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Abstract—We present our automata-based approach to prob-
abilistic verification. This new approach adapts notions and
techniques from alternating tree automata to the realm of
Markov chains. The resulting p-automata determine languages
of Markov chains. In order to determine acceptance of Markov
chains by p-automata we develop a new notion of games, which
we call obligation games. Intuitively, one player commits to
achieving a certain probability of winning in the interaction.

We survey the initial results regarding obligation games and
p-automata. These include algorithms for solving obligation
parity games, initial results about the expressive power of p-
automata, and the relation between p-automata and pCTL
model checking. In particular, these initial foundations show
that p-automata enable abstraction-based probabilistic model
checking for probabilistic specifications that subsume Markov
chains, and LTL and CTL* like logics. Many interesting ques-
tions remain open. For example, further algorithmic studies
of obligation games, the theory of p-automata, and the usage
in practice of p-automata as an abstraction framework for
Markov chains.
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I. INTRODUCTION

Markov chains are a central concept in many aspects
of engineering and science. Recent years have seen an
increase in the interest in applications of model checking
to Markov chains and other probabilistic systems (cf. [1],
[2]). Unfortunately, these applications are severely hindered
by the inability to apply abstraction (cf. [3]), the technique
that enabled model checking to scale to realistic application
in the non-probabilistic world. Reasoning abstractly about
Markov chains (and probabilistic systems in general), is a
very active field of research. Recent years have seen various
suggestion of more elaborate forms of probabilistic systems
whose aim is to enable abstraction in the probabilistic
context (cf. [4], [5], [6], [7]).

In the non-probabilistic setting, the automata-theoretic
approach to verification provides a unifying framework for
reasoning about systems. In particular, the underlying con-
cepts of abstraction can be formulated in the context of au-
tomata (see, e.g., [8]). The automata framework that supports
branching-time temporal reasoning is that of alternating tree
automata [9]. Recently, Dams and Namjoshi showed that
alternating tree automata are a complete framework for

abstraction with respect to branching-time logic [10], [11].
Motivated by their work, we introduced p-automata as a
corresponding unifying automata framework for reasoning
about Markov chains [12].

Much like tree automata read trees, p-automata read entire
Markov chains. They combine pCTL [13] and alternating
tree automata, namely, they have a rich combinational struc-
ture and the ability to quantify the probabilities of sets
of paths. Acceptance of tree automata is determined by
solving two-player games (cf. [9]). We would like to reduce
acceptance by p-automata to some form of stochastic games.
However, existing game formalisms are too weak to enable
a similar reduction for p-automata.

We extend the winning conditions of two-player games
by a new structural restriction, which we call obligations
[14]. Intuitively, one of the players adds commitments as to
the value of the game as she goes along playing. Interest-
ingly, the resulting games are not covered by the classical
determinacy results of two-player games [15], [16]. We show
that the resulting games are indeed determined and that the
definition of p-automata acceptance based on these games
is well structured.

Building upon this determinacy result we show the fol-
lowing:
• The values of obligation games can be determined in

NEXPTIME. The values of uniform obligation games,
which satisfy some structural restrictions, can be com-
puted in EXPTIME. These complexity results apply
also to the appropriate kinds of p-automata.

• Languages of p-automata are closed under bisimula-
tion. The set of languages accepted by p-automata is
closed under Boolean operations. p-Automata can ex-
press bisimulation classes of Markov chains and pCTL
formulas. Complexity of acceptance for p-automata
that result from pCTL formulas matches that of pCTL
model checking.

• Simulation of p-automata approximates language con-
tainment.

• p-automata are the first complete abstraction framework
for PCTL model checking on Markov chains.

The latter means that if an infinite-state Markov chain
satisfies a PCTL formula, there is a finite p-automaton



that abstracts (i.e. simulates) this Markov chain and whose
language is contained in that of the formula.

We mention a few interesting open problems that arise.
First, our algorithms for solving obligation games sum-

marize a first attempt at such algorithms. They show that
these games can be analyzed algorithmically. We believe that
the complexity of solving these games can be considerably
improved and algorithms made more practical. Furthermore,
questions that have been answered regarding existing notions
of games will have to be repeated and answered anew for
obligation games.

Second, we have merely touched upon the well defined-
ness of the automata theory of p-automata. Major issues such
as what are nondeterministic p-automata and how to convert
alternating p-automata to nondeterministic p-automata are
left open. Algorithmic aspects of p-automata, such as solving
emptiness, could lead to a solution of the satisfiability
problem of pCTL, which has been open since the early 80s.

Finally, as mentioned, p-automata are the first com-
plete abstraction framework for model checking pCTL over
Markov chains. This crucially depends on the ability to com-
bine probabilistic quantifications on regular sets of paths,
which is completely lacking from other approaches towards
abstraction of Markov chains. We need to study the usage of
p-automata in a model checking and abstraction framework.

In this paper we give the basic definitions and results
relating to p-automata. Definitions are very terse and are
intended only to give the flavor of these formalisms. The
interested reader is referred to [12] and [14].

II. OBLIGATION PARITY GAMES

Obligation parity games introduce a new “structural”
winning paradigm to infinite duration two-player games
[14]. A win can no longer be decided based only on linear
plays. It is evaluated over the entire Markov chain resulting
from unwinding the strategies of the players. This is done by
adding obligations, promises by one of the players to achieve
a certain value in some configurations. Intuitively, in order to
win, Player 0 has to make sure that all plays are in the target
set (as usual) and, in addition, that all obligations are met.
The value for Player 0 at an obligation configuration, where
the obligation is met, is 1. Otherwise, it is 0. In particular, it
is independent of the strategy and probability choices made
following the visit to that configuration.

An obligation parity game (OPG) is G =
((V,E), (V0, V1, Vp), κ, (α,O)), where (V,E) is a finite
directed graph with a finite set of configurations V ,
(V0, V1, Vp) is a partition of V to Player 0, Player 1, and
probabilistic configurations, respectively, κ : Vp → D(V )
associates with every probabilistic configuration a
distribution with finite support over V such that κ(v)(u) > 0
iff (v, u) ∈ E, α is a parity condition over V , and
O : V → ({≥, >} × [0, 1]) ∪ {⊥}. The obligation function
O associates with some configurations the value ⊥ saying

that there is no special obligation associated with this
configuration. With other configurations O associates an
obligation >v or ≥v stating that Player 0 can use this
configuration (and it is going to have the value 1 for her)
only if she can ensure that the value she can get from
this configuration meets the obligation. It follows that,
recursively, Player 0 has to adjust her strategy after every
obligation configuration so that the values in all obligations
are met using plays in ϕ. For configuration v, if O(v) 6= ⊥
we call v an obligation configuration and if O(v) = ⊥ we
call v a non-obligation configuration. We call a sequence
of configurations a play prefix or just a prefix.

We define the notion of value of an obligation parity game
using the well known notions of value in stochastic games
for obligations of the form reach(S), safe(S), and parity, for
a set S of configurations. Obligations are handled through
the notion of a choice set, the set of obligations that can be
met, which we introduce now.

Consider an OPG G = ((V,E), . . . , (α,O)). Let O
denote the set of configurations v ∈ V such that O(v) 6= ⊥
and Ô prefixes w · v ∈ V + such that v ∈ O. We denote by
O(w) the obligation O(v), where w = w′ · v. That is, O is
the set of configurations with a non-empty obligation and
the set Ô is the set of prefixes that end in a configuration
in O. Let N = S −O denote the set of configurations that
have no obligation and N̂ denote the set of prefixes Ŝ−Ô.
For a prefix w a choice set is Cw ⊆ Ô∩({w}·V ·V ∗). That
is, it is a set of extensions of w that have obligations. Given
a prefix w ∈ V + and a choice set Cw, an infinite path w · y
is good if either (a) y = x · z, x ∈ N ∗ · O, and w · x ∈ C,
or (b) y ∈ Nω and w ·y ∈ α. That is, either the first visit to
O after w is in C or O is never visited and the infinite path
is in α. A choice set is good for strategy σ if the following
two conditions hold:
• Every infinite path π = s0, s1, . . . in M such that π

has infinitely many prefixes in C is in α.
• For every prefix w ∈ C we have val(reach(C) ∨ (α ∧

safe(N̂ ))) ./ r, where O(w) = ./r.
That is, if infinitely many obligations on the same path are
chosen by a choice set then that path needs to be winning.
In addition, from every obligation configuration met along
the way Player 0 must be able to ensure that the value of
either (a) reaching the choice set or (b) completely avoiding
new obligations and satisfying the parity condition is high
enough to meet the obligation. Let Cσ denote the set of good
choice sets for σ.

For a prefix w the pre-value of w is

ṽ(G,w) = sup
C∈Cw

val(reach(C) ∨ (α ∧ safe(¬Ô)))

Finally, we define the value of w. For a prefix w such that
O(w) 6= ⊥ we define v(G,w) to be 1 if ṽ(G,w) ./ r, where
O(w) = ./r, and v(G,w) is 0 otherwise. For a prefix w such
that O(w) = ⊥ we define v(G,w) to be ṽ(G,w).



Lemma 1. ([14]) For every obligation parity game G and
every prefix w such that O(w) 6= ⊥ we have val0(G,w) ∈
{0, 1}.

We define the value of Player 1 through a defini-
tion of the dual game. Dualization of a game consists
of changing the roles of the two players and switching
the goal to the complement. Here, the complementation
of the goal includes complementation of both the parity
condition and the obligations. Consider a game G =
((V,E), (V0, V1, Vp), (α,O)). The dual game is dual(G) =
((V,E), (V1, V0, Vp), (dual(α), dual(O))), where dual(α)
is defined as usual and dual(O) is defined below.

dual(O)(v) =

 ⊥ If O(v) = ⊥
>1− r If O(v) = ≥r
≥1− r If O(v) = >r

Intuitively, if in G Player 0 has the obligation to achieve
more than r with the set ϕ, then the dual player
(Player 0 in dual(G)) has the obligation to achieve at least
1 − r with the complementary parity goal. Syntactically,
dual(dual(G)) = G. We define the value of Player 1 in
G to be the value of Player 0 in dual(G).

Theorem 2. ([14]) Forall prefixes w in an OPG G we have
val0(G,w) + val1(G,w) = 1.

Theorem 3. ([14]) The value of an obligation parity game
G can be computed in NEXPTIME.

Consider an obligation parity game G =
((V,E), . . . , (α,O)). We say that a configuration v is
pure if v ∈ Vp and there is a unique configuration v′ such
that (v, v′) ∈ E. We say that the game is uniform if the
following holds. There is a partition {Vi}i∈N of V such
that for every i we have, either (a) for every v ∈ Vi we
have O(v) = ⊥ or (b) for every v ∈ Vi we have O(v) 6= ⊥
or v is pure. We say that Vi ≤ Vi′ if there are some v ∈ Vi,
v′ ∈ Vi′ such that (v, v′) ∈ E. The partition also satisfies
that every chain according to ≤ is finite.

Theorem 4. ([12], [14]) The value of a uniform obligation
parity game G can be computed in EXPTIME.

III. P-AUTOMATA

We define a specialized version of p-automata for the
purposes of this paper based on [12].

We assume familiarity with basic notions of trees and
(alternating) tree automata. For set T , let B+(T ) be the
set of positive Boolean formulas generated from elements
t ∈ T , constants tt and ff, and disjunctions and conjunctions:

ϕ,ψ ::= t | tt | ff | ϕ ∨ ψ | ϕ ∧ ψ (1)

Formulas in B+(T ) are finite even if T is not.
For set Q, the set of states of a p-automaton, we define

term sets [[Q]]> as follows.

[[Q]]> = {[[q]]./p | q ∈ Q, ./ ∈ {≥, >}, p ∈ [0, 1]}

Intuitively, a state q ∈ Q of a p-automaton and its
transition structure model a probabilistic path set. So [[q]]./p
holds in location s if the measure of paths that begin in s
and satisfy q is ./ p.

An element of Q ∪ [[Q]]> is therefore either a state of
the p-automaton, or a term of the form [[q]]./p. Given ϕ ∈
B+(Q∪[[Q]]>), its closure cl(ϕ) is the set of all subformulas
of ϕ according to (1). For a set Φ of formulas, let cl(Φ) =⋃
ϕ∈Φ cl(ϕ).
A p-automaton A is a tuple 〈Σ, Q, δ, ϕin, α〉, where Σ is a

finite input alphabet, Q a set of states (not necessarily finite),
δ:Q × Σ → B+(Q ∪ [[Q]]>) the transition function, ϕin ∈
B+([[Q]]>) the initial condition, and α a parity acceptance
condition.

For every set of atomic propositions AP, p-automata
A = 〈2AP, Q, δ, ϕin, α〉 have MCAP, the set of Markov
chains labeled by proposition in AP, as set of inputs. For
M = (S, P, L, sin) ∈ MCAP, we define whether A accepts
M by a reduction to an obligation parity game. The language
of A is L(A) = {M ∈ MCAP | A accepts M}.

We construct a game GM,A =
((V,E), (V0, V1, Vp), κ, (α̃, O)). Configurations of GM,A

correspond to a subformula appearing in the transition of A
and a location in M . Configurations with a term of the form
[[q]]./p correspond to obligations. All other configurations
have no obligations. The Markov chain is accepted if the
configuration (ϕin, sin) has value 1 in GM,A.

Formally, let GM,A = ((V,E), (V0, V1), κ,G), where the
components of GM,A are as follows.
• V = S × cl(δ(Q,Σ)).
• V0 = {(s, ψ1 ∨ ψ2) | s ∈ S and ψ1 ∨ ψ2 ∈ cl(δ(Q,Σ))}.
• V1 = {(s, ψ1 ∧ ψ2) | s ∈ S and ψ2 ∧ ψ2 ∈ cl(δ(Q,Σ))}.
• Vp = S × (Q ∪ [[Q]]>).
• The set of edges E is defined as follows.

E = {((s, ϕ1 ∧ ϕ2), (s, ϕi)) | i ∈ {1, 2}}∪
{((s, ϕ1 ∨ ϕ2), (s, ϕi)) | i ∈ {1, 2}}∪
{((s, q), (s′, δ(q, L(s))) | s′ ∈ succ(s)}∪
{((s, [[q]]./p), (s′, δ(q, L(s))) | s′ ∈ succ(s)}

• κ((s, q), (s′, δ(q, L(s)))) =
κ((s, [[q]]./p), (s

′, δ(q, L(s)))) = P (s, s′).
• For q ∈ Q and p ∈ [0, 1] we have α̃(s, q) = α(q),
α̃(s, [[q]]./p) = α(q). For every other configuration c
we set α̃(c) to the maximal possible priority.

• For q ∈ Q and p ∈ [0, 1] we have O(s, [[q]]./p) = ./p.
For every other configuration c, we have O(c) = ⊥.

Theorem 5. ([12], [14]) Given a p-automaton A =
〈2AP, . . .〉, its language L(A) is well defined.

Theorem 6. ([12], [14]) Given a p-automaton A and a finite
Markov chain M , we can decide whether M ∈ L(A) in
NEXPTIME.

In [12] we introduce also a simulation relation between



p-automata that over approximates language inclusion. De-
cision of this simulation can be also reduced to obligation
games. We do not include this definition or reduction here.
For two automata A and B, we write A � B for B simulates
A.

Theorem 7. ([12]) Given p-automata A and B we have
A � B implies L(A) ⊆ L(B).

IV. PCTL MODEL CHECKING

We mention several results concerning p-automata. The
combination of these results shows that p-automata are a
complete abstraction framework for infinite Markov chains
with respect to pCTL model checking.

In this context, a complete abstraction framework is such
that if some infinite state Markov chain M satisfies a pCTL
formula φ there is a finite state p-automaton A such that
M ∈ L(A) and A is simulated by the automaton for the
language for φ.

Theorem 8. ([12]) For every Markov chain M ∈ MCAP,
there is a p-automaton AM such that the language L(AM )
is the bisimulation equivalence class of M .

Lemma 9. ([12]) For every pCTL formula φ over AP, there
is a p-automaton Aφ such that M |= φ iff M ∈ L(Aφ).

Theorem 10. ([12]) For M ∈ MCAP and PCTL formula φ
over AP, M |= φ iff M ∈ L(Aφ). Deciding M ∈ L(Aφ) is
polynomial in the size of M and linear in the size of φ.

Finally, from all these results, completeness of abstraction
for pCTL model checking follows.

Corollary 11. ([12]) For every infinite Markov chain M
and pCTL formula φ, we have M |= φ iff there is a finite
p-automaton A with M ∈ L(A) and A � Aφ.
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