Controller Synthesis: From Modelling to Enactment

Victor Braberman*, Nicolas D’Ippolito’, Nir Piterman?, Daniel Sykes!, Sebastian Uchitel*!
* Universidad de Buenos Aires, Argentina, {vbraber, suchitel} @dc.uba.ar
f Imperial College London, UK, {srdipi, daniel.sykes} @imperial.ac.uk
E University of Leicester, UK, nir.piterman@le.ac.uk

Abstract—Controller synthesis provides an automated means
to produce architecture-level behaviour models that are enacted
by a composition of lower-level software components, ensuring
correct behaviour. Such controllers ensure that goals are satisfied
for any model-consistent environment behaviour. This paper
presents a tool for developing environment models, synthesising
controllers efficiently, and enacting those controllers using a
composition of existing third-party components.

Video: www.youtube.com/watch?v=RnetgVihpV4

Index Terms—Controller Synthesis, LTS, Reactive Planning.

I. INTRODUCTION

Controller synthesis is receiving increased attention in the
software engineering community as a means for producing
architecture-level behaviour models that can be enacted by a
software system to ensure correct-by-construction behaviour.

For instance, synthesis of glue code and component adaptors
has been studied in order to achieve safe composition at the
architecture level [1], and in particular in service-oriented
architectures [2]. More recently, there has been an increasing
interest in self-adaptive systems [9] which must be capable
of designing adaptation strategies at run-time. Consequently,
such systems rely heavily on automated synthesis of behaviour
models that will guarantee the satisfaction of requirements
under the constraints enforced by the environment and the
capabilities offered by the self-adaptive system.

Controller synthesis requires a behaviour model (e.g. a
Labelled Transition System — LTS) of the environment and
a goal (e.g. a formula in linear temporal logic — LTL) to
be achieved by the software system. Controller synthesis
delivers a behaviour model which if enacted by the software
is guaranteed to achieve its goals for any behaviour the
environment may exhibit (and that is consistent with the
provided behaviour model).

Controller synthesis is in general computationally expensive
(for LTL, 2EXPTIME complete [14]). Nevertheless, restricting
the form of the goal allows for polynomial time solutions.
For example, goal specifications consisting uniquely of safety
requirements can be solved in polynomial time, and so can
particular styles of liveness properties such as GR(1) [13].

In this paper we describe a tool that extends MTSA [6]
(which provides sophisticated features for developing and
validating environment behaviour models [11], [15], [8], [7],
[17]) to i) support controller synthesis for an expressive goal
language [13], fallible domains [4] and partial environment

978-1-4673-3076-3/13 © 2013 IEEE

1347

models [5], and to ii) integrate with an enactment framework
running on the Backbone middleware [12].

II. MOTIVATING EXAMPLE

Consider a scenario in which we have a robot arm, a drill,
a painting tool, an in tray, an out tray, a recycle bin and some
additional sensors. The arm can be moved freely and there
is no fixed connection between any tool or tray. We aim to
use the arm aided by sensors to move objects from the in
tray, through a combination of tools according to a high-level
production process, to the out tray.

The control mechanisms of the robot arm are provided
through a general purpose API with support for moving the
arm to a specific coordinate, and for identifying and grabbing
objects. In addition, due to traction issues, the arm may fail
when trying to grab an object, a situation that can be sensed
through an operation that reads whether the gripper is fully
closed or not.

Our approach allows for i) development of higher-level
operations which are programmed on top of the API (e.g.
a parameterised pick up operation that moves the arm to
the specified tool/tray and attempts up to three times to
identify an object of a specified colour and grab it); ii)
modelling the environment in terms of these operations (e.g.
picking up from the drill can only succeed if an object
was previously placed there, the paint tool paints objects
red); iii) specification of a high-level production process
(e.g. produce alternating coloured objects (red.yellow)*, only
painted objects that have been drilled); iv) specification of
environment assumptions (e.g. yellow objects will be supplied
indefinitely, the probability of successfully grabbing an object
is greater than 0); v) synthesis of a controller in the form of a
behaviour model that encodes the arm’s strategy for achieving
the production process (e.g. what to do if it needs to output a
red object but is receiving only yellow objects); and finally vi)
running the arm based on the synthesised controller by calling
the high-level operations provided and monitoring the events
the arm senses.

III. ENVIRONMENT MODELLING

The semantic basis for reasoning about the behaviour
of the environment and controllers are Labelled Transition
Systems (LTSs) [10], which are widely used for modelling
and analysing the behaviour of concurrent and distributed

ICSE 2013, San Francisco, CA, USA
Formal Demonstrations

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PAINT = (putdownat_success['paint][Colours]
->COLORING) ,
COLORING = (ready['paint]['red]

->pickupfrom_success['paint]['red]->PAINT)
+{ready['paint] ['yellow],
pickupfrom_success['paint]['yellow]}.

TOOL (T='any)=(putdownat_success[T][c:Colours]

->ready[T] [c]->pickupfrom success[T][c]->TOOL).
| |TooLs = (forall[t:Tools] TOOL(t)).

ARM = (pickupfrom[l:GetLocations][c:Colours]

->GET_RESULT[1][c]),

GET RESULT[l:GetLocations][c:Colours]=
(pickupfrom_success[l][c]->PICKED_UP[c]
| pickupfrom_fail[l][c]->ARM),

PICKED UP[c:Colours]=(putdownat[l:PutLocations][c]
->putdownat_success[l][c]-> ARM).

SUPPLY = (supply[c:Colours]
->pickupfrom_success|['in][c]->SUPPLY).
| | SUPPLIER = SUPPLY.

FORCE_PICKUP=(supply|['yellow]->COUNT[0]
| A\{supply['yellow]}->FORCE_PICKUP),
COUNT[id:Count] = (A\{pickupfrom['in]['yellow]}
->COUNT[id+1]
|pickupfrom['in] ['yellow]->FORCE_PICKUP),

COUNT[MAX+1] = (pickupfrom['in]['yellow]
->FORCE_PICKUP).
| |ENV = (SUPPLIER || PAINT || TOOLS

| ARM || FORCE_PICKUP).

Fig. 1. FSP Example
systems. An LTS is a state transition system where transitions
are labelled with actions.

We build on MTSA [6] for environment modelling where
an extension of the Finite State Processes (FSP) language
is used. FSP is a textual language with strong emphasis on
the compositional construction of complex models used to
describe LTSs [11]. FSP includes several traditional operators
for describing behaviour models, such as action prefix (—>),
choice (), sequential composition (;), and parallel compo-
sition (| |). Extensions support modelling partial behaviour
models [7] and use of scenario and declarative specifications
(e.g. [15])

In Figure 1 we show a snippet of the tool with the FSP code
describing the behaviour of the robot arm, tools and objects
supply (see Section II).

The FSP process ARM models the fact that picking objects
up from a location can fail. As expected, the arm must
successfully pick up an object to be able to put it somewhere
else. PAINT models the behaviour of the painting tool which
paints red any object it is given. TOOLS is a parametric model
that captures the behaviour of tools that receive objects, and
only after their processing is done they allow for objects to be
picked up. suppPLY models that objects are only supplied when
the in tray is empty. Finally, the environment model (ENV) is
the result of the parallel composition of the LTSs modelling
the robot arm, the tools, and the supplier.

The tool provides support for validating and verifying
environment models using graphical animation [17] and model
checking [8]. However, such features are out of the scope of
this paper.

IV. CONTROLLER SYNTHESIS

In addition to an environment model, the tool requires the
specification of goals the controller is expected to achieve in

OUT_PROTOCOL = (putdownat_success|['out]['red]
-> putdownat_success['out]['yellow]
-> OUT_PROTOCOL) .
ltl_property TOOL_ORDER =
(F_PAINT -> F_HAVE_DRILLED)
| |PICK_UP_IF OBJECT PRESENT =
(PICK_IN_PRE
|| PICK_PAINT RED_PRE
|| PICK_PAINT YELLOW PRE
|| PICK_TOOLS PRE).
fluent FFAILED_ PICKUPS =
<FAILURE_SET, A\{FAILURE_SET}>
assert YELLOW_IN = F_SUPPLY YELLOW
assert RED_OUT = F_COLOUR_PUT['out]['red]
controllerSpec RED_YELLOW = {
safety = {OUT_PROTOCOL,
TOOL_ORDER,
PICK_UP_IF_OBJECT PRESENT}
failure = {FAILED_PICKUPS}
assumption = {YELLOW_IN}
liveness = {RED_OUT}
controllable = {CA}

controller ||C = (ENV)~{RED_YELLOW}.
checkCompatibility ||COMP = (ENV)~{RED_YELLOW}.

Fig. 2. Controller Goals - FSP Example

Fluent Linear Temporal Logic (FLTL) [8]. Linear temporal
logics (LTL) are widely used to describe behaviour require-
ments [8]. The motivation for choosing an LTL of fluents
is that it provides a uniform framework for specifying state-
based temporal properties in event-based models [8]. FLTL
is a linear-time temporal logic for reasoning about fluents. A
Sfluent fl is defined by a set of initiating actions Iy;, a set
of terminating actions T';, and an initial value Initiallyy;. In
Figure 2, the property TOOL_ORDER specifies that objects must
be drilled before they are painted.

The tool supports SGR(1)-like goals, that is, goals of the
form OI A (AiZ, O0A; — AL, OOG;) where OI is the
safety part of the controller goals, O A; represents a liveness
assumption on the environment behaviour, OCG,; models a
liveness goal for the controller and A; and G; are non-
temporal fluent expressions [8], while [is a safety property
expressed as a Fluent Linear Temporal Logic formula [8].

In addition, the tool supports controller synthesis in the
presence of fallible domains [4]. In other words, it is capable of
dealing with environments in which controlled actions may fail
as long as failures are probabilistic in nature or, more formally,
it is possible to assume strong independent fairness [4].
Solving a control problem under this assumption can be
reduced to SGR(1) [4] and hence remains polynomial. The
events assumed to be strongly independent fair are specified
simply as a set of fluents which indicate when a failure
has occurred. In Figure 2, the expression FAILED_PICKUPS
describes failures for the example in Section II.

The full specification for the controller to be synthesised
is described with the controllerSpec keyword requiring
safety (Of) and liveness goals (Gj), the liveness
assumption for the environment (A;), the declaration of
(failures), and the set of actions that are controllable.
See Figure 2 where OUT_PROTOCOL requires alternating
coloured objects, TOOL_ORDER requires painting only drilled
objects, and PICK_UP_IF_OBJECT_PRESENT requires
attempting to pick up only if a object is at the location.

1348

In Figure 2 the controller operator returns a behaviour
model that satisfies the controller specification for a
given environment model if such a controller exists. The
checkCompatibility operator checks if the assumptions
on the environment are realisable by the environment, if this
is the case the model returned by controller is guaranteed
to not be anomalous [3]. In other words, the controller will
not attempt to prevent the environment from satisfying the
assumptions in order to avoid having to satisfy the controller
goals. For example, if the FORCE_P ICKUP process is removed
from RED_YELLOW in Figure 1 then ENV is not compatible.
This is because the controller could never pick up an object
from the in tray preventing the environment to provide
yellow objects. Note that an alternative way of achieving a
compatible control problem is to allow the environment to
enqueue objects in the in tray.

Although we cannot show the controller due to space
restrictions (it has over 5000 states, compared to the over
10000 states of the environment model) we describe some
of the behaviour its exhibits: : 4) If it is the turn to output
a red objects but the environment provides a yellow one, the
controller has to drill it, then paint it red and finally put it down
on the out tray. i) When it is the turn to output yellow ones
but the environment provides a red one, then the controller can
assume that at some point a yellow product will be supplied
and, hence, discard the current red product and wait for the
next yellow to appear. 4i7) When it is the turn for red products
to be produced, if the controller is processing (i.e. drilling,
then painting) a yellow to get a red but a red is supplied, the
controller may choose to discard the yellow being processed
and just output the red waiting in the in tray.

V. ENACTMENT

In general, we wish to create abstract operations that hide
the complexity presented by the API of the low-level software
components of the system, thus producing an alphabet of high-
level actions for use in the environment model and controller.
As the components are normally provided by third parties
such as the robot arm manufacturer, each high-level action
may map to an ad hoc combination of low-level method calls.
The designer must provide Java implementations of each high-
level action (or event) that will be used in the environment
model. These implementations consist of combinations of
method calls with appropriate parameters on the existing third-
party components. The components run on the Backbone
middleware [12], and configurations of them are automatically
assembled using our previous work on adaptive self-assembly
[16].

Figure 3 depicts the framework’s architecture. The two main
domain-independent components are the inferpreter and the
configuration manager. The interpreter executes a controller
by keeping track of the current state, executing controlled
actions (using the domain-specific implementations) and re-
sponding to environment events. More specifically, when
the current state is controlled, the interpreter selects one of
the enabled actions at random. When the current state is

MTSA

Controller

Host
list

l map action labels to l

implementations - X
Configuration
Manager

h 4

Interpreter

execute

subscribe notify assemble assemble

\ 4 N

Remote
Backbone

Remote
Backbone

|PickupAction ||PutdownAction|

Domain specific

execute

Fig. 3. Architecture of the framework. Dashed arrows represent potentially
remote calls.

uncontrolled, or a mixed controlled/uncontrolled state, the
interpreter waits to receive an environment event.

Each controlled action is implemented by a subclass of
Action (following the Command pattern). Additionally, each
such implementation can generate environment events. Fig-
ure 4 shows part of an implementation of a pickupfrom
action, in which an existing component method is called
(pickupFrom) with appropriate parameters. The action la-
bel includes a location name and a colour name. The lo-
cation name must be converted to the API-defined type
KatanaLocation, which represents a point in the physical
space of the robot arm. This is done by looking up the location
name in a table of known locations. Conveniently, the colour
parameter can be passed straight through. Note that we have
omitted code that checks the action label is “well formed”,
with the right number of parameters within allowed ranges.
The success of the action is determined by calling another
component method (gripperClosed). The implementation
then generates either a success or a failure event. Notice
that the implementation is largely contained inside a separate
thread. This is because the interpreter should be allowed to
transition to the next state of the controller before waiting
for the time-consuming physical operation pickupFrom to
complete.

The set of action implementations available to the interpreter
is determined by the configuration manager. Before beginning
execution, the configuration searches for implementations of
each action (and environment event) and instantiates them
reflectively. The configuration manager is aware of a number
of potentially-remote Backbone hosts and the third-party
components available that are available on each host. The con-
figuration manager then queries each action implementation to
determine which components it requires during execution, and
checks which of the Backbone hosts is capable of assembling a
configuration containing those components. If all requirements
are found, then the configuration manager instructs each

1349

public class PickupFromAction extends Action {

1

2 public void execute(ActionLabel action) throws ExecutionException {
3 final String location = action.getParameters (). get(0);

4 final String colour = action.getParameters (). get(1);

5 final RemoteBallGrabber grabber =

6 (RemoteBallGrabber) configMan. getlnterfacelnstance (component);
7 Thread runner = new Thread (”PickupFrom™) {

8 public void run() {

9 KatanaLocation loc = lookupLocation(location);

10 grabber . pickupFrom (loc, colour);

11 boolean succeeded = !grabber. gripperClosed ();

12 if (succeeded)

13 eventHappened (new Event(new ActionLabel (”pickupfrom_success.”
14 +location+”.”+colour)));

15 else

16 eventHappened (new Event(new ActionLabel(”pickupfrom_fail.”
17 +location+”.”+colour)));

18 }

19 }s

20 runner. start ();

21 }

2}

Fig. 4. Fragment of code implementing a pickupfrom action.

Backbone to assemble its components, following the approach
set out in [16]. Finally, each action implementation calls
the configuration manager to get a (remote) reference to the
components that are called, as in line 3 of Figure 4.

In effect, the resulting system is a correct-by-construction
orchestration of third-party components which satisfies the
safety and liveness goals given in the MTSA model speci-
fication, and which handles certain types of failure.

VI. CONCLUSIONS

We have presented an overview of the main features

of an extension of the MTSA tool that supports
controller synthesis and enactment, implementing the
body of work that we have developed in the last years
related to adaptive systems, controller synthesis and
behaviour modelling. A video of the tool at work
is available at http://youtu.be/RnetgVihpV4.
The tool itself and examples are available at

http://sourceforge.net/projects/mtsa/.

REFERENCES

[1] M. Autili, P. Inverardi, M. Tivoli, and D. Garlan. Synthesis of “correct”
adaptors for protocol enhancement in component-based systems. In
Specification and Verification of Component-Based Systems, page 79.
ACM, 2004.

[2] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli. Automatic
synthesis of behavior protocols for composable web-services. In
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ESEC/FSE 09, pages 141-150,
New York, NY, USA, 2009. ACM.

[3] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesising
non-anomalous event-based controllers for liveness goals. ACM Tran.
Softw. Eng. Methodol., 22, 2013.

[4] N. D’Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel. Synthesis
of live behaviour models for fallible domains. In R. N. Taylor, H. Gall,
and N. Medvidovic, editors, ICSE, pages 211-220. ACM, 2011.

[5] N. D’Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel. The modal
transition system control problem. In D. Giannakopoulou and D. Méry,
editors, FM, volume 7436 of Lecture Notes in Computer Science, pages
155-170. Springer, 2012.

N. D’Ippolito, D. Fischbein, M. Chechik, and S. Uchitel. Mitsa:

The modal transition system analyser. In Proceedings of the 2008

23rd IEEE/ACM International Conference on Automated Software

Engineering, ASE °08, pages 475-476, Washington, DC, USA, 2008.

IEEE Computer Society.

D. Fischbein, N. D’Ippolito, G. Brunet, M. Chechik, and S. Uchitel.

Weak alphabet merging of partial behavior models. ACM Trans. Softw.

Eng. Methodol., 21(2):9, 2012.

[8] D. Giannakopoulou and J. Magee. Fluent model checking for event-
based systems. In Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, ESEC/FSE-11,
pages 257-266, New York, NY, USA, 2003. ACM.

[9]1 A.-C. Huang, D. Garlan, and B. Schmerl. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. In Proceedings of the First
International Conference on Autonomic Computing, pages 276-2717,
Washington, DC, USA, 2004. IEEE Computer Society.

[10] R. M. Keller. Formal verification of parallel programs. Communications
of the ACM, 19:371-384, July 1976.

[11] J. Magee and J. Kramer. Concurrency: state models & Java programs.
Wiley New York, 2006.

[12] A. McVeigh, J. Kramer, and J. Magee. Using Resemblance to Support
Component Reuse and Evolution. In Proc. of SIGSOFT/FSE Workshop
on Specification and Verification of Component-based Systems, New
York, NY, USA, 2006. ACM Press.

[13] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive (1) designs.
Lecture notes in computer science, 3855:364-380, 2006.

[14] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’89, pages 179-190, New
York, NY, USA, 1989. ACM.

[15] G. Sibay, V. Braberman, J. Kramer, and S. Uchitel. Synthesising modal
transition systems from triggered scenarios. IEEE Transactions Software
Engineering, PP(99):1, 2012.

[16] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From Goals
to Components: A Combined Approach to Self-Management. In
Proceedings of the ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS’08, 2008.

[17] S. Uchitel, R. Chatley, J. Kramer, and J. Magee. Goal and scenario
validation: a fluent combination. Requir. Eng., 11(2):123-137, 2006.

[6

—_

[7

—

1350

