
Fatal Attractors in Parity Games

Michael Huth1, Jim Huan-Pu Kuo1, and Nir Piterman2

1 Department of Computing, Imperial College London
London, SW7 2AZ, United Kingdom
{m.huth, jimhkuo}@imperial.ac.uk

2 Department of Computer Science, University of Leicester
Leicester, LE1 7RH, United Kingdom

nir.piterman@leicester.ac.uk

Abstract. We study a new form of attractor in parity games and use
it to define solvers that run in PTIME and are partial in that they do
not solve all games completely. Technically, for color c this new attractor
determines whether player c%2 can reach a set of nodes X of color c
whilst avoiding any nodes of color less than c. Such an attractor is fatal
if player c%2 can attract all nodes in X back to X in this manner.
Our partial solvers detect fixed-points of nodes based on fatal attractors
and correctly classify such nodes as won by player c%2. Experimental
results show that our partial solvers completely solve benchmarks that
were constructed to challenge existing full solvers. Our partial solvers
also have encouraging run times. For one partial solver we prove that its
runtime is in O(|V |3), that its output game is independent of the order
in which attractors are computed, and that it solves all Büchi games. 3

1 Introduction
Parity games are an important foundational structure in formal verification (see
e.g. [10]). Mathematically, they can be seen as a representation of the model
checking problem for the modal mu-calculus [4], and the exact computational
complexity of that problem has been an open problem for over twenty years now.

Parity games are infinite, 2-person, 0-sum, graph-based games that are hard
to solve. Their nodes, which are controlled by different players, are colored with
natural numbers and the winning condition of plays depends on the minimal
color occurring in cycles. The condition for winning a node, therefore, is an
alternation of existential and universal quantification. In practice, this means
that the maximal color of its coloring function is the only exponential source for
the worst-case complexity of most parity game solvers, e.g. for those in [10, 7, 9].

Research on solving parity games may be losely grouped into the following
approaches: the design of algorithms that solve all parity games by construction
and that – so far – all have exponential or subexponential worst-case complexity
(e.g. [10, 7, 9, 8]), the restriction of parity games to classes for which polynomial-
time algorithms can be devised as complete solvers (e.g. [1, 3]), and the practical
3 A preliminary version of the results reported in this paper was presented at the

GAMES 2012 workshop in Naples, Italy on 11 September 2012.

improvement of algorithms to obtain solvers that perform well across benchmarks
(e.g. [5]).

In this paper, we propose a new approach that relates to, and potentially
impacts, all of these aforementioned activities. We want to design and evaluate
a new form of “partial” parity game solver. These are solvers that are well defined
for all parity games but that may not solve all parity games completely, i.e. for
some parity games they may not decide the winning status of some nodes. For
us, a partial solver has an arbitrary parity game as input and returns two things:
a subgame of the input game, and a classification of the winning status of all
nodes of the input game that are not in that subgame. In particular, the returned
subgame is empty if, and only if, the partial solver classified the winners for all
input nodes.

The input/output type of our partial solvers clearly relate them to so called
preprocessors that may decide the winner of nodes whose structure makes such
a decision an easy static criterion (e.g. in the elimination of self-loops or dead
ends [5]). But we here search for dynamic criteria that allow partial solvers to
completely solve a range of benchmarks of parity games. This ambition sets our
work apart from research on preprocessors but is consistent with it as one can
always run a partial solver as preprocessor.

The motivation for the study reported in this paper is that we want to investi-
gate what theoretical building blocks one can create and use for designing partial
solvers that run in polynomial time and work well on many games, whether par-
tial solvers can be components of more efficient complete solvers, and whether
there are intesting subclasses of parity games for which partial solvers com-
pletely solve all games. In particular, one may study the class of output games
of a PTIME partial solver in lieu of studying the aforementioned open problem
for all parity games.

We now summarize the main contributions we make in this paper:
– We present a new form of attractor that can be used in fixed-point compu-

tations to detect winning nodes for a given player in parity games.
– We propose several designs of partial solvers for parity games by using this

new attractor within fixed-point computations.
– We analyze the properties of these partial solvers and show, e.g., that they

work in PTIME and are independent of the order of attractor computation.
– And we evaluate these partial solvers against known benchmarks and report

that these experiments have very encouraging results.

Outline of paper. Section 2 contains needed formal background and fixes
notation. Section 3 introduces the building block of our partial solvers, a new
form of attractor. Some partial solvers based on this attractor are presented in
Section 4, theoretical results about these partial solvers are proved in Section 5,
and experimental results for these partial solvers run on benchmarks are reported
and discussed in Section 6. We summarize and conclude the paper in Section 7.
Selected proofs are given in an appendix, to be read at the discretion of reviewers.

2

2 Preliminaries
We write N for the set {0, 1, . . . } of natural numbers. A parity game G is a tuple
(V, V0, V1, E, c), where V is a set of nodes partitioned into possibly empty node
sets V0 and V1, with an edge relation E ⊆ V × V (where for all v in V there is
a w in V with (v, w) in E), and a coloring function c : V → N. In figures, nodes
in V0 are depicted as circles and nodes in V1 as squares. For v in V , we write
v.E for node set {w ∈ V | (v, w) ∈ E}. By abuse of language, we call a subset U
of V a subgame of G if the game graph (U,E ∩ (U × U)) is such that all nodes
in U have some successor. We write PG for the class of all finite parity games
G, which includes the parity game with empty node set for our convenience. We
only consider games in PG.

Throughout, we write p for one of 0 or 1 and 1− p for the other player. In a
parity game, player p owns the nodes in Vp. A play from some node v0 results in
an infinite play r = v0v1 . . . in (V,E) where the player who owns vi chooses the
successor vi+1 such that (vi, vi+1) is in E. Let Inf(r) be the set of colors that occur
in r infinitely often: Inf(r) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}.
Player 0 wins play r iff min Inf(P) is even; otherwise player 1 wins play r.

A strategy for player p is a total function τ : Vp → V such that (v, τ(v)) is
in E for all v ∈ Vp. A play r is consistent with τ if each node vi in r owned
by player p satisfies vi+1 = τ(vi). It is well known that each parity game is
determined: node set V is the disjoint union of two, possibly empty, sets W0 and
W1, the winning regions of players 0 and 1 (respectively). Moreover, strategies
σ : V0 → V and π : V1 → V can be computed such that
– all plays beginning in W0 and consistent with σ are won by player 0; and
– all plays beginning in W1 and consistent with π are won by player 1.

Solving a parity game means computing such data (W0,W1, σ, π).

Example 1. In the parity game G depicted in Figure 1, the winning regions are
W1 = {v3, v5, v7} and W0 = {v0, v1, v2, v4, v6, v8, v9, v10, v11}. Let σ move from
v2 to v4, from v6 to v8, from v9 to v8, and from v10 to v9. Then σ is a winning
strategy for player 0 on W0. And every strategy π is winning for player 1 on W1.

v0

9

v1

0

v2

14

v3

17

v4

6

v5

20

v6

15

v7

19

v8

4

v9

8

v10

11

v11

18

Fig. 1. A parity game: circles denote nodes in V0, squares denote nodes in V1.

3 Fatal attractors
In this section we define a special type of attractor that is used for our par-
tial solvers in the next section. We start by recalling the normal definition of
attractor, and that of a trap, and then generalize these to our purposes.

3

Definition 1. Let X be a node set in parity game G. For player p in {0, 1}, set

cprep(X) = {v ∈ Vp | v.E ∩X 6= ∅} ∪ {v ∈ V1−p | v.E ⊆ X}
Attrp[G,X] = µZ.X ∪ cprep(Z) (1)

The control predecessor of a node set X for p is the set of nodes from which
player p can force to get to X in exactly one move. The attractor for player p to
a set X is computed through a least fixed-point as the set of nodes from which
player p can force the game in zero or more moves to get to the set X. Dually,
a trap for player p is a region from which player p cannot escape.

Definition 2. Node set X in parity game G is a trap for player p (p-trap) if for
all v ∈ Vp ∩X we have v.E ⊆ X and for all v ∈ V1−p ∩X we have v.E ∩X 6= ∅.

It is well known that the complement of an attractor for player p is a p-trap
and that it is a subgame. We state this here formally as a reference:

Theorem 1. Given a node set X in a parity game G, the set V \Attrp[G,X] is
a p-trap and a subgame of G.

We now define a more general type of attractor, which will be a crucial
ingredient in the definition of all our partial solvers.

Definition 3. Let A and X be node sets in parity game G, p in {0, 1} be a
player, and c a color in G. We set

mprep(A,X, c) = {v ∈ Vp | c(v) ≥ c ∧ v.E ∩ (A ∪X) 6= ∅} ∪
{v ∈ V1−p | c(v) ≥ c ∧ v.E ⊆ A ∪X}

MAttrp(X, c) = µZ.mprep(Z,X, c) (2)

The monotone control predecessor mprep(A,X, c) of node set A for p with
target X is the set of nodes of color at least c from which player p can force to
get to either A or X in one move. The monotone attractor MAttrp(X, c) for p
with target X is the set of nodes from which player p can force the game in one
or more moves to X by only meeting nodes whose color is at least c. Notice that
the target set X is kept external to the attractor. Thus, if some node x in X is
included in MAttrp(X, c) it is so as it is attracted to X in at least one step.

Our control predecessor and attractor are different from the “normal” ones
in a few ways. First, ours take into account the color c as a formal parameter.
They add only nodes that have color at least c. Second, as discussed above, the
target set X itself is not included in the computation by default. For example,
MAttrp(X, c) includes states from X only if they can be attracted to X.

We now show the main usage of this new operator by studying how specific
instantiations thereof can compute so called fatal attractors.

Definition 4. Let X be a set of nodes of color c, where p = c%2.

1. For such an X we denote p by p(X) and c by c(X). We denote MAttrp(X, c)
by MA(X). If X = {x} is a singleton, we denote MA(X) by MA(x).

4

2. We say that MA(X) is a fatal attractor if X ⊆ MA(X).

We note that fatal attractors MA(X) are node sets that are won by player
p(X) in G. The winning strategy is the attractor strategy corresponding to the
least fixed-point computation in MAttrp(X, c). First of all, player p(X) can force,
from all nodes in MA(X), to reach some node in X in at least one move. Then,
player p(X) can do this again from this node in X as X is a subset of MA(X). At
the same time, by definition of MAttrp(X, c) and mprep(A,X, c), the attraction
ensures that only colors of value at least c are encountered. So in plays starting in
MA(X) and consistent with that strategy, every visit to a node of parity 1−p(X)
is followed later by a visit to a node of color c(X). It follows that in an infinite
play consistent with this strategy and starting in MA(X), the minimal color to
be visited infinitely often is c – which is of p’s parity.

Theorem 2. Let MA(X) be fatal in parity game G. Then the attractor strategy
for player p(X) on MA(X) is winning for p(X) on MA(X) in G.

Let us consider the case when X is a singleton {k} and MA(k) is not fatal.
Suppose that there is an edge (k,w) in E with w in MA(k). We show that this
edge cannot be part of a winning strategy (of either player) in G. Since MA(k)
is not fatal, k must be in V1−p(k) and so is controlled by player 1 − p(k). But
if that player were to move from k to w in a memoryless strategy, player p(k)
could then attract the play from w back to k without visiting odd colors smaller
than c(k), since w is in MA(k). And, by the existence of memoryless winning
strategies, this would ensure that the play is won by player p(k) as the minimal
infinitely occurring color would be even (c(k) or less). We summarize:

Lemma 1. Let MA(k) be not fatal for node k. Then we may remove edge (k,w)
in E if w is in MA(k), without changing winning regions of parity game G.

Example 2. For G in Figure 1, the only colors k for which MA(k) is fatal are 4
and 8: MA(4) equals {v2, v4, v6, v8, v9, v10, v11} and MA(8) equals {v9, v10, v11}.
In particular, MA(8) is contained in MA(4) and nodes v1 and v0 are attracted to
MA(4) in G by player 0. And v10 is in MA(11) so edge (v10, v11) may be removed.

4 Partial solvers
We can use the above definitions and results to define partial solvers next.

4.1 Partial solver psol

Figure 2 shows the pseudocode of a partial solver, named psol, based on MA(X)
for singleton sets X. Solver psol explores the parity game G in descending color
ordering. For each node k, it constructs MA(k), and aims to do one of two things:

– If node k is in MA(k), then MA(k) is fatal for player 1− p(k), thus node set
Attrp(k)[G,MA(k)] is a winning region of player p(k), and removed from G.

5

psol(G = (V , V0, V1,E, c)) {
for (k ∈ V in descending color ordering c(k)) {

if (k ∈ MA(k)) { return psol(G \ Attrp(k)[G,MA(k)]) }
if (∃ (k,w) ∈ E : w ∈ MA(k))
{ G = G \ {(k,w) ∈ E | w ∈ MA(k)} }

}
return G

}

Fig. 2. Partial solver psol based on detection of fatal attractors MA(k) and fatal moves.

– If node k is not in MA(k), and there is a (k,w) in E where w is in MA(k),
all such edges (k,w) are removed from E and the iteration continues.

If no fatal attractor is detected for all k in V , game G is returned as is – and
is empty if psol solves G completely. The accumulation of winning regions and
computation of winning strategies are omitted from the pseudocode for improved
readability. Solver psol is sound (a proof is found in the appendix):

Theorem 3. The winning regions identified by psol are sound.

Example 3. In a run of psol on G from Figure 1, there is no effect for colors
larger than 11. For c = 11, psol removes edge (v10, v11) as v11 is in MA(11).
The next effect is for c = 8, when the fatal attractor MA(8) = {v9, v10, v11}
is detected and removed from G (the previous edge removal did not cause the
attractor to be fatal). On the remaining game, the next effect occurs when c = 4,
and when the fatal attractor MA(4) is {v2, v4, v6, v8} in that remaining game.
As player 0 can attract v0 and v1 to this as well, all these nodes are removed
and the remaining game has node set {v3, v5, v7}. As there is no more effect of
psol on that game, it is returned as the output of psol’s run.

4.2 Partial solver psolB

Figure 3 shows the pseudocode of another partial solver, named psolB (the “B”
suggests a relationship to “Büchi”), based on MA(X), where X is a set of nodes of
the same color. This time, the operator MA(X) is used within a greatest fixed-
point in order to discover the largest set of nodes of a certain color that can
be (fatally) attracted to themselves. Accordingly, the greatest fixed-point starts
from all the nodes of a certain color and gradually removes those that cannot be
attracted to the same color. When the fixed-point stabilizes, it includes the set of
nodes of the given color that can be (fatally) attracted to themselves. These can
be removed (as a winning region) and the residual game analyzed recursively.
As before, the colors are explored in descending order. We state that this partial
solver is sound (a proof is found in the appendix).

Theorem 4. The winning regions identified by psolB are sound.

We make two observations. First, if we were to replace the recursive calls in
psolB with the removal of the winning region from G and a continuation of the

6

psolB(G = (V , V0, V1,E, c)) {
for (colors d in descending ordering) {
X = { v in V | c(v) = d };
cache = {};
while (X 6= {} && X 6= cache) {

cache = X;
if (X ⊆ MA(X)) { return psolB(G \ Attrd%2[G,MA(X)])
} else {
X = X ∩ MA(X);

}
}

}
}

Fig. 3. Partial solver psolB.

iteration, we would get an implementation that discovers less fatal attractors.
Second, edge removal in psol relies on the set X being a singleton. A similar
removal could be achieved in psolB when the size of X is reduced by one (in the
operation X = X ∩MA(X)). Indeed, in such a case the removed node would not
be removed and the current value of X be realized as fatal. We have not tested
this edge removal approach for this variant of psolB.

Example 4. A run of psolB on G from Figure 1 has the same effect as the one
for psol, except that psolB does not remove edge (v10, v11) when c = 11.

A way of comparing partial solvers P1 and P2 is to say that P1 ≤ P2 if, and
only if, for all parity games G the set of nodes in the output subgame P1(G) is
a subset of the set of nodes of the output subgame P2(G). We note that psol
and psolB are incomparable for this intensional preorder over partial solvers.

4.3 Partial solver psolQ

It seems that psolB is more general than psol in that if there is a singleton X
with X ⊆ MA(X) then psolB will discover this as well. However, the requirement
to attract to a single node seems too strong. Solver psolB removes this restriction
and allows to attract to more than one node, albeit of the same color. Now we
design a solver psolQ that can attract to a set of nodes of more than one color
(the “Q” is our code name for this “Q”uantified version of layers of colors of the
same parity). Solver psolQ allows to combine attraction to multiple colors by
adding them gradually and taking care to “fix” visits to nodes of opposite parity.

Figure 4 presents the pseudo code of operator fixedPointQ(G, p, b). This
operator searches for a layered fatal attractor. Intuitively, it starts from a set Y0
of nodes of parity p with a low color d and applies a more permissive version
of MA(Y0). Essentially, it allows also to include in the attraction to Y0 not
only nodes of higher color but also those nodes that are in Y0. Then, instead
of stopping as before, it now tries the set Y1, which includes more nodes of
p’s parity of higher color and repeats the computation, this time taking care to
include V1−p nodes of color higher than all colors in Y1 or nodes that are either in

7

fixedPointQ(G,p,b) { // PRE: p equals b%2
X = {v ∈ V | c(v) ≤ b, c(v)%2 = p};
do {
Xcache = X; A = {};
for (d = p up to b in increments of 2) {
Y = {v ∈ X | c(v) ≤ d};
do {
Acache = A;
A = A ∪ {v∈Vp | (d≤c(v) ∨ v∈Y) ∧ v.E ∩ (A∪Y) 6= ∅}
∪ {v∈V1−p | (d≤c(v) ∨ v∈Y) ∧ v.E ⊆ (A∪Y)};

} while ((A !=Acache) && (A != V))
}
X = X ∩ A;

} while (X !=Xcache)
return Attrp[G,A];

}

psolQ(G = (V , V0, V1,E, c)) {
for (colors b in ascending order) {
W = fixedPointQ(G,b%2,b);
if (W != {}) { return psolQ(G \ W); }

}
return G;

}

Fig. 4. Operator fixedPointQ(G, p, b) and partial solver psolQ.

Y0 or Y1. This way, even if nodes of a lower color than the color of nodes in Y1 are
included they are ensured to be of the right parity. This process continues until
reaching some input bound b on the colors to include. As in psolB, the operator
fixedPointQ includes a greatest fixed-point that searches for the largest set of
nodes of parity p that can be (fatally) attracted to itself in this layered fashion.

Figure 4 also shows the pseudo code of psolQ, a solver that calls fixedPointQ
in a loop and increases the bound b used by method fixedPointQ. The last two
iterations of psolQ do not restrict the search of fixedPointQ, as they consider
all colors of a specific parity. We discuss in Section 6 why we increase the bound
b gradually and not just compute with these two iterations alone. We state that
this partial solver is sound (a proof is found in the appendix).
Theorem 5. The winning regions identified by psolQ are sound.
Example 5. The run of psolQ on G from Figure 1 finds a fatal attractor for
bound b = 4, which removes all nodes except v3, v5, and v7. For b = 19, it
realizes that these nodes are won by player 1, and outputs the empty game.
That psolQ is a partial solver can be seen in Figure 5, which depicts a game
that is not modified at all by psolQ and so is returned as is.

5 Properties of our partial solvers
We now discuss the properties of our partial solvers.

8

v0

0

v1

1

v2

3

v3

3

v4

2

v5

1

v6

1

v7

0

Fig. 5. A 1-player parity game modified by neither psol, psolB nor psolQ.

5.1 Computational Complexity

We study the worst-case time complexity first.

Theorem 6. 1. The running time for psol and psolB is in O(|V |2 · |E |).
2. And psol and psolB can be implemented to run in time O(|V |3).
3. And psolQ runs in time O(|V |2·|E |·|c |) with |c | the number of colors in G.

We note that if psolQ were to restrict attention to the last two calls of
fixedPointQ, i.e., those that call fixedPointQ with the maximal even color and
the maximal odd color, the run time of psolQ would be bounded by O(|V |2·|E |).
For such a version of psolQ we also ran experiments on our benchmarks and do
not report these results, except to say that this version performs considerably
worse than psolQ in practice. We believe that this is so since psolQ more quickly
discovers small winning regions that “destabilize” the rest of the games.

5.2 Robustness of psolB

Our pseudo-code for psolB iterates through colors in decending order. A nat-
ural question is whether the computed output game depends on the order in
which these colors are iterated. We here show that the outcome of psolB is in-
deed independent of the iteration order (a proof is found in the appendix). This
suggests that these solvers are a form of polynomial-time projection of parity
games onto subgames. We state the result formally. Let π be some sequence of
colors in G, that may omit or repeat some colors from G. Let psolB(π) be a
version of psolB that checks for (and removes) fatal attractors according to the
order in π (including any color repetitions in π). We say that psolB(π) is stable
if for every color c1, the input/output behavior of psolB(π) and psolB(π · c1)
are the same. That is, the sequence π leads psolB to stabilization in the sense
that every extension of the version psolB(π) with one color does not change the
input/output behavior. For sake of illustration, let π∗ be the descending color
ordering of G. Then our psolB is psolB(π∗) and is stable.

Theorem 7. Let π1 and π2 be sequences of colors with psolB(π1) and psolB(π2)
stable. Then G1 equals G2 if Gi is the output of psolB(πi) on G, for 1 ≤ i ≤ 2.

Next, we formally define classes of parity games, those that psolB solves
completely and those that psolB does not modify.

9

Definition 5. We define class S (for “Solved”) to consist of those parity games
G for which psolB(G) outputs the empty game. And we define K (for “Kernel”)
as the class of those parity games G for which psolB(G) outputs G again.

The meaning of psolB is therefore a total, and idempotent function of type
PG→ K that has S as inverse image of the empty parity game. We emphasize
that classes S and K are semantic in nature as they are independent of the order
of colors with which psolB iterates.

We now show that S contains the class of Büchi games, which we identify with
parity games G with color 0 and 1 and where nodes with color 0 are those that
player 0 wants to reach infinitely often (a proof can be found in the appendix).

Theorem 8. Let G be a parity game whose colors are only 0 and 1. Then G is
in S, i.e. psolB completely solves G.

We point out that S does not contain some game types for which polynomial-
time solvers are known. For example, not all 1-player parity games are in S (see
Figure 5). Class S is also not closed under sub-games.

6 Experimental results
6.1 Experimental setup

We wrote Scala implementations of psol, psolB, and psolQ, and of Zielonka’s
solver (zlka) that rely on the same data structures and do not compute win-
ning strategies – which has routine administrative overhead. The (parity) Game
object has a map of Nodes (objects) with node identifiers (integers) as the keys.
Apart from colors and owner type (0 or 1), each Node has two lists of identifiers,
one for successors and one for predecessors in the game graph (V,E). For attrac-
tor computation, the predecessor list is used to perform “backward” attraction.
This uniform treatment allows for a first informed comparison. We chose zlka
as a reference implementation since it seems to work well in practice on many
games. We then compared the performance of these implementations on all eight
non-random, structured game types produced by the PGSolver tool [6]. Here is
a list of brief descriptions of these game types.
– Clique: fully connected games with alternating colors and no self-loops.
– Ladder: layers of node pairs with connections between adjacent layers.
– Recursive Ladder: layers of 5-node blocks with loops.
– Strategy Impr: worst cases for strategy improvement solvers.
– Model Checker Ladder: layers of 4-node blocks.
– Tower Of Hanoi: captures well-known puzzle.
– Elevator Verification: a verification problem for an elevator model.
– Jurdzinski: worst cases for small progress measure solvers.

The first seven types take a game parameter n as input, whereas Jurdzkinski
takes a pair n,m as game parameter.

For regression testing, we verified for all tested games that the winning re-
gions of psol, psolB, psolQ and zlka are consistent with those computed by

10

PGSolver. Runs of these algorithms that took longer than 20 minutes (i.e. 1200K
milliseconds) or for which the machine exhausted the available memory during
solver computation are recorded as aborts (“abo”) – the most frequent reason
for abo was that the used machine ran out of memory. All experiments were
conducted on the same machine with an Intel R© CoreTM i5 (four cores) CPU at
3.20GHz and 8G of RAM, running on a Ubuntu 11.04 Linux operating system.

For most game types, we used unbounded binary search starting with 2 and
then iteratively doubling that value, in order to determine the abo bound-
ary for parameter n within an accuracy of plus/minus 10. As the game type
Jurdzinski[n,m] has two parameters, we conducted three unbounded binary
searches here: one where n is fixed at 10, another where m is fixed at 10, and
a third one where n equals m. We used a larger parameter configuration (10 ×
power of two) for Jurdzinski games.

We report only the last two powers of two for which one of the partial
solvers did not timeout, as well as the boundary values for each solver. For game
types whose boundary value was less than 10 (Tower Of Hanoi and Elevator
Verification), we did not use binary search but just incremented n by 1. Fi-
nally, if a partial solver did not solve its input game completely, we ran zlka
on the remaining game and added the observed running times for zlka to that
of the partial solver. (This only occurred for Elevator Verification for psol
and psolB.)

6.2 Experimental results

Our experimental results are depicted in Figures 6 and 7 where running times are
reported in milliseconds. The most important result is that partial solvers psol
and psolB solved seven of the eight game types completely for all runs that did
not time out, the exception being Elevator Verification. And psolQ solved
all eight game types completely. This suggests that partial solvers can actually
be used as solvers on a range of structured game types.

We now compare the performance of these partial solvers and of zlka. There
were ten experiments, three for Jurdzinski and one for the remaining seven
game types. For seven out of these ten experiments, psolB had the largest bound-
ary value of the parameter and so seems to perform best overall. The solver
zlka was best for Model Checker Ladder and Elevator Verification, and
about as good as psolB for Tower Of Hanoi. And psolQ was best for Recursive
Ladder. By implication, psol appears to perform worst amongst these solvers
across all these benchmarks.

Solvers psolB and zlka seem to do about equally well for game types Clique,
Ladder, Model Checker Ladder, and Tower Of Hanoi. But solver psolB ap-
pears to outperform zlka dramatically for game types Recursive Ladder, and
Strategy Impr and is considerably better than zlka for Jurdzinski.

Some of these improvements can even be seen by comparing running times of
our partial solvers with those of the PGSolver, which we will do below. We stress
that this does compare proof of concept implementations of our partial solvers
running in JVM with a highly optimized PGSolver running in native code –

11

Clique[n]

n psol psolB psolQ zlka

2**11 10850.90 48691.72 3281.57 12862.92
2**12 231674.30 164126.06 28122.96 76427.44
20min n = 4528 n = 5232 n = 4608 n = 5104

Ladder[n]

n psol psolB psolQ zlka

2**19 31264.36 22440.57 26759.85 24406.79
2**20 72351.92 47139.96 59238.77 75270.74
20min n = 1320808 n = 1596624 n = 1415776 n = 1242376

Model Checker Ladder[n]

n psol psolB psolQ zlka

2**12 296434.14 90366.80 117006.17 79284.72
2**13 abo 457049.22 644225.37 398592.74
20min n = 7424 n = 12288 n = 10928 n = 13248

Recursive Ladder[n]

n psol psolB psolQ zlka

2**12 abo abo 138956.08 abo
2**13 abo abo 606868.31 abo

20min n = 656 n = 2064 n = 11352 n = 32

Strategy Impr[n]

n psol psolB psolQ zlka

2**10 abo 134795.46 abo abo
2**11 abo 631963.68 abo abo

20min n = 224 n = 2672 n = 40 n = 24

Tower Of Hanoi[n]

n psol psolB psolQ zlka

9 462078.51 54543.31 610264.18 56780.41
10 abo 397728.33 abo 390407.41

20min n = 9 n = 10 n = 9 n = 10

Elevator Verification[n]

n psol psolB psolQ zlka

1 127.79 120.59 147.32 125.41
2 292.44 248.56 385.56 237.51
3 549.71 584.83 806.28 512.72
4 1801.86 1389.10 2882.14 1116.85
5 15286.20 11681.02 22532.75 3671.04
6 245136.64 168217.65 373568.85 41344.03
7 abo abo abo 458938.13

20min n = 6 n = 6 n = 6 n = 7

Fig. 6. First experimental results for partial solvers run over benchmarks

12

Jurdzinski[10,m]

m psol psolB psolQ zlka

10*2**7 abo 179097.35 abo abo
10*2**8 abo 833509.48 abo abo

20min m = 190 m = 2890 m = 1120 m = 480

Jurdzinski[n, 10]

n psol psolB psolQ zlka

10*2**7 abo 106453.86 abo abo
10*2**8 abo 406621.65 abo abo

20min n = 700 n = 4380 n = 1240 n = 140

Jurdzinski[n, n]

n psol psolB psolQ zlka

10*2**3 abo 23045.37 310665.53 abo
10*2**4 abo 403844.56 abo abo

20min n = 50 n = 200 n = 100 n = 50

Fig. 7. Second experimental results run over Jurdzinski benchmarks
which is why we omitted the timing information for PGSolver in Figures 6 and 7.
We ran PGSolver version 3.2 in configuration pgsolver -global recursive,
meaning that it is solving parity games using Zielonka’s algorithm and that all
other features are in default mode.

For each game type we compare the running time of PGSolver for the largest
power of two for which it does not time out to the running time of our best partial
solver for this game type. For Jurdzinski[10, 26], psolB runs about 9 times
faster than PGSolver. For Jurdzinski[26, 10], psolB runs about 11 times faster
than PGSolver. For Jurdzinski[23, 23], psolB runs about 5 times faster than
PGSolver. For Clique[212], psolB runs about 2 times faster than PGSolver. And
for Recursive Ladder[25], psolQ runs about 1706 times faster than PGSolver.

For Ladder[220], PGSolver runs about as fast as psolB. For game Tower Of
Hanoi[10], PGSolver runs about 169 times faster than psolB. For Model Checker
Ladder[213], PGSolver runs about 1660 times faster than psolB. For Strategy
Impr[211], PGSolver runs about 47 times faster than psolB. And for Elevator
Verification[6], PGSolver is about 89 times faster than the composition of
psolB and zlka (applied to the output of psolB).

We think that these results are very encouraging and that they corraborate
the claim that partial solvers based on fatal attractors may be components of
faster solvers for parity games.

6.3 Number of detected fatal attractors

We also recorded the number of fatal attractors that were detected in runs of
our partial solvers. One reason for doing this is to see whether game types have
a typical number of dynamically detected fatal attractors that result in the
complete solving of these games.

We report these findings for psol and psolB first: for Clique, Ladder, and
Strategy Impr these games are solved by detecting two fatal attractors only;
Model Checker Ladder was solved by detecting one fatal attractor. For the

13

other game types psol and psolB behaved differently. For Recursive Ladder[n],
psol requires n = 2k fatal attractors whereas psolB seems to require only 2k−2

fatal attractors. For Jurdzinski[n,m], psolB detects mn+ 1 many fatal attrac-
tors, and psol removes x edges where x is about nm/2 ≤ x ≤ nm, and detects
slightly more than these x fatal attractors. Finally, for Tower Of Hanoi[n], psol
requires the detection of 3n fatal attractors whereas psolB solves these games
with detecting two fatal attractors only.

We also counted the number of recursive calls for psolQ, which equals the
number of fatal attractors detected by psolB for all game types except Recursive
Ladder. For Recursive Ladder[n], solver psolQ requires only 2k−1 fatal attrac-
tors where n equals 2k.

6.4 Additional experiments and their findings

We performed additional experiments on variants of these partial solvers. Here,
we report results and insights on two such variants. The first variant is one that
modifies the definition of the monotone control predecessor to

mprep(A,X, c) = {v ∈ Vp | ((c(v)%2 = p) ∨ c(v) ≥ c) ∧ v.E ∩ (A ∪X) 6= ∅} ∪
{v ∈ V1−p | ((c(v)%2 = p) ∨ c(v) ≥ c) ∧ v.E ⊆ A ∪X}

The change is that the constraint c(v) ≥ c is weakened to a disjunction (c(v)%2 =
p) ∨ (c(v) ≥ c) so that it suffices if the color at node v has parity p even though
it may be smaller than c. This implicitly changes the definition of the monotone
attractor and so of all partial solvers that make use of this attractor; and it also
impacts the computation of A within psolQ. Yet, this change did not have a
dramatic effect on our partial solvers. On our benchmarks, the change improved
things slightly for psol and made it slightly worse for psolB and psolQ.

A second variant we studied was a version of psol that removes at most one
edge in each iteration (as opposed to all edges as stated in Fig. 2). For games
of type Ladder, e.g., this variant did much worse. But for game types Model
Checker Ladder and Strategy Impr, this variant did much better. The partial
solvers based on such variants and their combination are such that psolB (as
defined in Figure 3) is still better on all benchmarks.

7 Conclusions
We proposed a new approach to studying the problem of solving parity games:
partial solvers as polynomial algorithms that correctly decide the winning status
of some nodes and return a subgame of nodes for which such status cannot be
decided. We demonstrated the feasibility of this approach both in theory and
in practice. Theoretically, we developed a new form of attractor that naturally
lends itself to the design of such partial solvers; and we proved results about
the computational complexity and semantic properties of these partial solvers.
Practically, we showed through extensive experiments that these partial solvers
can compete with extant solvers on benchmarks – both in terms of practical

14

running times and in terms of precision in that our partial solvers completely
solve such benchmark games.

In future work, we mean to study the descriptive complexity of the class of
output games of a partial solver, for example of psolQ. We also want to research
whether such output classes can be solved by algorithms that exploit invariants
satisfied by these output classes. Furthermore, we mean to investigate whether
classes of games characterized by structural properties of their game graphs can
be solved completely by partial solvers. Such insights may connect our work to
that of [3], where it is shown that certain classes of parity games that can be
solved in PTIME are closed under operations such as the join of game graphs.
Finally, we want to investigate whether and how partial solvers can be integrated
into solver design patterns such as the one proposed in [5].

References
1. Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. DAG-

width and parity games. In STACS 2006, Proceedings of the 23rd Symposium on
Theoretical Aspects of Computer Science, volume 3884 of LNCS, pages 524–436.
Springer-Verlag, 2006.

2. Krishnendu Chatterjee and Monika Henzinger. An O(n2) time algorithm for al-
ternating büchi games. In SODA, pages 1386–1399, 2012.

3. Christoph Dittmann, Stephan Kreutzer, and Alexandru I. Tomescu. Graph
operations on parity games and polynomial-time algorithms. Published as
arXiv:1208.1640, 8 August 2012.

4. E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc.
32nd IEEE Symp. on Foundations of Computer Science, pages 368–377, 1991.

5. Oliver Friedmann and Martin Lange. Solving parity games in practice. In Zhiming
Liu and Anders Ravn, editors, Proc. of Automated Technology for Verification
and Analysis, volume 5799 of Lecture Notes in Computer Science, pages 182–196.
Springer, 2009.

6. Oliver Friedmann and Martin Lange. The PGSolver Collection of Parity Game
Solvers. Technical report, Institut für Informatik, LMU Munich, Feb 2010. Version
3.

7. M. Jurdziński. Small progress measures for solving parity games. In Proc. 17th
Symp. on Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes
in Computer Science, pages 290–301. Springer-Verlag, 2000.

8. M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential al-
gorithm for solving parity games. In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms, pages 117–123. ACM/SIAM, 2006.

9. J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving
parity games. In Proc 12th Int. Conf. on Computer Aided Verification, volume
1855 of Lecture Notes in Computer Science, pages 202–215. Springer, 2000.

10. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

15

A Proof of Theorem 3

In Figure 2, psol only returns (not explicitly shown) Attrp(k)[G,MA(k)] as a node
set classified to be won by player p(k) whenever MA(k) is fatal. Theorem 2 shows
that these regions are winning for player p(k). Lemma 1 shows edge removal does
not alter the winning strategies. Since these are the only two code locations where
G is modified, the winning regions detected in psol are correct. ut

B Proof of Theorem 4

In Theorem 2, we have proved that MA(X) is winning for player p(X) if X is
a subset of MA(X). For every color d in G, the for-loop in psolB constructs
MA(X) where all nodes in X have color d. If X is a subset of MA(X), then
MA(X) is identified as a winning region (for player d%2) and its normal d%2
attractor in G is therefore removed from G, and this is the only code location
where G is modified. ut

C Proof of Theorem 5

We show that the set of nodes computed by fixedPointQ(G, p, b) is winning for
p = b%2. Without loss of generality, p equals 0.

Set X is a set of nodes in V that have parity p and color at most b. Let X∞ de-
note the (greatest) fixed-point value forX computed by this call to fixedPointQ,
and Ad,i be an enumeration of the sets A computed by the inner while-loop. Here,
b is the bound, and d is the incrementing color (in the for-loop). Finally, i is an
index which increases in every iteration of A accumulation and resets whenever
the color is increased. For every node v in A, let r(v) = (d, i) be minimal in the
lexicographic order such that v is in Ad,i (note in the inner while-loop, b is just a
constant). Again, we choose the strategy that selects the successor with minimal
r according to the same lexicographic order.

Consider an infinite play starting in A in which player 0 follows this strategy.
First, we show that the play remains in A forever. Indeed, if r(v) = (d, i) then all
successors of v (if v ∈ V1−b%2) or some successor of v (if v ∈ Vb%2) are/is either
in X∞, which is a subset of A, or in Ad′,i′ for some (d′, i′) < r(v) (successors of v
are in X∞ already or are one step closer to X∞). Second, we show that the play
is winning for player 0. Consider an odd colored node v0 appearing in the play.
Let v0, v1, . . . be an enumeration of the nodes in the play starting from v0. By
definition, v0 is in Ad0,i0 for some (d0, i0), and clearly, c(v0) > d0. We have to
show that this play visits some even color that is at most d0. By construction, v1
is either in {v ∈ X∞ | c(v) ≤ d0}, which implies that its color is even and smaller
than c(v0), or in Ad1,i1 for some (d1, i1) < (d0, i0). In this case, the obligation
to visit an even color at most d0 is passed to v1. Continuing this way, the play
must reach X with a lower color than that of v0 by well-founded induction. ut

16

D Proof of Theorem 6

1. To see that the running time for psol is in O(|V |2 · |E |), note that all nodes
have at least one successor in G and so |V | ≤ |E |. The computation of the
attractor MA(k) in linear in the number of edges and so in O(|E |). Each call
of psol will compute at most |V | many such attractors. In the worst case,
there are |V | many recursive calls. In summary, the running time is bound
by O(|E | · |V | · |V |) as claimed.
To see that psolB also has running time in O(|V |2 · |E |), recall that we may
compute MA(X) in time linear in |E |. Second, node set V is partitioned
into sets of nodes of a specific color, and so psolB can do at most |V |
many computations within the body of psolB before and if a recursive call
happens.

2. The claim that psol and psolB can be implemented to run in O(|V |3)
essentially reduces to showing that we can, in linear time, transform and
reduce each computation of MA(X) to the solution of a Buchi game. This is
so since such games can be solved in time O(|V |2) [2]. Indeed, let c denote
c(X), p denote p(X), and let G[≥c] denote the game obtained from G by
doing the following in the prescribed order.

(a) Remove from G all nodes of color less than c, as well as all of their
incoming and outgoing edges.

(b) Add to G a sink node that has a self loop.
(c) Every node in Vp not removed in the first step but where all of its

successors were removed gets an edge to the new sink node.
(d) Every node in V1−p not removed in the first step but that had one of its

successors removed gets an edge to the new sink node as well.
(e) If p = 1, then we swap ownership of all remaining nodes: player 0 nodes

become player 1 nodes, and vice versa.
(f) Finally, we color every node in X by p and all other nodes (including

the new sink state) by 1− p.

It is possible to show that the winning region in G[≥c] is MA(X). Indeed,
every node in the winning region of G[≥c] can be attracted to X without
passing through colors smaller than c infinitely often. In the other direction,
the attractor strategy to X induced by MA(X) can be converted to a winning
strategy in G[≥c]. The size of G[≥c] is bounded by the size of G: there is at
most one more node (the sink state), and each edge added to G[≥c] has a
corresponding edge that is removed from G.

3. As before, the computation of fixedPointQ(G, p, b) can be completed in
O(|V | · |E |). Indeed, the entire run of the for loop can be implemented so
that each edge is crossed exactly once in all the monotone control predecessor
computations. Then, the loop on X can run at most |V | times. And the
number of times fixedPointQ is called is bounded by |V | · |c |. ut

17

E Proof of robustness of psolB

In order to prove Theorem 7 we first prove a few auxiliary lemmas. Below, we
write G[U] for the subgame identified by node set U .

Lemma 2. For every game G, for every set of nodes K and for every trap U
for player p, the following holds: Attrp[G,K] ∩ U ⊆ Attrp[G[U],K ∩ U]

Proof. The proof proceeds by induction on the distance from K in Attrp[G,K].
For every node v of G let d(v) denote the distance of v from K in the attraction
to K in G.

– Suppose that K∩U = ∅. Then, Attrp[G[U],K ∩ U] = ∅ and we have to show
that Attrp[G,K] ∩ U = ∅.
Assume otherwise, then v ∈ Attrp[G,K]∩U 6= ∅. Let v be the node of minimal
distance to K in Attrp[G,K] ∩ U . If v ∈ Vp, then there is some successor w
of v such that d(v) = d(w) + 1. However, w cannot be in Attrp[G,K]∩U by
minimality of v. Thus, there is an edge from v that leads to a node not in U
contradicting that U is a trap for player p. Similarly, if v ∈ V1−p, then for
all successors w of v we have d(v) > d(w) and it follows that all succssors
w of v are not in Attrp[G,K] ∩ U . So all successors of v are not in U and U
cannot be a trap for player p.
It follows that Attrp[G,K] ∩ U = ∅ as required.

– Suppose that K ∩ U 6= ∅. We prove that for every node v ∈ Attrp[G,K] ∩ U
we have dG(v,K) ≥ dG[U](v,K ∩ U), where dG(v,K) and dG[U](v,K ∩ U)
are the distances of v from K (respectively K ∩ U) in the computation of
the corresponding attractor.
Again, the proof proceeds by induction on dG(v,K). Consider a node v in
Attrp[G,K] ∩ U such that dG(v,K) = 0. Then v is in K and from v ∈ U we
conclude that v is in K ∩ U and dG[U](v,K ∩ U) = 0.
Consider a node v in Attrp[G,K] ∩ U such that dG(v,K) > 0. If v is in Vp,
then there is a node w such that dG(v,K) = dG(w,K)+1. Since U is a trap,
it must be the case that w is in U as well and hence w is in Attrp[G,K]∩U .
By induction dG(w,K) ≥ dG[U](w,K ∩ U).
If v is in V1−p, then for all successors w of v we have dG(v,K) ≥ dG(w,K)+1.
Furthermore by U being a trap, there is some successor w of v such that w
is in U . It follows that w is in Attrp[G,K] ∩ U .
As U is a subset of the nodes of G we have succ(v,G) ⊇ succ(v,G[U]),
where succ(v,G) is the set of successors of v in G and succ(v,G[U]) is the
set of successors of v in G[U]. But then, for every w in succ(v,G[U]) we have
dG[U](w,K ∩ U) ≤ dG(w,K). Hence, dG[U](v,K ∩ U) ≤ dG(v,K). ut

We now specialize the above to the case of monotone attractors. We narrow
the scope in this context to match its usage in psolB. A more general claim
talking about general sets in the spirit of Lemma 2 requires quite cumbersome
notations and we skip it here (as it is not needed below).

18

Lemma 3. Consider a game G and a set of nodes K of color c such that
p = c%2. For every trap U for player p, the following holds: MAttrp(K, c) ∩ U
computed in G is a subset of MAttrp(K ∩ U, c) computed in G[U].

The proof is very similar to the proof of Lemma 2.

Proof. The proof proceeds by induction on the distance from K in MAttrp(K, c).
For every node v of G let d(v) denote the distance of v from K in the monotone
attraction to target K in G.

– Suppose that K ∩ U = ∅. Then, MAttrp(K ∩ U, c) in G[U] is empty and we
have to show that MAttrp(K, c) in G has empty intersection with U .
Assume otherwise, then there is some v such that v is in MAttrp(K, c) in G
and v ∈ U . Let v in U be the node of minimal distance to K in MAttrp(K, c)
computed in G. If d(v) = 1 and v ∈ Vp, then v has some node in K as
successor. But K∩U = ∅ and v has a successor outside U contradicting that
U is a trap. If d(v) = 1 and v is in V1−p, then all successors of v are in K. As
K ∩ U = ∅ all successors of v are outside U contradicting that U is a trap.
If d(v) > 1, the case is similar. If v is in Vp, then there is some successor w
of v such that d(v) = d(w) + 1. However, w cannot be in MAttrp(K, c) ∩ U
computed in G, by the minimality of v. Thus, there is an edge from v that
leads to a node not in U contradicting that U is a trap for player p. Similarly,
if v is in V1−p, then for all successors w of v we have d(v) > d(w) and it
follows that all succssors w of v are not in MAttrp(K, c) ∩ U in G. So all
successors of v are not in U and U cannot be a trap for player p.
It follows that MAttrp(K, c) computed in G does not intesect U as required.

– Suppose that K∩U 6= ∅. We prove that for every node v in MAttrp(K, c)∩U
computed in G we have dG(v,K) ≥ dG[U](v,K ∩ U), where dG(v,K) and
dG[U](v,K ∩ U) are the distances of v from K (respectively K ∩ U) in the
computation of the corresponding monotone attractors.
Again, the proof proceeds by induction on dG(v,K). Consider a node v in
MAttrp(K, c) computed in G such that v is in U and dG(v,K) = 1. Then, if
v is in Vp, then v has a successor in K. As U is a trap, it must be the case
that this successor is also in U showing that dG[U](v,K ∩ U) = 1. If v is in
V1−p, then all of v’s successors are in K. As U is a trap, v must have some
successors in G[U]. It follows that dG[U](v,K ∩ U) = 1.
Consider a node in MAttrp(K, c) such that v is in U and dG(v,K) > 1. If v
is in Vp then there is a node w such that dG(v,K) = dG(w,K) + 1. By U
being a trap, it must be the case that w is in U as well and hence w is in
MAttrp(K, c)∩U computed in G. By induction dG(w,K) ≥ dG[U](w,K∩U).
If v is in V1−p, then for all successors w of v we have dG(v,K) ≥ dG(w,K)+1.
Furthermore by U being a trap, there is some w successor of v such that w
is in U . It follows that all such w are in MAttrp(K, c) ∩ U computed in G.
As U is a subset of the nodes of G, we have succ(v,G) ⊇ succ(v,G[U]),
where succ(v,G) is the set of successors of v in G and succ(v,G[U]) is the
set of successors of v in G[U]. But then, for every w in succ(v,G[U]) we have
dG[U](w,K ∩ U) ≤ dG(w,K). Hence, dG[U](v,K ∩ U) ≤ dG(v,K). ut

19

We now show that the order of removal of attractors for even and odd colors
are interchangeable.

Lemma 4. Removal of fatal attractors for even colors and for odd colors are
interchangeable.

Proof. Let c1 be some odd color and c0 be some even color. Let X1 be the set
of nodes of color c1 such that X1 ⊆ MAttr1(X1, c1) and X1 is the maximal node
set with this property. (That is to say, X1 is the set computed by a call to psolB
with the color c1.) Similarly, let X0 be the set of nodes of color c0 such that
X0 ⊆ MAttr0(X0, c0) and X0 is the maximal with this property. We assume that
both MAttr1(X1, c1) and MAttr0(X1, c1) are not empty.

By soundness, MAttr1(X1, c1) is part of the winning region for player 1. Let
U be the residual game G\Attr1[G,MAttr1(X1, c1)]. We note that Lemma 2 does
not help us directly. Indeed, node set Attr1[G,MAttr1(X1, c1)] is an attractor for
player 1. Hence, U is a trap for player 1 but not necessarily for player 0.

By soundness, MAttr0(X0, c0) is a subset of U . Indeed, all the nodes that
are removed from G are winning for player 1 but MAttr0(X0, c0) is part of the
winning region for player 0. It follows that X0 is a subset of U .

Furthermore, MAttr0(X0 ∩ U, c0) is a superset of MAttr0(X0, c0), where this
follows from an argument similar to the one made in the proof of Lemma 2
above.

But from the construction of MAttr0(X0 ∩ U, c0) it follows that node set
MAttr0(X0 ∩ U, c0) is also a subset of MAttr0(X0, c0). Indeed, if we consider the
entire doubly nested fixpoint, then the computation of MAttr0(X0 ∩ U, c0) starts
from a subset of the nodes of color c0 and MAttr0(X0, c0) starts from the entire
set of nodes of color c0. ut

It follows that we may think about the removal of (attractors of) fatal at-
tractors eparately for all the even colors and all the odd colors. We now restate
and then prove Theorem 7:

Theorem 9. Let π1 and π2 be sequences of colors with psolB(π1) and psolB(π2)
stable. Then G1 equals G2 if Gi is the output of psolB(πi) on G, for 1 ≤ i ≤ 2.

Proof. By Lemma 4, we may assume that in both π1 and π2 all even colors
occur before odd colors. We show that the node set of the output of version
psolB(π1 · π2) is a subset of the node set of the output of version psolB(π2). As
π1 is stable, it follows that actually psolB(π1) ⊆ psolB(π2). The same argument
works in the other direction and it follows that the two residul games are actually
equivalent.

Let π1 = c1
1 · · · c1

n, where c1
1, . . . , c

1
m are even and c1

m+1, . . . , c
1
n are odd. Let

G1
0, G1

1, . . ., G1
n be the sequence of games after the different applications of the

colors in π1. That is, G1
0 = G, and G1

i is the result of applying psolB with
color c1

i on G1
i−1. It follows that G1

n = G1. Similarly, let π2 = c2
1 · · · c2

p, where
c2

1, . . . , c
2
q are even and c2

q+1, . . . , c
2
p are odd. Let G2

0 = G and let G2
i be the result

20

of applying psolB with color c2
i on G2

i−1. Let G1,2
0 = G1

n and G1,2
i is the result

of applying psolB with color c2
i on G1,2

i−1. We show that G1,2
j is a subset of G2

j .
By Lemma 4 it is clear that we can consider the application of c2

1, . . . , c
2
q

right after the application of c1
1, . . . , c

1
m. Indeed, in the sequence c1

m+1, . . . , c
1
n is

interchangeable with c2
1, . . . , c

2
q.

Consider the application of c2
j to G1,2

j−1 and to G2
j−1. By induction G1,2

j−1 is a
subset of G2

j−1. Furthermore, G1,2
j−1 is obtained from G by removing a sequence

of attractors for player 0. It follows that G1,2
j−1 is G2

j−1 restricted to a trap for
player 0.

It follows from Lemmas 3 and 2 that the computation of the attractor removes
a larger part of G1,2

j−1 than that of G2
j−1. Hence G1,2

j is a subset of G2
j . ut

F Proof of Theorem 8
We recall one way of solving a Büchi game will take the perspective of player 0.
First we inductively define, for n ≥ 0, and X = {v ∈ V | c(v) = 0} the sets

Z0 = V (3)
Un = Attr0[G,Zn]
Y n = cpre0(Un)

Zn+1 = Y n ∩X

Let n0 be minimal such that Zn0 = Zn0+1. The winning region for W0 for
player 0 in game G with colors 0 and 1 only is then equal to

W0 = Attr0[G,Zn0] (4)

Since the order of processing colors in psolB does not impact its output game
(by Theorem 7), we may assume that color d = 0 gets processed first (this is
just for convenience of presentation).

When the first iteration of psolB does process d = 0, the computation essen-
tially captures the process defined in the equations (3): the interplay of Un and
Y n achieves the effect that player 0 can move from Y n into Un, which models
that player 0 can reach the target set again from any node in the target set.
The computation of Zn corresponds to the else branch of the iteration within
psolB. The constraint of our monotone attractor, that c(v) ≥ d, is vacuously
true here as d equals 0. So the first iteration will effectively compute set Zn0 as
fixed-point. Then psolB will be called recursively on G \W0 by the definition of
W0 in (4).

In that remaining game, player 1 can secure that all plays visit nodes of color
0 only finitely often. This follows from the fact that W0 was removed from game
G and that Büchi games are determined. In particular, psolB will not detect a
fatal attractor for d = 0 in that remaining game. But when its iteration runs
with d = 1 we argue as follows.

21

The following algorithm computes the winning region for player 1 in a Büchi
game. Let X = {v ∈ V | c(v) = 1}.

Z0 = ∅ (5)
Y n,0 = X

Y n,m = X ∩ cpre1(Zn−1 ∪ Y n,m−1)
Zn = Attr1[G, Y n,mn

0]

where mn
0 is the minimal natural number such that Y n,mn

0 equals Y n,mn
0 +1. Let

n0 be the minimal natural number such that Zn0 equals Zn0+1. Let Xi,j denote
the sequence of values computed for the variable X in psolB, where i is the
number of recursive invocations of psolB, and j is the value of X computed
after running in the loop j times.

It is simple to see that Xn,m is a superset of Y n,m restricted to the resid-
ual game in the nth call to psolB. Indeed, both start from the set X and the
computation of X ∩ cpre1(Zn−1 ∪ Y n,m−1) is contained in the computation of
MA(Xn,m−1). The intersection with X in the algorithm above is included in the
definition of MA(X). Furthermore, every recursive call to psolB computes the ex-
act attractor Attr1[G,MA(X)] just as above. And the removal of nodes in psolB is
equivalent to the inclusion of Zn−1 in the computation of cpre1(Zn−1 ∪ Y n,m−1).

ut

22

