
Iterative Refinement of Reverse-Engineered
Models by Model-Based Testing

Neil Walkinshaw, John Derrick, and Qiang Guo

Department of Computer Science, The University of Sheffield, Sheffield, UK

Abstract. This paper presents an iterative technique to accurately reverse-
engineer models of the behaviour of software systems. A key novelty of
the approach is the fact that it uses model-based testing to refine the
hypothesised model. The process can in principle be entirely automated,
and only requires a very small amount of manually generated informa-
tion to begin with. We have implemented the technique for use in the
development of Erlang systems and describe both the methodology as
well as our implementation.
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1 Introduction

Several important software verification and validation techniques rely on the
availability of models that describe the software behaviour, models which should
be accurate, and capture every relevant requirement of the system. In practice
this requirement is unrealistic. The manual process of developing a specification
can be error-prone and expensive. Moreover, software is commonly developed
under restrictive time constraints; developers tend to concentrate on developing
the implementation and do not have time to generate and maintain accurate
specifications in tandem. The notion of a fully accurate model being maintained
(or even existing to begin with) is unfortunately at present largely a myth.

An alternative approach is to generate models, or specifications, of a system
from the implementation itself, and this paper is concerned with the challenge
of reverse-engineering state machine models from an implementation. Ideally,
such a reverse-engineering technique can be run at any point during the devel-
opment of an implementation to provide a snapshot of system behaviour. The
use of reverse-engineered models is that they can be inspected by developers to
give an understanding of how the system behaves in practice. If they are correct
(with respect to the developer’s requirements), they can be used for core soft-
ware maintenance tasks such as documentation and regression-testing. If, upon
inspection, they are found to be out of step with system requirements, they can
be used to identify which parts of the system are faulty.

In reality, reverse-engineering techniques tend to be less straightforward.
They tend to require an extensive sample of program execution traces, which can
be difficult to identify and collect. Consequently, the models can be inaccurate,
and are therefore less useful to the developer.



In this paper we introduce an iterative reverse-engineering method that will
ensure an adequate sample of execution traces by incorporating a model-based
testing technique. Unlike most other existing techniques, no initial traces or
models are required at all. Instead, a model-based testing framework is used
to iteratively populate the set of traces that are used to infer the model, the
inference being performed with our StateChum model inference tool [1]. One nice
aspect of the approach is that the inference technique uses heuristics that have
been shown to be effective for sparse samples of traces, meaning that it does not
rely on systematic, expensive testing techniques. In this paper we demonstrate its
effectiveness with respect to the QuickCheck testing framework and the Erlang
programming language.

Implementation of the technique for use in Erlang development. This
work has been carried out in the context of the EU ProTest project1, which
aims to improve the model-based testing of concurrent and distributed telecoms
systems.

Erlang [2] was, along with its Open Telecoms Platform (OTP), originally de-
veloped by Ericsson for the rapid development of network applications. However,
its usage has now spread beyond that domain to a number of sectors. Erlang
has been designed to provide a paradigm for the development of distributed soft
real-time systems, where multiple processes can be spread across many nodes
in a network. Consequently, a lot of the development effort involved in imple-
menting an Erlang system is concerned with how these processes interact with
each other and their environment. The protocol an Erlang process follows when
communicating with other processes or responds to internal events is often im-
plemented in terms of finite state machines, which is why they play a particularly
important role and our technique is particularly appropriate.

The rapid development that is facilitated by Erlang means that formal speci-
fications are, however, often neglected. It is often perceived to be more expedient
to verify and document the system on an ad-hoc basis, and it is unrealistic to
expect a developer in a commercial environment to provide an accurate and
complete formal specification that can be used for more rigorous verification
techniques. Producing an accurate specification that captures all of the neces-
sary functionality can be a challenging and time-consuming task, particularly
for complex systems. Furthermore, as the requirements change and the system
is modified, keeping complex specifications up to date can be overwhelming, even
with the best of intentions.

It is this problem that the technique presented in this paper aims to solve.
The technique we develop iteratively reverse-engineers a state-machine from the
implementation by using program tests, with only a small amount of manual
input required. The result is a model that closely conforms to the actual sys-
tem behaviour. The intention is that this final model can be validated and, if
necessary, refined by the developer, and then used as a reference model for sub-

1 http://www.protest-project.eu/
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sequent program development tasks such as regression testing, and as a basis for
communication amongst developers.

The paper is structured as follows. Section 2 provides some background on
Erlang and QuickCheck, and the challenge of reverse-engineering finite state ma-
chines from software implementations. Section 3 introduces our iterative process
that adopts model-based testing techniques to drive the inference and provides
details of our implementation. The process is illustrated with a case study in
Section 4, and Section 5 concludes.

2 Background

2.1 Erlang and QuickCheck

Erlang is a concurrent functional language with specific support for the devel-
opment of distributed, fault-tolerant systems with soft real-time requirements
[2]. It was designed from the start to support a concurrency-oriented program-
ming paradigm and large distributed implementations that this supports. It was
developed initially by Ericsson as a platform for rapid development of network-
applications, but its applications have now expanded to include computer tele-
phony, banking, TCP/IP programming (HTTP, SSL, Email, Instant messaging,
etc) and 3D-modelling. It is increasingly used to develop applications that are
business-critical, for example, its use in Ericsson’s AXD-301 switch that provides
British Telecom’s internet backbone.

However, verification and validation of Erlang systems is to-date a largely ad-
hoc, manual process. Consequently there is an inherent danger that important
functionality remains untested and undocumented. Thus along with its recent
growth in popularity, there has been a concerted drive to develop more auto-
mated and systematic techniques.

QuickCheck One of these techniques is QuickCheck [3], an automated model-
based testing tool for Erlang. It has become one of the standard testing tools
used by Erlang developers. The ‘model’ is conventionally provided by the de-
veloper, as a set of simple properties that must hold for the program to behave
correctly, and these are expressed as temporal logic properties in Erlang itself.
For example, the following property would check that the reverse function for
lists behaves as expected:
prop reverse() ->

?FORALL(Xs,list(int()),

lists:reverse(lists:reverse(Xs)) == Xs).

Given such a property, QuickCheck uses random data generators to produce
inputs that will exercise the system, with the aim of producing counter-examples.
Once a counter-example is found, QuickCheck attempts to use successive tests
to home in on the precise reason for the failure, with the aim of producing the
smallest possible counter-example.



QuickCheck has recently been extended to so that one can test an imple-
mentation against a model given as a finite state machine (rather than just a
predicate). The use of a finite state machine allows one to specify the permitted
sequences of program functions, along with their effect on the data-state of the
system. As well as selecting random data-inputs for the functions, QuickCheck
also selects random paths through the state machine, with the aim of verify-
ing the existence of state transitions. The key fact for our reverse-engineering
technique is that for a given state-machine model, QuickCheck can produce the
requisite sequences of inputs (with the necessary data parameters) to automati-
cally test any path in the model against the actual software system.

2.2 Reverse-Engineering State Machines

Reverse-engineering techniques aim to address this problem. Broadly speaking,
these approaches can be separated into two categories: Those based on source-
code analysis (c.f. [4]), and those based on analysis of execution traces. Here
we focus on the latter (dynamic) approaches. They are based on the analysis of
program traces [5,6] which are sequences of events (e.g. function calls, message-
passing events etc.), that may optionally be annotated with variable values. The
traces can be recorded by instrumenting the source code, or by using one of the
trace tools, e.g. for Erlang those that are included in the OTP framework. Traces
that lead to a program failure (i.e. an exception) are annotated as such, so that
the last recorded trace event corresponds to the point of failure.

From a given set of traces, the challenge for reverse-engineering techniques
is to produce a candidate state machine that conforms to the provided set of
traces. This is akin to the challenge of inferring a regular grammar, which is con-
ventionally represented as a state machine from a given set of strings (a problem
originally posed in 1967 [7]). In fact, most reverse-engineering techniques are in-
spired by techniques that were initially devised as grammar-inference techniques
[8,1,6].

It is unrealistic to expect an inference technique to be able to infer a ma-
chine that exactly represents the underlying software system from any arbitrary
set of traces. An inference technique will only produce an accurate result if
the provided set of traces is characteristic of the behaviour of the underlying
software system [8,6]. In terms of state machines, this must include enough in-
formation about what the program can and cannot do to enable the inference
technique to identify every state transition, and to distinguish between every
pair of non-equivalent states. Thus the key challenges lie in (a) identifying the
relevant subset of executions and (b) collecting them - a potentially expensive
and time-consuming process.

Most reverse-engineering inference techniques are passive [9,10], in that they
presume that the necessary traces have already been identified and collected
prior to inferring the candidate model. However, given that the initial set of
traces is unlikely to contain all of the necessary information, the resulting model
is often only poor approximation of the real implementation.



In an effort to address this, a number of active techniques have been devel-
oped. Active techniques are augmented with the ability to pose questions about
the target model, to help the developer to identify the set of required traces. Such
techniques come in two flavours: those based on Angluin’s L∗ algorithm [11], and
those based on state-merging techniques [8]. Both techniques are iterative; they
construct a hypothesis model, and use it as a basis for posing questions to some
oracle. The essential difference between the two techniques comes down to ex-
pense. Techniques based on Angluin’s algorithm rely on asking a large number
of questions in order to produce an accurate model - and such an approach is
infeasible in the setting our work is placed. Thus here we use state-merging tech-
niques which place a greater emphasis on heuristics. These are less demanding
in terms of the number of questions asked, but have nonetheless been shown to
produce models that are reasonably accurate [8,6].

In our previous work we have applied active state-merging to the challenge
of reverse-engineering [1,12], however, this has relied on a substantial amount of
human intervention, where each query posed by the technique either had to be
answered directly by the human or had to be executed manually. Expecting a
human to be able to directly answer every query is unrealistic; the amount of
knowledge required would undermine the whole purpose of reverse engineering
the model in the first place. Expecting a human to manually execute each query
is a tedious and time-consuming process, requiring the generation of suitable
data parameters for each execution as well.

Here we describe an extension of this approach, that leverages the strengths
of model-based testing techniques with the powerful heuristic inference abilities
of state-merging techniques. The resulting process removes the human bottle-
neck. Instead of being driven by a built-in question-generator, which can be
very expensive, it will be up to the model-based tester to select the tests and to
execute them. This means that the developer can choose the testing technique,
and determine the expense (and resulting accuracy) of the technique. In our
implementation of the technique we use the QuickCheck framework, but this
can be substituted according to circumstance.

3 Iteratively Testing Reverse-Engineered Models

This paper introduces a technique to remove the human bottle-neck that arises
with conventional dynamic model inference techniques. Instead of requiring a
human to identify relevant program executions and collect the ensuing traces,
model-based testing techniques are used to automate the process. The amount
of a-priori knowledge of the program under analysis is minimal, although there
are a number of optional mechanisms that can be used to add this information
if it is available.

To explain the technique we use a simple example of a text editor, the LTS
for which is shown in Figure 1(a), where as usual we take an LTS is a quadruple
A = (Q,Σ, δ, q0), where Q is a finite set of states, Σ is a finite alphabet, δ :
Q×Σ → Q is a partial function and q0 ∈ Q.



Our technique builds up a sequence of candidate models, each one being a
bit more accurate than the last, these models can be viewed as partial LTS’s,
defined as follows [13], which allow us to distinguish between model transitions
that are known to be invalid, and transitions that are simply not known to exist
at all.

Definition 1 (Partial LTS (PLTS)) A PLTS is a 5-tuple A = (Q,Σ, δ, q0, Ψ).
This is defined as a LTS, but it is assumed to be only partial. To make the explicit
distinction between unknown and invalid behaviour, Ψ makes the set of invalid
labels from a given state explicit – Ψ ⊆ Q × Σ where (q, σ) ∈ Ψ implies that
δ(q, σ) /∈ Q.

To define the language of a PLTS, we draw on the inductive definition for an
extended transition function δ̂ used by Hopcroft et al. [14] to define two notions
of language: prescribed and proscribed which are used below.

Definition 2 (Prescribed and Proscribed Languages of a PLTS) Given
a state p and a string w, the extended transition function δ̂ returns the state p
that is reached when starting in state p and processing sequence w. For the base
case δ̂(q, ε) = q. For the inductive case, suppose that w is of the form xa, where
a is the last element, and x is the prefix. Then define δ̂(q, w) = δ(δ̂(q, x), a).

Given the extended transition function, the prescribed language of a PLTS
A can be defined as follows: PreL(A) = {w|δ̂(q0, w) ∈ Q}.

The proscribed language of a PLTS can be defined as: ProL(A){xa|(δ̂(q0, x), a) ∈
ψ}. By construction PreL(A) ∩ ProL(A) = ∅.

3.1 The basic process

The basic technique is straightforward. A human user provides the program of
interest, along with a small initial set of traces, these are required to identify
the set of functions of the program that are of interest (i.e. the alphabet of the
target machine). From this an initial hypothesis model is constructed - a single
state, with transitions for each element of the alphabet that loop back to that
state. This is provided as input to a state-machine testing framework, which
generates tests from the model. These tests are executed in the program, and a
tracing mechanism is used to record the executions. As soon as a test is found
that contradicts the expected behaviour as described by the model, the process
is restarted, but this time the model is inferred from the test traces. This process
iterates until no further discrepancies can be found by testing.

The basic process is captured by algorithm 1. It takes as input the program
under analysis Prog, along with a valid trace (or several if necessary) that con-
tains every element in the alphabet of the target machine. It uses four external
functions: inferPLTS(T+, T−), sub(String, Index), generateTests(PLTS) and
runTest(test, Prog). inferPLTS will be described in more detail below. sub(String, Index)
simply returns a substring of String up to the value of Index. generateTests(PLTS)



Input: Prog, Pos
Data: Neg, test, fail, failedPLTS
Uses: inferPLTS(T+, T−), generateTests(PLTS), runTest(test, Prog), sub(String, Index)
Result: PLTS
Neg ← ∅;1
PLTS ← inferPLTS(Pos, Neg);2
while test← generateTests(PLTS) do3

fail← runTest(test, Prog);4
if fail = 0 then5

Pos← Pos ∪ {test};6
if test ∈ ProL(PLTS) then7

PLTS ← inferPLTS(Pos, Neg);8
9

else10
failed← sub(test, fail);11
Neg ← Neg ∪ {failed};12
if failed ∈ PreL(PLTS) then13

PLTS ← inferPLTS(Pos, Neg);14
15

end16

end17

return PLTS18

Algorithm 1: Basic iterative algorithm

and runTest(test, Prog) represent the functionality of the model-based test-
ing framework. generateTests(PLTS) is responsible for generating tests from a
PLTS, which may be achieved by a number of standard state machine testing
algorithms. runTest(test, Prog) executes a test test on a program Prog, and
returns a zero if the test passes, or a number pointing to the index of test where
the failure happened.

An initial PLTS is generated by calling the inferPLTS function with Neg =
∅ and Pos to contain one possible initial trace: the only requirement for the
initial trace is that it contains every function in the alphabet of the target
machine at least once. For our editor example, the initial sequence could simply
be < load, edit, save, close, exit >, but any sequence in Σ∗ is valid. inferPLTS
returns the most general model possible and in this initial iteration will always
consist of a single state, with one looping transition that is labelled by the
transitions from the trace in Pos. Formally, the resulting PLTS is defined as
A = (Q,Σ,∆, q0, Ψ) where: Q = {q0}, ∀σ ∈ Σ, δ(q0, σ) → q0 and Ψ = ∅.
The purpose of the ensuing process is to refine this model - to ensure that the
behaviour represented by the final PLTS accurately reflects that of the actual
implementation. In our example, this initial model is shown in Figure 1(a).

Thus the algorithm iterates. To illustrate this suppose that we have chosen to
use the QuickCheck testing framework (i.e. this will provide the functionality of
the external functions generateTests(PLTS) and runTest(test, Prog)). Being
a model-based testing framework, QuickCheck needs a model to generate tests
from. For this we use our initial model, the one in Figure 1 (b).

QuickCheck chooses a random test - and may choose to try to execute the
sequence < load, close, close, edit > (line 3). This fails, so the variable fail,
which stores the point of failure in the test is set to the index returned by
runTest, which is 3. The failing sub-sequence failed is identified by taking the
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Fig. 1. Inference iterations on editor example

first three elements of the test: < load, close, close > (line 11). This is added to
the set of impossible sequences Neg (line 12). Because the sequence failed is
possible in the current candidate model (belongs to the prescribed language), a
discrepancy has been identified (line 13). Consequently a new model is inferred,
taking the updated set Neg into account, which results in the model shown in
Figure 1(c).

In the next iteration, the updated model is used as a basis for generateTests.
Suppose that this time it returns the test < load, edit, exit >, which when exe-
cuted does not fail. fail is thus set to 0 (line 4), and the test is added to the set
of valid traces Pos (line 6). Since the test has passed, and this is prescribed by
the model, there is no disagreement between the test outcome and the model,
so another test can be executed. It is important to note that QuickCheck, our
tester of choice, will never generate tests that should fail according to the pro-
vided model, so in our case the branch in line 8 will not occur. Nevertheless,
more systematic testing techniques such as the W-Method [15] do attempt tests
that should fail; in this case, if a test does not fail when it should according to
the current model, a new model has to be generated.

3.2 Model Inference

The inference process, which is called by the inferPLTS function in the al-
gorithm, is based upon the EDSM / blue-fringe state-merging method [16,8,1].
A brief illustration will be provided with respect to the editor example. As de-
scribed above, the algorithm gradually gathers a set of traces that are either
valid, or invalid. The purpose of inferPLTS is to infer a state machine from
these, that is a suitable generalisation - i.e. will correctly classify previously
unseen traces as either valid or invalid.

To do this, the two sets of traces Pos andNeg are aggregated into a single tree
- referred to as an augmented prefix tree acceptor (APTA). This tree represents
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Fig. 2. Augmented Prefix Tree Acceptor and illustration of merging

the most specific and precise machine possible, that exactly corresponds to the
provided sets of traces. For example, suppose the model-based tester has selected
the test < load, edit, edit, save, load > for the next iteration from the model in
Figure 1 (c). This test fails, because only one file can be opened at a time.
InferPTA is called to build a new model, incorporating this test. Figure 2 (a)
shows the corresponding APTA (valid traces are listed under S+, and invalid
traces are listed under S−). Dashed lines in this tree represent paths in the tree
that are invalid.

The goal of the inference is to identify states in this tree that are actually
equivalent, and to merge them. In doing so, this will collapse the machine down
to a minimal machine that is a generalisation of the set of traces. The merging
process is iterative - lots of subsequent merges are required to reach the final
machine. At each iteration, a set of state-pairs is selected using the Blue-Fringe
algorithm [16], a colour-based breadth-first traversal algorithm (a description
of this is beyond the scope of this paper). Each candidate pair is assigned a
score, which indicates the likelihood that the states are equivalent. The score is
computed by comparing the extent to which the suffixes of each state overlap
with each other2. Any pairs with non-negative scores can potentially be merged.
A pair of states is incompatible if a sequence is possible from one state, but
impossible from the other - this leads to a score of -1. Once the scores have
been computed, the pair with the highest score is merged, and the entire process
starts afresh, until no further pairs can be merged.

2 The Blue-Fringe algorithm ensures that the suffixes of one state are guaranteed to
be a tree without loops, which facilitates this score computation.



To illustrate the scoring process, we refer back to the example prefix-tree in
Figure 2 (a). Initially, the Blue-Fringe algorithm suggests only one pair of states
(a,b). They have a score of zero, so they can be merged. The result is shown in
Figure 2 (b). In the next iteration, we are given the option of selecting to merge
either pairs ((ab),c) or ((ab),d). This is where the scoring comes into play - we
want to select the pair that are most likely to be equivalent. In this case it is
straightforward because the score for ((ab),d) is -1; a close is possible from state
ab, but not from state d, ruling out that merge. The score for ((ab),c) is 2; both
states share the suffix < edit, save >, so this is chosen to be merged. This is
how the merging process continues until no more merges can be carried out. The
resulting machine is shown in Figure 1(d).

3.3 Implementation of the technique

Tracer

StateChumQuickCheck

events,
data

positive
and

negative
traces

PLTS

test
cases

initial
trace(s)

Erlang
VM

Fig. 3. Schematic overview of implementation

We have implemented the technique for use on programs written in Erlang.
However, the approach is essentially a black-box one, and is not tied to a specific
language or paradigm. A schematic overview of the key components is given in
Figure 3, and the tools that are used for the inference, testing and tracing are
briefly described below.

Model Inference: StateChum3 is an open-source model inference frame-
work that has been developed by the authors [1]. It implements a state-merging
approach as described in the previous section. The tracing mechanism (described
below) has been augmented with a small script that translates traces into suit-
able input files.

Tracing: Erlang has a wide array of tracing tools, many of which are in-
cluded in the standard Erlang OTP libraries. The traces used in this work are
however laid out in a particular format, to facilitate the application of other
trace-analysis tools such as Daikon [17]. To this end, a small Erlang tracing
module was developed 4, which runs as an independent Erlang process. The

3 http://statechum.sourceforge.net/
4 http://www.dcs.shef.ac.uk/~nw/Files/FM2009/dtraceGenerator.erl

http://statechum.sourceforge.net/
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-record(state,{openfile}).
% openfile stores the name of the open file
%===== initial state =====
initial_state() -> a.
initial_state_data() -> #state{openfile=[]}.
%===== data generator =====
filename() -> elements([‘‘test1’’,’’test2’’,

’’test3’’]).
% data transformations
%===== state transition system =====

a(S) [{b,{call,editor,exit,[]}},
{d,{call,editor,load,[filename()]}}].

b(S) [].
c(S) [{c,{call,editor,edit,[chars(4)]}},

{a,{call,editor,close,[S#state.openfile]}},
{b,{call,editor,exit,[]}},
{d,{call,editor,save,[]}}].

d(S) [{c,{call,editor,edit,[chars(4)]}},
{a,{call,editor,close,[S#state.openfile]}},
{b,{call,editor,exit,[]}}].

Fig. 4. Example QuickCheck FSM specification of text-editor

source code is instrumented at the exit points of functions that are of interest,
such that every time an instrumented point is executed, it sends the relevant
details (function name and variable values) to the trace process. The tracing
process produces an output in the form of a Daikon trace file. It is optionally
possible to add abstractions, which map the traces from lower level events to
sequences of higher-level program functions.

Testing: As discussed earlier QuickCheck is particularly suited to this work
because it can incorporate finite state machine (FSM) specifications 5. The spec-
ification of an FSM is essentially divided into four parts: The initial state speci-
fication, the state transition system, the data transformations and the data gen-
erators. A small example specification is shown in Figure 4. It should be noted
that this example only contains the essential information for a FSM construction;
QuickCheck supports a variety of other constructs (such as pre/post-conditions),
which are omitted here.

Currently, all of the steps in Figure 3 are automated. With our implemen-
tation the user to provide an initial trace, along with a parameter stating the
number of tests that should be executed for each candidate model. This will
cause the entire process to iterate, terminating once it has produced a model
that does not disagree with any tests.

4 Case Study

Function Description
connect connect to server, only one connection permitted at a time
disconnect disconnect from server
open writable, open readable open file in ‘write’ or ‘read’ mode
close writable, close readable close file in ‘write’ or ‘read’ mode
write, read write data to or read data from beginning of the file
write position, read position obtain a specific position for writing to or reading from the file
pwrite, pread write to or read from a specific position in the file
delete delete the file

Table 1. Functions of the FTP client (Σ in the PLTS)

5 http://quviq.com/eqc_fsm%20example/index.htm

http://quviq.com/eqc_fsm%20example/index.htm


The case study revolves around a simple FTP-client that is a modified version
of the ssh sftp, which is part of the Erlang OTP ssh libraries (version 1.0.2)
released by Ericsson6. For reference the main files involved in the tracing and
testing are available on the web7.

Subject system and set-up The main functions of the FTP client are pre-
sented in Table 1. In this model we will only consider the operation of the FTP
client with respect to a single file. The client has been deliberately designed to
incorporate some reasonably intricate state-based rules. Only one file-handle can
exist at a given time. Since a file has to be opened in either ‘read’ or ‘write’ mode,
this means that a file can not be written to and read from at the same time. We
have added the constraint that it is impossible to read from an empty file, and
it is impossible to write to, or read from, a specific position in the file without
having explicitly obtained the position using the write position / read position
files first.

We start off by identifying the instrumentation points in the source code.
This consists of identifying the points in the source code that correspond to exit
points for the abstract functions. In our case this is straightforward, as the ab-
stract functions all correspond to actual function definitions in ssh sftp. As an
example, at the end point of ssh sftp.open we insert a statement to add the
name of the function “open”, its arguments and the output of the function (see
accompanying website for sample files). Depending on the arguments, the tracer
either records an execution of the function as “open new” or “open existing”.
Having set up the tracer, all that remains is to set up the QuickCheck tester. Stat-
eChum has been augmented to automatically generate the QuickCheck model
files from the inferred transition systems.

The inferred models Figure 5 contains two snapshots from the inference pro-
cess, which consisted of 57 iterations in total when run using the implementation
of our technique described above. The process terminated when the testing pro-
cess yielded no further tests that revealed faults in the hypothesis. The entire set
of iterations is available on the accompanying website. For the sake of readabil-
ity, proscribed transitions are not shown. Figure 5 (a) shows the model produced
after 28 iterations. This model contains a number of errors (e.g., it permits the
file to be opened in ‘read’ mode while it is still open in ‘write’ mode). The final
candidate specification, which is produced after 57 iterations has 9 states, and
is the most accurate version produced. Every state transition that is permitted
in the model is also possible in the actual implementation (i.e., the inference
process has made no over-generalisations).

Degree of accuracy The key question is: how useful is the technique? One
aspect of this is to what extent the inferred model is the actual behaviour of the
6 http://www3.erlang.org/documentation/doc-5.6.5/lib/ssh-1.0.2/doc/html/
7 http://www.dcs.shef.ac.uk/~nw/Files/FM2009/

http://www3.erlang.org/documentation/doc-5.6.5/lib/ssh-1.0.2/doc/html/
http://www.dcs.shef.ac.uk/~nw/Files/FM2009/
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Fig. 5. Inferred models

implementation, although it should be noted that even a partial model will be
of use to a developer in increasing their understanding of the system.

Figure 6 shows a “diff” between the final inferred model and the target. The
technique used to compute this is defined in [18]. From this comparison it can
be established that 19 transitions were correctly inferred by the machine, that
16 transitions are missing, and that 6 superfluous transitions have been added.
Most of the missing transitions are of a particular nature: they are events that
should be possible from every state in the system and would consequently require
a very large number of tests to capture. The events “disconnect” and “delete”
should be possible from most states, and account for 9 of the 16 transitions. The
remaining missing transitions represent relatively minor differences in behaviour.
The correctly inferred transitions produce a reasonably accurate overview of how
the system behaves; the system has its three well defined phases of operation -
connection, writing to a file, and reading from that file. The requirement that
a file can only be open either in “write” or “read” mode is correctly captured,
and a file must be written to before it can be read.

To compare the language of the inferred model with its intended target pre-
cision, we adopt a technique that is defined in [19]. Precision denotes the extent
to which the language that is represented by the inferred machine represents
the language of the target state machine of the actual software system. Recall
denotes the extent to which the language that is represented by the target ma-
chine is covered by the inferred machine. These measures have been applied to
the inferred machine to separately assess the accuracy in terms of both valid
and invalid languages. In terms of the valid language of the two machines, the
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Fig. 6. Difference between final inferred model and reference model - Bold tran-
sitions are correct, thin (green) lines are added, dashed (red) lines are missing

precision is 96.2%, with a recall of 41%. The low positive recall tallies with the
large number of missing transitions; a large number of sequences that should be
accepted by the inferred machine are missing. In terms of negative precision and
recall, the machine has a precision of 85%, and a recall of 99.5%.

In summary, both methods of comparison indicate that the model is precise,
and that it captures the essential functionality of the system. Inaccuracies are
primarily due to the fact that the model is inferred model can end up missing
certain transitions, especially those that are possible from every state (such
as “disconnect”). In practice, this can be explained by the choice of testing
technique. Current versions of QuickCheck explore the model randomly, and
only choose transitions that are in the model - they do not attempt to explore
unspecified behaviour. This inevitably leads to some transitions potentially being
missed out.

A major strength of the technique demonstrated above is that it is based on
an inference technique (the EDSM-bluefringe state-merging technique) that ex-
cels at dealing with sparse samples of program traces or tests. It can arrive at a
reasonable hypothesis of how the program behaves, without requiring an exhaus-
tive or impractically large number of traces or tests. One potential weakness of
the implementation here is that, if errors are made early on in the state-merging
process, they are compounded by future merges, so it relies on a sufficient base
of traces to prevent invalid merges from happening. The iterative testing process
is responsible for gathering this base of traces in the form of tests.

As a result, the accuracy of the final result is highly dependent on the testing
technique that is used - in the name of efficiency we have used a simple random
testing approach in QuickCheck. There are however a number of systematic



testing techniques, such as the W-method mentioned above [15], and evaluation
of how these can be integrated into the process is a key area of future work that
we wish to undertake.

5 Conclusions and Future Work

This paper has presented an iterative approach to reverse-engineering labelled
transition systems. The approach has been implemented and demonstrated with
respect to and Erlang system, but can in princple be applied to any system re-
gardless of the underlying language. The inference engine, along with the various
illustratory resources are openly available.

The approach was demonstrated with respect to a small model of a real
Erlang implementation of a FTP client. The resulting model is shown to be
very precise, both in terms of the graph structure and the language that this
represents.

There are a number of ways by which the authors intend to extend this
work. A more extensive case-study will be used, to ensure that the approach
scales reasonably to larger systems. There is already a lot of experimental evi-
dence from the grammar inference community [16] to suggest that this will be
the case. Previous work by the authors has involved the manual provision of
selected LTL constraints to increase the efficiency and accuracy of the inference
process. It is our intention to integrate these techniques with the current testing
infrastructure.

As mentioned in Section 3.3, the traces are produced in the Daikon format
[17]. Daikon can infer data constraints on variables from execution traces. We
are currently investigating the use of Daikon to infer pre/post-conditions from
Erlang executions, which can then be used to annotate the reverse-engineered
state machines.

There are a number of QuickCheck features that could be used to increase
the efficacy of the testing process. As mentioned previously, it is our intention
to use the transition-weighting feature to coax the tester towards certain states
that would otherwise be in danger of being left unexplored by random tests. It
is envisaged that Uchitel’s PLTS formalism could be particularly useful in this
respect, helping to identify those states with lots of ‘unknown’ transitions, to
automate the assignment of weights in the hypothesis machine.
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