experimenting with alternative components (e.g. testing modified
components during a search for new drugs). This observation also leads to a
practical advantage, as we check lemmas in parallel during the proof search.

2 Example: Skin cells

Figure 1 contains a pictorial view of a simplified model of mammalian epidermis
(outermost skin layer) that consists of five stacked cells [12]. Each cell represents

3

a single skin layer and communicates with neighboring cells. The bottommost
cells proliferate, migrate upwards and eventually decide to die and thus con-
tribute to the cornified skin surface. It is this balance between proliferation and
cell death that makes the system interesting to biologists: too much death is
detriment to the skin, too little is cancerous. The original model is expressed
as a qualitative network [12]. Formal definitions of qualitative and regulatory
networks are given later, here we describe the epidermis model only informally.

The example model includes a few executing components, each updating a
single variable. See, e.g., wnt3 or NotchIC3 in Fig. 1. Each variable holds a value,
which is a number in {0,1 . . .N}, where N + 1 is a predefined, globally-fixed
granularity. A target function, Tv, associated with each variable, v, determines
how the variable is updated: if v < Tv then v′ = v + 1, if v > Tv then v′ = v − 1,
else v′ = v. In a qualitative network all variables are updated synchronously in
parallel and in a genetic regulatory network they are updated asynchronously.

Intuitively, the update function of each variable is designed such that the
value of the variable follows its target, which depends on other variables. In the
biological setting, the typical target of a variable, v, combines positive influence
of variables w1,w2, . . .ws with negative influence of variables ws+1,ws+2, . . .ws+r
and ignores all other variables in the network:

Tv(w1,w2, . . .ws+r) = max(0, ⌊1
s

s

∑
k=1

wk −
1
r

r

∑
k=1

ws+k⌋)

Graphically, this is often represented as an influence graph withx▸ edges between
each of w1,w2, . . . ,ws and v and x◾ edges between each of ws+1,ws+2, . . . ,ws+r
and v. In this section we discuss only several target functions used in the skin
example. Refer to papers [12, 17–19] for target functions used to model a large
spectrum of aspects of signaling pathways, metabolic and genetic regulatory
networks. In the skin example, the target of wnt3 is Twnt3 = N − NotchIC3,
which means that NotchIC3 inhibits wnt3 (in Fig. 1 this fact is indicated by a
‘blocking’ arrow from NotchIC3 to wnt3). The target of NotchIC3 is TNotchIC3 =
min(3,deltaext3) and is indicated by an underline. The targets of the ext-
variables round averaged cell inputs, which effectively requires at least one of
the components to be present for some event to take place:

Tdeltaext1 = ⌈delta0 + delta2

2
⌉ , Twntext1 = ⌊wnt0 + wnt2

2
⌋ .

Figure 1 shows behavior of four selected variables, based on their target function.
Stabilization. If all executions end in the same cycle, and that cycle has length
1, then we say the network stabilizes. Note that both qualitative and regula-
tory networks are finite-state systems with only infinite executions. Thus, every
execution must eventually end in some type of cycle. Stabilization guarantees
both that the system has only a single fixpoint and that the fixpoint is always
eventually reached—a violation of this property is the existence of two fixpoints
or a cycle of length greater than 1. Biologists are often interested to see what
this fixpoint is when it exists, and to see a counterexample when it does not.

4

0

22

3 wnt0

delta0 deltaext0

NotchIC0

wntext1 wnt1

deltaext1

NotchIC12

wntext2

delta2 deltaext2

NotchIC23

wntext3 wnt3

delta3 deltaext3

3

wntext4 wnt4

delta4 deltaext4

NotchIC431

wntext0

delta1

NotchIC3

wnt2

wntext1 :=

 if (wnt0 + wnt2 > 2 * wntext1 + 1)

 wntext1 + 1;

 else if (wnt0 + wnt2 < 2 * wntext1)

 wntext1 – 1;

 else

 wntext1;

wnt3 :=

 if (N - NotchIC3 > wnt3)

 wnt3 + 1;

 else if (N - NotchIC3 < wnt3)

 wnt3 - 1;

 else

 wnt3;

deltaext1 :=

 if (delta0 + delta2 > 2 * deltaext1)

 deltaext1 + 1;

 else if (delta0 + delta2 < 2 * deltaext1 - 1)

 deltaext1 - 1;

 else

 deltaext1;

Notch0 Notch1 Notch2 Notch3 Notch4

NotchIC3 :=

 if (min(3, deltaext3) > NotchIC3)

 NotchIC3 + 1;

 else if (min(3, deltaext3) < NotchIC3)

 NotchIC3 - 1;

 else

 NotchIC3;

Fig. 1. Pictorial view of the skin model (rightmost cell is at skin surface). The bubbles
show the underlying update functions for several of the variables in the model.

When applied to the skin example, our tool incrementally finds a modular
proof of stabilization, as depicted in Fig. 2. The tool starts by guessing simple
facts with the form FG(p) about variables that can be proved locally, i.e. us-
ing the update function of only one variable with the definitions of the other
variables abstracted away, see Fig. 2(a). In this case, we can infer locally the
lemma FG(deltaext4 > 0) in the top cell. This property is provable using only
local reasoning because the deltaext4 variable follows a target ⌈(2 + delta3)/2⌉,
which is always a positive number, independently of the value of delta3.

In the next step, we iteratively use proved facts to guide the search for
additional facts to conclude. We search for locally provable facts of the form
FG(p) ⇒ FG(q), where we only try proving FG(p) ⇒ FG(q) if FG(p) is a
consequent in a previous iteration. In our example, we can locally infer that
FG(deltaext4 > 0) ⇒ FG(NotchIC4 > 0), see Fig. 2(b). This implication
holds because NotchIC4 in the top cell follows a target, which effectively equals
deltaext4. Since deltaext4 is eventually always positive, so is NotchIC4.

In the next round, we can prove FG(NotchIC4 > 0)⇒ FG(wnt4 < N) in the
top cell, see Fig. 2(c). This property holds locally, because the target of wnt4 is
N − NotchIC4. Figure 2(c) contains also several subsequent stages of the proof.
We continue such reasoning until no new implications can be deduced. At that
point, if we conclude . . . FG(v = kv) for some kv ∈ {0,1 . . .N} for each variable
v, then we have found a global stable state and proved that the model stabilizes.

A bug in the skin model. Applying our tool to the 1-D skin model described above
proved the model stabilizing. Contrastingly, applying the tool to the 2-D skin

5

0

22

3 wntext wnt

delta deltaext

Notch-IC1

wntext wnt

delta deltaext

Notch-IC2

wntext wnt

delta deltaext

Notch-IC3

wntext wnt

delta deltaext

Notch-IC3

wntext wnt

delta deltaext

Notch-IC3

FG(deltaext>0)

(a)

0

2

wntext wnt

delta deltaext

Notch-IC3

wntext wnt

delta deltaext

Notch-IC3

FG(deltaext>0)

FG(deltaext>0)
->FG(NotchIC>0)

...

...

...

...

(b)

0

2

wntext wnt

delta deltaext

Notch-IC3

wntext wnt

delta deltaext

Notch-IC3

FG(deltaext>0)

FG(deltaext>0)
->FG(NotchIC>0)

...

...

...

...

FG(NotchIC>0)
->FG(delta>0)

FG(delta>0)->
FG(deltaext>0)

FG(deltaext>0)
->FG(NotchIC>0)

FG(NotchIC>0)
->FG(delta>0)

(c)

Fig. 2. Proof steps of skin model stabilization. Each arrow denotes a lemma.

model built out of several interconnected such 1-D models, revealed that the 2-D
model is not stabilizing. This result was biologically surprising, so we suspected
a bug in the original [12] model. After consulting biological literature [29], we
discovered that the bug was real, i.e. the original model was in disagreement
with biological evidence. The fix proposed was to change the value of the Notch
protein (constant input of NotchIC0 in the bottommost skin layer) from 0 to 1.
By doing so we effectively introduced a low level of Notch protein into the basal
layer of epidermis. With the bug fixed, we proved the multidimensional model
stabilizing. While this finding offered no new biological insight, it helped to repair
the existing model and confirmed usefulness of the method to biologists.

3 Stabilization algorithm

We now describe our algorithm, which attempts to efficiently prove stabilization
of systems using the modular strategy exemplified in the previous section.

Preliminaries. Following [12], a qualitative network (QN), Q(V,T,N,n), of gran-
ularity N +1 consists of n variables: V = (v1, v2 . . . vn). The state of the system is
a finite map s ∶ V → {0,1, . . .N}. The initial state is random. Each variable vi ∈ V
has a target function Ti ∈ T associated with it: Ti∶{0,1, . . .N}n → {0,1, . . .N}.
Qualitative networks update the variables using synchronous parallelism.

Target functions in qualitative networks direct the execution of the network:
from state v = (v1, v2 . . . vn), the next state v′ = (v′1, v′2 . . . v′n) is computed by:

v′i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

vi + 1 vi < Ti(v),
vi vi = Ti(v),

vi − 1 vi > Ti(v).
(1)

6

A genetic regulatory network (GRN) [13], G(V,M,T,n), consists of n dis-
crete variables: V = (v1, v2 . . . vn) bounded individually by M ∶ V → {1, . . . ,N}.
Nodes have target functions from T associated with them that govern updates
of variables as in (1). The updates are asynchronous, which is the major differ-
ence between GRNs and QNs. We additionally assume that the updates are fair,
i.e. each variable that is not equal to its target value is eventually updated.

Qualitative networks and genetic regulatory networks, as such, prove to be
a suitable formalism to model some biological systems [12, 13, 17–19]. A tar-
get function of a variable v is typically a simple algebraic function, such as
sum, over several other variables w1,w2 . . .wm. We often say that v depends on
w1,w2 . . .wm or that w1,w2 . . .wm are inputs of v. Q∣v denotes the restriction
of Q to the variable v and its inputs, where the inputs behave arbitrarily. In the
following, we use the term network to refer to both QNs and GRNs.

We say that a network is stabilizing if there exists a unique state s, that is
eventually reached in all executions, such that T (s) = s. Intuitively, this means
that starting from an arbitrary state, we always end up in a fixpoint and always
the same one. Formally, we are attempting to prove the existence of a unique
state (k1, k2, . . . kn) such that FG(∀vi ∈ V . vi = ki). Note that the stabilization
property is not expressible in LTL unless we add support for both existential
and universal quantification over states.

We define L to be a finite set of predicates that range over the simple in-
equalities of the form m ≤ v ≤M , where m and M are constants in {0,1, . . . ,N}.

We use the term local lemma over a variable v to represent proved assertions
of the form FG(p1)∧FG(p2)∧⋅ ⋅ ⋅∧FG(pm)⇒ FG(q) where q ∈ L restricts v and
p1 through pm are predicates about variables in the network proved previously.

Algorithm. Since networks considered are finite and all executions are infinite,
each execution of the system must end in a cycle. We consider all possible exe-
cutions of a network and note the trichotomy: (a) all executions end in the same
fixpoint (the network stabilizes); or (b) there exists an execution that ends in
a cycle of length greater than 1 (the network cycles); or (c) all executions end
in a fixpoint and there exist at least two different fixpoints (the network bifur-
cates). As described later in this section, our algorithm covers all of these cases,
and is therefore complete. We note that completeness depends on the finiteness
of networks considered and on the fact that the algorithm falls back on the
non-compositional Search routine.

Our procedure is displayed in Alg. 1. It first applies a local lemma gener-
ation procedure GenLemmas (Alg. 2) that we explain next in this section. In
all practical cases we find that the lemmas found during this phase directly im-
ply stabilization in cases where the model does stabilize. If no proof has been
found, the strategy is reversed: our procedure searches for one of two types of
counterexamples: multiple fixpoints and non-trivial cycles. Both counterexample
finding procedures are complete; therefore, in the instance that GenLemmas
does not prove stabilization and yet no counterexample is found, we have still
proved stabilization. The procedure Search(V min, V max,Q) is used by Alg. 1 to
look for existence of a counterexample in a network Q. Search uses the proved

7

variable constraints V min and V max to reduce the state space in which it needs
to explore. If Search is unable to find a counterexample, no counterexample
exists. Thus, in this case, we know that we need only find a single trivial cycle.
This is easily done using a decision procedure as is done in Search.

Lemma generation (Alg. 2). The key idea behind our approach is to first find
local lemmas about the update functions for specific variables in the network.
That is, if a variable v locally depends on variables w1,w2, . . .wm, we compute
lemmas about interactions between v and wi’s of the following form:

FG(p1) ∧ FG(p2) ∧ ⋅ ⋅ ⋅ ∧ FG(pm)⇒ FG(q)

where pi’s are predicates in L about variables wj ’s and q is a predicate about
v. We compute the local lemmas until no new ones can be deduced. If for each
variable v ∈ V we can use the lemmas to prove that FG(v = k) for some constant
k, then we can report that the system is stabilizing.

The procedure GenLemmas, Alg. 2, iteratively computes a set of lemmas, P.
During the iterative search it maintains a set of frontier variables, F , for which
new facts have been proved, but not used yet. Initially, F contains all unfixed
variables in the network. The procedure repeatedly picks w ∈ F and generates
new local lemmas about variables that depend on w. The lemmas are used to
update V min and V max, which overapproximate the least and upper bounds of
values of variables; namely, for each v ∈ V we have FG (V min(v) ≤ v ≤ V max(v)).
Alg. 2 terminates because the variable’s bounds can be updated at most N times,
so each variable can be enqueued at most N times. From this also follows that
GenLemmas performs no exponential explorations. Generation of the local lem-
mas NewLemmas is shown in Alg. 3. It proceeds via a search over the language
of base inequalities L: the predicates over v that improve current approximation
and that are proven to hold, are returned. Termination of Alg. 3 follows from
finiteness of ∣L∣=O(nN). The worst-case complexity of Alg. 2 is thus O(n2N ∣L∣)
assuming constant cost of PROVE (see the following discussion).

Recall that with Q∣v we denote the restriction of Q to a variable v and its
inputs. The call PROVE(φ,Q∣v) is the application of model checking techniques
to prove that Q∣v respects the property φ. The key to the performance of our
implementation is that checking φ locally is extremely fast. Since we are able to
prove stabilization of the entire system while only ever applying PROVE to small
parts of the system, our procedure is very efficient. That, coupled with the fact
that PROVE calls can be executed in batches and thus in parallel on as many
processors as are available, makes the method scalable.
Theorem 1 [36] establishes the soundness and completeness of our method.
Domain specific optimization. Until now we have presented a general proce-
dure that works with most models of concurrent update, and all possible up-
date relations (not just those defined per variable to follow the target func-
tions). However, due to specific target functions used in biological networks, we
can reimplement the lemma generation routine in a way that Prove is never
needed, leading to significant performance improvements. Our alternative proce-
dure F-NewLemmas is shown in Alg. 4. We consider a variable v and its inputs

8

Alg 1. Stabilization proving procedure

input Q : QualitativeNetwork(N)
output fixpoint or counterexample

(V min, V max) ∶= GenLemmas(Q)
if (∀v ∈ V . V min(v) = V max(v)) then

return stabilizing at fixpoint V min

else if Search(V min, V max,Q) finds a counter-example π then
return non-stabilizing with counterexample π

else
find single trivial fixpoint V
return stabilizing at fixpoint V

Alg 2. Lemma generation procedure GenLemmas

input Q : QualitativeNetwork(N)
output V min, V max∶V → {0,1, . . .N}
F ∶= ∅; P ∶= ∅
∀v ∈ V, v constant . V min(v) ∶= v ∧ V max(v) ∶= v
∀v ∈ V, v non-constant . V min(v) ∶= 0 ∧ V max(v) ∶= N
for all non-constant variable v ∈ Q do
F ∶= F ∪ {v}

while F ≠ ∅ do
w ∶= pick a variable from F
for all variable v ∈ outputs(w) do

for all lemma l ∈ NewLemmas(v, V min, V max) do
F ∶= F ∪ {v}
P ∶= P ∪ {l}
update V min(v), V max(v) with respect to l

return (V min,V max)

Alg 3. Lemmas generation procedure NewLemmas

input v : variable
input V min, V max∶V → {0,1, . . .N}
output S - lemmas
S ∶= ∅
(w1,w2, . . . ,wm) ∶= inputs(v)
p ∶= (⋀i V min(wi) ≤ wi ≤ V max(wi))
for all predicate q ∈ L over v that strengthen V min(v) or V max(v) do
l ∶= (FG(p)⇒ FG(q))
if PROVE(l,Q∣v) then
S ∶= S ∪ {l}

return S

Alg 4. Domain-specific fast lemma generation F-NewLemmas

input v : variable
input V min, V max∶V → {0,1, . . .N}

(w1,w2, . . . ,wm) ∶= inputs(v)
p ∶= (⋀i V min(wi) ≤ wi ≤ V max(wi))
T ∶= Tv(⨉i[V min(wi), V max(wi)])
return {FG(p)⇒ FG(min(T) ≤ v ≤ max(T))}

w1,w2 . . .wm. Instead of guessing the influence of inputs under the constraints
V min and V max on the output v, we compute it exactly. Namely, we compute the
set T of values of target function Tv applied to all possible input combinations:

T = Tv([V min(w1), V max(w1)]× [V min(w2), V max(w2)]×⋅ ⋅ ⋅× [V min(wm), V max(wm)]),

thus obtaining a new approximation for v: min(T) ≤ v ≤ max(T). In Theorem 2
[36] we prove that the lemmas generated by F-NewLemmas indeed hold.

The worst-case cost of the stabilization proving procedure using F-New-
Lemmas is O(n2Nd+1) where the network has n variables, of maximal indegree
d (Nd results from generating input combinations). Since in all of our examples
N is small, this procedure works exceptionally fast (see experimental results
in Section 4). If N were larger, the procedure with NewLemmas could be in
principle more efficient than F-NewLemmas.
Search for counterexamples. In Alg. 1, if the lemmas do not imply stabilization
then the procedure Search is called to search for a counterexample, or exhaus-
tively show that no counterexample exists. Search uses the bounds V min and
V max computed earlier to limit the search space that is exhaustively explored.

Search is designed to find one of two types of counterexamples: multiple
trivial fixpoints and non-trivial cycles. In the case of multiple fixpoints, Search
encodes the problem of existence of at least two fixpoints of the system of length
1 as an instance of a formula satisfiability problem. A decision procedure is used
to search for the existence of two different states: (v1, . . . vn) and (w1, . . . ,wn)
such that each of them is a fixpoint: ∀i ∈ {1 . . . n} . (v′i = vi ∧w′

i = wi) ∧
∃i ∈ {1 . . . n} . (vi ≠ wi), where the next state, v′, is determined from v′s in-
puts by (1). We can ignore reachability here because the set of initial states
is equal to the set of all possible state configurations. Note also that, for ef-
ficiency, we conjoin the system with extra constraints using V min and V max:
∀v ∈ {v1 . . . vn,w1,wn} . V min(v) ≤ v ≤ V max(v). Experimentally we find that
the information from the proved lemmas leads to tremendous speedups when
searching for multiple fixpoints. Satisfiability of the query proves the existence
of at least two different fixpoints. If it is unsatisfiable, the system is cyclic or
terminating. In the next phase we search for a non-trivial cycle counterexample.

To find a non-trivial cycle we use bounded model-checking [30] together with
the encoding of liveness to safety found in [31]. For efficiency, as we unroll the sys-
tem Q during bounded model checking, we conjoin the system with constraints
on the values of the variables that come from the proven lemmas. Again we
find that the information from the proved lemmas leads to tremendous speedups
when searching for non-trivial cycles. Termination of the unrolling uses a naive
diameter check [30], leading to a sound and complete technique. Fortunately we
know only of toy examples where a search to the system’s diameter is necessary.

4 Experimental results

We have implemented Alg. 1 in a tool called BioCheck, using Cadence SMV [32]
as the implementation of PROVE and Z3 [33] as the decision procedure. The

10

Model N+1 #variables #edges Model N+1 #variables #edges

SSkinFxd 4 25 45 Skin3DFxd 4 1200 2420

SkinFxd 4 60 90 Skin3D 4 1200 2420

ESkin6Fxd 4 72 108 Diabetes8days 3 75 148

ESkin7Fxd 4 84 126 Diabetes15weeks 3 75 148

ESkin8Fxd 4 96 144 VPC4 3 48 92

Skin2DFxd 4 300 530 VPC6 3 72 138

Skin2D 4 300 530 PairRule(EctoEve) 4 7 23
Tab. 1. Biological examples tested. N + 1 indicates the granularity of the network;
#variables and #edges represent the number of variables (nodes) and the number
of interactions between variables (edges), respectfully, in the model. The skin models
Skin2D and Skin3D contain bugs that our tool found for the first time. The repaired
versions are suffixed with Fxd.

NewLemmas procedure is easily parallelized: the local lemmas are proved in
batches rather than one-by-one. All experiments were performed on a PC equipped
with 4GB memory and a quad-core Intel processor with hyper-threading.

Biological systems tested. Information about the examples used during our ex-
perimental evaluation can be found in Tab. 1. These models are variations on
four base systems: skin, diabetes, VPC and pair-rule genes.

The mammalian epidermis model [12], SkinFxd, consists of 5 cells, each
containing 12 variables. We tested a simplified version, SSkinFxd, where only 5
variables per cell directly relevant to stabilization were considered (Fig. 1). We
also built elongated variants of this model: ones that consist of more than 5 cells,
ESkin6-8Fxd, and ones that emulate multidimensional skin tissue. Skin2DFxd
contains 4×5 cells (240 variables) and represents skin cross-section. Skin3DFxd
consists of 4 × 5 × 5(= 100) 3-D mesh of cells (1200 variables). Note that, using
our tool, we are the first to find a bug in the skin model from [12] (Section 2).

The model of several molecular pathways operating in type-2 diabetes and
chronic obesity [17], Diabetes, exists in two variants that differ in constants: a
variant after 8 days or 15 weeks after mice started being fed a fatty diet.

The vulval precursor cells (VPC) model [18], is a model of cell fate determi-
nation in the formation of C. elegans vulva. The model VPC4 includes 4 cells.
In nature, there are 6 precursor cells, but the model was reduced by its author
to 4 cells to make analysis by other tools tractable. Our tool easily handles the
extended model VPC6, which includes 6 cells.

We also tested a genetic regulatory network, PairRule, that models genes
operating during segmentation in the Drosophila embryo [19], and a mutant of
this network, PairRuleEctoEve, with ectopic expression of the even-skipped
gene. Sanchez et al. [19] report the former model non-stabilizing and the latter
stabilizing, which is confirmed by our results. As the pair-rule model is very
small, the time to analyze it is negligible and is not included in the performance
comparison.

Results. The comparison between our tool and existing tools is presented in
Tab. 2. In this table we have compared the following tools:
– BC is our tool BioCheckimplementing Alg. 1 and 3 (NewLemmas).

11

Model Result BC FBC Naive TRMα SMVα
1 SMVα

2 QNB SPNα VIS

SSkinFxd proved 3.8 0.0 T T M T M T T

SkinFxd proved 9.0 0.0 T T M T M T T

ESkin6Fxd proved 10.6 0.0 T T M T M T T

ESkin7Fxd proved 12.9 0.0 T T M T M T T

ESkin8Fxd dispr. 12.3 1.0 2.1 T M M M T T

Skin2DFxd proved 50.3 0.0 T T M M M T T

Skin2D dispr. 56.5 13.1 T T M M M M T

Skin3DFxd proved 257.3 0.1 T T V M V M T

Skin3D dispr. 396.8 182.8 T T V M V M T

Diabetes8days proved 4.9 0.0 T T M T M T T

Diabetes15weeks proved 5.2 0.0 T T M T M T T

VPC4 proved 4.6 0.0 T T T T M T T

VPC6 proved 7.0 0.0 T T M T M T T
Tab. 2. Comparison of our approach with other tools. BC is found in Alg. 1 in Sec-
tion 3. FBC is the domain-specific version of BC using F-NewLemmas instead of
NewLemmas. Runtimes are given in seconds. T indicates a timeout, where the thresh-
old was set to 20mins. M represents an out-of-memory exception. The memory thresh-
old was set to 4GB. V indicates tool failure after reporting too many variables.

– FBC is BioCheck using F-NewLemmas (Alg. 4) instead of NewLemmas.
– Naive is an implementation of bounded model checking using a diameter

check as the termination condition, i.e. Naive(Q) = Search(∅,∅,Q).
– TRMα is the application of Terminator [24] to solve a slightly differ-

ent problem than stabilization (as stabilization itself is not encodable using
LTL). For all the models that do stabilize, we test if the provided fixpoint
is eventually reached. For those that do not guarantee stabilization we look
for a non-trivial cycle. We use the symbol α to remind the reader that this
application is not solving quite the same problem as stabilization.

– SMVα
1 and SMVα

2 are applications of Cadence SMV and NuSMV [34]
respectively to the same problem as is used in TRMα.

– QNB is a tool from [12] that computes infinitely-often visited states in a net-
work. For the comparison in Tab. 2, we could only use the tool that treats
a system as a whole, rather than the version using the system’s hierarchi-
cal structure to accelerate the whole-system reachable states computation.
This acceleration-based technique has not been implemented. When applied
manually to the example Skin, on similar hardware, the acceleration-based
technique took 21 mins. (see [12]). With some help by the author of the tool,
we have established that the acceleration-based technique still would not be
able to handle our larger examples.

– SPNα is the application of Spin [35] on the same formulas as in TRMα.
– VIS is used in our experiments to symbolically compute the model’s reach-

able state spaces, from which we look for a stable state.
Note that all previously known approaches fail to scale to the larger examples.

For example, in the column TRMα the encoding creates a program that, in
essence, forces the liveness prover to find termination arguments for each possible
path through the loop, which is a very large set (e.g. SkinFxd contains 360 such

12

Model Gen-
Lem-
mas

Opt.
Gen-
Lem.

Se-
arch

Proof
/ CEX

Size

Model Gen-
Lem-
mas

Opt.
Gen-
Lem.

Proof
Size

SkinFxd 9.0 0.0 177 ESkin6Fxd 10.6 0.0 212

ESkin8Fxd 11.3 0.0 1.0 2 / 74 ESkin7Fxd 12.9 0.0 251

Skin2D 43.4 0.0 13.1 2 / 215 Skin2DFxd 50.3 0.0 926

Skin3D 214.1 0.1 182.7 2 / 860 Skin3DFxd 257.3 0.1 3896

VPC4 4.6 0.0 75 Diabetes8days 4.9 0.0 132

VPC6 7.0 0.0 107 Diabetes15weeks 5.2 0.0 132

PairRule 4.8 0.0 1.6 2 / 4 PairRuleEctoEve 1.7 0.0 8
Tab. 3. Experimental details of application of our tool to the examples. Proof size
is given as the number of implications in the proof, if the stabilization was proved.
Otherwise counterexample size is given as “CEX size”, which is cycle length and number
of variables involved in the cycle. All times are given in seconds.

Mesh
(#cells)

#Variables Optimized
GenLemmas [s]

Mesh
(#cells)

#Variables Optimized
GenLemmas [s]

10 × 10 × 5 6.0 ⋅ 103 0.8 75 × 75 × 5 3.4 ⋅ 105 57.4

10 × 20 × 5 1.2 ⋅ 104 1.6 100 × 100 × 5 6.0 ⋅ 105 103.8

20 × 20 × 5 2.4 ⋅ 104 3.6 100 × 200 × 5 1.2 ⋅ 106 208.5

10 × 50 × 5 3.0 ⋅ 104 4.5 200 × 200 × 5 2.4 ⋅ 106 423.0

20 × 50 × 5 6.0 ⋅ 104 9.8 100 × 500 × 5 3.0 ⋅ 106 544.3

50 × 50 × 5 1.5 ⋅ 105 25.0 200 × 500 × 5 6.0 ⋅ 106 M
Tab. 4. Performance of our tool FBC on scaled-up variants of the Skin3DFxd model.
M represents an out-of-memory exception.

paths). For this reason, Terminator times out. In the case of SMVα, the
SkinFxd has 460 reachable states, which exceeds the typical limits of symbolic
model checking tools. Note that unlike Naive, our implementation of Search
with range restrictions does scale. This shows how the range restrictions that
come from the lemmas help reduce the state space significantly.

Note that in the case of the non-stabilizing ESkin8Fxd algorithm, our
lemma generation procedure performs worse than the naive method. This demon-
strates (as mentioned in Section 1) that our lemma generation procedure could
in cases hinder rather than help performance.

Table 3 contains more statistics about the results of our tool during the
experimental evaluation. The optimized lemma generation procedure performs
an order of magnitude faster than the one that uses a model checker. The size of
the counterexamples found corresponds to the number of nodes in the network
that haven’t been fixed by the proof procedure (not shown); meaning that the
proof procedure comes close to a counterexample.

In Tab. 4 we check how our proof procedure scales to larger examples. We run
them on models containing up to 104 cells (with or without bug) with a 10min
timeout. The NewLemmas-based implementation does not time out on exactly
one of these examples, In contrast, the F-NewLemmas-based implementation
successfully verifies all but the 200 × 500 mesh model.

Release. We provide a preliminary packaging of the tool and benchmarks
used at: http://www.cs.vu.nl/~ekr/BioCheck .

13

5 Conclusions

This paper reports on new advances in the area of formal analysis for biological
models. We have addressed the open problem of scalable stabilization proving
with a new sound and complete modular proof procedure. Our procedure takes
advantage of the fact that, in practice, we can limit the set of possible modu-
lar proofs from which we search to those where the local lemmas are of a very
restricted form. This leads to tremendous speedups, both for proving as well as
disproving stabilization. It seems that it is the inherent robustness of the bio-
logical systems that makes our technique work so well—evolutionary developed
systems remain naturally stable in the presence of timing and concentration
variations.

Future work. While stabilization is a liveness property, safety techniques can
in principle be used when checking finite-state systems. In future we might find
useful adaptations of the circular proof rules (e.g. [9,10]) for the purpose of prov-
ing stabilization. Furthermore, it might be interesting to adapt our procedure
to prove additional liveness properties beyond stabilization, and fair concurrent
execution. Finally, the models that we have examined do not model certain im-
portant aspects, such as probabilities, aging or cell cycle which should fit in well
with our current framework.

Acknowledgments. We thank M. Schaub for discussions about QNBuilder; C.
Chaouiya for Drosophila models; S. Sankaranarayanan for clarifying the relation
to tail invariants; and all the reviewers for their insightful comments.

References

1. Fisher, J., Henzinger, T.A.: Executable biology. Proc. WSC, pp 1675–1682, 2006.
2. Bonzanni, N., Feenstra, A.K., Fokkink, W., Krepska, E.: What can formal methods

bring to systems biology? In Proc. FM, LNCS 5850, pp 16–22, 2009.
3. Heath, J.: The equivalence between biology and computation. In Proc. CMSB,

LNBI 5688, pp 18–25, 2009.
4. Fisher, J. et al.: Predictive modeling of signaling crosstalk during C. elegans Vulval

Development. In PLoS CB, 3(5):e92, 2007.
5. Heath, J., Kwiatkowska, M., Norman, G., Parker G., Tymchyshyn, O.: Probabilis-

tic model checking of complex biological pathways. CMSB’06, LNCS 4210:32–47.
6. Clarke, E., Faeder, J., Langmead, C., Harris, L., Jha, S., Legay, A.: Statistical

model checking in BioLab: Applications to the automated analysis of T-Cell recep-
tor signaling pathway. In Proc. CMSB’08, LNCS 5307, 231–250.

7. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biomolecular interaction networks. Theo Comp Sci,325(1):25-44,2004.

8. Zotin, A.I.: The stable state of organisms in thermodynamic bases of biological
processes: Physiological Reactions and Adaptations, De Gruyter, 1990.

9. Jones, C.: Specification and design of (parallel) programs. IFIP Congr.’83, 321-32.
10. Pnueli, A.: In transition from global to modular temporal reasoning about pro-

grams. In Logics and Models of Concurrent Systems, pp 123-144, 1985.
11. Abadi, M., Lamport, L.: Composing specifications. TOPLAS 15(1):73–132, 1993.

14

12. Schaub, M. et al.: Qualitative networks: A symbolic approach to analyze biological
signaling networks. In BMC Systems Biology, 1:4, 2007.

13. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regula-
tory networks—I. Biological role of feedback loops and practical use of the concept
of the loop-characteristic state. Bullet. of Math. Bio., 55(2):247–276, 1995.

14. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation oand
analysis of logical models of genetic networks. LNBI 4695, pp 233–247, CMSB’07.

15. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying critical systems
by means of the synchronous data-flow programming language LUSTRE. In IEEE
Transactions on Software Engineering 18(9):785–793, 1992.

16. Pnueli, A.: The temporal logic of programs. In Proc. FOCS, pp 46–57, 1977.
17. Beyer, A., Fisher, J.: Unpublished results, 2009.
18. Beyer, A., et al.: Mechanistic insights into metabolic disturbance during type-II

diabetes and obesity using qualitative networks. TCSB, LNBI 5945:146–162, 2010.
19. Sanchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis fo the pair-

rule cross-regulatory module. Journal of Theoretical Biology 224, pp 517–537, 2003.
20. Ropers, D., Baldazzi, V., de Jong, H.: Model reduction using piecewise-linear ap-

proximations preserves dynamic properties of the carbon starvation response in
E. coli. IEEE/ACM Trans. on Comp. Bio. and Bioinf., vol. 99, preprint, 2009.

21. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine
hybrid automata and its application to biological modelling: Delta-Notch protein
signalling. IEE Systems Biology, 1(1):170–183, 2004

22. Podelski, A., Wagner, S.: A sound and complete proof rule for region stability of
hybrid systems. In HSCC, LNCS 4416, pp 750–753, 2007.

23. Oehlerking, J., Theel, O.: Decompositional construction of Lyapunov functions for
hybrid systems. In HSCC, LNCS 5469, pp 276–290.

24. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In Proc. POPL, pp 265-276, 2007.

25. Moore, J.S.: A mechanically checked proof of a multiprocessor result via a unipro-
cessor view. In FMSD, 14(2):213228, 1999.

26. McMillan, K.: Circular compositional reasoning about liveness. In Proc. CHARME,
LNCS 1703, pp 342–345, 1999.

27. Cousot, P. and Cousot, R.: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. POPL, pp 238–252, 1977.

28. Colón, M. and Sipma, H.: Practical Methods for Proving Program Termination.
In Proc. CAV, pp 442–454, 2002.

29. Lowell, S. et al : Stimulation of human epidermal differentiation by delta-notch
signalling at the boundaries of stem-cell clusters. Curr Biol. 4;10(9):491-500, 2000.

30. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. In Proc. FMSD, 19(1):7–34, 2001.

31. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In
Proc. FMICS, ENTCS 66(2):160–177, 2002.

32. McMillan, K.: Symbolic model checking (PhD thesis), Kluwer, 1993.
33. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In Proc. TACAS, LNCS

4963, pp 337–340, 2008.
34. Cimatti, A. et al.: NuSMV 2: An open-source tool for symbolic model checking In

Proc. CAV, LNCS 2404, 2002.
35. Holzmann, G,: The SPIN model checker: Primer and ref. manual, Wesley, 2003.
36. Appendix. TODO.

15

