
Synthesis of Live Behaviour Models for Fallible Domains
∗

Nicolás D’Ippolito†+ Victor Braberman+ Nir Piterman‡ Sebastián Uchitel†+

†Imperial College London
London, United Kingdom

su2@imperial.ac.uk

+Universidad de Buenos Aires,
Buenos Aires, Argentina

{ndippolito, vbraber}@dc.uba.ar

‡University of Leicester,
Leicester, United Kingdom

{np183@le.ac.uk

ABSTRACT

We revisit synthesis of live controllers for event-based op-
erational models. We remove one aspect of an idealised
problem domain by allowing to integrate failures of con-
troller actions in the environment model. Classical treat-
ment of failures through strong fairness leads to a very high
computational complexity and may be insufficient for many
interesting cases. We identify a realistic stronger fairness
condition on the behaviour of failures. We show how to
construct controllers satisfying liveness specifications under
these fairness conditions. The resulting controllers exhibit
the only possible behaviour in face of the given topology of
failures: they keep retrying and never give up. We then
identify some well-structure conditions on the environment.
These conditions ensure that the resulting controller will be
eager to satisfy its goals. Furthermore, for environments
that satisfy these conditions and have an underlying prob-
abilistic behaviour, the measure of traces that satisfy our
fairness condition is 1, giving a characterisation of the kind
of domains in which the approach is applicable.

Categories and Subject Descriptors

D.2 [Software Engineering]

General Terms

Design, Algorithms

Keywords

controller synthesis, behavioural modelling

1. INTRODUCTION
We are interested in the automated construction of op-

erational event-based models from specification of intended

∗This work was partially supported by grants ERC PBM-
FIMBSE, CONICET PIP955, UBACYT X021, and PICT
PAE 2272.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

system behaviour. This topic has been the subject of exten-
sive study in the software engineering community. Consider
for example the research on synthesis from scenario-based
(e.g. [27, 2]) and declarative (e.g. [17]) specifications. The
aim is to provide an operational model that will support
requirements elicitation and analysis. Analysis techniques
may include model checking, simulation, animation and in-
spection (aided by automated slicing and abstraction).

Behaviour model synthesis is also used to automatically
construct plans that are then enacted by a software compo-
nent. For instance, synthesis of glue code and component
adaptors has been studied. The main aim of these stud-
ies has been to achieve safe composition at the architec-
ture level, and in particular in service oriented architectures
(e.g. [13]). Also, there has been an increasing interest in ap-
plications to self-adaptive systems [10, 26]. All these systems
rely heavily on controller synthesis techniques [24]. Such
techniques guarantee the satisfaction of safety and even live-
ness [22] requirements. The proposed solutions work within
the constraints enforced by the problem domain, the capabil-
ities offered by the self-adaptive system, and under fairness
and progress assumptions on the controller’s environment.
Recently, we suggested an approach for synthesis [6] in the
context of discrete event systems. Our work emphasises the
importance of explicit distinction, in controller synthesis,
between controlled and monitored actions [19] and between
descriptive and prescriptive behaviour [14]. We also pro-
vided appropriate methodological guidelines.

One of the limitations of existing synthesis techniques is
that they are designed to work in the context of idealised
problem domains. Situations in which the outcome of con-
troller actions are not guaranteed are dealt with by assuming
that controller actions never fail (e.g. [6]), by not-considering
liveness goals (e.g. [13, 26]), or by building controllers that
aim to be live but are not guaranteed to be so [10]).

In this paper we propose a technique for synthesising live
behaviour models in the context of problem domains in
which controlled actions can fail. The technique adapts and
extends our previous work on synthesis of controllers for dis-
crete event systems [6]. A key insight is the identification
of a realistic fairness condition, strong independent fairness,
which allows for a polynomial treatment of failures. In con-
trast, the complexity of the general problem is exponential.

Specifically, we consider models in the form of Labelled
Transition Systems (LTS). We distinguish controllable from
uncontrollable actions. In addition, some controllable ac-
tions have associated actions that constitute a success or a
failure. The synthesis problem calls for the construction of a

model that when composed with its environment satisfies a
given specification in FLTL [9]. The FLTL formulas we con-
sider have the form G I ∧ (

∧n
i=1 GFAi →

∧m
j=1 GFGj),

where G I is a safety system goal, GFAi represents a live-
ness assumption on the behaviour of the controller’s envi-
ronment, and GFGj models a liveness goal for the system.
The expressions Ai and Gj are non-temporal fluent expres-
sions [9]. The system safety goal, I , is expressed as a Fluent
Linear Temporal Logic formula. We assume strong inde-
pendent fairness of the successes and failures with respect
to certain assumptions on the environment. Intuitively, the
strong independent fairness condition states that every fail-
ure and every assumption must occur fairly (infinitely often
if enabled infinitely often) but also independently of all other
failures and assumptions and of the state of the environment
and the controller. In other words, failures and assumpti-
ons cannot be coordinated. They must be “controlled” by
different agents which must be oblivious to each other.

Technical contributions of this paper include (i) a discus-
sion of the fairness conditions required for problem domains
with failures. In particular the observation that strong fair-
ness [8] of successful controlled actions may be insufficient
to guarantee that reasonable controllers are synthesised; (ii)
novel fairness conditions, i.e. t-strong fairness and strong
independent fairness that are stronger than strong fairness
and are good fits for realistic controller synthesis settings,
(iii) the definition of a polynomial time LTS control prob-
lem, named RSGR(1) that supports safety and GR(1)-like
liveness properties; (iv) the restrictions that an environment
model requires in order to guarantee correctness of the syn-
thesis procedure and to avoid controllers that fulfill their
specification by trivialising it (i.e. anomalous controllers);
and (v) a proof that if the environment can be thought
of as a grounding of a probabilistic environment with non-
zero probabilities on transitions, then the traces that are
not strong independent fair have probabilistic measure zero,
thus providing a characterisation of the domains in which
our approach can be applied.

The paper is organised as follows. In Section 2 we mo-
tivate and present an overview of the approach. Section 3
includes the necessary background. In Section 4 we present
the technique for synthesising LTS controllers in the pres-
ence of failures: in subsection 4.1 we discuss the notion of
fairness required for the proposed controller synthesis tech-
nique; in subsection 4.2 we formalise the control synthesis
problem that handles domains with failures and discuss how
it can be solved efficiently; in subsection 4.3 we discuss the
problem of anomalous controllers and how to avoid them;
and in subsection 4.4 we present a probabilistic argument to
show that behaviour that is not strong independent fair is
irrelevant in the context of our synthesis approach. Finally,
we report on case studies, discussion, related work and con-
clusions. Proofs can be found in [5].

2. MOTIVATION
In this section we discuss motivation for our approach.

Technical details are provided in the next sections.
Consider the following simplified scenario: A travel agency

wants to sell vacation packages on-line by orchestrating ex-
isting web-services for flight purchase, car hire and hotel
booking. We want an automated or semiautomated tech-
nique for building the agency’s orchestration, based on the
known usage protocols for individual services and on the

2
3

1 4

56

car.query

car.reserve

car.pay

car.reset
car.query.failed

car.query.succ

car.reserve.succ

car.reserve.failed

car.pay.failed

car.pay.succ

Figure 1: Car Booking Service.

agency’s own requirements for the provision of packages.
An example of what the protocol for a car rental web-

service is the one depicted in Figure 2. The service requires
a query with information on dates, car type, and other pref-
erences (car.query). The service can either respond with a
list of items satisfying the specified criteria (car.query.succ)
or with not-found (car.query.failed). Subsequently, if a list
is retrieved, a particular item can be reserved (car.reserve)
or the process can be aborted (car.reset). Reservation can
fail (car.reserve.failed) or succeed (car.reserve.succ). In
the latter case, payment is enabled (car.payment) and can
succeed (car.payment.succ) or fail (car.payment. failed).

The web-service protocols for hotel and flight bookings
will typically be similar to that of car rentals: a sequence
of actions is required to progress towards a purchase and a
number of problems may arise, which lead to the failure of
these actions (no flights, communication errors, insufficient
funds, etc.). Without loss of generality, the protocol for
hotel and flight bookings is analogous to that for cars with
actions such as flight.query and hotel.reserve.succ.

The problem for the travel agency orchestration is to co-
ordinate the individual services in order to provide a cohe-
sive comprehensive vacation package web-service. For in-
stance, it must attempt to avoid booking hotel and car
for a customer when no flights are available for the de-
sired dates. Such a requirement can be formalised, for in-
stance, in temporal logic as I1 = G(∀srv ∈ Services ·
TryToBuy(srv) ⇒ AllReserved). Another requirement,
if the agency is charged for reservations, might be not to
reserve before all queries have returned viable items: I2 =
G(∀srv ∈ Services · TryToReserve(srv)⇒ AllFound).

The agency should coordinate the services to achieve its
own requirements. It should do that while following the pro-
tocols of the services and deal with the various failures that
may occur. For instance, if a failure occurs when reserving
a flight, then the Flight service must be re-queried; but if
the result of the new query returns notFound then reserva-
tions for car and hotel must be cancelled (and the user may
consider a different holiday).

Finally, the travel agency orchestration must be live. That
is, it must actually succeed in providing package holidays.
Of course this depends on actually having requests pend-
ing to be processed. Such a requirement should be for-
malised distinguishing the assumptions on the environment
(A1 = GFPendingPackageRequests) and prescriptions
on the orchestration (G1 = GF package.deliver). We re-
quire that if the environment satisfies A1 then the orches-
tration will satisfy G1.

We distinguish between the travel agency’s controlled and
monitored actions (double and single lines in figures, respec-
tively). Actions such as car.query, car.reset, flight.reserve,
and hotel.payment are controlled by the orchestrator for the
travel agency while the rest are monitored. With such dis-
tinction we apply controller synthesis. We attempt to pro-

duce a controller such that, when interacting with the Car,
Flight and Hotel services, will achieve safety (e.g. I1, I2) and
liveness (e.g. G1) under relevant assumptions (e.g. A1).

Unfortunately, our previous approach [6] cannot produce
controllers that guarantee such goals. This is quite reason-
able as for achieving such a goal, the controller must rely on
a number of domain assumptions. For instance, it cannot be
the case that queries, reservations and payments always fail.
Under such assumptions it would seem feasible to construct
a controller for the travel agency: the controller would have
to retry actions in the case of failures knowing that after
some number of reattempts it will succeed1. The assump-
tion mentioned (if the controller tries often enough, it will
eventually succeed) is a typical fairness condition sometimes
referred to as strong fairness [8]. Strong fairness is not sup-
ported by polynomial time algorithms such as [6]. It requires
exponential algorithms such as [7]. It could be argued that
many exponential worst case algorithms are well-behaved
in practice. Unfortunately, this is not the case here. The
best case complexity of all known algorithms that deal with
strong fairness is exponential [21]. More precisely, the size
of the controller is always N × k! where N is the size of the
environment model and k is the number of strong fairness
conditions. The best time complexity of all known algo-
rithms is Nk × k!. Again, the k! factor is never reduced. In
other words, unlike symbolic model checking in which many
practical settings are not worst case, here space and time
blow up in every reasonable sized example.

Interestingly, strong fairness assumptions on success of
queries, reservations and payments are insufficient to achieve
the goals. The (strong fair) behaviour in which failures “take
turns” would prevent achieving the goal. Consider the sce-
nario in which the controller first queries a car successfully
and then fails querying for a hotel. The controller must re-
set the car service and re-query for cars and hotels. But
now the hotel query succeeds and the car query fails forcing
the controller to reset the hotel service, and so on. Thus, a
synthesis algorithm relying on strong fairness would declare
that no controller realising this goal exists.

In conclusion, it would seem possible to build a reason-
able orchestration of the services towards achieving the goals
of the travel agency. However, non-trivial assumptions on
the environment behaviour are required to guarantee such
goals are achieved by a reasonable controller. This lays out
two research questions. Firstly, how can an orchestration
for the travel agency be constructed automatically and sec-
ondly, what are the required assumptions, which will enable
to guarantee the goals.

In Section 4 we present a technique for automatically syn-
thesising controllers for settings such as the travel agency.
We handle cases where the environment can exhibit failures
to controller actions, and show what are the environment
assumptions required for such controllers to succeed.

3. BACKGROUND
In this section we present background for controller syn-

thesis in the context of event-based operational models. We
assume the problem domain for which a controller is to be
built is described as a labelled transition system.

1Note that even in this simple example retrying is not trivial.
For example, if a payment fails it is necessary to re-query
and re-reserve before re-attempting to pay.

Definition 3.1. (Labelled Transition Systems) A Label-
led Transition System (LTS) is P = (S, L, ∆, s0), where S
is a finite set of states, L ⊆ Act is its communicating alpha-
bet, ∆ ⊆ (S ×L× S) is a transition relation, and s0 ∈ S is
the initial state. We denote ∆(s) = {s′ | (s, a, s′) ∈ ∆}. We
say an LTS is deterministic if (s, ℓ, s′) and (s, ℓ, s′′) are in
∆ implies s′ = s′′. An execution of P is a word s0, a0, s1, . . .
where (si, ai, si+1) ∈ ∆. A word π is trace of P if there is
an execution ε of P such that ε|L = π. We define tr(P) to
define the set of traces of P .

We describe specifications (e.g. the prescriptions for con-
troller) using Fluent Linear Temporal Logic (FLTL) [9].
Linear temporal logics (LTL) are widely used to describe
behaviour requirements [9]. FLTL is a linear-time tem-
poral logic for reasoning about fluents. A fluent fl is de-
fined by a set of initiating actions Ifl, a set of terminat-
ing actions Tfl, and an initial value Initiallyfl. That is,
fl = 〈Ifl, Tfl〉initiallyfl

, where Ifl, Tfl ⊆ Act and Ifl ∩ Tfl =
∅. When we omit Initiallyfl, we assume the fluent is ini-

tially false. We use ℓ̇ as short for the fluent defined as
fl = 〈ℓ,Act \ {ℓ}〉.

Given the set of fluents Φ, an FLTL formula is defined in-
ductively using the standard boolean connectives and tem-
poral operators X (next) and U (strong until) as follows:
ϕ ::= fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ, where fl ∈ Φ. We
introduce ∧, F (eventually), and G (always) as usual.

Let Π be the set of infinite traces over Act. For π ∈ Π,
we write πi for the suffix of π starting at ai. The suffix πi

satisfies a fluent fl, denoted πi |= fl, if and only if one of
the following conditions holds:

- Initiallyfl ∧ (∀j · 0 ≤ j ≤ i⇒ aj /∈ Tfl)

- ∃j · (j ≤ i∧aj ∈ If)∧ (∀k ∈ N · j < k ≤ i⇒ ak /∈ Tfl)

The problem of controller synthesis can be expressed as
follows: Given an LTS model E of the environment, a set of
controllable actions Lc, assumptions Asi and goals Gi ex-
pressed in FLTL, build an LTSM such that when composed
in parallel with E (i.e. E‖M), the controller does not block
all non-controlled actions in the environment and for every
trace of E‖M if the trace satisfies the assumption Ai, then
the trace also satisfies the goal Gi.

We use a standard definition of parallel composition [12].
The parallel composition is the LTS that models the asyn-
chronous execution of composed models. It interleaves non-
shared actions and forces synchronisation on shared actions.
The notion of a controller that does not block the actions
of the environment that it does not control is built on that
of legal environment for Interface Automata [3]. Intuitively,
it says that M is a legal environment for E if in every state
(m, e) of M‖E where m and e are states of M and E re-
spectively, if an action a not controlled by M is enabled in
e then it is also enabled in (m,e).

Definition 3.2. (LTS Control) Given a specification for
a problem domain in the form of an environment LTS E, a
set of controllable actions Lc, and a set H of pairs (Asi, Gi)
where Asi and Gi are FLTL formulas specifying assumpti-
ons and goals respectively, the solution for the LTS control
problem L = 〈E,H,Lc〉 is to find an LTS M with controlled
actions Lc and uncontrolled Lc such that M is a legal en-
vironment for E, E||M is deadlock free, and for every pair
(Asi, Gi) ∈ H and for every trace π in M ||E the following
holds: if π |= Asi then π |= Gi.

The problem with using FLTL as the specification lan-
guage for assumptions and goals is that the synthesis prob-
lem is 2EXPTIME complete [23]. Nevertheless, restrictions
on the form of the goal and assumptions specification have
been studied and found to be solvable in polynomial time.
For example, goal specifications consisting uniquely of safety
requirements can be solved in polynomial time, and so can
particular styles of liveness properties such as GR(1) [22].
We have presented an adaptation of GR(1) in the context
of LTS in [6]. It is defined as follows:

Definition 3.3. (SGR(1) LTS Control) An LTS control
problem L = 〈E,H,Lc〉 is SGR(1) if E is deterministic, and
H = {(∅, I), (As,G)}, where I = G ρ, As =

∧n
i=1 GFφi,

G =
∧m

j=1 GF γj, and ρ, φi and γj are Boolean combina-
tions of fluents.

4. SYNTHESIS FOR FALLIBLE DOMAINS
We now present a technique for synthesising controllers

even when their environment exhibits failures. In Subsec-
tion 4.1 we discuss the notion of fairness required for the
proposed controller synthesis technique. In Subsection 4.2
we formalise the control synthesis problem and discuss how
it can be solved efficiently. We then discuss in Subsec-
tion 4.3 the problem of anomalous controllers and how to
avoid them, and finally in Subsection 4.4 we present a prob-
abilistic argument to show that non-fair environment be-
haviour is irrelevant in many realistic settings.

Note that the examples in this section are simplistic and
with obvious solutions to allow conveying the main issues
involved in controller synthesis in domains with failures.

4.1 Fair Environments
We consider controller synthesis in the context of environ-

ments that exhibit failures. We call this setting synthesis
with failures. We present examples showing that fairness of
failures and successes is both necessary and subtle. A mali-
cious environment typically cannot be controlled to achieve
the goals. However, we propose realistic fairness assumpti-
ons that allow for controllers that behave as expected, i.e.,
do not give up and keep retrying.

Consider E, the simple environment model in Figure 2,
where a ceramics cooking process is described. The aim of
the controller is to produce cooked ceramics by taking raw
pieces from the in-tray, placing them in the oven and mov-
ing them once cooked to a conveyor belt. A natural solution
for such a problem is to attempt to build a controller (using

SGR(1)) with a liveness goal G = GF ˙moveToBelt and an

assumption A = GF¬ ˙cooking. Note that the assumption
A is required to ensure that the controller’s environment
progresses when cooking ceramics; without the assumption
no controller can guarantee production of ceramics. Indeed,
a controller for this trivial problem is the one that chooses
to cook rather than be idle, and is constructed automat-
ically by solving the SGR(1) problem sg1 = 〈E,H,Lc〉,
where H = {(A,G)} and Lc = {idle, cook,moveToBelt}.
The solution to sg1 is a controller M that (composed with
E) produces infinitely many cooked pieces if the oven fin-
ishes cooking infinitely often (i.e. E‖M |= GFA implies
E‖M |= GFG).

A slight twist to the ceramics cooking problem is the sce-
nario in which some pieces may break during cooking. The
reasons for why the pieces may break (e.g. impurities in the

1

2

3

idle
cook

moveToBelt

finishedCooking

cooking

Figure 2: Ceramic Cooking Process.

1 2 3

4

5

6

cook

idle

moveToBelt

cook

moveToBelt
fix

cook

finishedCooking

cooking

broken

not.broken

Figure 3: Failing Ceramic Cooking Process (E2).

ceramics, heat stability in oven, etc) are abstracted in the
model (Figure 3). Such abstraction of the causes for failure
is a common approach to behaviour modelling of problem
domains. The assumption is not that the controller’s envi-
ronment chooses whether the piece breaks, rather that the
choice is made by a number of factors that are beyond the
scope of the model.

We distinguish failures from other actions as follows. For
each control problem we define a set of try-response triples.
Such a triple captures the relation between controlled ac-
tions and their success or fail reactions. Note that we re-
quire 1) the “try” action to be controlled, 2) all actions in a
try-response triple to be unique with respect to other triples
in the set, 3) re-tries cannot occur before a response, 4) re-
sponses can only occur as a result of a try, 5) maximum of
one response occurs for every try, and 6) the decision of whe-
ther to fail or succeed cannot be enforced by other actions,
hence failure is enabled if and only if success is enabled.

Definition 4.1. (Try-Response) Given an LTS M =
(SM , LM , ∆M , sM0

), where LC ⊆ LM , we say that a set
T = {(tryi, suci, faili)} is a try-response set for M if the
following hold for all i:

1. tryi∈ LC , suci, faili ∈L\LC and suci 6= faili,
2. For all j 6= i, {tryi, suci, faili}∩{tryj , sucj , failj}=∅,

3. ¬(˙faili ∨ ˙suci)W ˙tryi,

4. G(˙tryi =⇒ X(¬ ˙tryiW(˙faili ∨ ˙suci))),

5. G((˙faili∨ ˙suci) =⇒ X(¬(˙faili∨ ˙suci)W ˙tryi)), and
6. For all s ∈ SM , faili is enabled from s iff suci is

enabled from s.

We return to the ceramics cooking problem and add a failure
to it. Consider the model of Figure 3 with the try-response
set T = {(cook, not.broken, broken)}. The controller for
this problem is required to accomplish two things. First, to
produce cooked pieces and place them on the conveyor belt.
Second, to ensure that only unbroken pieces are placed on
the belt while broken pieces are fixed and re-cooked.

A naive attempt to build a controller for the modified
problem simply adds a safety goal S = G ˙moveToBelt

⇒ ¬Broken to sg1, where Broken is a fluent defined as
〈 broken, cook〉. In other words, attempting to solve sg2 =
〈E2,H, Lc〉, where H = {(∅, S), (A,G)}.

Unfortunately, sg2 does not have a solution. Furthermore,
in general, there is no controller that will work if the envi-
ronment is malicious. A controller cannot succeed if its en-
vironment breaks all ceramics. In other words, for a contro-
ller to produce cooked unbroken ceramics we must assume
that if enough pieces are cooked, one will eventually not
break. That is, that the response to trying cook is not always
the failure broken. This could be a reasonable assumption
for the problem domain. Another attempt at automatically
building a controller could be to strengthen the assumption
A in sg2 to be A′ = GF¬ ˙cooking∧GF ˙not.broken. This
leads to sg3 = 〈E2,H,Lc〉, where H = {(∅, S), (A′, G)}.

The problem with sg3 is that it admits as a solution a
controller M which only does idle. This is because by never
performing cook, the assumption A′ and more specifically
GF ˙not.broken does not hold. Hence, the controller has
no obligation to achieve G. Formally, E2‖M |= GFA im-
plies E2‖M |= GFG holds if E2‖M 6|= GFA. Clearly,
A′ is not a reasonable assumption for the controller’s en-
vironment. The environment depends on the controller to
achieve A′. Or in van Lamsweerde’s terms [16], the assump-
tion is not realisable by the controller’s environment. As
we show in [6], unrealisable assumptions, in addition to not
following best practices in Requirements Engineering, can
lead to controllers that satisfy their goals vacuously. Just
like the controller that always idles in our example satisfies
its specification vacuously (see also Subsection 4.3).

In order to introduce an assumption that is realisable by
the controller’s environment, we must state that if pieces are
cooked infinitely often, not.broken is taken infinitely often
(i.e. GF ˙cook ⇒ GF ˙not.broken). However, this condi-
tion amounts to requiring strong fairness [8] of not.broken
actions which cannot be encoded in SGR(1). Although more
general controller synthesis techniques can deal with strong
fairness [7], these take the algorithmic complexity of syn-
thesis from polynomial (the SGR(1) case), to exponential.
Moreover, sometimes strong fairness is not sufficiently strong
for synthesising controllers in simple, yet common, problem
domains. This is shown in the next example.

Consider another variation of the ceramic cooking prob-
lem in which pieces must be cooked twice before being moved
to the conveyor belt. A controller for such a problem will
need to “remember” how many successful consecutive cook’s
have occurred. Requiring strong fairness on try-response
triples of T = {(cook, not.broken, broken)} is insufficient
to allow the construction of a controller that achieves its
goals. There is no controller that can deal with the case
in which pieces break at least once every two consecutive
attempts to cook them. For instance, consider M a poten-
tial controller for the problem (Figure 4). It is possible to
construct a strongly fair trace by always succeeding in the
first cook (taking the not.broken transition from state 3)
but always failing after the second cook (taking the broken
transition in state 7). If an infinite number of cook are tried

then GF ˙cook ⇒ GF ˙not.broken holds, yet the controller
never succeeds in placing a twice cooked unbroken piece on
the conveyor belt.

The above example shows that a stronger notion of strong
fairness is required. Informally, it should state that every in-
dividual attempt to cook should be treated fairly. That is,

2 3 5

1 4 8

9 7 6

cook
idle

fix
cook

cook

moveToBelt

finishedCooking

cooking

broken

not.broken

finishedCooking

cooking

not.broken

broken

Figure 4: Ceramics cook-twice controller.

attempting first cook of a piece (transition from 1 to 2 in
Figure 3) infinitely often should yield an infinite number
of non broken once-cooked pieces (transition 3 to 5) and
attempting a second cook of a piece (transition 5 to 6) in-
finitely often should yield an infinite number of non broken
twice-cooked pieces (transition 7 to 9).

This stronger notion of fairness is in fact tightly coupled
with the structure of the environment and controller be-
haviour models. What is needed is that for every global state
(a state of E2‖M), if a cook on that state is attempted in-
finitely often then the cooking process will not fail infinitely
often. An alternative intuition is that the decision whe-
ther to fail the cooking process should be fair and be taken
independently of state of the environment model or the con-
troller. In the two-cooks-a-piece example, the decision to
fail the second cook of a piece process should be fair and
independent of the first cook on the same piece.

The following definition captures this stronger notion of
fairness. It requires that for every transition labelled with a
try, if it is taken infinitely often then infinitely often success
occurs before another try.

Definition 4.2. (t-strong fairness) Given an LTSM and
a try-response T for M . A trace π ∈ tr(M) is t-strong fair
with respect to M and T if for all (tryi, suci, faili) ∈ T and
for all transitions t = (s, tryi, s

′) the following holds: π′ |=
GF try′i ⇒ GF(¬tryi U suci), where π

′ = ε′|LM∪{try′

i
},

ε′ = ε|[s.tryi.s′/s.tryi.try′

i
.s′], and ε is an execution of M such

that ε|LM
= π.

Note that w|A is the projection of word w over the alpha-
bet A, and w[v/v′] is the result of replacing in word w all
occurrences of word v with v′.

One issue remains regarding the fairness conditions that
are relevant to enable automated synthesis with failures.

Consider the synthetic example in Figure 5. In this ex-
ample try is the only controlled action, (try, succ, fail) the
only try-response triple, ℓ is an arbitrary event, and G and
A represent goals and assumptions respectively. The trace
try, success, ℓ, try, fail, A, try, success, ℓ, . . . is an example
of a trace that satisfies strong fairness and t-strong fairness,
the assumptions hold infinitely often and yet the goal is
never achieved. Note that no controller could prevent this
trace as try is the only controlled action. The trace shows
some peculiar behaviour: the environment never chooses to
take the assumptions on state 3, and it can do so because it
relies on the fact that it fails sometimes and through failing
achieves its assumptions.

Although contrived, the example shows that the assump-
tions and failures can be systematically combined to make a
controller unsuccessful: the environment can avoid assump-
tions when actions succeed (state 3 in Figure 5) and achieve
assumptions when actions fail (state 5). However, a nat-
ural expectation is that the assumptions on the environ-

1 2

3

4

5

try
succ

fail

ℓ

A

A
G

Figure 5: t-strong fairness is not enough.

ment should be independent of failures; particularly be-
cause the choice of failure or success is understood as non-
deterministic given that it abstracts the actual cause for
failure and success.

If required to construct a controller for Figure 5 what
should the controller do? Naturally, the controller should
keep taking try hoping that eventually assumptions are not
coordinated with failures. A synthesis algorithm that only
assumes strong fairness or even t-strong fairness would say
that this is impossible and fail to produce a controller. Our
goal is then to come up with a setting in which such a con-
troller would be automatically generated by the synthesis
algorithm. In order to do so we formalise the notion that
assumptions and failures must be independent.

We formalise that assumptions and failures must be in-
dependent of each other in the following way. We restrict
traces of interest to those that satisfy that assumptions must
be attainable infinitely often without seeing failures. Or
more precisely, if the controller tries often enough, then not
only will it succeed but also it will succeed and all assump-
tions are fulfilled. That is, if assumptions and failures are
truly independent, trying often enough guarantees that at
some point after a try, no failures will occur until all assump-
tions are satisfied.

Definition 4.3. (Strong Independent Fairness) Given an
LTS M , a try-response T for M and A a set of FLTL for-
mulas. A trace π ∈ tr(M) is Strong Independent Fair with
respect to A if for all (tryi, suci, faili) ∈ T and for all tran-
sition t = (s, tryi, s

′) the following holds: π′ |= GF try′i ⇒
GF((¬tryi U suci) ∧ (

∧n
i=1(¬(

∨n
j=1 failj)WAi))), where

π′ = ε′|LM∪{try′

i
}, ε

′ = ε|[s.tryi.s′/s.tryi.try′

i
.s′], and ε is an

execution of M such that ε|LM
= π.

In the next subsection we formalise the control problem
with the fairness discussed above. We show that this prob-
lem can be solved efficiently by encoding it into the SGR(1)
control problem. The encoding relies on strong independent
fairness. Finally, as further motivation, we reason about
domains that are considered as probabilistic (with non-zero
probabilities on all transitions). We show that in such do-
mains, if the environment is well structured, then the prob-
abilistic measure of traces that do not satisfy this fairness
conditions (and consequently the traces for which controllers
have no obligations) is zero.

4.2 Recurrent Success Control Problem
We now formalise the recurrent success control problem.

For traces that are strong independent fair, it guarantees
general safety and liveness properties, which are GR(1)-like.
We extend the SGR(1) control problem we defined in [6] by
introducing failures and expectations on the fairness of the
environment.

Definition 4.4. (Recurrent Success) Given an SGR(1)
LTS control problem L = 〈E,H,LC〉 and a try-response T

for L, the solution for the Recurrent Success control prob-
lem R = 〈L, T 〉 is to find an LTS M such that M with
controlled actions Lc and uncontrolled actions Lc is a le-
gal environment for E, E||M is deadlock free, and for ev-
ery pair (Asi, Gi) ∈ H, for every (tryi, suci, faili) and for
strong independent fair trace π in M ||E the following holds:
if π |= Asi then π |= Gi.

Notice the requirement of independence between decisions
on when to fail and when to achieve assumptions. This is key
to the tractable treatment of RSGR(1) problems: RSGR(1)
can be reduced to a SGR(1) problem leading to more effi-
cient algorithms than those needed to solve strong fairness
in general.

Theorem 4.1. Given R = 〈L, T 〉 an RSGR(1) control
problem, it holds that there exists an SGR(1) control problem
S such that R is realisable iff S is realisable. Furthermore,
the controller extracted from S can be used to control R.

The reduction can be explained in two steps: RSGR(1)
can be solved by constructing a controller for an alternative
control problem named Finitely Many Failures (FMF). So-
lutions for FMF control problems construct controllers that
guarantee GFG on a trace if on the same trace GFAsi
holds and also a finite number of failures occur (i.e. FG
¬
∨

j failj). An FMF problem can be coded as an SGR(1)

problem where the goal is GF(G ∨
∨

j failj).

The key to the coding of RSGR(1) into FMF is the strong
independent fairness requirement, and in particular what it
adds on top of t-strong fairness: if a try-transition is taken
infinitely often, then not only will it succeed infinitely often
but also that infinitely often no failures will be observed (for
that try or any other action that can potentially fail) until
all assumptions have occurred.

We sketch the proof that every solution to FMF is a so-
lution to RSGR(1). Suppose, by way of contradiction, that
M is an FMF-controller that is not an RSGR(1)-controller.
Then there must be a strong independent fair trace π in E‖C
that satisfies the assumptions infinitely but not the goals. In
π there must be an infinite number of failures (otherwise it
would be a counter-example toM being an FMF controller)
and hence there must be at least one try-transition taken
infinitely often. As π is strong independent fair, the try-
transition must be successful and infinitely often no failures
occur before assumptions occur. Hence, there is cycle cov-
ered by π in which no failures occur, all assumptions do
occur and goals are not achieved. This cycle can be used
to construct a trace in E‖M which has finitely many faults
and in which goals are not achieved even though assumpti-
ons hold. This contradicts that M was assumed to be an
FMF-controller.

We give an alternative intuition of why RSGR(1) can be
reduced to FMF. In FMF the controller knows that at some
point there will be no more failures but does not know at
which point this will happen. It follows that its strategy is
to reattempt knowing that eventually all its attempts will be
successful. The same strategy works for RSGR(1). Indeed,
because of strong independent fairness, it may be the case
that failures are infrequent enough and non-systematically
occurring. In such cases eventually all the successes needed
to achieve the goals will occur “consecutively” (i.e. with no
failures occurring before reaching the goal).

The MTSA tool set[4] implements RSGR(1).

1 2

3

4

5

6

7

8

try1try2
suc1

fail1

G

A

suc2

fail2

A

G

ℓ

Figure 6: Environment E.

4.3 Anomalous Controllers
Anomalous controllers, as we defined in [6], are an impor-

tant issue to consider in the context of automatic controller
synthesis. Intuitively, an anomalous controller tries to dis-
charge its obligation of achieving goals by preventing the
environment from fulfilling its own obligations.

We revisit the issue of anomalous controllers for RSGR(1).
In RSGR(1) the controller may discharge its obligation to
achieve goals by either preventing assumptions from occur-
ring or by forcing non strong independent fair traces.

The following definition of best effort controller extends
that of [6] for domains with failures. It states that a con-
troller for an RSGR(1) problem is best effort if it prevents
infinitely many occurrences of assumptions and strong in-
dependent fair traces “as least as possible”. That is, every
other controller prevents these cases as much as the best ef-
fort one or more. Informally, the definition states that for
every point at which it is no longer possible to satisfy the
assumptions infinitely often or it is not a strong fair indepen-
dent trace, the same would occur for every other controller.

Definition 4.5. (Best-Effort Controller) Let RS be an
RSGR(1) LTS control problem with assumptions As. We
say that a solution M for RS is a best effort controller for
RS if for all finite traces σ ∈ traces(E‖M) such that for
all σ′ where σ.σ′ ∈ traces(E‖M), we have σ.σ′ |= (¬

∧n
i=1

G F Ai) or σ.σ′ is not strong independent fair, then for
all other solutions M ′ to RS such that σ ∈ traces(E‖M ′),
every σ′′ such that σ.σ′′ ∈ traces(E‖M ′) either σ.σ′′ |=
(¬

∧n
i=1GFAi) or σ.σ′′ is strong independent fair.

Consider the RSGR(1) LTS control problem R = 〈L, T 〉
where L = 〈E,H,Lc〉, where E is the LTS in Figure 6,

Lc = {try1, try2, G}, H = {(As,Gs)}, As = GF Ȧ and

Gs = GF Ġ. The controller enabling only try1, is a valid
controller for R but it forces the environment to fulfil its
assumptions by failing, while the controller enabling only
try2 is also a valid controller for R but it doesn’t force the
environment to a place in which the only possibility to fulfil
its assumptions is by failing. Such a controller is more de-
sirable and is what we expect from a Best Effort Controller
in the context of Recurrent Success control problems.

Note thatR satisfies the best effort condition defined in [6]
for SGR(1) but not the one above for RSGR(1).

In [6] a sufficient condition for ensuring best effort is de-
fined. It essentially dictates that it must be possible for
the environment to fulfill its assumptions regardless of how
a controller behaves. In the context of domains with fail-
ures and RSGR(1), this condition is not sufficient. For
RSGR(1), we must require that the environment be able
to achieve its assumptions independently of how the con-
troller behaves and how decisions on failures occur. The
assumptions-compatibility definition that follows is identi-
cal to that of [6] except that the set of controlled actions is
extended with failure actions. The definition states that the
assumptions are compatible if there is no controller that can

prevent assumptions from happening even when controlling
failures.

Definition 4.6. (Assumptions Compatibility) Given an
RSGR(1) LTS control problem R = 〈L, T 〉, where L = 〈E,
H,Lc〉 and H = {(∅, I), (As,G)}, we say that the As is
compatible with E according to T , if for every state s in
E there is no solution for the SGR(1) LTS control problem
〈Es,H

′, Lc ∪ F 〉, where H ′ = {(∅, I), (As, false)}, and Es is
the result of changing the initial state of E to s and F is the
set of all faili in T .

It is straightforward to see that the environment E in Fig-
ure 6 is not assumptions compatible with A. A controller M
which never takes try2 nor fail1 forces E‖M to not satisfy
GFA, which means that the controller has no obligation of
satisfying false. Hence, there is a solution for the problem
〈E,H,Lc ∪ F 〉, where H ′ = {(∅, true), (A, false)}.

Similarly to [6], the assumptions-compatibility condition
is related to the definition of best effort controller. Intu-
itively, if the domain is such that the environment can pro-
duce all its assumptions without requiring the use of failures,
then every controller is best effort.

Theorem 4.2. Given an RSGR(1) LTS control problem
R = 〈L, T 〉 with environment model E and assumptions As,
if As is assumptions compatible with E according to T then
all solutions to R are best effort controllers.

Proof. Refer to [5].

The theorem above is applicable for E in Figure 6 since
E is not assumptions compatible with A; in effect, there are
non best effort controllers for E. However, the orchestration
problem discussed in Section 2 is assumptions compatible,
the theorem applies and all solutions to the RSGR(1) orches-
tration problem are best effort. The environment for the or-
chestration problem is assumptions compatible because the
assumption A1 requires there be package requests pending
to be processed infinitely often. A controller (controlling
failures too, as in Definition 4.6) cannot impede the environ-
ment from achieving the assumptions because failures will
simply delay package processing and while a package is be-
ing processed that package is pending. On the other hand,
once the controller has processed the package, it is blocked
until a new package arrives. Hence, the environment is free
to deliver a new package request, which becomes pending
and which fulfils A1.

4.4 Unsupported Traces
In the previous subsection we discussed assumptions com-

patibility. Under this condition a controller cannot discharge
obligations by either forcing assumptions not to occur or by
forcing strong independent fairness not to hold. However,
even in the case of satisfying the assumptions-compatibility
condition, the environment may still choose not to satisfy
strong independent fairness. Clearly, for such traces the con-
troller is not obligated to satisfy the goals. Consequently,
applicability of our technique severely depends on how many
or how relevant are the traces in which goals are not neces-
sarily achieved?

More concretely, consider the example in Figure 5. As-
sumption A is compatible with the environment. Thus, solu-
tions to the control problem are guaranteed to be best effort.
Consequently, a controller that repeatedly attempts try is a
good controller: it does not try to achieve its goals vacuously

and succeeds in achieving its goals for all strong indepen-
dent fair traces. However, the trace try, success, ℓ, try, fail,
A, try, success, ℓ, . . . is not strong independent fair. Hence
the controller is not obliged to, and in fact does not, satisfy
its goals. How good is this controller? How relevant is it
that the controller does not achieve its goals for this trace?
Are there other traces for which the controller’s obligations
are discharged and how relevant are they?

We consider this question in contexts where the environ-
ment can be thought of as a probabilistic model in which
all transitions (or at least non-failing ones) have non-zero
probability. We show that if we restrict our attention to
assumptions-compatible environments, then the measure of
the set of paths in which the environment progresses but the
controller has no obligations is zero. That is, when working
with assumptions-compatible models, the traces for which
the controller does not achieve the goals are negligible.

Consider an environment E for an RSGR(1) problem R
that can be seen as an abstraction of a Markov Decision
Process [1] (MDP) Ep. It is possible to show that if E is
assumptions compatible with respect to the assumptions of
R then the measure of paths that are not strong independent
in Ep is zero. More formally:

Theorem 4.3. Given an RSGR(1) problem R with an
assumptions-compatible environment E, and an MDP Ep

such that the underlying LTS Ep ↓ is simulation equivalent
to E then, for every controller M , for every fair scheduler
s of Ep consistent with M , the following holds: the measure
of the set B = {π|π is a trace of Ep under scheduler s and
π matches a trace of E that satisfies assumptions infinitely
often but is not strong independent fair in M ||E} is zero.

Proof. Refer to [5].

For instance, the MDP Ep in Figure 7 is a model of the
Ceramic Cooking problem. It is straightforward to see that
the grounding of Ep (i.e. Ep ↓) is simulation equivalent to
the LTS E2 of Figure 3. In addition, E2 is assumptions com-
patible with A = ¬cooking as the only way of not achieving
the assumption is by performing cooking, which is controlled
by the environment. So, by Theorem 4.3, controllers to the
RSGR(1) problem with environment E2, assumption A, goal
moveToBelt, try-response triple (cook, broken, not.broken)
and safety moveToBelt ⇒ Cooked Twice ∧¬Broken are
best effort and achieve the goals with probability one. Traces
that are not strong independent fair (e.g. if a piece is broken
at least once in every two cooks) are negligible.

Consider now the orchestration problem of Section 2. Its
environment is compatible with the assumptions on pending
package request. The question to ask now is if the problem
domain can be thought of as an MDP for the theorem above
to be applicable. This amounts to validating if the envi-
ronment’s choices can be thought of as probabilistic choices
over some memoryless probabilistic distribution. All choices
of the environment are related to failures: Queries on avail-
ability of cars, hotels and plains can fail; reservations on
these can fail; and so can payments. Modelling each query
failure/success as an independent probabilistic choice entails
the following. Either resources are transiently unavailable
(e.g. cars of a certain model eventually become available)
or users will vary their criteria reasonably (e.g. making it
less restrictive) in order to succeed in queries. Hence, Theo-
rem 4.3 is not free. Requiring an MDP model of the domain
means that the denotation of, for instance, failures must be

4 8

6

1 2 10 3

9

75

cook

idle

cooking

finishedCookingenv env

broken

not.broken
moveToBelt

cook

moveToBelt

fix
cook1

1

1− p

p

1

1

p1

1− p

1

1
1

1
1

1

Figure 7: MDP for Ceramic Cooking Problem.

compatible with probabilistic choice. In many setting such
a denotation is possible and realistic, as with the orchestra-
tion problem, but this is not necessarily the case. If, for
instance, payment failure denotation includes failures due
to incorrect program logic in one of the services, then as-
suming probabilistic behaviour of these failures may not be
valid. For example, the logic may be such that it consis-
tently fails once every n payments of the same client, where
n is the number of services that a package includes.

Summarising, Theorem 4.3 shows that the restriction to
strong independent fair paths is not severe if the problem
domain can be modelled probabilistically.

5. CASE STUDIES
In this section we report on a number of case studies. We

evaluate the applicability of our approach and the benefits it
provides with respect to existing synthesis techniques. The
case studies are taken from existing literature on behaviour
model synthesis. Applicability is evaluated based on the fol-
lowing criteria i) is RSGR(1) applicable to the case study
as described in the literature, ii) is RSGR(1) applicable to
richer versions, which introduce domain relevant failures.
Benefits with respect to existing techniques is evaluated ba-
sed on i) the ability to generate controllers automatically,
ii) the guarantees provided by the resulting controller, and
iii) the degree of idealisation of the problem domain. For
the controller synthesis tool and all case studies, including
the orchestration problem of Section 2, see [4].

Production Cell. In [6] we presented a control problem ba-
sed on the Production Cell [18]: a robotic arm coordinates
the application of various tools to construct a product fulfill-
ing some safety and liveness requirements. The liveness re-
quirement is that infinitely many products are constructed.
The assumption is that if the controller is waiting for pieces
to construct a new product, it eventually receives them.

Both the original problem formulation and that of [6] take
an idealised view of the problem. They assume that all con-
trollable arm actions succeed. For instance, it is possible to
order an arm to lift a piece from the conveyor belt, and it
is assumed that this always succeeds. We refined the prob-
lem in order to account for failed arm movement actions.
We define a set of try-success triples of the form (put.tooli,
tooli.succ, tooli.fail) modelling the action of placing a piece
to be processed by tool i and the possible success or failure
of the action. The resulting model is a compatible envi-
ronment (see Definition 4.6) for the following assumption:
if the controller is waiting for pieces the environment pro-
vides then. Hence, the RSGR(1) problem is guaranteed to
produce a best effort controller (see Theorem 4.2).

It could be argued that we model failures to our advan-
tage in order to obtain a compatible environment. However,
we find it very natural that failures and assumptions (in
this case) are independent. Notice that failures can occur

only when the controller is busy working on existing pieces.
Hence, it would be impossible to “not satisfy” assumptions
when failures occur.

Another possible criticism could be that strong indepen-
dent fair traces are not sufficient in this domain. However,
for instance, suppose that failures are abstracting impreci-
sion of arm movements. In such a case, arms miss the target
location for loading or unloading due to traction problems.
It is reasonable to assume that the imprecision measured in
millimetres is a memory-less random variable. Hence, failure
would be related to the imprecision being above a certain
threshold. Consequently, the probability of a failure is inde-
pendent of the global state of the environment, that of the
controller, and of the history of previous failures.

Consider a denotation of failures such as the one above.
By Proposition 4.3 the traces for which the controller pro-
vides no guarantees have probabilistic measure zero. Obvi-
ously, if the failure denotes also the possibility of the arm
breaking or getting permanently stuck, then the measure of
such traces is not zero. In fact, under such scenarios no
controller could achieve its production goals (unless another
action repair or get-unstuck is added).

Pay & Ship. Pistore et al. synthesise a plan for composing
distributed web services and monitoring them [20]. More
specifically, a web-service coordinates purchase requests by
buying on a furniture-sales service and booking a shipping
service. The case study includes these failures: Both the
furniture-sales and shipping services may respond positively
or negatively to a request by the controller-to-be.

The controller synthesised in [20] gives no guarantees that
the goal of satisfying purchase requests is achieved. In fact,
achieving the goals stated in [20] requires assuming progress
on the environment and fairness conditions on the success
of operations on the furniture-sales and shipping services.

We modelled this case study as an RSGR(1) problem. In
our setting, it is possible to check that the model is a com-
patible environment with respect to the following assump-
tions. First, that the purchase requests occur infinitely of-
ten. Second, that customers confirm infinitely many prod-
ucts and delivery options. Thus, the resulting controller is
guaranteed to be best-effort. Furthermore, the environment
assumptions under which it achieves its goals are explicit.
Finally, the probabilistic argument of Section 4.4 is applica-
ble: If failures are assumed, for instance, to be a result of
lack of periodically renewed resources (no stock of selected
furniture or no delivery trucks available at the moment of
request). If, on the other hand, failures denote the applica-
tion of a commercial policy related to the characteristics of
the purchase, then a probabilistic argument may not apply.
Clearly, users of our technique have to analyze its adequacy
for their specific problem. They have to understand the
implications of assuming strong fair independece on traces
and the implications of deploying a service which does not
provide guarantees in these cases.

Autonomous Vehicles. We consider the robotics case study
originally presented in [11]. It presents a disaster recovery
scenario in which a robot must travel within a collapsed
house taking supplies to people trapped in one of the rooms.
In addition a number of obstacles may intermittently impede
movement of the robot. The synthesis algorithm presented
in [11] considers two types of failures as a result of move-
ments of the robot: i) the robot does not get to expected
position after moving, for instance due to roughness of the

terrain, and ii) the package is dropped, as a result, for in-
stance, of sharp movements of the robot. The goal of the
controller is to get to the target location with supplies. How-
ever, there is no guarantee that the controller achieves this
goal.

The environment model, as presented in [11], assumes the
following. First, the robot is loaded with supplies infinitely
often. Second, intermittent obstacles disappear infinitely of-
ten. We find that the environment is compatible with these
assumptions. Thus, posing this case study as RSGR(1) pro-
duces a controller that is guaranteed to achieve its goals for
strong independent fair traces. Furthermore, if failures due
to movement attempts are considered to be independent (i.e.
that the rubble may compromise an attempt at moving, but
that the robot does not encounter an unsurmountable (un-
modelled) obstacle such as a wall); and if the loss of supplies
has a probability lower than one, then strong independent
fair traces have a probabilistic measure of one.

Note that in [6] an adaptation of the case study is pre-
sented. Due to the limitations of the technique in dealing
with failures, either failures must be restricted or removed
altogether, or if fully specified, the technique reports that
no controller can be built.

Bookstore. We consider the web-service composition sce-
nario in [13], which structurally resembles Pay & Ship. Sim-
ilarly to Pay & Ship, two services are to be coordinated to
provide a more complex service. The difference is that no
explicit liveness properties are stated. Furthermore, an ide-
alised version of the services is provided in which no failures
can occur. The introduction of failures to this problem re-
sults in a problem that is, in essence, the same as Pay &
Ship and which our approach can deal with.

6. DISCUSSION AND RELATED WORK
Our work builds on that of the controller synthesis com-

munity and particularly on the generalised reactivity syn-
thesis algorithm GR(1) [22]. In [6], we revisit GR(1) and
adapt it to a message passing communication model, rather
than for a shared memory model. The message passing
model matches the paradigm in behaviour modelling and
analysis in software engineering (e.g. requirements engineer-
ing and architectural design). Specifically, in [6] a controller
synthesis algorithm, SGR(1), is studied for LTS and CSP-
like parallel composition [12]. In particular, we provided a
sound methodological approach to the definition of assump-
tions in order to avoid anomalous controllers. The technique
presented herein extends both the controller synthesis algo-
rithms and methodological definitions of [6] to account for
domains with failures.

Although numerous behaviour model synthesis techniques
have been studied (e.g. [2]) these are restricted to user-
defined safety requirements. The exceptions that we are
aware of relate to the self-adaptive systems and planning.

Sykes et al. build plans for reachability (a limited form
of liveness) goals [26]. In their setting, the execution of the
plan is restarted every time the environment behaves un-
expectedly. Hence there is an implicit assumption that the
environment behaves “well enough” for the system to even-
tually reach the goal state. As “well enough” is not defined,
it is not clear what guarantees are provided by the resulting
plans. More generally, planning as model checking [10] sup-
ports CTL goals for kripke structures. Thus, the problem

of environment-controller composition, distinction between
controllable and monitored actions and realizability are not
considered. In addition, as with [26], when failures are sup-
ported, there are no guarantees as to when goals are actually
achieved by plans.

In [13] the problem of constructing an adaptation strategy
is studied. However, it is limited to enforcing safety prop-
erties and uses a backward error propagation technique [25]
to construct controllers. The lack of explicit live conditions
makes failures and fairness conditions irrelevant.

Finally, our work is heavily influenced by the work on re-
quirements engineering by Jackson [14] van Lamsweerde [16]
and Parnas [19]. They have argued the importance of dis-
tinguishing between descriptive and prescriptive assertions,
between software requirements, system goals and environ-
ment assumptions, and the key role that the latter play in
the validation process.

7. CONCLUSIONS
We have presented a controller synthesis technique for

event-based operational models. Our technique supports
a restricted, yet expressive, form of liveness. It conforms
to foundational requirements engineering best practices: (i)
it makes explicit the assumptions on the environment be-
haviour and (ii) distinguishes between controlled and mon-
itored actions. Our technique integrates failures, allowing
less idealised environment models. In order to handle fail-
ures we introduce explicit fairness conditions that are re-
quired to guarantee controller goals. We provide method-
ological guidelines for providing well constructed assumpti-
ons, which are in line with standard realisability notions.
We show that these guidelines guarantee controllers that
are eager to satisfy goals and avoid discharging obligations
by invalidating environment assumptions. Furthermore, for
environments that satisfy these guidelines and have an un-
derlying probabilistic behaviour, the measure of traces that
satisfy our fairness condition is 1. This gives further evi-
dence to the usefulness of these guidelines.

A key aspect of our technique is that, unlike general con-
troller synthesis techniques, it remains within polynomial
complexity. We restrict users to write specification in GR(1),
which has been used in complex problem settings such as au-
tonomous vehicles [15]. The fairness condition required in
our technique is crucial to reducing the problem to SGR(1)
and then GR(1). The tradeoff between algorithmic complex-
ity and expressiveness is captured by strong independent
fairness. Informally, strong independent fairness requires
environments not to orchestrate failure occurrences and sat-
isfaction of assumptions. As shown in discussions and case
studies, there are relevant problem domains in which envi-
ronments have such characteristics. In particular, there are
problem domains where environment choices can be charac-
terised by memoryless probabilistic choices, which make our
technique even more appealing.

8. REFERENCES

[1] R. Bellman. A Markovian decision process. Journal of
Mathematics and Mechanics., 6:679–684, 1957.

[2] Y. Bontemps, P. Schobbens, and C. L
”oding. Synthesis of open reactive systems from
scenario-based specifications. Fundamenta
Informaticae, 62(2):139–169, 2004.

[3] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings of the 8th European software
engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-9, pages 109–120,
New York, NY, USA, 2001. ACM.

[4] N. D’Ippolito, D. Fischbein, M. Chechik, and
S. Uchitel. MTSA: The modal transition system
analyser. In 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008.
ASE 2008, pages 475–476. ACM, 2008.

[5] N. R. D’Ippolito. Technical Report.
http://www.doc.ic.ac.uk/ srdipi/tech.

[6] N. R. D’Ippolito, V. Braberman, N. Piterman, and
S. Uchitel. Synthesis of live behaviour models. In
Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software
engineering, FSE ’10, pages 77–86, New York, NY,
USA, 2010. ACM.

[7] E. Emerson and C. Jutla. The complexity of tree
automata and logics of programs. In Proc. 29th
Symposium on Foundations of Computer Science.
IEEE, 1988.

[8] N. Francez. Fairness. Texts and Monographs in
Computer Science. Springer-Verlag, 1986.

[9] D. Giannakopoulou and J. Magee. Fluent model
checking for event-based systems. In Proceedings of the
9th European software engineering conference held
jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering,
ESEC/FSE-11, pages 257–266, New York, NY, USA,
2003. ACM.

[10] F. Giunchiglia and P. Traverso. Planning as model
checking. In Proc. 5th European Conference on
Planning, volume 1809 of Lecture Notes in Computer
Science, pages 1–20. Springer-Verlag, 2000.

[11] W. Heaven, D. Sykes, J. Magee, and J. Kramer. A
Case Study in Goal-Driven Architectural Adaptation.
Software Engineering for Self-Adaptive Systems, 2009.

[12] C. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):677, 1978.

[13] P. Inverardi and M. Tivoli. A reuse-based approach to
the correct and automatic composition of
web-services. In International workshop on
Engineering of software services for pervasive
environments: in conjunction with the 6th ESEC/FSE
joint meeting, page 33. ACM, 2007.

[14] M. Jackson. The world and the machine. In
Proceedings of the 17th international conference on
Software engineering, pages 283–292. ACM New York,
NY, USA, 1995.

[15] H. Kress-Gazit, D. Conner, H. Choset, A. Rizzi, and
G. Pappas. Courteous Cars: Decentralized Multiagent
Traffic Coordination. IEEE Robotics and Automation
Magazine on Multi-Agent Robotics, 15(1):30–38, 2008.

[16] A. V. Lamsweerde. Goal-oriented requirements
engineering: A guided tour. Requirements Engineering,
IEEE International Conference on, 0:0249, 2001.

[17] E. Letier, J. Kramer, J. Magee, and S. Uchitel.
Deriving event-based transition systems from
goal-oriented requirements models. Autom. Softw.
Eng., 15(2):175–206, 2008.

[18] C. Lewerentz and T. Lindner, editors. Formal
Development of Reactive Systems - Case Study
Production Cell, volume 891 of Lecture Notes in
Computer Science. Springer, 1995.

[19] D. L. Parnas and J. Madey. Functional documents for
computer systems. Science of Computer Programming,
25(1):41 – 61, 1995.

[20] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and
P. Traverso. Planning and monitoring web service
composition. Artificial Intelligence: Methodology,
Systems, and Applications, pages 106–115, 2004.

[21] N. Piterman and A. Pnueli. Faster solutions of Rabin
and Streett games. In Logic in Computer Science,
2006 21st Annual IEEE Symposium on, pages
275–284. IEEE, 2006.

[22] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive (1) designs. Lecture notes in computer
science, 3855:364–380, 2006.

[23] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 179–190. ACM New
York, NY, USA, 1989.

[24] P. Ramadge and W. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77(1):81–98,
1989.

[25] S. Russell and P. Norvig. Artificial intelligence: a
modern approach. New Jersey, 1995.

[26] D. Sykes, W. Heaven, J. Magee, and J. Kramer.
Plan-directed architectural change for autonomous
systems. In Proceedings of the SAVCBS 2007, pages
15–21. ACM New York, NY, USA, 2007.

[27] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of
partial behavior models from properties and scenarios.
IEEE Trans. Software Eng., 35(3):384–406, 2009.

