
Tractable Probabilistic µ-Calculus that Expresses
Probabilistic Temporal Logics∗

Pablo Castro1,2, Cecilia Kilmurray1,2, and Nir Piterman3

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Río
Cuarto, Río Cuarto, Argentina, {ckilmurray,pcastro}@dc.exa.unrc.edu.ar

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
3 Department of Computer Science, University of Leicester, Leicester, UK,

nir.piterman@leicester.ac.uk

Abstract
We revisit a recently introduced probabilistic µ-calculus and study an expressive fragment of
it. By using the probabilistic quantification as an atomic operation of the calculus we establish
a connection between the calculus and obligation games. The calculus we consider is strong
enough to encode well-known logics such as pctl and pctl∗. Its game semantics is very similar
to the game semantics of the classical µ-calculus (using parity obligation games instead of parity
games). This leads to an optimal complexity of NP∩co-NP for its finite model checking procedure.
Furthermore, we investigate a (relatively) well-behaved fragment of this calculus: an extension
of pctl with fixed points. An important feature of this extended version of pctl is that its
model checking is only exponential w.r.t. the alternation depth of fixed points, one of the main
characteristics of Kozen’s µ-calculus.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases µ-calculus, Probabilistic Logics, Model Checking, Game Semantics

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In recent years, probabilistic model checking has received an increasing attention in the area
of system verification; tools like PRISM [8] and LiQuor [4] enable the automatic verification
of quantitative properties of systems (and a lot more); these kinds of properties are essential
for the verification of network protocols, critical systems and randomized algorithms, to
name a few examples.

Some of the most prominent probabilistic temporal logics used for model checking are
pctl, the probabilistic counterpart of ctl, and pctl∗, the probabilistic counterpart of ctl∗.
In particular, pctl has a clear semantics, and its model checking procedure can be performed
in polynomial time. The definition of a probabilistic µ-calculus that provides a unifying
formalism for probabilistic temporal logics has been an active field of research in the area,
such a formalism could provide to probabilistic model checking the same benefits as those
given by Kozen’s µ-calculus to qualitative model checking. The µ-calculus [12] is a powerful
temporal logic that combines many useful features. It generalizes modal logic by adding
fixpoint operators, it has a compact, extremely powerful, and very pleasing mathematical
theory, its model checking problem is polynomial in the length of the formula and only

∗ This work was partially supported by the MEALS project and EPSRC project.

© Pablo Castro, Cecilia Kilmurray, and Nir Piterman;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

exponential in its alternation depth [7]. Most of the temporal logics used in computer
science can be encoded into fragments of it; and, in addition, it has strong connections to
two-player games and automata theory, which lead to optimal decision procedures for this
logic.

Here, we revisit the probabilistic µ-calculus introduced by Mio and Simpson in [14,
15], however, we suggest to use probabilistic quantification as an atomic operation. The
resulting probabilistic µ-calculus (named µp-calculus) enjoys many of the qualities of the
discrete µ-calculus. We show that the logic is expressive enough to capture pctl and
pctl∗. We establish a tight connection between our logic and the recently introduced
obligation parity games [3]. In particular, we provide a game semantics for µp-calculus
using such games. When considering finite-state model checking, the games provide an
optimal decision procedure in NP∩ co-NP (compared with 3EXPTIME for the logic of Mio
and Simpson); where optimality is w.r.t. model checking the discrete µ-calculus, which
has the same complexity. In contrast to the “normal” µ-calculus, we lose the connection
between the alternation depth of the formula and the complexity of model checking. We also
propose a well-behaved fragment of µp-calculus, this logic is mainly an extension of pctl
with fixpoints, we prove that the complexity of model checking for this fragment is only
exponential in the alternation depth of quantifiers; as mentioned above, this is an important
characteristic of standard µ-calculus.

The paper is organized as follows. In Section 2 we introduce the basic definitions needed
to tackle the rest of the paper. The probabilistic µ-calculus is introduced in Section 3 and
then its expressivity is investigated. We then present the game semantics in Section 4. In
Section 5 we show that a well-known “hard” problem in NP∩co-NP can be reduced to model
checking formulas of µp-calculus with only one fixpoint operator. A well-behaved fragment
of this logic is described in Section 6. Finally, we discuss some related work and add some
final remarks. For the sake of clarity, long proofs are gathered in the Appendix.

2 Preliminaries

In this section we briefly introduce some basic concepts. We denote the set of real numbers
between 0 and 1 as [0, 1]. Given a set S we denote by ~0(S) the function ~0(S)(s) = 0 for
every s ∈ S and by ~1(S) the function ~1(S)(s) = 1 for every s ∈ S. When S is clear from
the context we write ~0 and ~1. Given a universe U and a subset S ⊆ U we write χ

S
for the

function χ
S
(s) = 1 if s ∈ S and χ

S
(s) = 0 for s /∈ S.

A Kripke structure over a set AP of atomic propositions is a tuple K = 〈S,R,L, s0〉,
where S is a (countable) set of locations, R ⊆ S×S is a relation such that for every s ∈ S we
have that R(s) is finite, L : AP → 2S is a labeling function and s0 ∈ S is an initial location.
A Markov chain over a set AP of atomic letters is a tuple M = 〈K,P 〉, where K is a Kripke
structure and P : R → (0, 1] is such that for every s ∈ S we have

∑
(s,s′)∈R P (s, s′) = 1.

Sometimes it will be convenient to consider P : S×S → [0, 1] by associating P (s, s′) = 0 for
every (s, s′) /∈ R. For a location s ∈ S we denote by Ms the Markov chain obtained from M

by setting s to the initial location. A path π = s0, s1, . . . is a finite or infinite sequence of
locations such that for every 0 ≤ i < n we have P (si, si+1) > 0. If π = s0, . . . , sn is finite,
we denote by measureM (π) =

∏n−1
i=0 P (si, si+1) the measure of (the set of infinite paths that

extend) π. Given a (Borel) set of paths Π starting from the same state s, we denote by
measureM (Π) the measure of Π. Note that every Markov chain can be interpreted as a
Kripke structure by looking on the embedded Kripke structure.

pctl formulas over a set AP are defined as state formulas (Φ) and path formulas (Ψ)

P. Castro, C. Kilmurray, and N. Piterman 3

as follows. Let J = {>,≥} × [0, 1] be the set of bounds.

Φ ::= pi | ¬pi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ(Ψ) Ψ ::= ©Φ | ΦU Φ | ΦW Φ

Here W is the weak until (i.e., it allows the first operand to hold forever). As usual we
introduce the abbreviations F and G. State formulas are formulas. The semantics of pctl
associates with every formula a set of states. We denote by JϕKM the set of states of M
that satisfy ϕ. For every path formula ϕ and state s of M , measureM (s, ϕ) is the measure
of paths starting in s that satisfy ϕ. The semantics and intuitions of pctl formulas are as
usual, see [1].

We define µ-calculus over Kripke structures with the following syntax.

Φ ::= pi | ¬pi | Xi | ♦Φ | �Φ | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | µXi.Φ | νXi.Φ

Where pi ∈ AP , V = {X0, X1, . . . } is an enumerable set of variables, and Xi ∈ V. The
notions of open and closed formulas are as usual. The semantics of a µ-calculus formula
over a Kripke structure K = 〈S,R,L, s0〉 is given w.r.t. assignments to variables in V. An
assignment ρ : V → (S → {0, 1}) associates a function from the states to {0, 1} with every
variable in V. Given an assignment ρ we set ρ[f/X] to be the assignment that associates
the function f with X and ρ(Y) with every Y 6= X. We use the notation of a function
into {0, 1} instead of set notation to facilitate the discussion in the rest of the paper. The
semantics of a formula ϕ in structure K with respect to assignment ρ, denoted JϕKρK , is
defined as follows.

JpiK
ρ
K = χL(pi) J¬piKρK = 1− χL(pi)

JXKρK = ρ(X)
Jϕ1 ∨ ϕ2K

ρ
K = max(Jϕ1K

ρ
K , Jϕ2K

ρ
K) Jϕ1 ∧ ϕ2K

ρ
K = min(Jϕ1K

ρ
K , Jϕ2K

ρ
K)

J♦ϕKρK = λs.max(s,s′)∈RJϕKρK(s′) J�ϕKρK = λs.min(s,s′)∈RJϕKρK(s′)
JµX.ϕKρM = lfp(JϕKρ[f/X]

M) JνX.ϕKρM = gfp(JϕKρ[f/X]
M)

Note that the semantics of a formula where all variables are bound by fixpoint operators
is independent of the assignment ρ. The interested reader is referred to [17] for an in-depth
introduction to µ-calculus.

3 A Probabilistic µ-calculus

In this section we present our version of probabilistic µ-calculus (denoted µp-calculus). Un-
like the “normal” µ-calculus, µp-calculus is two sorted. We distinguish between qualitative
formulas (that get values in {0, 1}) and quantitative formulas (that get values in [0, 1]).1
Although the logic is a subset of the probabilistic µ-calculus of Mio and Simpson [15] we
give a direct definition of its semantics without relying on their results.

Given an enumerable set of variables V = {X0, X1, . . . }, the syntax of the logic is given by
the following grammar, where Ψ are qualitative formulas, and Φ are quantitative formulas.

J ::= {>,≥} × [0, 1]
Ψ ::= pi | ¬pi | Ψ1 ∨Ψ2 | Ψ1 ∧Ψ2 | [Φ]J | νXi.Ψ | µXi.Ψ
Φ ::= Ψ | Xi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | ♦Φ | �Φ | ©Φ | νXi.Φ | µXi.Φ

(1)

1 This is not to be confused with qualitative pctl, where the bounds are restricted to ≥ 1 and > 0.

4 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

We say that variable Xi is bound in σXi.ϕ(Xi) for σ ∈ {µ, ν}. A variable that is not
bound is free. A formula is a qualitative formula with no free variables. That is, at the top
level we consider only formulas that can be evaluated to {0, 1}. Note that we add to the
existential and universal next operators of µ-calculus the (probabilistic) next operator and
the probabilistic quantification operator.

The semantics of a formula ψ over a Markov chain M is defined with respect to an
interpretation ρ, which associates a function from states to real values in [0, 1] with each
variable appearing in ψ. Formally, for ρ : V → (S → [0, 1]) the semantics JψKρM : S → [0, 1]
is defined as follows:

JpiK
ρ
M = χ

L(pi) J¬piKρM = 1− χ
L(pi)

JXKρM = ρ(X)
Jϕ1 ∨ ϕ2K

ρ
M = max(Jϕ1K

ρ
M , Jϕ2K

ρ
M) Jϕ1 ∧ ϕ2K

ρ
M = min(Jϕ1K

ρ
M , Jϕ2K

ρ
M)

J©ϕKρM = λs.
∑
s′ P (s, s′)JϕKρM (s′) J[ϕ]JKρM = (JϕKρM (s)J ? 1 : 0)

J♦ϕKρM = λs.max(s,s′)∈RJϕKρM (s′) J�ϕKρM = λs.min(s,s′)∈RJϕKρM (s′)
JµX.ϕKρM = lfp(JϕKρ[f/X]

M) JνX.ϕKρM = gfp(JϕKρ[f/X]
M)

That is, the value of the probabilistic next is the average value over successors and the
probabilistic quantification compares the value with the given bound. Even though the
semantics is quite similar to the semantics of µ-calculus the former is restricted to functions
of the type f : S → {0, 1} and here the functions are f : S → [0, 1]. That is, functions
associate real values with states.

It is simple to see that all these transformers are monotonic. In particular, if ρ1 ≤ ρ2,
that is for every X ∈ V and every s ∈ S we have ρ1(X)(s) ≤ ρ2(X)(s), then JϕKρ1

M ≤ JϕKρ2
M .

For instance, consider a formula of the form [ϕ]J . We have to show that, if J[ϕ]JKρ1
M (s) = 1,

then J[ϕ]JKρ2
M = 1. However, if ρ1 ≤ ρ2 it follows that JϕKρ1

M ≤ JϕKρ2
M . So, if JϕKρ1

MJ , then
also JϕKρ2

MJ . It follows from the Knaster-Tarski theorem that fixed-points are well defined.
It is possible to show that our calculus is closed under negation. For this, we need to

consider the usual dualizations between the standard operators. In addition, the probab-
ilistic next is its own dual and the probabilistic quantification has to be replaced with the
dual probabilistic quantification. That is, [·]>1−p is the dual of [·]≥p and [·]≥1−p is the dual
of [·]>p. We now show that the definition of qualitative formulas is indeed justified.

I Lemma 1. For every qualitative formula ϕ we have JϕKρM ∈ {0, 1}.

Proof. We can show that the semantics of all operators in the qualitative fragment are
functions whose range is {0, 1}. This holds trivially for propositions. Given two functions
whose range is {0, 1} clearly, min and max return such functions as well.

For [ϕ]J this follows directly from the definition. J

3.1 Expressing the µ-calculus
We show that µp-calculus is strong enough to express the µ-calculus over the embedded
Kripke structure without using the existential and universal next operators. We include this
construction mostly as justification for the hardness of model checking the µp-calculus over
finite-state Markov chains.

Given a µ-calculus formula ϕ, let p(ϕ) denote the formula obtained from ϕ by the fol-
lowing recursive transformation.

p(pi) = pi p(ψ1 ∨ ψ2) = p(ψ1) ∨ p(ψ2) p(♦ψ) = [©p(ψ)]>0
p(¬pi) = ¬pi p(ψ1 ∧ ψ2) = p(ψ1) ∧ p(ψ2) p(�ψ) = [©p(ψ)]≥1
p(X) = X p(µX.ψ) = µX.p(ψ) p(νX.ψ) = νX.p(ψ)

P. Castro, C. Kilmurray, and N. Piterman 5

That is, we replace the existential next operator by a probabilistic quantification of more
than 0, and the universal next operator by a probabilistic quantification of at least 1.

I Lemma 2. For every Markov chain M = 〈K,P 〉 we have Jp(ϕ)KρM = JϕKρK .

We notice that, in general, it is not clear how to express the universal and existential next
operators without including them explicitly. This is because the [·]J operator also resets the
value to 0 or 1. An additional comment regarding these operators is included in Section 5.
It follows that µp-calculus is strong enough to express all standard temporal logics such as
ctl, ltl, and ctl∗.

3.2 Expressing pctl
We show that µp-calculus can express pctl. Given a pctl formula ϕ, let t(ϕ) denote the
formula obtained from ϕ by the following recursive transformation.

t(pi) = pi t(ψ1 ∨ ψ2) = t(ψ1) ∨ t(ψ2) t(PJ(ψ)) = [t(ψ)]J
t(¬pi) = ¬pi t(ψ1 ∧ ψ2) = t(ψ2) ∧ t(ψ2) t(©ψ) = ©t(ψ)
t(ψ1 U ψ2) = µX . t(ψ2) ∨ (t(ψ1) ∧©X) t(ψ1W ψ2) = νX . t(ψ2) ∨ (t(ψ1) ∧©X)

That is, we use fixpoint operators to unwind until and weak until operators in the standard
way this is done with ctl and µ-calculus. We note that this construction is essentially
identical to the encoding of ctl in µ-calculus, which is used also in [15] (though the main
complexity in their construction is in expressing the probabilistic quantification, which is
part of the syntax in our setting). Due to its importance we include it in full here.

I Lemma 3. For every Markov chain M and pctl formula ϕ we have JϕKM = Jt(ϕ)KρM .

The conversion of pctl∗ to µp-calculus is also possible. As for pctl, it is essentially
identical to the translation of ctl∗ to µ-calculus, with the caveat that we have to replace
nondeterministic automata by deterministic automata. The usage of deterministic automata
is, similarly, required for the handling of ltl for probabilistic model checking [2]. We include
the full construction in Appendix A. We note that this implies that pctl∗ is expressible
(through the same construction with the additional encoding of the probabilistic thresholds)
also in the probabilistic µ-calculus of Mio and Simpson.

4 Game Semantics

First, we describe the intuition behind the game semantics, and only then formally define
the games. Given a formula ϕ and a Markov chain M = 〈K,P 〉, where K = 〈S,R,L, sin〉,
we define a game whose configurations correspond to locations of M and subformulas of
ϕ. The semantics is defined in terms of a two-player stochastic obligation parity game [3].
Such games include configurations of players 0 and 1 as well as probabilistic configurations.
The winning condition is a combination of a parity condition and obligations (for how much
player 0 has to win) on some configurations. Player 0 is the verifier, who tries to prove
that the formula holds, and player 1 is the refuter, who tries to prove that the formula does
not hold. Each configuration has a valuation for each player. In general, the value of a
configuration, denoted by vali(s, ϕ) for i ∈ {0, 1}, is a value in [0, 1]; vali(s, ϕ) = 1 means
that player i wins (completely) from a configuration. For every qualitative (sub)formula the
value of (s, ϕ) is either 0 or 1. Intuitively, if val0(s, ϕ) = 1, then the formula is true in M .
For propositions, (s, p), player 0 wins when s ∈ L(p) and she loses otherwise (configurations

6 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

with ¬p are dual). Configurations (s, ϕ1 ∨ ϕ2) are verifier configurations, and she chooses
a successor (s, ϕi). Configurations (s, ϕ1 ∧ ϕ2) are refuter configurations, and she selects a
successor (s, ϕi).

For a fixpoint σ ∈ {µ, ν}, from configuration (s, σX.ϕ) the game progresses to (s, ϕ);
while from configurations (s,X) the game progresses to (s, σX.ϕ) where σX.ϕ is the sub-
formula binding X. Interesting cases are the probabilistic operators: from configuration
(s, [ϕ]J) the game progresses with no choice to (s, ϕ). However, the former configurations
have the obligation J associated with them. That is, from these obligation states player 0
wins completely (value 1) if she wins with a value satisfying J from the successor configura-
tion. These three types of configurations (fixpoint related and probabilistic quantification)
are deterministic configurations. We associate them with the probabilistic player and assign
the probability 1 to the single successor. The next operators are treated as follows. A con-
figuration of the form (s,♦ϕ) is a verifier configuration from where she chooses a successor
s′ of s and moves to configuration (s′, ϕ). A configuration of the form (s,�ϕ) is a refuter
configuration from where she chooses a successor s′ of s and moves to configuration (s′, ϕ).
A configuration of the form (s,©ϕ) is a probabilistic configuration with successors (s′, ϕ)
for every successors s′ of s. Furthermore, the probability of ((s,©ϕ), (s′, ϕ)) is κ(s, s′). It
follows that the only (meaningful) probabilistic configurations are those corresponding to
the probabilistic next of the calculus. The parity condition in the game arises from the
alternation depth of formulas.

4.1 Parity Obligation Games
We give a short introduction to obligation parity games. The notion of winning (and value)
in an obligation game is quite involved and we refer the reader to [3] for an in-depth in-
troduction. Parts of the definition are included in the Appendix as part of the proof of
correctness of the game semantics.

A parity obligation game is G = (V, (V0, V1, Vp), E, κ,G), where V is a set of config-
urations, V0, V1, and Vp form a partition of V to player 0, player 1, and stochastic con-
figurations, respectively, E ⊆ V × V is the set of edges, κ associates a probabilistic dis-
tribution with the edges leaving every configuration in Vp, i.e., for every v ∈ Vp we have
Σ(v,v′)∈Eκ(v, v′) = 1 and for every (v, v′) /∈ E we have κ(v, v′) = 0, and G = (c,O) is the
winning condition, where c : V → [0..m] is a parity priority function, with m as its index,
and O : V → {⊥} ∪ ({>,≥}× [0, 1]) is the obligation function. A configuration v such that
O(v) 6= ⊥ is called an obligation configuration.

I Theorem 4. [3] For every configuration v ∈ V there is a value vali(v) ∈ [0, 1] such that
val0(v) + val1(v) = 1. Furthermore, for every obligation configuration v we have vali(v) ∈
{0, 1}. For a configuration v of a finite parity obligation game, one can decide whether
vali(v) ≥ r in NP ∩ co-NP and vali(v) can be computed in exponential time.

4.2 Model Checking Game
We are now ready to formally define the model checking games. Let sub(ϕ) denote the
subformulas of ϕ according to the grammar in (1). We use the notion of alternation depth
as defined, e.g., in [7]. Roughly speaking, the alternation depth of a formula is a measure
of its complexity. Essentially, it is the largest number of µ and ν alternations that appear
in the formula. A formal definition is included in Appendix. Furthermore, let d be ad(ϕ),
with every subformula ϕ′ of ϕ we can associate a color c(ϕ′) as follows. If ϕ′ = νX.ψ then

P. Castro, C. Kilmurray, and N. Piterman 7

s0
p

s1
¬p

1
2

1
2

1

Figure 1 Markov chain M .

s0
νX.p ∧ [©X]≥0.5

s0
p ∧ [©X]≥0.5

s0
[©X]≥0.5

≥ 0.5

s0
©X

s0
X

s1
X

s0
p

s1
νX.p ∧ [©X]≥0.5

s1
p ∧ [©X]≥0.5

s1
[©X)]≥0.5

≥ 0.5

s1
©X

s1
X

s1
p

1
2

1
2

Figure 2 The game GM,ϕ.

c(ϕ′) = 2(d− ad(ϕ′)). If ϕ′ = µX.ψ then c(ϕ′) = 2(d− ad(ϕ′)) + 1. For every other formula
ϕ′ we set c(ϕ′) = 2d− 1. It follows that c(ϕ′) is in the range [0..2d− 1].

I Definition 5. Consider a Markov chain M = 〈K,P 〉, where K = 〈S,R,L, sin〉 and a
formula ϕ. We define the game GM,ϕ = (V,E, (V0, V1, Vp), κ,G) as follows:

V = {(s, ψ) | s ∈ S ∧ ψ ∈ sub(ϕ)},
V0 = {(s, ψ1 ∨ ψ2), (s,♦ψ)}, V1 = {(s, ψ1 ∧ ψ2), (s,�ψ)}, and Vp = V \ (V0 ∪ V1),
E = {((s, p), (s, p)), ((s,¬p), (s,¬p)) | p is a proposition } ∪ {((s, [ψ]J), (s, ψ))}

∪ {((s, ψ1 ∨ ψ2), (s, ψi)) | i ∈ {1, 2}} ∪ {((s, ψ1 ∧ ψ2), (s, ψi)) | i ∈ {1, 2}}
∪ {((s,♦ψ), (s′, ψ)) | P (s, s′) > 0} ∪ {((s,�ψ), (s′, ψ)) | P (s, s′) > 0}
∪ {((s,©ψ), (s′, ψ)) | P (s, s′) > 0} ∪ {((s, σX.ψ), (s, ψ)) | σ ∈ {ν, µ}}
∪ {((s,X), (s, σX.ψ)) | σX.ψ is the subformula binding X and σ ∈ {µ, ν}}

κ((s,©ψ)(s′, ψ)) = P (s, s′), and κ((s, ψ)(s, ψ′)) = 1 for every other (s, ψ) ∈ Vp and
((s, ψ), (s, ψ′)) ∈ E.
G = (c,O), where O(s, [ψ]J) = J and O(s, ψ) = ⊥ for every other formula;

c(s, ψ) =


c(ψ) If ψ is not a proposition.
0 If (ψ = p and s ∈ L(p)) or (ψ = ¬p and s /∈ L(p))
1 If (ψ = p and s /∈ L(p)) or (ψ = ¬p and s ∈ L(p))

Let us present a simple example to obtain a first taste of µp-calculus and its game
semantics. Consider Markov chain M in Fig. 1 and the formula ϕ : νX.p ∧ [©X]≥0.5.
The alternation depth of ϕ is 1. It follows that c(s0, p) = 0, c(s1, p) = 1, and for every
other configuration c(v) = 0. The game obtained from ϕ and M is shown in Fig. 2. In
this graphic, we use circles to denote probabilistic configurations and diamonds to denote
player 1 configurations. Note that there are no player 0 configurations in this game. The only
configurations with obligations are (s0, [©X]≥0.5) and (s1, [©X]≥0.5). Let us calculate the
value of (s0, νX.p ∧ [©X]≥0.5), the unique successor of this configuration is a configuration
where the refuter plays. The configuration (s0, p) is colored 0 as p ∈ L(s0). Thus, the refuter
should avoid this sink state as it is winning for verifier and select the other successor. This
is a probabilistic configuration with obligation ≥ 1

2 . Then note that player 0 can ensure that
with probability at least 1

2 she either wins by reading (s0, p) or gets to the same obligation
configuration, with color 0 the minimal in the loop. Player 0 can repeat this pattern forever.
It follows that player 0 meets her obligation and that the value of (s0, [©X]≥0.5) is 1. We
conclude that val0(s0, νX.p ∧ [©X]≥0.5) = 1. Thus, the formula holds over this structure.
Intuitively, there is a location where p holds and for at least 1

2 of its successors the same
property holds again.

The following theorem shows that these games capture the semantics of µp-calculus.

8 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

I Theorem 6. For every Markov chain M , every location s, and every formula ϕ we have
JϕKρM (s) = val0(s, ϕ), where val0(s, ϕ) is the value of configuration (s, ϕ) in game GM,ϕ.

I Corollary 7. Given a finite Markov chain M and a formula ϕ we can decide whether
JϕKρM = 1 in NP ∩ co-NP.

Proof. From Theorem 4 we can determine whether the value of configuration (s, ϕ) in GM,ϕ

is at least one in NP ∩ co-NP. The size of GM,ϕ is polynomial in the size of M and in the
size of ϕ. The result follows. J

We note that the game captures also the semantics of quantitative subformulas. It follows
that for a quantitative subformula ψ we can decide whether JψKρM (s) > p in NP ∩ co-NP
and compute it in exponential time.

5 Hardness of Model Checking

As we have shown in Section 3, there is a simple translation from the µ-calculus to our logic.
The exact complexity of model checking the µ-calculus is a long standing open problem. It
is well-known that its complexity lies in UP∩ co-UP [11] and is equivalent to the complexity
of solving parity games [7]. However, the complexity arises from the alternation of fixpoint
operators. Here, we show that in our logic already the fraction that uses only the least
fixpoint (and only one fixpoint) is as hard as some of the “hard” problems known to be in
NP ∩ co-NP but not known to be in P.

5.1 Two-player Stochastic Reachability Games
A two-player stochastic reachability game is G = (V, (V0, V1, Vp), E, κ, T), where V , V0,
V1, Vp, E, and κ are just like in parity obligation games and T ⊆ V is a set of target
configurations. A strategy for player 0 is σ : V0 → V such that for every v ∈ V0 we
have (v, σ(v)) ∈ E. A strategy for player 1 is defined similarly. We intentionally consider
only deterministic memoryless strategies2. Given strategies σ and π for players 0 and 1,
respectively, the Markov chain Gσ,π is the result of fixing the choices of the players according
to their strategies. For a configuration v /∈ T , let Πv = {v} · V ∗ · T · V ω be the set of paths
that start in v and visit T . Then, the value of a configuration v ∈ V \ T for player 0 is
val0(v) = supσ infπ measureGσ,π (Πv).

I Theorem 8. [6, 11, 19] For every configuration v ∈ V \ T deciding if val0(v) > p for
some p ∈ [0, 1] is in NP ∩ co-NP. The decision problem of whether a configuration in a
2-player parity/mean-payoff/discounted is winning for player 0 can be reduced to deciding
val0(v) > p.

5.2 Encoding Games as Model Checking
Consider a two-player stochastic reachability game G = (V, (V0, V1, Vp), E, κ, T), a config-
uration v ∈ V \ T and a value p ∈ [0, 1]. We show how to construct a Markov chain MG

and a formula ϕ
R
such that JϕRKρM

G
(s0) = 1 iff val0(v) > p, where s0 is the initial state of

MG. Let MG = 〈K,P 〉 be a Markov chain, where K = 〈V,E,L, v〉, and P (v, v′) is κ(v, v′) if

2 It is well known that in two-player stochastic reachability games there are optimal deterministic
memoryless strategies for both players [6].

P. Castro, C. Kilmurray, and N. Piterman 9

v ∈ Vp and P (v, v′) = 1
|E(v)| otherwise. The labeling L uses four propositions: p0, p1, and pp

marking configurations of player 0, player 1, and stochastic, and pg marking configurations
in T as the goal.

Let ψ
R

= pg ∨ ((pp →©X) ∧ (p0 → ♦X) ∧ (p1 → �X)). Then ϕ
R

= [µX.ψ
R

]>p.

I Lemma 9. JϕRKρM
G

(v) = 1 iff val0(v) > p.

I Corollary 10. Model checking alternation free µp-calculus formulas is as hard as solving
parity/mean-payoff/discounted games.

We note that this result relies on the usage of the existential and universal next operat-
ors. Indeed, the proof relies on our ability to “keep” the value of existential and universal
configurations in the original game in the formula. We do not know whether it is possible
to prove a similar result for a calculus without the existential and universal next operators.
We suspect that these next operators increase the expressive power of the logic. We also do
not know if by removing these two operators the “normal” complexity hierarchy of the µ-
calculus that relies on alternation depth is introduced. We note that parity obligation games
can clearly encode the reachability of stochastic games. Thus, showing that the µp-calculus
without existential and universal next operators enjoys the same hierarchy would require
other techniques for model checking this calculus. A hardness result that does not use the
existential and universal next operators is by encoding the µ-calculus in µp-calculus, as we
do in Subsection 3.1. This hardness result does rely on fixpoint alternation.

We note that a similar encoding can represent the value of an obligation game (with fi-
nitely many different obligation values) as the result of model checking a µp-calculus formula
over a Markov chain. As before, the structure of the game is encoded into the Markov chain.
The encoding is more involved as we have to include propositions that will identify the exact
obligations of configurations. Using these additional propositions the correct probabilistic
quantification can be included in the formula. The structure of the formula is very similar to
the classical encoding of the solution of parity games as µ-calculus model checking. That is,
a prefix with fixpoints binding the variables according to the parity condition followed by a
body that includes the association of configurations with player 0, player 1, or probabilistic
(as above) with the inclusion of probabilistic quantification as well. We leave further details
of this construction as future work.

6 µ-pctl

We now introduce a fragment of µp-calculus that is expressive enough for encoding pctl
and whose model checking is exponential only w.r.t. alternations of quantifiers. Thus,
for formulas with a bounded number of fixpoint alternations the model checking of this
fragment is polynomial. We believe that this logic may serve as a basis for defining other
useful extensions of pctl.

Let AP be a set {p0, p1, . . . } of atomic propositions and let V = {X0, X1, X2, . . . } be an
enumerable set of variables; the sets Φ and Ψ of location and path formulas, respectively,
are mutually recursively defined as follows:

J ::= {>,≥} × [0, 1]
Φ ::= pi | ¬pi | Xi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | [Ψ]J | νXi.Φ | µXi.Φ
Ψ ::= XΦ | ΦU Φ | ΦW Φ

We assume that in every formula there is no repetition of bound variables; it is straight-
forward to see that every formula can be rewritten to satisfy this requirement. In general,

10 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

we are interested in formulas in which all variables are bound. The definition of alternation
depth is as before.

The semantics of this logic can be straightforwardly obtained from the semantics for
µp-calculus given in Section 3, taking into account the fixpoint semantics of path operators;
and similarly for its game semantics. That is, we replace Xψ by ©ψ, ψ1 U ψ2 by µX.ψ2 ∨
(ψ1 ∧©X), and ψ1W ψ2 by νX.ψ2 ∨ (ψ1 ∧©X).

Before presenting the model-checking algorithm we introduce some further notations.
We use a collection of (global) set variables Si ∈ 2S , where each variable Si represents
the valuation of a variable Xi appearing in the formula. Let c0, c1, . . . be a set of fresh
propositions, and we denote by M [ci ← Si] the structure over AP ∪ {c1, . . . , cn} obtained
from M by setting L(ci) = Si. For the formula ϕ, let ϕ[Xj ← cj] be the formula obtained
from ϕ, by replacing every reference to Xj by cj .

We are now ready to present the model-checking algorithm for µ-pctl. Our pro-
cedure, called eval, is presented as Algorithm 1. The procedure takes a Markov chain
M = 〈S,R,L, s0〉 and a µ-pctl formula ϕ and returns the set of states satisfying ϕ. We
assume that variables Si, where Xi is bound by a least fixpoint, are initialized to the empty
set; and variables Si, where Xi is bound by a greatest fixpoint, are initialized to the set of
all states S. This algorithm uses the well-known way of calculating fixed points by using
the Knaster-Tarski theorem and it assumes a polynomial model checking for pctl (denoted
evalPCTL).

The algorithm is similar to that proposed in [7] to model check standard µ-calculus, fixed
points are calculated in the standard way, new constants are used for reducing subformulas
to pctl formulas, and we only reset the values of variables when the nesting of two different
fixed points are found, otherwise previous calculation of fixed points are employed; to do
so, we use some auxiliary functions: Parent(ϕi) returns the fixpoint σXj surrounding ϕi
such that Xj appears free in that formula, and OpenSub(ϕi) returns the set subformulas of
ϕi that are bound by the same fixpoint operators and in which Xi is free.

I Theorem 11. For a formula ϕ, s ∈ eval(M,ϕ) iff JϕKρM (s) = 1.

We note that this procedure is exponential only w.r.t. alternation depth. Thus, if the
alternation depth is fixed the procedure is polynomial.3

I Theorem 12. Procedure eval runs in time O((|M |k · |φ| 32)ad(φ)+1), where the constant k
depends on the model checker used for pctl formulas.

Furthermore, we prove that this fragment of µp-calculus is strictly more expressive than
pctl.

I Theorem 13. µ-pctl is strictly more expressive than pctl.

Proof. Consider the formula νX.p ∧ [©X]>0, one can see that it is equivalent to the ctl
formula EGp. Theorem 14.45 in [1] shows that there is no qualitative pctl formula that is
equivalent to it. It is possible to extend their proof to cover also quantitative probabilistic
quantification of pctl. Thus, formula νX.p ∧ [©X]>0 cannot be expressed in pctl. J

3 We also note that if a similar approach would be applied to finite obligation parity games the result
would be an exponential number of calls to an NP ∩ co-NP algorithm. Indeed, the search for the sets
of obligations that can be used to satisfy other obligations can follow the same search pattern by using
maximal and minimal fixpoints. However, checking that each obligation is met, which corresponds to
the pctl model checking in eval, would be a solution of a finite turn-based stochastic parity-reachability
game, which is in NP ∩ co-NP.

P. Castro, C. Kilmurray, and N. Piterman 11

Input: A Markov Chain M and a formula φ
Output: Set of states satisfying φ

1 switch the form of ϕ do
2 case φ is a pctl formula return evalPCTL(M ,φ) ;
3 case φ = pi return L(pi) ;
4 case φ = ci return Si ;
5 case φ = φ1 ∧ φ2 return eval(M ,φ1)∩eval(M ,φ2) ;
6 case φ = φ1 ∨ φ2 return eval(M ,φ1)∪eval(M ,φ2) ;
7 case φ = νXi.φ

′

8 if Parent(φ) = µXj then
9 forall the νXk ∈ OpenSub(φ) do Sk = S;

10 end
11 repeat
12 S′i = Si;
13 Si = eval(M [ci ← Si], φ′[Xi ← ci]);
14 until Si = S′i;
15 return Si;
16 end
17 case φ = µXi.φ

′

18 if Parent(φ) = νXj then
19 forall the µXk ∈ OpenSub(φ) do Sk = ∅;
20 end
21 repeat
22 S′i = Si;
23 Si = eval(M [ci ← Si], φ′[Xi ← ci]);
24 until Si = S′i;
25 return Si;
26 end
27 endsw

Algorithm 1: Recursive Procedure eval

To summarize, µ-pctl formulas with bounded alternation depth admit a polynomial
model-checking procedure, µ-pctl is more expressive than pctl. Finally, note that µ-pctl
may be particularly useful to capture properties about repeating patterns of executions with
measure 0. For instance, the formula νX.p ∧ [©X]≥0.5 allows one to separate the model of
Figure 1 from the model obtained from it by removing the loop in state s0. We leave as
further work a careful investigation of this logic.

7 Related Work

Several attempts have been made to extend the features of Kozen’s µ-calculus to the realm
of logics characterizing Markov chains. Huth and Kwiatkowska and, independently, McIver
and Morgan considered qualitative µ-calculi over Markov chains [9, 13]. Their definition
replaced union by maximum (max) and intersection by minimum (min) defining a basic
probabilistic calculus. The semantics of a formula was changed from a Boolean value of
{0, 1} to a real value in [0, 1]. Their logic, however, does not capture popular probabilistic
temporal logics such as pctl [14]. In particular, these logics do not include the probabilistic

12 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

quantification central to the notion of pctl and also did not allow to capture a single prob-
abilistic quantification surrounding an ltl formula. Cleaveland et al. extend the calculus of
Huth and Kwiatkowska by adding probabilisitc quantification and allowing a finite number
of nesting of probabilisitc quantifications [5]. In particular, they do not allow interaction
between fixpoint operators and probabilistic quantification. This restriction makes reason-
ing about the logic simple by repeating a finite number of times the evaluation of the simpler
logic of Huth and Kwiatkowska. At the same time, it severly limits the expressive power
of the logic. The resulting logic allows to express pctl (and pctl∗). However, it cannot
express the µ-calculus over the embedded Kripke structure, or even the ctl formula EGp,
which we saw can be expressed in µ-pctl (and consequently in µp-calculus). Both types of
µ-calculus are subsets of µp-calculus.

Recently, Mio and Simpson [15] suggested an extended quantitative µ-calculus that in-
cludes various options for join and meet. They include the max and min suggested previ-
ously, but also include some standard operators in Łukasiewicz logics such as ⊕ and �, that
have similar pleasing mathematical properties and are generalizations of Boolean disjunction
and conjunction. In order to capture probabilistic quantification they also include explicit
multiplication by a rational constant. The resulting logic enjoys some of the mathematical
properties of the µ-calculus, allowing one to express pctl probabilistic quantification, for
instance. Using the operators ⊕ and � as atomic operators results in several shortcomings.
The game semantics associated with it includes a construct called “independent product”
that relies on additional set-theoretic assumptions (on top of the axiom of choice). In partic-
ular, though not relevant for the µ-calculus, it is not known whether games with independent
product with general Borel winning conditions are determined. Furthermore, the best al-
gorithms for model checking for this logic are either non-elementary or (by reduction to
first-order theory of the reals) triple exponential. Probabilistic quantification is expressed
as a combination of a fixpoint of one of the new operators along with multiplication by
constants. Another distinct advantage of our logic over that of Mio and Simpson is that we
can syntactically recognize formulas that are qualitative.

8 Final Remarks

We have presented a probabilistic µ-calculus that uses probabilistic quantification as an
atomic operation. Our main goal is to provide a unifying formalism into which the probabil-
istic temporal logics used in model checking can be encoded. We have shown that pctl and
pctl∗ can be captured in this calculus, and we note that similar results can be obtained for
other probabilistic logics such as probabilistic linear temporal logic. We have proved some
interesting results for this logic; in particular, its model checking problem is in NP ∩ co-NP
and it admits a simple game semantics. Furthermore, we presented a simple fragment of this
logic which we believe may be important for expressing properties that are not expressible
in other probabilistic logics, in particular, those predicating about executions with measure
0, we leave as a further work a deeper investigation of this fragment.

The discrete µ-calculus is intrinsically linked to alternating parity tree automata. We
believe that a similar connection exists between µp-calculus and p-automata [10]. We leave
the consideration of this connection as future work.

P. Castro, C. Kilmurray, and N. Piterman 13

References
1 C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

2 A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In 15th Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 1026 of Lecture Notes in Computer Science, pages 499–513. Springer, 1995.

3 K. Chatterjee and N. Piterman. Obligation blackwell games and p-automata. Technical
report, arXiv:1206.5174, 2012.

4 F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In QEST, pages 131–132. IEEE Computer Society, 2006.

5 R. Cleaveland, S. Purushothaman Iyer, and M. Narasimha. Probabilistic temporal logics
via the modal mu-calculus. Theor. Comput. Sci., 342(2-3):316–350, 2005.

6 A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.

7 E.A. Emerson and C. Lei. Efficient model checking in fragments of the µ-calculus. In LICS.
IEEE Computer Society, 1986.

8 A. Hinton, M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: a tool for automatic
verification of probabilistic systems. In TACAS, volume 3920 of Lecture Notes in Computer
Science. Springer-Verlag, 2006.

9 M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In 12th IEEE
Symposium on Logic in Computer Science, pages 111–122. IEEE Computer Society, 1997.

10 M. Huth, N. Piterman, and D. Wagner. p-automata: New foundations for discrete-time
probabilistic verification. Performance Evaluation, 69(7–8):356–378, 2012.

11 M. Jurdzinski. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.,
68(3):119–124, 1998.

12 D. Kozen. Results on the propositional µ-calculus. In Automata, Languages and Pro-
gramming, volume 140 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1982.

13 A. McIver and C. Morgan. Results on the quantitative µ-calculus qMµ. ACM Trans.
Comput. Log., 8(1), 2007.

14 M. Mio. Game Semantics for Probabilistic µ-Calculi. PhD thesis, University of Edinburgh,
2012.

15 M. Mio and A. Simpson. Łukasiewicz µ-calculus. In FICS, 2013.

16 N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3(3):e5, 2007.

17 K. Scheider. Verification of Reactive Systems: Formal Methods and Algorithms. Springer,
2004.

18 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 1994.

19 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996.

14 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

A Proofs from Section 3

Proof of Lemma 2:

Proof. The proof for propositions and Boolean connectives is immediate. The only non-
qualitative part of a translation is the usage of variables and the translation of �ψ and
♦ψ.

For both �ψ and ♦ψ the translation is of the form [©p(ψ)]J . Thus, it is clearly qualit-
ative. It follows that we can restrict attention to qualitative value functions ρ : S → {0, 1}
just like in the µ-calculus.

Consider a formula of the form ϕ = �ψ. Its translation is p(ϕ) = [©p(ψ)]≥1. Suppose
that Jp(ψ)KρM = JψKρK . Then, JϕKρK(s) = 1 if and only if for every successor s′ of s we
have JψKρK(s′) = 1. However, it follows that for every successor s′ we have JψKρM (s′) = 1.
Furthermore, as P is a probabilistic transition function it follows that

∑
(s,s′)∈R P (s, s′) = 1.

Thus, Jp(ϕ)KρM (s) = 1 as well. The other direction is similar.
Consider a formula of the form ϕ = ♦ψ. Its translation is p(ϕ) = [©p(ψ)]>0. Suppose

that Jp(ψ)KρM = JψKρK . Then, JϕKρK(s) = 1 if and only if there is a successor s′ of s such that
JψKρK(s′) = 1. However, it is then the case that J©p(ϕ)KρM > 0 and that JϕKρM = 1.

As fixpoint operators range over qualitative functions only it follows that the two logics
have the same least and greatest fixpoints. J

Proof of Lemma 3:

Proof. The proof proceeds by induction on the structure of the pctl formula. For propos-
itions and Boolean connectives the proof is immediate.

Consider the remaining types of formulas:

Consider the pctl formula PJ(©ψ) and its translation [©t(ψ)]J . By induction, Jt(ψ)KρM =
JψKM .
Then, for a state s the measure of paths that satisfy ©ψ is exactly

∑
(s,s′)∈R P (s, s′) ·

JψKM (s). It follows that the semantics for the two formulas is the same.
Consider the pctl formula ϕ = PJ(ψ1 U ψ2) and its translation [µX.t(ψ2) ∨ (t(ψ1) ∧
©X)]J . Let ψ = ψ1 U ψ2 and t(ψ) = t(ψ2) ∨ (t(ψ1) ∧©X).
Consider the following sequence of functions fi : S → [0, 1] that associates with a location
s ∈ S the probability of satisfying ψ1 U≤i ψ2. That is, fi is the probability of paths of
length at most i satisfying that there is j ≤ i such that the j-th location satisfies ψ2 and
all locations before j satisfy ψ1. Clearly, f0(s) is 1 iff Jψ2KM (s) = 1. It is well known
that for every location s we have measureM (s, ψ1 U ψ2) = limi→∞ fi(s). We show that
for every i ≥ 0 we have JµX.t(ψ2) ∨ (t(ψ1) ∧©X)KρM ≥ fi. Consider the case of f0. As
mentioned f0 = Jψ2KM . By definition Jt(ψ2) ∨ (t(ψ1) ∧©X)KρM is at least t(ψ2). Hence,
JµX.t(ψ)KρM ≥ f0. Suppose that JµX.t(ψ)KρM ≥ fi and consider fi+1. The following is
true for fi+1:

fi+1 =


1 If Jψ2KM (s) = 1
0 If Jψ2KM (s) = 0 and Jψ1KM (s) = 0∑

(s,s′)∈R P (s, s′)fi(s′) Otherwise

By induction assumption JµX.t(ψ)KρM ≥ fi. By assumption, Jt(ψ1)KρM = Jψ1KM and
Jt(ψ2)KρM = Jψ2KM . Hence, for locations s such that Jψ1KM (s) = 1 and Jψ2KM (s) = 0 we
have Jt(ψ)KρM (s) ≥

∑
(s,s′)∈R P (s, s′)Jt(ψ)KρM (s′). As Jt(ψ)KρM (s′) ≥ fi(s′) we conclude

that Jt(ψ)KρM ≥ fi+1.

P. Castro, C. Kilmurray, and N. Piterman 15

It follows that for every s ∈ S we have JµX.t(ψ)KρM (s) ≥ measureM (s, ϕ).
However, for locations s such that Jψ1KM (s) = 1 and Jψ2KM (s) = 0 we have that
measureM (s, ϕ) is a fixpoint of the equation measureM (s, ϕ) =

∑
(s,s′)∈R P (s, s′) measureM (s′, ϕ).

By JµX.t(ψ)KρM being the least fixpoint it also follows that JµX.t(ψ)KρM ≤ measureM (s, ϕ).
The probabilistic quantification added on top is the same in both logics.
Consider the pctl formula ϕ = PJ(ψ1W ψ2) and its translation [νX.t(ψ2) ∨ (t(ψ1) ∧
©X)]J . Let ψ = ψ1W ψ2 and t(ψ) = t(ψ2) ∨ (t(ψ1) ∧©X).
Consider the following sequence of functions fi : S → [0, 1] that associates with a loc-
ation s ∈ S the probability of satisfying ψ1W≤i ψ2. That is, fi is the probability of
paths of length at most i satisfying either the first i locations satisfying ψ1 or there
is some j ≤ i such that the j-th location satisfies ψ2 and all locations before j sat-
isfy ψ1. Clearly, f0(s) is 1 iff Jψ2KM (s) = 1 or Jψ1KM (s) = 1. It is well known that
for every location s we have measureM (s, ψ1W ψ2) = limi→∞ fi(s). We show that for
every i ≥ 0 we have JµX.t(ψ2) ∨ (t(ψ1) ∧©X)KρM ≤ fi. Consider the case of f0. As
mentioned f0 = max(Jψ1KM , Jψ2KM). By definition Jt(ψ2) ∨ (t(ψ1) ∧©X)KρM is at most
max(t(ψ1), t(ψ2)). Hence, JµX.t(ψ)KρM ≤ f0. Suppose that JµX.t(ψ)KρM ≤ fi and con-
sider fi+1. The following is true for fi+1:

fi+1 =


1 If Jψ2KM (s) = 1
0 If Jψ2KM (s) = 0 and Jψ1KM (s) = 0∑

(s,s′)∈R P (s, s′)fi(s′) Otherwise

By induction assumption JµX.t(ψ)KρM ≤ fi. By assumption, Jt(ψ1)KρM = Jψ1KM and
Jt(ψ2)KρM = Jψ2KM . Hence, for locations s such that Jψ1KM (s) = 1 and Jψ2KM (s) = 0 we
have Jt(ψ)KρM (s) ≤

∑
(s,s′)∈R P (s, s′)Jt(ψ)KρM (s′). As Jt(ψ)KρM (s′) ≤ fi(s′) we conclude

that Jt(ψ)KρM ≤ fi+1.
It follows that for every s ∈ S we have JµX.t(ψ)KρM ≤ measureM (s, ϕ).
However, for locations s such that Jψ1KM (s) = 1 and Jψ2KM (s) = 0 we have that
measureM (s, ϕ) is a fixpoint of the equation measureM (s, ϕ) =

∑
(s,s′)∈R P (s, s′) measureM (s′, ϕ).

By JµX.t(ψ)KρM being the greatest fixpoint it also follows that JµX.t(ψ)KρM ≥ measureM (s, ϕ).
The probabilistic quantification added on top is the same in both logics.

J

More details on the conversion of pctl∗ to µp-calculus:
We extend the conversion of pctl to µp-calculus by a construction that takes a path formula,
converts it to a deterministic parity word automaton, and in turn convert the automaton to
a µp-calculus formula.

We start with a short definition of pctl∗. pctl∗ formulas over a set AP are defined
as state formulas (Φ) and path formulas (Ψ) as follows. As for pctl, the set of bounds is
J = {>,≥} × [0, 1].

Φ ::= pi | ¬pi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ(Ψ) Ψ ::= Φ | ©Ψ | ΨU Ψ | ΨW Ψ | Ψ ∧Ψ | Ψ ∨Ψ

That is, we allow the full syntax of negation normal form ltl for defining path formulas.
Notice that we allow negation only in front of propositions. As usual, negations can be
pushed forward by considering well known equivalences. In particular, ¬PJ(ψ) is equivalent
to PJ(¬ψ), where >p = ≥1 − p and ≥p = >1 − p. State formulas are formulas. The
semantics of pctl∗ associates with every formula a set of states. We denote by JϕKM the
set of states ofM that satisfy ϕ. For every path formula ϕ and state s ofM , measureM (s, ϕ)
is the measure of paths starting in s that satisfy ϕ. The semantics and intuitions of pctl∗
formulas are as usual, see [1].

16 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

For our purposes here, a deterministic parity word automaton (DPW for short) is D =
〈Σ, D, ρ, d0, c〉, where Σ is a finite alphabet, D a finite set of states, ρ : D × Σ → D is a
deterministic transition function, d0 ∈ D is an initial state, and c : D → N is a function
associating a priority with each state of D (minimum parity is most significant). Consider a
pctl∗ path formula, where state formulas are restricted to propositions (notice that Boolean
combinations of propositions can be expressed in the path fragment). Then, it is well known
that we can construct DPW accepting all paths that satisfy the formula. Formally, we have
the following.

I Theorem 14. [18, 16] For every path formula ψ, where state formulas are restricted to
propositions, we can construct a DPW Dψ such that a path ψ satisfies ψ iff it is accepted
by Dψ.

As before, we define a translation t(·) that given a pctl∗ formula returns a µp-calculus
formula. The difference from pctl is in the handling of path formulas. For state formulas
the translation is as for pctl:

t(pi) = pi t(ψ1 ∨ ψ2) = t(ψ1) ∨ t(ψ2) t(PJ(φ)) = [t(φ)]J
t(¬pi) = ¬pi t(ψ1 ∧ ψ2) = t(ψ2) ∧ t(ψ2)

Notice that conjunction and disjunction above correspond only to disjunction and conjunc-
tion for state formulas. Consider a path formula φ.

Start with a path formula in which the only state formulas appearing are propositions.
According to Theorem 14 there exists a DPW Dφ = 〈2AP , D, ρ, d0, c〉 that accepts the
language of φ. We translate Dφ to a formula as follows. For a letter σ ∈ Σ we define t(σ) to
be (

∧
p∈σ p)∧ (

∧
p/∈σ ¬p). For a state d ∈ D we define the t(d) to be

∨
σ∈Σ(t(σ)∧©Xρ(d,σ)).

The formula for φ consists of a prefix of fixpoints and a suffix that corresponds to the
transition of the DPW. For a priority i let d1

i , . . . , d
ni
i be an enumeration of the states of

D such that c(d) = i. Let m be the maximal priority such that m = c(d) for some d ∈ D.
Consider a priority i, then the quantification of i is t(i) = QXd1

i
· · ·QXd

ni
i
, where Q is ν if

i is even and µ if i is odd. Then, the prefix is t(0) · · · t(m). Overall, the formula for φ is
t(0) · · · t(m).Xd0 ∧ (

∧
d∈DXd → t(d)). That is, bind all variables according to their parities

and then enforce that the initial state holds and that transitions hold.
Consider now a path formula φ in which other state formulas appear. We notice that

by our assumption the formula is converted to negation normal form. Thus, the state
subformulas appearing in φ always appear positively. The translation proceeds as before
except that the alphabet of the automaton Dφ now refers to satisfaction of state subformulas
as well as to propositions. We change the encoding t(σ) for such a letter to: (

∧
p∈σ p) ∧

(
∧
¬p/∈σ ¬p) ∧ (

∧
ψ∈σ t(ψ)). That is, for every state formula ψ appearing in the letter σ we

add a conjunct that requires that t(ψ) holds. As the level of alternation between state and
path formulas in pctl∗ is finite this construction is sufficient.

I Lemma 15. For every Markov chain M and pctl∗ formula ϕ we have JϕKM = Jt(ϕ)KρM .

Proof. The proof proceeds by induction on the structure of the pctl∗ formula. For pro-
positions and Boolean connectives (working on state formulas) the proof is immediate. Fur-
thermore, for all state subformulas it follows from the definition of µp-calculus that their
semantics is either true or false, that is, in 0, 1.

Consider the pctl∗ formula PJ(φ) and its translation [t(φ)]J . By induction, Jt(φ)KρM =
JφKM .

P. Castro, C. Kilmurray, and N. Piterman 17

Then, for a state s the measure of paths that satisfy φ is exactly JφKM (s). It follows that
the semantics for the two formulas is the same.

Consider a pctl∗ path formula φ and its translation t(φ). By induction, for every state
formula ψ, proposition p, or negated proposition ¬p appearing in φ we have Jt(ψ)KρM =
JψKM , Jt(p)KρM = JpKM , and Jt(¬p)KρM = J¬pKM . It follows that for every letter in the
alphabet of the DPW for φ the value of this letter in a state of the Markov chain is 1 iff
the letter holds over that state. Consider now a path s0, s1, . . . in the Markov chain. As
the automaton Dφ for φ is deterministic, there exists a unique run d0, d1, . . . of Dφ on
(the labels of s0, s1, . . .).

Consider the unwinding of the Markov chain from state s to an infinite tree and the
labeling of this tree with the unique combined runs of Dφ on all the tree simultaneously.
As Dφ is deterministic this is well defined. So Dφ in fact induces a function from a prefix
of a computation from state s. Namely if π = s0, . . . , sn, where s = s0, then we identify
r(π) with the unique state dn of Dφ such that forall i ≥ 1 we have di = ρ(di1 , L(si)).
We are more interested in the variable Xr(π) appearing in t(φ).

As the automaton is deterministic and as t(φ) includes Xd0 as a conjunct in the body of
the formula, we can restrict attention to the values of Xr(π) in state last(π). We have
to show that the values of these varialbes in the respective locations in the Markov tree
correspond to the probability of the set of paths that satisfy the runs of the automaton
starting from the respective state. We have to show that these values correspond to the
respective fixpoints.

It is clear that the value that associates with a set s and a variable Xd the measure of the
sets of paths that are accepted by Dφ when started from d is a fixpoint of the equations
arising from t(φ). The fixpoints satisfy the respective fixpoint type (least or greatest)
following the correctness of the translation of the path formula to a deterministic parity
word automaton in addition to the determinism of the alphabet.

J

It may be possible to replace the deterministic automata in this construction by universal
automata (see, e.g., work of Kupferman and Vardi on usage of universal automata in two-
player games). Here we are mostly interested in the feasibility of translating pctl∗ to
µp-calculus and not in the complexity of solving pctl∗ model checking through µp-calculus
model checking. The latter may require to consider efficiency through the usage of universal
automata. We leave this option for future work.

B Proof from Section 4

B.1 Alternation Depth

We adapt the notion of alternation depth [7] to our logic. Roughly speaking, the alternation
depth of a formula is a measure of its complexity. Essentially, it is the largest number of µ

18 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

and ν alternations that appear in the formula. Formally, we have the following:
ad(p) = 0 ad(ϕ1 ∨ ϕ2) = max(ad(ϕ1), ad(ϕ2))

ad(¬p) = 0 ad(ϕ1 ∧ ϕ2) = max(ad(ϕ1), ad(ϕ2))
ad(X) = 0

ad(©ϕ) = ad(ϕ) ad([ϕ]J) = ad(ϕ)
ad(µX.ϕ(X)) = max(1, ad(ϕ), 1 + ad(νY.ψ)),

where, νY.ψ is a subformula of ϕ and X appears free in ψ.
ad(νX.ϕ(X)) = max(1, ad(ϕ), 1 + ad(µY.ψ)),

where, µY.ψ is a subformula of ϕ and X appears free in ψ.

Furthermore, let d be ad(ϕ), with every subformula ϕ′ of ϕ we can associate a color
c(ϕ′) as follows. If ϕ′ = νX.ψ then c(ϕ′) = 2(d − ad(ϕ′)). If ϕ′ = µX.ψ then c(ϕ′) =
2(d− ad(ϕ′)) + 1. For every other formula ϕ′ we set c(ϕ′) = 2d− 1. It follows that c(ϕ′) is
in the range [0..2d− 1].

B.2 Definition of Obligation Games
We recall the value definition in [3]. Let G = (V, (V0, V1, Vp), E, κ,G) be a parity obligation
game, where G = (c,O). The value of configuration v is determined by considering the
following two-player parity game: turn(Gv) = (V ′, (V ′0 , V ′1), E′, c′), where the components
of turn(Gv) are as follows:

V ′ = V + × [0, 1] ∪ V + × [0, 1]× {ε} ∪ V + × {f : V → [0, 1]}
V ′0 = {(w · v, r) | O(v) ∈ {>p,⊥}} ∪ {(w · v, r, ε)}
V ′1 = V ′ − V ′0

E′ =
{

((w · v, r), (w · v, f))
∣∣ v ∈ V0, O(v) = ⊥, and max(v,v′)∈Ef(v) > r

}
∪
{

((w · v, r), (w · v, f))
∣∣ v ∈ V1, O(v) = ⊥, and min(v,v′)∈Ef(v) > r

}
∪
{

((w · v, r), (w · v, f))
∣∣ v ∈ Vp, O(v) = ⊥, and Σ(v,v′)∈Eκ(v, v′) · f(v) > r

}
∪
{

((w · v, r), (w · v, f))
∣∣ v ∈ V0, O(v) = >r′, and max(v,v′)∈Ef(v) > r′

}
∪
{

((w · v, r), (w · v, f))
∣∣ v ∈ V1, O(v) = >r′, and min(v,v′)∈Ef(v) > r′

}
∪
{

((w · v, r), (w · v, f))
∣∣ v ∈ Vp, O(v) = >r′, and Σ(v,v′)∈Eκ(v, v′) · f(v) > r′

}
∪
{

((w · v, r, ε), (w · v, f))
∣∣ v ∈ V0 and max(v,v′)∈Ef(v) > r

}
∪
{

((w · v, r, ε), (w · v, f))
∣∣ v ∈ V1 and min(v,v′)∈Ef(v) > r

}
∪
{

((w · v, r, ε), (w · v, f))
∣∣ v ∈ Vp and Σ(v,v′)∈Eκ(v, v′) · f(v) > r

}
∪{((w · v, r), (w · v, r′′, ε)) | O(v) = ≥r′ and r′′ < r′}
∪{((w · v, f), (w · v′, f(v′))) | f(v′) > 0}

c′(w · v) = c(v)
Let W0 denote the set of configurations from which player 0 wins in turn(Gv). Then,
msr(w) = sup{r | (w, r) ∈W0}.

We are now ready to define the value of a configuration v in the obligation game G,
denoted val0(v).
I Definition 16. val0(v) = msr(v)

Notice that the successors of a configuration (v, r) for an obligation configuration v are
independent of r and depend only on the obligation O(v). It follows that either player 0
wins from (v, r) for every r or loses for every r. Thus, for every obligation configuration its
value is in {0, 1}.

P. Castro, C. Kilmurray, and N. Piterman 19

B.3 Proof of Theorem 6
Proof. Consider a Markov chain M , a location s, a formula ϕ, and the game GM,ϕ arising
from the combination ofM and ϕ. The value of a configuration (s, ψ) in GM,ϕ is determined
using a game turn(G(s,ψ)) obtained from GM,ϕ as above.

We show that for every configuration v of GM,ϕ the relation between it and its successors
satisfies the mathematical relation in definition of the µp-calculus. For example, the value
of a configuration (s, ψ1 ∧ ψ2) is the minimum of the values of (s, ψ1) and (s, ψ2). We are
interested only in configurations for which the value of v is non-zero. At the second stage
we show that the values are actually equivalent to the mathematical definition. Consider
the configuration v = (s, ψ):

If ψ is a proposition p then val(s, p) is 1 if s ∈ L(p) and 0 otherwise.
If ψ is a negation of a proposition ¬p then val(s,¬p) is 1 if s /∈ L(p) and 0 otherwise.
If ψ is a conjunction ψ = ψ1 ∧ ψ2, then (s, ψ) has two successors (s, ψ1) and (s, ψ2) in
GM,ϕ. Consider the value r such that player 0 wins from ((s, ψ), r′) for every r′ < r in
turn(G(s,ψ)). By construction, the successors of ((s, ψ), r′) are ((s, ψ), f), where f is a
function from {(s, ψ1), (s, ψ2)} to [0, 1] such that and mini{f(s, ψi)} > r′.
It follows that for both (s, ψ1) and (s, ψ2) the set of values {r′′} such that player 0 wins
from ((s, ψi), r′′) satisfies sup{r′′} ≥ r. Thus, val(s, ψ) ≤ mini{val(s, ψi)}.
A similar argument shows that val(s, ψ) ≥ mini{val(s, ψi)}.
The proof for the case that ψ is ψ1 ∨ ψ2 is similar.
If ψ is�ψ1, then (s, ψ) has successors (s′, ψ1) for every successor s′ of s inGM,ϕ. Consider
the value r such that player 0 wins from ((s, ψ), r′) for every r′ < r in turn(G(s,ψ)). By
construction, the successors of ((s, ψ), r′) are ((s, ψ), f), where f is a function from
{(s′, ψ1) | (s, s′) ∈ R} to [0, 1] such that mins′{f(s′, ψ1)} > r′.
It follows that for every s′ such that (s, s′) ∈ R we have that the set of values {r′′}
such that player 0 wins from ((s′, ψ1), r′′) satisfies sup{r′′} ≥ r. Thus, val(s, ψ) ≤
mins′{val(s′, ψ1)}.
A similar argument shows that val(s, ψ) ≥ mini{val(s, ψi)}.
The proof for the case that ψ is ♦ψ1 is similar.
If ψ is©ψ1, then (s, ψ) is a probabilistic configuration in GM,ϕ. For every successor s′ of
s we have that (s′, ψ1) is a successor of (s, ψ) and that the probability of this transition
is κ(s, s′). Consider the value r such that player 0 wins from ((s, ψ), r′) for every r′ < r

in turn(G(s,ψ)). By construction, the successors of ((s, ψ), r′) are ((s, ψ), f), where f is
a function from {(s′, ψ1) | (s, s′) ∈ R} to [0, 1] such that

∑
s′ κ(s, s′) · f(s′, ψ1) > r′.

It follows that if
∑
s′ κ(s, s′) · val(s′, ψ1) is not val(s, ψ) we can arrive at a contradiction.

If ψ is [ψ1]J , then (s, ψ) is an obligation configuration with the successor (s, ψ1) in GM,ϕ.
We consider two different cases according to J .

Consider the case that J = >r.
By construction, for every r′ ∈ (0, 1] the successor of ((s, ψ), r′) in turn(G(s,ψ)) is
((s, ψ), f), where f is a function from (s, ψ1) to [0, 1] such that f(s, ψ1) > r.
It follows that the set of values r′′ such that player 0 wins from (s, ψ1) satisfies
sup{r′′} > r. Thus, val(s, ψ1) > r showing that val(s, ψ) is 1.
Consider the case that J = ≥r.
By construction, for every r′ ∈ (0, 1] the successors of ((s, ψ), r′) in turn(G(s,ψ)) are
of the form ((s, ψ), r′′, ε) for some r′′ < r. Furthermore, ((s, ψ), r′) is a player 1
configuration. It follows that for every r′′ < r we have that player 0 wins from

20 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

((s, ψ), r′′, ε). Every configuration ((s, ψ), r′′, ε) has a successors of the form ((s, ψ), f),
where f is a function from (s, ψ1) to [0, 1] such that f(s, ψ1) > r′′.
It follows that the set of values {r′′′} such that player 0 wins from (s, ψ1) satisfies
sup{r′′} ≥ r. Thus, val(s, ψ1) ≥ r showing that val(s, ψ) is 1.

If ψ is σX.ψ1, then (s, ψ) has a unique successor (s, ψ1) in GM,ϕ. Consider the value r
such that player 0 wins from ((s, ψ1), r′) for every r′ < r in turn(G(s,ψ)). By construction,
the successors of ((s, ψ), r′) are ((s, ψ), f), where f is a function from {(s, ψ1)} to [0, 1]
such that f(s, ψ1) > r′.
It follows that val(s, ψ) = val(s, ψ1).
If ψ is X, where σX.ψ1 is the fixpoint bounding X, then by an argument similar to the
above we show that val(s,X) = val(s, σX.ψ1).

It follows that the values in the game satisfy the same relation as in the mathematical
definition.

We now have to show that the values are the same.
We prove this by induction on the alternation depth of the formula. If the alternation

depth is 0, then the claim follows by simple induction on the structure of the formula from
propositions up. Consider a formula ϕ of alternation depth 1. It follows that ϕ is of the
form σX.ψ, where for subformulas that do not depend on X we can assume that the claim
holds by induction on their structure.

Consider first the case where σ = µ. That is, the formula ϕ is a least fixed point. Then,
by the Knaster-Tarski theorem, the value of ϕ is the limit of the following functions defined
for ordinals α and limit ordinals β.

ρ0 = λs.0
ρα1 = JψKραM

ρβ = λs. supα<βJψKραM (s)

We consider all configurations of the game of the form (w · v, r) where v = (s, µX.ψ) for
some location s. We show that for every value of the approximation we can find such
configurations that match the approximation of the fixpoint. This roughly corresponds to
the number of times the fixpoint unfolds below a certain occurrence (w · v, r). As the game
turn(G(s,ψ)) is winning for player 0 we know that on every infinite path in turn(G(s,ψ))
there are a finite number of unfoldings of the fixpoint. However, turn(G(s,ψ)) may have
configurations under which there is infinite (uncountable, actually) branching. Thus, below
some occurrences of the fixpoint there could be no limit to the number of unfoldings of the
fixpoint on a single path.

We do know that for the first ordinal γ such that ργ = ργ+1 we have that JϕKρM = JϕKργM .
We show a similar result for the game.

Suppose that there is no configuration of the fixpoint that does not have no unfoldings
below it. Then, we can find an infinite path that visits infinitely many unfoldings. Clearly,
this is a contradiction. It follows that for occurrences of the fixpoint that have no unfolding
below thatm we have val(s, ϕ) = ρ1(s).

Assume by induction that we have identified occurrences of the fixpoint that match ρα.
That is, configurations (w · v, r), where v = (s, ϕ), for which val(w · v, r) = ρα.

Consider now a successor ordinal α + 1. Suppose that there are no configurations that
have at most one unfolding to a configuration that is an α configuration. Then, we claim
that the computation is finished. Suppose otherwise, then every configuration depends on an
extra unfolding before reaching an α configuration. Clearly, this leads to an infinite number
of unfoldings, which contradicts the win of player 0 in the game. Thus, for a configuration

P. Castro, C. Kilmurray, and N. Piterman 21

that has at most one unfolding until reaching an α configuration it’s value can be shown by
induction on the structure of the formula to be equivalent to that of ρα+1.

Consider a limit ordinal β. By the part considering the successor ordinals there are
configurations depending on ρα for every α < β, otherwise, the approximation stops as
explained above. There has to be an unfolding of the fixpoint that depends on all of them
and nothing else. Otherwise, as before, we can construct an infinite path with infinitely
many unfoldings of the fixpoint. By definition, a dependency on infinitely many unfoldings
(on different paths) can occur only if there is a configuration of the form (s, [ψ′]J), where
J = ≥r′ for some r′. It follows that according to the approximation ρβ the value of (s, [ψ′]J)
is computed and some unfolding of the fixpoint that depends on it.

The case of a greatest fixpoint of alternation depth 1 is proven similarly.
We now proceed by induction on the alternation depth of the formula. Consider a

formula µX.ϕ where the alternation depth of µX.ϕ is greater than 1. The proof proceeds as
above, however, this time, between every increase of the ordinal, we can consider parts of the
game where the game goes into configurations of lower alternation depth. By the induction
hypothesis, for such configurations the value in the game is the value of the mathematical
approximation. The rest of the proof is the same.

J

C Proof from Section 5

Proof of Lemma 9:

Proof. We show that for every configuration JµX.ψ
R
KρM

G
= val0(v).

We can show that val0(v) is a fixpoint of ψ
R
. Indeed, consider a configuration v. If

v ∈ T then clearly, val0(v) = JµX.ψ
R
K. Otherwise, if v ∈ V0 then there is a successor v′ such

that (v, v′) ∈ E and val0(v) = val0(v′). The same holds for ψ
R
where the value of ψ

R
is the

maximum of the value of ψ
R
over the successors of v. The case of player 1 and probabilistic

configurations is similar.
It remains to show that the value is the least fixpoint. It is well known that the following

sequence of value functions approximates the value in the game (from below) and converges
to the value [6]. Let val00(v) = 1 if v ∈ T and 0 otherwise. Let

vali+1
0 (v) =


max(v,v′)∈E(vali0(v′)) If v ∈ V0
min(v,v′)∈E(vali0(v′)) If v ∈ V1∑

(v,v′)∈E κ(v, v′)vali0(v′) If v ∈ Vp

It is simple to see that for every iteration we have vali0 ≤ JµX.ψRK. It follows that the two
are equivalent. J

D Proofs from Section 6

D.1 Value in finite parity obligation games
We recall the definition of value in finite parity obligation games [3]. LetG = (V, (V0, V1, Vp), E, κ,G),
where G = (O, c), be a finite parity obligation game. Let k be the maximal priority appear-
ing in c. Let O denote the set of configurations v ∈ V such that O(v) 6= ⊥. Let N denote
the set of non-obligation configurations, that is N = V \ O. For a set of configurations W ,
let W≥i denote the subset of W of configurations with priorities at least i according to c.
Let Wi denote the subset of W of configurations of priority exactly i. Finally, let α denote

22 Tractable Probabilistic µ-Calculus that Expresses Probabilistic Temporal Logics

the set of infinite paths of configurations that have the minimal priority appearing in them
infinitely often is even.

A dependency for v ∈ O is either Cv = ⊥ or Cv ⊆ (O × [0..k]). That is, Cv is either
undefined or a (possibly empty) set of pairs of obligation configurations annotated by pri-
orities. A game dependency is a set {Cv}v∈O of dependencies. A game dependency is good
if the following conditions hold:

If for some v′ ∈ O we have (v′, i) ∈ Cv then Cv′ 6= ⊥.
For every infinite sequence (v0, i0), (v1, i1), . . . such that for every j we have (vj+1, ij+1) ∈
Cvj we have that the minimal priority occurring infinitely often in i0, i1, . . . is even.
For every v ∈ O such that Cv 6= ⊥ we have val0(G′, v)J , where O(v) = J and G′ is the
turn-based stochastic game with the goal:

⋃
(v′,i)∈Cv

 (N ∗≥i · Ni · N ∗≥i · (O≥i ∩ {v′}) · V ω) ∪
(N ∗≥i · (Oi ∩ {v′}) · V ω) ∪
(c ∩Nω)


I Theorem 17. [3] For every configuration v, val0(G, v) = r iff there is a good game
dependency {Cv′}v′∈O such that val(G′, v) = r, where G′ is obtained from G by considering
the goal

(N ∗ · {v : Cv 6= ⊥} · V ω) ∪ (α ∩Nω)

D.2 Proof of Theorem 11
Proof. It is possible to see that the sets Si induce a good dependency. Consider the satis-
faction of a set Si corresponding to the formula σX.ψ. It promises that the pctl formula
obtained by replacing Xi in ψ by ci is satisfied. Restrict attention to the witness that
shows satisfaction of this formula. Consider now an obligation appearing inside this wit-
ness. Clearly, this obligation is met. If some variable Xi′ is nested within this obligation
then the obligation could depend on other obligations that are nested within σXi′ψ

′. For
every obligation we add to its dependency the set of obligation configurations on which it
depends. It is possible to see that the value requirement for the dependencies holds. We have
to show that every cycle of within the dependencies satisfies the parity condition. However,
such a cycle arises from the cycles between the different sets Si. However, as sets Si for
least-fixed points start from ∅ it follows that every cycle within dependencies must visit a
smaller even priority.

In the other direction, consider the game GM,ϕ and a good dependency for it. By the
structure of the µ-pctl formula that we can think of as a tree with back edges, it follows
that there is exactly one way to reach from one obligation configuration to another. It
follows that the dependency of one configuration cannot depend on multiple ways to reach
another configuration. It follows that we can remove from the definition of a dependency
the annotation of configurations with the minimal priority that needs to be met on the
way. Then, the definition of dependency just becomes the set of other obligations that
the configuration depends on. It follows that a similar algorithm where we search for the
maximal fixpoints of sets of obligation configurations of even priority and minimal fixpoints
of sets of obligation configurations of odd priority would exactly find good dependencies.
Translating the dependency from the set of obligation configurations and the locations where
they are satisfied to the set of fixpoint configurations with the locations they are satisfied
shows that the above algorithm is correct.

J

P. Castro, C. Kilmurray, and N. Piterman 23

D.3 Proof of Theorem 12
Proof. The proof proceeds by induction on ad(φ). Let k ≥ 1 be the constant such that pctl
model checking of a formula φ on a structure M can be computed in time O(|M |k · |φ|).

If ad(φ) = 0, it is direct to see that all the base cases take time O(|M |k · |ϕ|).
If ad(φ) = 1, then all the quantified subformulas are quantified either with µ or ν. Let

us first consider the case when we have a unique quantifier, thus φ = µXi.φi (the proof for
ν is similar) where φi[Xi ← ci] is a pctl formula, let us denote by Teval(φ) the time that
eval(φ) takes. We have that:

Teval(µXi.φi) ≤ c · |S| · (|S|+ (|M |k · |φ|))

since the loop of lines 18-21 is executed at most |S| times, and model checking the pctl
formula φi takes |M |k · |φ|, thus we have that Teval(µXi.φi) ∈ O((|M |k · |φ|)2). Now, we also
note that every other operator (that is, ∧, ∨ and ¬) can be calculated in time O((|M |k ·|φ|)2).
Now, suppose that we have a formula with several µ quantifiers. Noting that, in Algorithm 1
each set Si is calculated once, and their initialization is made only once per each outermost
quantifier, we have that:

Teval(φ) ≤ c · |φ| · (|M |k · |φ|)2 + c′ · |φ| · |S| ≤ c′′ · (|M |k · |φ| 32)2

Now, for the inductive case, we assume ad(φ) = n+1, and suppose that φ = νXi.φi (the
other cases can be treated similarly), by induction we have Teval(φi) ∈ O((|φi|

3
2 · |M |k)ad(φ)),

thus:
Teval(φ) ≤ |φ| · |S|+ |S| · (|S|+ (|φ| 32 · |M |k)ad(φ))

since we initialized at most |φ| Si’s and the loop is executed at most |S| times. Then we
obtain: Teval(φ) ∈ O((|M |k · |φ| 32)ad(φ)+1) J

	Introduction
	Preliminaries
	A Probabilistic -calculus
	Expressing the -calculus
	Expressing pctl

	Game Semantics
	Parity Obligation Games
	Model Checking Game

	Hardness of Model Checking
	Two-player Stochastic Reachability Games
	Encoding Games as Model Checking

	-pctl
	Related Work
	Final Remarks
	Proofs from Section 3
	Proof from Section 4
	Alternation Depth
	Definition of Obligation Games
	Proof of Theorem 6

	Proof from Section 5
	Proofs from Section 6
	Value in finite parity obligation games
	Proof of Theorem 11
	Proof of Theorem 12

