
Faster Temporal Reasoning for Infinite-State
Programs

Byron Cook Microsoft Research & University College London
Heidy Khlaaf University College London

Nir Piterman University of Leicester

Abstract—In this paper, we describe a new symbolic model
checking procedure for CTL verification of infinite-state pro-
grams. Our procedure exploits the natural decomposition of the
state space given by the control-flow graph in combination with
the nesting of temporal operators to optimize reasoning per-
formed during symbolic model checking. An experimental eval-
uation against competing tools demonstrates that our approach
not only gains orders-of-magnitude performance improvement,
but also allows for scalability of temporal reasoning for larger
programs.

I. INTRODUCTION

Branching-time temporal logics like CTL allow us to reason
about safety, termination, and nontermination via the system’s
interaction with inputs and nondeterminism in a way that
linear-time temporal logics like LTL do not. This style of
reasoning can be useful in applications ranging from plan-
ning, games, security analysis, disproving, and environment
synthesis [19], [29]. CTL-based tools also have been used as
the basis for higher-performance LTL tools [13].

In this paper we propose a new symbolic CTL model
checker for infinite-state programs. We adapt the well-known
bottom-up strategy for finite-state CTL model checking [9]
to infinite-state programs using precondition synthesis as
the enabling technology. We leverage recent techniques for
proving safety, termination, and nontermination of programs
to synthesize preconditions asserting the satisfaction of CTL
sub-formulae of an input property. The key insight to our
approach is the exploitation of the natural decomposition of
the state space given by the control flow graph. That is,
using a counterexample-guided precondition synthesis strat-
egy, we compute program-location-specific preconditions. Our
model checker drastically improves performance by reducing
the amount of redundant and irrelevant reasoning performed
through information sharing extracted from reachability anal-
ysis. That is, several preconditions for each program location
can be computed simultaneously.

Take for example the fact that the set of states respecting a
property such as EF y < z before a program command is very
often the same or nearly the same as the set of states respecting
EF y < z after the command. In comparison to existing tools
(e.g. [10], [4]) we reduce the amount of reasoning performed
as part of the procedure. We can infer whether a command is
likely to affect the truth of EF y < z. So, sequential locality
implies that the precondition of a location is easily computed
if the preconditions of its successors are known.

This approach gives way to compositional reasoning. For
instance, given a program and a desired property, we can, in
parallel, synthesize preconditions, desired environments, and
plans of individual procedures of a program with the goal of
composing the found preconditions into a proof of the whole
program. The advantage to this approach is that the program
verification tools never have to examine the program as a
whole, but instead find a modular proof using compositional
reasoning. Recent success in this style of reasoning can be
found in areas such as proving correctness of non-blocking
algorithms [20], and the analysis of biological models [11].

We also suggest a new method of treating existential path
quantification in the infinite-state setting. Existential formulas
are handled by considering their universal dual, allowing
counterexamples of said duals to serve as a witness asserting
the satisfaction of the existential CTL formula.

An experimental evaluation using examples from the bench-
mark suites of the competing tools (which are drawn from
industrial benchmarks) demonstrates orders-of-magnitude per-
formance improvements in many cases. This evaluation is
discussed at the conclusion of the paper.
Related work. Model checking has been extensively studied in
the context of finite-state systems (e.g. [3], [5], [7], [8], [25])
as well as for various types of systems with limitations on
their infiniteness (e.g. pushdown systems [17], parameterized
systems [16], timed systems [2], etc.). In recent years new
tools have been developed for proving temporal properties of
integer programs, e.g. [12], [32], [33], [34], [22], [10], [4].
These tools go beyond, e.g. SMV, which is restricted to finite-
state programs [6].

In this work we are aiming to prove CTL properties with
nested combinations of existential and universal path quanti-
fiers of integer programs. Song & Touili [32] perform a coarse
one-time abstraction that takes programs and produces push-
down automata, however the abstraction produced is imprecise
and leads to significant information loss. Gurfinkel et al. [22]
do not reliably support mixtures of nested universal/existential
path quantifiers, etc. The two tools closest in their feature set
to our setting are from Cook & Koskinen [10] and Beyene
et al. [4]. Cook & Koskinen implement the Kesten and
Pnueli [24] deductive proof system using an incremental re-
duction to program analysis tools. Beyene et al. [4] implement
the same idea as Cook & Koskinen using a reduction to Horn-
clause reasoning. Neither Cook & Koskinen nor Beyene et al.
make use of the locality in programs as we do. Effectively,

these tools carryout unnecessary computation in their analysis.
In addition, our new approach to the treatment of existential

path quantification based on dualization contrasts to that
of Cook & Koskinen, which attempts to find a non-trivial
restriction on the state-space such that AF can be used to
reason about EF, or AG can be used to reason about EG. Our
approach also contrasts to the tool of Beyene et al. [4], as
their tool requires existential quantification over predicates to
be supported by the underlying constraint solver, whereas our
technique can make use of off-the-shelf verification tools.
Limitations. We do not support programs with heap, nor
do we support recursion or concurrency. The heap-based
programs we consider during our experimental evaluation
have been abstracted using the over-approximation from the
technique of Magill et al. [26]. Note that this abstraction
can lead to unsoundness when we use the existential subset
of CTL. Our comparison to existing tools remains fair, as
each of the previous tools uses the same abstraction. Effective
techniques for proving temporal properties of programs with
heap remains an open research question.

As our technique heavily relies on calculating pre-images,
it is important that fragments of the underlying program logic
are closed under pre-impages, e.g. integer linear arithmetic, a
fragment of integer arithmetic. Our procedure is not complete
as we use a series of incomplete subroutines.

II. PRELIMINARIES

Programs. As is standard [27], we treat programs as control-
flow graphs, where edges are annotated by the updates they
perform to variables. A program is a triple P = (L, E,Vars),
where L is a set of locations, E is a set of edges/transitions,
and Vars is a set of variables. Each edge τ = (`, ρ, `′) in
E, where `, `′ ∈ L and ρ is a condition, specifies possible
transitions in the program. A valuation associates with the
variables in Vars values in Vals. A trace or a path of a
program is either a finite or an infinite sequence of edges
allowed by the program. The condition ρ is an assertion in
terms of Vars and Vars′, a primed copy of Vars, where
constants range over Vals. Intuitively, Vars refers to the values
of variables before the update and Vars′ refers to the values
of variables after the update. The set of locations includes
the first location `0 that has no incoming transitions from
other program locations. That is, for every τ = (`, ρ, `′) ∈ E
we have `′ 6= `0. Transitions exiting `0 have their condi-
tions expressed in terms of Vars′. Locations with incoming
transitions from `0 are initial locations. This allows us to
encode more complex initial conditions. In figures we usually
omit `0 and add edges with no source to locations having
an incoming transition from `0. The program gives rise to a
transition system T = (S,R), where S is the set of program
states of the form S = (L − {`0}) × (Vars → Vals) and
R ⊆ S × S. That is, a program state is a pair (`, s) where
` 6= `0 and s is a valuation, i.e., a function from program
variables to values. The program can transition from (`, s1)
to (`′, s2) if there is a transition (`, ρ, `′) ∈ E such that
(s1, s2) |= ρ. Here the valuation (s1, s2) is a function from
Vars ∪ Vars′ to Vals such that for every v ∈ Vars we have

(s1, s2)(v) = s1(v) and (s1, s2)(v
′) = s2(v). A state (`, s) is

initial if there is a transition (`0, ρ, `) such that (s−1, s) |= ρ,
where s−1 is some arbitrary state. Notice that in such a case
ρ is expressed in terms of Vars′ and hence the state s−1 does
not affect the evaluation of ρ. For example, Figure 1 includes
the representation of the program while x ≤ 0 do if * then x
:= x + 1; fi; done; y := 1; with initial condition x = ∗∧y = 0
and where ∗ indicates a non-deterministic value.

A finite set of program locations C ⊆ L is called a cut-
point set if `0, `n ∈ C, where n ∈ N and every cycle in the
program’s graph contains at least one cut-point.
CTL. We are interested in verifying state-based temporal
properties in computational tree logic (CTL) [9]. A CTL
formula is of the form

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | AGϕ | AFϕ | A[ϕWϕ]

| EFϕ | EGϕ | E[ϕUϕ]

where α is an atomic proposition (e.g. x < y).
To give intuition behind the semantics of CTL, here P, s |=

AFϕ asserts that in program P and in all possible executions
starting from s the property ϕ will eventually hold in some
future state reachable from s, whereas P, s |= EFϕ asserts that
there is a state in which ϕ holds and that it can be reached
from s. The formula AGϕ asserts that ϕ must hold throughout
all possible executions, while EGϕ asserts that there exists an
execution such that ϕ would be true throughout. Aϕ1Wϕ2

asserts that for all executions, ϕ1 has to hold until ϕ2 holds,
signifying that ϕ2 does not necessarily have to hold as long
as ϕ1 holds. Contrarily, Eϕ1Uϕ2 asserts that there exists an
execution in which ϕ1 has to hold at least until at some
position ϕ2 holds. AU and EW are represented as syntactic
sugar as usual.

For a program P and a CTL property ϕ, we say that ϕ
holds in P , denoted by P |= ϕ if for every initial state s we
have P, s |= ϕ.
Ranking functions. For a state space S, a ranking func-
tion f is a total map from S to a well-ordered set with
ordering relation ≺. A relation R ⊆ S × S is well-founded
if and only if there exists a ranking function f such that
∀(s, s′) ∈ R. f(s′) ≺ f(s). We denote a finite set of ranking
functions (or measures) as M. Note that the existence of
a non-empty set of ranking functions for a relation R is
equivalent to containment of R+ within a finite union of well-
founded relations [30]. That is, a set of ranking functions
{f1, . . . , fn} denotes the disjunctively well-founded relation
{(s, s′) | f1(s′) ≺ f1(s) ∨ . . . ∨ fn(s′) ≺ fn(s)}.
Counterexamples. In our setting new ranking functions can
be automatically synthesized by examining counterexamples
produced by an underlying safety prover (discussed in more
detail in Section IV). Due to the recursive nature of our
procedure it is only necessary to handle counterexamples to
formulas of nesting depth 1. For example, Aϕ, where ϕ is a
path formula that includes no nesting of additional operators,
or α1∨α2, where α1 and α2 are assertions. A counterexample
for an atomic proposition α is a state in which α does not
hold. A counterexample for a conjunction ϕ1 ∧ ϕ2 is a state

where either ϕ1 or ϕ2 does not hold. A counter example for
disjunction ϕ1 ∨ ϕ2 is a state where both sub-formulas do
not hold. A counterexample to an AGϕ property is a path
to a place where ϕ does not hold. A counterexample to an
AFϕ property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ϕ does not
hold along the stem and the cycle. Finally, a counterexample
to A[ϕ1Wϕ2] is a path to a place where there is a sub-
counterexample to ϕ1 as well as one to ϕ2. A counterexample
to E[ϕ1Uϕ2] can be of the same form as that of A[ϕ1Wϕ2], as
well as one where ϕ1 holds while ϕ2 does not hold anywhere
along the path.
Calculating pre-images. Let π = (`0, ρ0, `

′
0), (`1, ρ1, `

′
1),

. . . , (`n, ρn−1, `
′
n) be a path. We compute a pre-image for

every possible suffix of π. That is, we denote pren+1 = S and
prei = pre((`i, ρi, `

′
i), . . . , (`n, ρn, `

′
n)) as the set of states

such that prei = {s | ∃s′ ∈ prei+1 s.t. ((`i, s), (`′i, s
′)) |=

ρi}. Generaly speaking, given an assertion α (in terms of Vars)
representing prei+1, and an assertion ρi (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let α′ denote ∃ Vars. Vars = Vars′ ∧ α. We thus consider
∃ Vars′(Vars = Vars′ ∧ ∃ Vars. (Vars = Vars′ ∧ (α′ ∧ ρi))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ϕ a precondition ℘〈ϕ〉 that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition ℘〈ϕ〉 is thus partitioned
to ℘〈`i, ϕ〉 for every location `i in the program. Thus, ℘〈ϕ〉
takes the form

∧
`i
(pc = `i ⇒ ℘〈`i, ϕ〉). Here pc = `i is used

to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

ρ1 : x′ = ∗
y′ = 0

ρ2 : x ≤ 0
x′ = x + 1

ρ3 : x ≤ 0

ρ4 : x > 0

ρ5 : y′ = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

ρ1 : x′ = ∗
y′ = 0

ρ2 : x ≤ 0 ∧
y 6= 1

x′ = x + 1
ρ3 : x ≤ 0 ∧

y 6= 1 ρ6 : y = 1

ρ4 : x > 0 ∧
y 6= 1

ρ5 : y 6= 1
y′ = 1

ρ7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
ϕ ≡ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states ℘ such that AG℘ holds, and such that
℘ |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ψ ≡ EF y = 1. For the
proposition y = 1, for every program location `i we have
℘〈`i, y = 1〉 , y = 1. We now attempt to prove that
℘ 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with ℘〈ψ〉 , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
℘ through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

℘〈ψ〉 , (pc = `1 ⇒ ℘〈`1, ψ〉) ∧ (pc = `2 ⇒ ℘〈`2, ϕ〉).

`1 `2

ERR

ρ1 : x′ = 0
y′ = 0

ρ2 : x ≤ 0 ∧
y = 0

x′ = x + 1
ρ3 : x ≤ 0 ∧

y = 0 ρ6 : y 6= 0

ρ4 : x > 0 ρ5 : x > 0
y′ = 1

ρ7 : x ≤ 0

Fig. 3: The transformation of the program from Figure 1 for the sub-property
AGEF y = 1 to be utilized in the verification algorithm. The nested property
EF y = 1 is substituted with its precondition resulting in a transformation for
AG ((pc = `1 ⇒ y = 0) ∨ (pc = `2 ⇒ x > 0)) instead.

We begin with `1. To check AG y 6= 1 we use a source-
to-source transformation that reduces checking of universal
CTL properties to safety [10]. The transformation returns the
program in Figure 2 (new conditions outlined), on which
we use a safety prover to check reachability of ERR. We
get counterexample CEX1: 〈`0, ρ1, `1〉, 〈`1, ρ3, `1〉, 〈`1, ρ2, `1〉,
〈`1, ρ4, `2〉, 〈`2, ρ5, `2〉, 〈`2, ρ7,ERR〉.

We then calculate the pre-image of CEX1 for multiple
locations along the counterexample. We do so by iterating
along the counterexample path, and for every reachable lo-
cation ` ∈ L in CEX1, we compute a pre-image utilizing
the suffix of CEX1 from ` onwards. Thus we can avoid
redundant reasoning by utilizing sequential locality based upon
the program’s control-flow graph to compute a refinement for
`2 from a counterexample generated for `1. In this case, we
compute ℘ , (pc = `1 ⇒ y = 0) ∧ (pc = `2 ⇒ x > 0)

One existential witness may not be sufficient to find all
states that satisfy ψ in the respective locations, we thus rule
out CEX1 by adding ¬℘〈`i, ψ〉 to each transition from `i to the
error state. We re-run our safety checker and find that we do
not generate anymore counterexamples, thus completing our
precondition synthesis for EF y = 1.

Note that the technique used by Cook & Koskinen [10] im-
poses that they spend time computing both ℘〈`1, ψ〉, ℘〈`2, ψ〉
separately while the technique used by Beyene et al. [4] solves
a constraint based on an entire path when it’s only necessary
to reason about a single state.

We now modify ϕ by using ℘〈ψ〉 and get ϕ′ = AG ((pc =
`1 ⇒ y = 0) ∧ (pc = `2 ⇒ x > 0)). The constructed
transformation reducing the property ϕ′ to safety can be seen
in Figure 3. Note that in this particular transformation, the
outlined instrumented conditions correspond to each of the
location preconditions generated for EF y = 1. As ϕ′ is
universal, we begin with the initial precondition ℘〈ϕ〉 , true.
Failures to the proof attempt will result in strengthening
the precondition by adding negated pre-images of discovered
counterexamples. In this case no counterexamples are returned
and we get ℘〈ϕ〉 , true. This proves that AGEF y = 1 holds.

IV. PROCEDURE

In this section we describe the details of our CTL model
checking procedure. Figure 4 depicts VERIFY, which wraps

1 let VERIFY (ϕ, P) : bool =
2
3 (L, E,Vars) = P
4 ℘ = TEMPORALWP(ϕ, P)
5 return ∀(`0, ρ, `) ∈ E ∀s . (s, s) |= ρ⇒ s |= ℘〈`, ϕ〉

Fig. 4: Procedure VERIFY, which wraps TEMPORALWP and then checks
all initial states.

1 let rec TEMPORALWP(ψ, P) : map =
2 ℘ = INITIALIZEMAP (ψ,P)
3 M = ∅
4 κ = []
5 (L, E,Vars) = P
6 if ψ = α is atomic then
7 foreach {` | (`, t, `′) ∈ E}
8 ℘〈`, ψ〉 = pre(t, α) ; ℘〈`,¬ψ〉 = ¬pre(t, α)
9 done

10 else
11 match (ψ) with
12 | ψ′

1∧ψ′
2 | ψ′

1 ∨ ψ′
2 | ψ′

1Uψ′
2 | ψ′

1Wψ′
2 →

13 ℘ = ℘ ∪ TEMPORALWP(ψ′
1, P)∪ TEMPORALWP(ψ′

2, P)
14 | AFψ′

1 | AGψ′
1 | ¬ψ′

1 →
15 ℘ = ℘ ∪ TEMPORALWP(ψ′

1, P)
16 C = FINDCUTPOINTS(P)
17 foreach ` ∈ C do
18 P ′ = TRANSFORM(〈`, ψ〉,M, P,℘)
19 CEX, M = REFINE(P ′, ψ, ℘,M)
20 while CEX 6= ∅ do
21 ℘,P ′ = PROPAGATE(CEX, P ′, κ, ψ, `, ℘)
22 κ = CEX :: κ
23 CEX,M = REFINE(P ′, ψ, ℘,M)
24 done
25 done
26 ℘

Fig. 5: Procedure TEMPORALWP getting a temporal property and a program
and returning the map from program locations and sub-formulas to assertions.

the main procedure TEMPORALWP in Figure 5. Other sub-
routines used in TEMPORALWP are in Figures 6–10.

We exploit the natural decomposition of the state
space given by the control flow graph. That is, using a
counterexample-guided precondition synthesis strategy, we
compute program-location-specific preconditions. In our ap-
proach the table ℘ is the key data structure which maps
pairs of program locations and sub-formulae to assertions
which represent the current candidate precondition that would
guarantee the sub-formulae at a respective location. That is,
℘〈`, ϕ〉 should be a sufficient and most general precondition to
prove that ϕ holds at location `. If such is not the case, a coun-
terexample is produced and the procedure attempts to refine ℘

1 let INITIALIZEMAP (ψ,P) : map =
2
3 ℘ = ∅
4 (L, E,Vars) = P
5 if ψ = Eψ′ then
6 foreach ` ∈ L do
7 ℘〈`, ψ〉 = false;
8 ℘〈`,¬ψ〉 = true
9 done

10 else
11 foreach ` ∈ L do
12 ℘〈`, ψ〉 = true;
13 ℘〈`,¬ψ〉 = false
14 done
15 return ℘

Fig. 6: Initializing the map from program locations and sub-formulas to
assertions.

1 let REFINE(P, ψ, ℘,M) : map =
2
3 CEX = REACHABLE(P,ERR)
4 while P can reach ERR do
5 if CEX contains stem and lasso then
6 if ∃ witness f showing CEX′ w.f. then
7 M = M ∪ {f}
8 else
9 return CEX, M

10 else
11 return CEX, M
12 CEX = REACHABLE((TRANSFORM(〈`, ψ〉,M, P, ℘),`0,ERR)
13 done

Fig. 7: Procedure REFINE getting a program, a temporal property, the map
from locations and temporal properties to assertions, and a set of ranking
functions and returning a counter example reaching location ERR and a
(possibly) larger set of ranking functions.

1 let PROPAGATE(CEX,P, κ, ψ,n,℘): map =
2 α = true
3 (L, E,Vars) = P
4 foreach (`, ρn, `′) ∈ CEX reachable from n do
5 if CEX in κ ∧ ` = n then
6 α = STRENGTHEN(pre(`,CEX),CEX)
7 else
8 α = pre(`,CEX)
9 if ψ = Eψ′ then

10 ℘〈`, ψ〉 = ℘〈`, ψ〉 ∨ α
11 ℘〈`,¬ψ〉 = ℘〈`,¬ψ〉 ∧ ¬α
12 else
13 ℘〈`, ψ〉 = ℘〈`, ψ〉 ∧ ¬α
14 ℘〈`,¬ψ〉 = ℘〈`,¬ψ〉 ∨ α
15 if `′ = ERR then
16 ρ ∈ E = ρ ∧ ¬℘〈`, ψ〉
17 done
18 ℘, P

Fig. 8: Procedure PROPAGATE getting a counter example, the program, a
list of previous counter examples, the location to which the counter example is
applicable, and the map of previously discovered preconditions and returning
an updated map and updated program. The map of preconditions is updated
by adding the weakest preconditions of the current counter example. The
program is updated by eliminating handled counter example from reaching
the ERR location again.

given the counterexample path. Each precondition synthesized
substitutes its temporal sub-property in the original formula,
and we then continue with the next most outer formula. After
a short description of TEMPORALWP and a brief description
of each of its subroutines, we give an in depth explanation of
TEMPORALWP.
TEMPORALWP: performs both a recursive and a refinement-
based computation to construct ℘. It starts by initializing the
map of preconditions using procedure INITIALIZEMAP (Fig-
ure 6) and then calling itself recursively for each sub-
formula (lines 7–9 and 11–15). TRANSFORM and REFINE
are part of the model checking procedure for the current
sub-formula while PROPAGATE (Figure 8) updates the map
by synthesizing the pre-images given a counterexample. We
then reduce the amount of redundant and irrelevant reason-
ing performed through information sharing extracted from

1 let STRENGTHEN(α,CEX) : AP =
2
3 W = {v | v gets updated in CEX}
4 QE(∃W.α)

Fig. 9: If divergence is suspected due to infinitely many counterexamples,
the sub-procedure strengthens the candidate precondition towards the limit.

1 let TRANSFORM(〈k, ϕ〉,M, P, ℘) : Program =
2
3 (L, E,Vars) = P
4 match(ϕ) with
5 | ψ∧ψ′ →
6 α1 = ℘〈k,¬ψ〉 ; α2 = ℘〈k,¬ψ′〉
7 E = E ∪ (k, α1 ∨ α2, ERR)
8 | ψ∨ψ′ →
9 α1 = ℘〈k,¬ψ〉 ; α2 = ℘〈k,¬ψ′〉

10 E = E ∪ (k, α1 ∧ α2, ERR)
11 | A[ψWψ′]→
12 foreach (`, ρ, `′) ∈ E reachable from k do
13 α1 = ℘〈`, ψ〉 ; α2 = ℘〈`, ψ′〉
14 ρ = ρ ∧ α1 ∧ ¬α2

15 E = E ∪ (`, ¬α1 ∧ ¬α2, ERR)
16 | E[ψUψ′]→
17 P = TRANSFORM(〈k,A[¬ψ′W(¬ψ ∧ ¬ψ′)]〉,M, P, ℘)
18 | AFψ →
19 foreach (′`, ρ, k) ∈ E do
20 ρ = ρ ∧dup=false
21 foreach (`, ρ, `′) ∈ E reachable from k do
22 α = ℘〈`, ψ〉
23 ρ = (ρ ∧ ¬α) ∨ (ρ ∧ ¬dup∧¬α
24 ∧ dup=true ∧ (′s = `× Vars→ Vals))
25 c = dup ∧ ¬α ∧ ¬(∃f ∈M. f(s) ≺ f(′s))
26 E = E ∪(`, c, ERR)
27 | EGψ →
28 P = TRANSFORM(〈k,AF¬ψ〉,M, P, ℘)
29 | AGψ →
30 foreach (`, ρ, `′) ∈ E reachable from k do
31 α = ℘〈`, ψ〉
32 ρ = ρ ∧ α
33 E = E ∪(`, ¬α, ERR)
34 | EFψ →
35 P = TRANSFORM(〈k,AG¬ψ〉,M, P, ℘)
36
37 P

Fig. 10: Reduction of model checking of temporal properties to safety and
ranking function synthesis.

reachability information. That is, several preconditions for
each program location can be computed simultaneously. When
TEMPORALWP returns to VERIFY, it is only necessary to
check if the precondition of the outermost temporal sub-
property is satisfied by the initial states of the program.
TRANSFORM: implements the reduction of model checking to
safety checking and well-foundedness, inspired by the proce-
dure from [10]. The TRANSFORM transformation utilizes the
map ℘, which maps the preconditions synthesized previously
for sub-properties and their negations (lines 6,9,13,22, and
31). The program is then transformed according to the CTL
sub-property by modifying the program from a given program
location k ∈ L. The reduction is only applied from a location k
onwards (see loop invariants in lines 12, 21, and 30), that is, we
only wish to verify the sub-property starting from transitions
stemming from k. Whenever ϕ does not hold for a location `,
a new reachable transition to an error location ERR is added.

As mentioned, existential path quantifiers are handled by
considering their universal dual. For both existential and
universal properties, our mapping function is also updated with
the precondition for the negation of the property on line 8
in TEMPORALWP and lines 11 and 14 in PROPAGATE. This
allows us to conveniently access the negation of the property
when encoding existential properties as their universal duals.
REFINE: uses a safety prover (similar to IMPACT [28]) to
obtain counterexamples from the transformed system, if a

counterexample exists. A produced counterexample to a live-
ness property (such as AF) contains a lasso fragment, we then
attempt to find an accompanying set of ranking functions M
that will show that the counterexample is not valid. We thus
attempt to enlarge the set of ranking functions M using the
well known method of [14]. Otherwise, the absence of a set
of ranking function indicates the existence of a recurrent set.
Note that proving liveness is undecidable, thus techniques used
in [14] are incomplete.

A. TEMPORALWP: computing ℘

In order to synthesize a precondition for a temporal property
ψ, we first recursively accumulate the preconditions generated
when considering the sub-properties of ψ at lines 8, 13, and
15. The base case, an atomic proposition α, is computed
as is standard, e.g., in [15]. For the sake of clarity, we
omit the descriptions of both FINDCUTPOINTS and the use
of sequential locality in PROPAGATE till later, as we solely
wish to describe the fundamental procedure underlying our
precondition synthesis for each temporal sub-property. We will
then discuss how these sub-procedures provide the key to
making use of the program’s control-flow graph to construct
multiple preconditions.

Given the omission of FINDCUTPOINTS, let C be the set of
all locations in a program P , that is L. We wish to synthesize a
precondition for each ` ∈ L such that the precondition asserts
the satisfaction of ψ. Hence, we iterate over these locations
(line 17) and generate a transformed program corresponding
to each location using the subroutine TRANSFORM at line 18.

Recall that TRANSFORM allows us to reduce the checking
of temporal properties to a program analysis task from a given
program location. Each transformed program is then verified
through the subroutine REFINE (line 19). A counterexample-
guided precondition refinement loop then begins at line 20,
where we iteratively refine a precondition for ` ∈ L until
no more counterexamples are found. We now discuss the
refinement process for each type of quantifier separately below.
Universal precondition synthesis. For a universal CTL sub-
property ψ, a precondition ℘〈`, ψ〉 for a program location `
is initialized to true (Figure 6 line 12). If REFINE returns
a counterexample, we refine ℘〈`, ψ〉 by taking the negation
of pre-image of the returned counterexample at location `
in PROPAGATE on line 21. Given our temporary omission
of sequential locality in PROPAGATE, consider the loop in
Figure 9 on line 3 to only iterate over one element, that is
the current `. As we are handling a universal sub-property
its precondition is then strengthened to become ℘〈`, ψ〉 =
℘〈`, ψ〉 ∧ ¬pre(`,CEX) (line 13 in PROPAGATE).

We then rule out the aforementioned counterexample by
adding the assumption ¬pre(`,CEX) to each ingoing transi-
tion to the error location on the counterexample path, as shown
on lines 15 and 16 in PROPAGATE. We then continue to unfold
the loop in TEMPORALWP whenever a new counterexample
is discovered while iteratively refining ℘〈`, ϕ〉, resulting in:

℘〈`, ϕ〉 =
∧

n∈N ¬pre(CEXn)

Existential precondition synthesis. For an existential CTL

property, a precondition must entail an existential witness
satisfying the sub-property ψ at program location `. We thus
verify the universal dual of the existential property (as instru-
mented by our encoding) and seek a set of counterexamples
generated from the property’s universal dual to serve as an
existential witnesses.

A precondition ℘〈`, ϕ〉 for a program state is initially
false (line 7 in Figure 6). If a counterexample is returned,
℘〈`, ϕ〉 is refined through the disjunction of the pre-image
of the counterexample returned, that is ℘〈`, ψ〉 = ℘〈`, ψ〉 ∨
pre(`,CEX) (line 10 in Figure 8).

We rule out the aforementioned counterexample by adding
the assumption ¬pre(`,CEX), and continue to unfold the loop
with each newly discovered counterexample while iteratively
refining ℘〈`, ψ〉. Note that finding one witness is not sufficient
to satisfy an existential property, as ℘〈`, ψ〉 must characterize
all the states satisfying the sub-property ψ at a location. Thus,

℘〈`, ψ〉 =
∨

n∈N pre(CEXn)

Upon the return of our precondition method to its caller,
℘ will contain the precondition for the most outer temporal
property of the original CTL property ϕ.

In our procedure, divergence can occur due to the possibility
of generating infinitely many counterexamples. In practice this
is rare, but not unheard of. We thus implement the following
heuristic introduced by [10]:
• If we suspect we are looking at a sequence of repeated

counterexamples that will result in divergence, we call
the procedure STRENGTHEN (Figure 9, line 5 in PROP-
AGATE). The sub-procedure strengthens the candidate
precondition towards the limit.

• STRENGTHEN takes the calculated pre-image α, then
proceeds to quantify out all variables that are updated
proceeding the program location ` by applying quantifier
elimination (QE).

• This heuristic can lead to unsoundness, as STRENGTHEN
may over-approximate the set of states, causing ℘ to
be potentially unsound for temporal properties involving
existential path quantifiers. To check that the guessed
candidate precondition is in fact a real precondition, e.g.
that ℘⇒ EG ℘′, we can use the approach from Beyene
et al. [4] to double check the small lemma.

• If the check succeeds we continue, if the check fails we
raise an exception.

Reducing redundant and irrelevant reasoning. Given that
our approach synthesizes counterexample guided precondi-
tions over program locations, we utilize sequential locality to
simultaneously calculate preconditions for the set of locations
that are arranged and can be accessed from a CEX starting
from a given location `. Our propagation sub-procedure PROP-
AGATE (Figure 8) is called from TEMPORALWP at line 21. We
iterate along the counterexample path, and for every reachable
location ` ∈ L, we compute a pre-image utilizing a suffix of
CEX from ` onwards. In more informal terms, every program
location along the path can utilize the same counterexample to
show that the property does or does not hold. Practically, the
computation of a pre-image is performed by going backwards

over the counter example.
PROPAGATE alone does not eliminate redundant or ir-

relevant reasoning, as we would still iterate over locations
whose preconditions have already been computed for. We thus
calculate a cut-point set C such that C ⊆ L and every cycle in
the program’s graph contains at least one cut-point (line 16 in
TEMPORALWP). That is, we only wish to synthesize a precon-
dition over each program location ` ⊆ C. We choose to verify
the set of cut-points [18] instead of all program locations, as
cut-points provide locality across program locations given the
nature of cycles. We will thus be able to propagate a cut-
point precondition to all locations reachable from a cycle of
a generated counterexample. Other program analysis inspired
techniques may be used for the selection of initial locations to
be verified. A cycle independent analysis can be run for those
locations unreachable from program cut-points.

We now state the correctness of our procedure. A full
correctness proof is included in Appendix.

Proposition 4.1: If the algorithm in Figure 5 terminates, for
every sub-formula ψ of ϕ, every location ` ∈ L, and every
reachable state s we have: s |= ℘〈`, ψ〉 implies P, (`, s) |= ψ
and s |= ¬℘〈`, ψ〉 implies P, (`, s) |= ¬ψ.

Proof Sketch: We prove the proposition by induction on the
structure of the formula. It is clear for an atomic proposition
and for Boolean operators. Consider a universal path for-
mula. As the counter examples obtained from the underlying
program analysis tool are real counter examples, it follows
that their pre-images do not satisfy the formula. We then
get additional counter examples, which are all sound. The
termination of the loop searching for counter examples implies
that the disjunction of all pre-images is sound and complete.
Existential path formulas are dual.

Corollary 4.2: For every symbolic program P we have P |=
ϕ iff for every (`0, ρ, `) ∈ E we have ρ⇒ ℘〈`, ϕ〉.

V. EVALUATION

In this section we discuss the results of our experiments
with an implementation of the procedure from Figure 4.
Our implementation is built as an extension to the open
source project T2 [1], which uses a safety prover similar to
IMPACT [28] alongside previously published techniques for
discovering ranking functions, etc [31], [21] to prove both
liveness and safety properties. The source code for our tool
can be found at http://heidyk.com/T2source/.

We have compared our tool to that of Cook & Koskinen [10]
and Beyene et al. [4]. The benchmarks used are the same as
those used in [10] and [4]. These benchmarks were originally
created by Cook & Koskinen using the examples drawn from
the I/O subsystem of the Windows OS kernel, the back-
end infrastructure of the PostgreSQL database server, and the
SoftUpdates patch system [23]. The benchmarks can be found
at http://www.cims.nyu.edu/˜ejk/ctl/. For each
program and CTL property ϕ, we verify both ϕ and ¬ϕ. The
various tools were executed on an Intel x64-based 2.8 GHz
single-core processor.
Program commands. We now discuss the format in which we
interpret a program’s commands. A deterministic assignment

statement of the form v′ = exp where v′ ∈ Vars′ and
exp is an expression over program variables is translated to
the condition v′ = exp ∧ ∀x ∈ Vars\{v}. x = x′. A
nondeterministic assignment v′ = ∗ is translated to ∀x ∈
Vars\{v}. x = x′. A conditional statements exp is encoded
to exp ∧ ∀x ∈ Vars. x = x′.

In Figure 11 we display the comparison of our results. For
each program and its set of CTL properties, we display the
number of lines of code (LOC), and report the time it took to
verify a CTL property (Time column) in seconds. A X in the
“Result” column indicates that the tool was able to verify the
property. Likewise, an × indicates that the tool failed to prove
the property. A timeout or memory exception is indicated by
T/O. A timeout is triggered if verification of an experiment
exceeds 3000 seconds. The symbol “–” in the Time and Result
column indicates that the experiment was not run.

Overall, our tool demonstrates a significant increase in
performance and scalability. Contrary to existing tools, our
tool produces no timeouts and programs are often verified
in under a second or less. The aforementioned tools often
take minutes (the former more-so than the latter). Furthermore,
the previous tools produce T/Os in cases where the temporal
formula is complex, the size of the program is large, or both.
Although a few of our results are on par with Beyene et al.,
one can speculate from our evaluations that said tool is not
well equipped to handle larger programs. Contrarily, our tool
demonstrates the potential for scalability. On average, we show
orders-of-magnitude performance improvement over existing
tools, particularly when dealing with larger programs.

In a few cases our tool produces results that differ with one
of the previous tools, due to bugs in the previous tools. As
an example, in the S/W Updates case we are unable to repeat
the result of Cook & Koskinen on c > 5 ∧ AG(r ≤ 5) and
c > 5 ∧ EG(r ≤ 5). Our result agrees with that of Beyene
et al.. Finally, OS frag. 2 requires fairness, and it is unclear
how [10] and [4] verified said program, as all these tools lack
support for fairness. Cook & Koskinen acknowledge their bug.

VI. CONCLUDING REMARKS

In this paper we have described a procedure for CTL model
checking that takes advantage of the structure of control-flow
graphs available in programs. Our procedure works recursively
on the structure of the property and computes (location-based)
preconditions for the satisfaction of each sub-formula. The
idea is to use a decomposition based on program-location
(thus facilitating the use of program analysis techniques),
but to maintain the current state of the intermediate lemmas
in a way their results can be used to quickly facilitate the
computation of results for nearby program locations. As is
evident from the outcome of our experimental evaluation,
our method leads to dramatic performance improvement over
competing tools that support CTL verification for infinite-state
programs. Additionally, we wish to further experiment with the
scalability that our methodology can perhaps provide.

REFERENCES

[1] “T2 source code,” http://research.microsoft.com/t2.

ϕ ¬ϕ
Fig. 4 Beyene [4] Cook [10] Fig. 4 Beyene [4] Cook [10]

Program LOC Property (ϕ) Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

OS frag. 6 1050 AG(b = 1⇒ AF(u = 0)) 67.3 X T/O – T/O – 82.9 × T/O – T/O –
OS frag. 6 1050 EG(b = 1⇒ EF(u = 0)) 36.2 X T/O – T/O – 38.8 × T/O – – –
OS frag. 3 370 AG(a = 1⇒ AF(r = 1)) 5.9 X 43.4 X 38.9 X 6.2 × 40.4 × 18.0 ×
OS frag. 3 370 AG(a = 1⇒ EF(r = 1)) 6.8 X 35.45 X 90.0 X 3.4 × 36.57 × 107.3 ×
OS frag. 3 370 EF(a = 1 ∧ AG(r 6= 1)) 4.7 X T/O – T/O – 3.1 × T/O – T/O –
OS frag. 3 370 EF(a = 1 ∧ EG(r 6= 1)) 2.3 X 2.52 X 1680.7 X 6.0 × 2.52 × 1930.0 ×
OS frag. 4 370 AF(io = 1) ∨ AF(ret = 1) 18.5 X 270.6 X 34.3 X 13.9 × 58.06 × 18.8 ×
OS frag. 4 370 EG(io 6= 1) ∧ EG(ret 6= 1) 13.5 X T/O – 7.6 X 14.2 × T/O – 61.3 ×
OS frag. 4 370 EF(io = 1) ∧ EF(ret = 1) 14.7 X T/O – 1261.0 X 4.8 × T/O – T/O –
OS frag. 4 370 AG(io 6= 1) ∨ AG(ret 6= 1) 8.0 X 0.1 X – – 3.7 × 1.3 × – –
PgSQL arch 90 AG(AF(w = 1)) 2.0 X 0.7 X T/O – 1.3 × 1.4 × 38.1 ×
PgSQL arch 90 AG(EF(w = 1)) 2.0 X 0.7 X T/O – 0.0 × 0.2 × 42.7 ×
PgSQL arch 90 EF(AG(w 6= 1)) 2.0 X 0.1 X T/O – 2.4 × 0.7 × 30.2 ×
PgSQL arch 90 EF(EG(w 6= 1)) 0.1 X 0.1 X 35.2 X 0.1 × 0.5 × 45.3 ×
OS frag. 2 58 AG(s = 1⇒ AF(u = 1)) 0.8 × 1.4 X 2.1 X 0.2 X 0.7 × 1.8 ×
OS frag. 2 58 AG(s = 1⇒ EF(u = 1)) 2.0 × 1.3 X 3.7 X 0.2 × 0.4 × 1.5 ×
OS frag. 2 58 EF(s = 1 ∧ AG(u 6= 1)) 0.8 X 0.1 X 5.6 X 0.2 × 0.7 × 8.7 ×
OS frag. 2 58 EF(s = 1 ∧ EG(u 6= 1)) 1.0 X 0.1 X 1.2 X 1.2 × 1.8 × 6.5 ×
OS frag. 5 58 AG(AF(w ≥ 1)) 1.0 X 0.6 X 569.7 X 0.2 × 0.4 × 65.1 ×
OS frag. 5 58 AG(EF(w ≥ 1)) 1.0 X 0.7 X T/O – 0.0 × 0.1 × T/O –
OS frag. 5 58 EF(AG(w < 1)) 0.1 X 0.5 X 255.8 X 0.1 × 0.2 × 85.5 ×
OS frag. 5 58 EF(EG(w < 1)) 0.1 X 0.1 X 351.1 X 0.0 × 0.2 × 1471.7 ×
S/W Updates 36 c > 5⇒ AF(r > 5) 0.1 × 5.27 X 70.2 X 1.1 X 0.8 × 32.4 ×
S/W Updates 36 c > 5⇒ EF(r > 5) 0.1 X 0.2 × 18.5 X 0.8 × 0.1 × 1.3 ×
S/W Updates 36 c > 5 ∧ AG(r ≤ 5) 0.1 × 0.1 × 0.3 X 1.1 X 0.1 × 0.5 ×
S/W Updates 36 c > 5 ∧ EG(r ≤ 5) 0.4 × 0.1 × 4.5 X 0.7 X 0.1 × 0.4 ×
OS frag. 1 29 AG(a = 1⇒ AF(r = 1)) 1.0 X 0.3 X 4.6 X 1.4 × 0.7 × 9.1 ×
OS frag. 1 29 AG(a = 1⇒ EF(r = 1)) 0.1 X 0.3 X 9.5 X 0.1 × 0.3 × 1.5 ×
OS frag. 1 29 EF(a = 1 ∧ AG(r 6= 1)) 0.1 X 0.1 X 105.7 X 0.1 × 0.4 × 18.1 ×
OS frag. 1 29 EF(a = 1 ∧ EG(r 6= 1)) 0.1 X 0.1 X 3.5 X 0.7 × 0.3 × 12.5 ×

Fig. 11: The results of applying our CTL model checking procedure on benchmarks from [10], [4]. For each program we verify a set of properties (ϕ)
and their negations (¬ϕ) and compare our results with [10], [4]. A timeout (T/O) is triggered if verification of a benchmark exceeds 3000 seconds.

[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., 126(2), 1994.

[3] O. Bernholtz, M. Y. Vardi, and P. Wolper, “An automata-theoretic
approach to branching-time model checking (extended abstract),” in
CAV’94. Springer, 1994.

[4] T. A. Beyene, C. Popeea, and A. Rybalchenko, “Solving existentially
quantified horn clauses,” in CAV’13. Springer, 2013.

[5] J. Burch, E. Clarke et al., “Symbolic model checking: 1020 states and
beyond,” Information and computation, 98(2), 1992.

[6] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in CAV’02. Springer, 2002.

[7] E. Clarke, S. Jha, Y. Lu, and H. Veith, “Tree-like counterexamples in
model checking,” in LICS, 2002.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
TOPLAS, 1986.

[9] E. Clarke and E. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Proc. Workshop on
Logic of Programs, Springer, 1981.

[10] B. Cook and E. Koskinen, “Reasoning about nondeterminism in pro-
grams,” in PLDI’13. ACM, 2013.

[11] B. Cook, J. Fisher, E. Krepska, and N. Piterman, “Proving stabilization
of biological systems,” in VMCAI’11. Springer, 2011.

[12] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Y. Vardi,
“Proving that programs eventually do something good,” in POPL’07,
2007.

[13] B. Cook and E. Koskinen, “Making prophecies with decision predicates,”
in POPL’11. ACM, 2011.

[14] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for
systems code,” in PLDI’06. ACM, 2006.

[15] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, 1(1), 1959.

[16] E. A. Emerson and K. S. Namjoshi, “Automatic verification of parame-
terized synchronous systems (extended abstract),” in CAV’96. Springer,
1996.

[17] J. Esparza, A. Kucera, and S. Schwoon, “Model checking ltl with regular

valuations for pushdown systems,” Information and Computation, 186,
2003.

[18] R. W. Floyd, “Assigning meaning to programs,” in Mathematical Aspects
of Computer Science, ser. Proc. of Symposia in Applied Mathematics.
American Mathematical Society, 1967.

[19] F. Giunchiglia and P. Traverso, “Planning as model checking,” in Recent
Advances in AI Planning, Springer, 2000.

[20] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis, “Proving that
non-blocking algorithms don’t block,” in POPL’09. ACM, 2009.

[21] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu, “Proving non-termination,” SIGPLAN Not., 43, 2008.

[22] A. Gurfinkel, O. Wei, and M. Chechik, “Yasm: A software model-
checker for verification and refutation,” in CAV’06. Springer, 2006.

[23] C. M. Hayden, S. Magill, M. Hicks, N. Foster, and J. S. Foster,
“Specifying and verifying the correctness of dynamic software updates,”
in VSTTE’12, 2012.

[24] Y. Kesten and A. Pnueli, “A compositional approach to ctl* verification,”
Theor. Comput. Sci., 331(2-3), 2005.

[25] O. Kupferman, M. Vardi, and P. Wolper, “An automata-theoretic ap-
proach to branching-time model checking,” Journal of the ACM, 47(2),
2000.

[26] S. Magill, J. Berdine, E. M. Clarke, and B. Cook, “Arithmetic strength-
ening for shape analysis,” in SAS’07. Springer, 2007.

[27] Z. Manna and A. Pnueli, Temporal verification of reactive systems:
safety. Springer Verlag, 1995, vol. 2.

[28] K. McMillan, “Lazy abstraction with interpolants,” in CAV, 2006.
[29] H. Peng, Y. Mokhtari, and S. Tahar, “Environment synthesis for compo-

sitional model checking,” in Computer Design: VLSI in Computers and
Processors, 2002.

[30] A. Podelski and A. Rybalchenko, “Transition invariants,” in LICS’04.
IEEE, 2004.

[31] ——, “Transition invariants,” in LICS, 2004.
[32] F. Song and T. Touili, “Pushdown model checking for malware detec-

tion,” in TACAS’12. ACM, 2012.
[33] I. Walukiewicz, “Pushdown processes: Games and model checking,” in

CAV’96. Springer, 1996.
[34] ——, “Model checking ctl properties of pushdown systems,” in

FSTTCS’00. Springer, 2000.

