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Abstract

Finite state machine-based abstractions of software be-
haviour are popular because they can be used as the basis
for a wide range of (semi-) automated verification and val-
idation techniques. These can however rarely be applied
in practice, because the specifications are rarely kept up-
to-date or even generated in the first place. Several tech-
niques to reverse-engineer these specifications have been
proposed, but they are rarely used in practice because their
input requirements (i.e. the number of execution traces) are
often very high if they are to produce an accurate result. An
insufficient set of traces usually results in a state machine
that is either too general, or incomplete. Temporal logic
formulae can often be used to concisely express constraints
on system behaviour that might otherwise require thousands
of execution traces to identify. This paper describes an ex-
tension of an existing state machine inference technique that
accounts for temporal logic formulae, and encourages the
addition of new formulae as the inference process converges
on a solution. The implementation of this process is openly
available, and some preliminary results are provided.

1. Introduction

Abstract specifications that capture the behaviour of a
software system are used for several important software de-
velopment tasks. Developers can use them as a basis for
communicating with each other, they are used for model-
based testing, they can be inspected, and they can be used
by model checkers to verify properties. If the model is com-
plete and up-to-date, the aforementioned techniques can be
used in harmony to ensure that the software ultimately be-
haves correctly.

In practice however a model is rarely available. Software
development is often carried out under restrictive time con-
straints, which means that developers tend to concentrate
on writing the source code, and do not have the time to gen-
erate models in tandem. Even if a model is generated, it
is rarely kept up-to-date as the software evolves. As a re-

sult, validation, verification and maintenance are inevitably
hampered; a lack of a model means that the tasks mentioned
above need to be carried out at an implementation-level, and
are therefore unlikely to highlight any high-level functional
faults.

An automated approach to infer specifications of soft-
ware behaviour would enable the application of these veri-
fication and validation techniques at a design level. Several
inference techniques have been proposed, most of which
rely on obtaining some set of execution traces that are in
some way “representative” of the system behaviour in gen-
eral [2, 6, 14, 20, 21]. One major problem that hampers
the widespread application of these approaches is that, un-
less the system is trivial, it will often require a vast number
of traces to produce an accurate result with any confidence.
Particular properties of the underlying system that may be
obvious to the developer can require a vast number of traces
to infer in practice.

This paper describes a technique that substantially re-
duces the reliance upon large numbers of traces. It enables
the provision of linear temporal logic (LTL) constraints that
are known to hold for the target machine, alongside the
usual sets of traces. These properties may be obvious to the
developer, but require lots of traces to capture. The tech-
nique is an extension of a conventional state machine infer-
ence process, but uses a model checker to ensure that any
intermediate hypothesis machines do not violate any of the
supplied constraints. If they do, counter examples from the
model checker are fed back into the inference engine, and
the process is restarted.

The technique can either be run passively, where con-
straints and traces are provided a priori, or actively, where
it will iteratively query the developer about the behaviour
of the system as it “homes in” on an accurate result. The
active approach forces the developer to consider scenarios
that may not have been envisaged, and enables the addi-
tion of new LTL constraints and scenarios that either con-
firm or contradict the scenarios suggested by the inference
technique. As such the active approach can also be used to
address the acknowledged problem of identifying suitable
temporal logic constraints for finite state verification tasks
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[9]. The contributions are as follows:

1. A state machine inference process that incorporates
LTL constraints.

2. An active version of the inference algorithm that al-
lows for the addition of new LTL during the inference
process.

3. An openly available proof of concept implementation
that uses the SPIN model checker to check LTL con-
straints.

Section 2 presents an overview of the state of the art of re-
verse engineering behavioural models from software sys-
tems. Section 3 shows how LTL can be integrated into the
process. Section 4 presents implementation details, and sec-
tion 5 evaluates the practicality of the technique by illus-
trating it with respect to two case studies. Finally section7
concludes the paper and discusses plans for future work.

2. Reverse Engineering Software Behaviour
Models

This section provides an introduction to current reverse-
engineering techniques. Due to space constraints it is not
exhaustive, but it provides an introduction to the generic
state mergingtechnique, which forms the basis for most
state machine inference techniques (as well as the one we
present in this paper). It also includes a small running ex-
ample to show how such techniques, which are based purely
on execution traces, can be impractical. The example is of
a simple text editor. In the text editor, once documents are
loaded they can be edited. Documents can be saved only if
they have been changed in some way. Other documents can
only be loaded once the current document has been closed.

2.1. State merging

The majority of existing approaches to reverse engineer
state machines adopt astate mergingapproach. These ap-
proaches, which are typified by Bierman’sk-tails approach
[4], work on the basis that two states (points in an execu-
tion trace) are equivalent and can be merged if their future
behaviour is identical. This notion of equivalence is called
the Myhill-Nerode relation [17]. The challenge of identify-
ing a state machine from a set of traces is thus reduced to
identifying pairs of points in the traces that may be suitable
merging candidates. Each merge results in a machine that is
more general, i.e. it represents a broader range of software
behaviour.

To begin with, the set of traces is usually represented
by an augmented prefix tree acceptor (APTA). Usually
the traces represent actual executions, but if the developer

Initial traces
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Figure 1. Augmented Prefix Tree Automaton

knows of particular traces that would be impossible, these
can be added, and tagged as impossible. The APTA is con-
structed by representing the set of traces as a single tree,
where each node in the tree represents a particular prefix.
Figure 1 illustrates the APTA for a set of sequences that cor-
respond to executions of a simple text editor. Valid traces
belong to the setS+, and invalid traces belong toS−.

The state merging challenge is to select and merge the
correct pairs of states that lead to an accurate state machine.
Conventional (passive) merging techniques [4, 2, 6, 14]1

start from the APTA and produce a state machine in a sin-
gle step. The accuracy of these machines depends on the
number of relevant traces provided. Without enough traces
to distinguish states that are different, these techniquescan
either fall prey toovergeneralisation(too many states that
should be separate are merged together) or the APTA is so
sparse that the resulting machine is very big because too
many states have not been merged due to a lack of evidence
of their equivalence.

In an effort to prevent this, active techniques [8, 20] at-
tempt to garner the missing information from the devel-
oper and to validate state merges as they are encountered.
For example, one could validate the merger of the two
states with the outgoing transition “edit” by asking the ques-
tion: “is the path< load, save > a valid one? If the
user says yes, this path (and other question-paths such as
< load, edit, edit, edit >) are introduced to the new hy-
pothesis machine that would not have been present in the
previous version of the machine. This process continues
until no new questions can be generated.

1Due to space constraints, these are only a sample of techniques, we
have however compiled an overview [1] that can be referred tofor a more
complete list of techniques.
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Figure 2. Inferred machines of text editor
(given the initial APTA from figure 1)

These active state merging techniques have been empiri-
cally shown to fare particularly well when the initial sample
of traces is sparse [8, 20, 21] - which is often the case in dy-
namic analysis. Despite their increased accuracy, these ac-
tive techniques can often also be impractical, because they
can end up asking too many questions during inference.
Large numbers of questions are particularly tedious when
they have to be answered by a human (usually the devel-
oper).

2.2. Demanding input requirements

Current state machine inference approaches are unsatis-
factory, because they are bound to produce inaccurate ma-
chines unless provided with an unrealistic amount of exter-
nal knowledge about the target system. They are cumber-
some because that information can only be supplied (a) in
the form of program traces or (b) in the form of questions
to some oracle (usually the developer). Dependence upon
large numbers of relevant traces often renders them imprac-
tical.

Figure 2 contains the three inferred machines. The top
two are generated by adopting the simple k-tails approach.
The value ofk is crucial. If it is too big, not enough states
will be merged with each other, and the machine will not be
general enough. This is demonstrated by the top machine.

Conversely, ifk is too low, the machine can be overgener-
alised, as shown in the second machine (it permits saving
without having edited the file).

The bottom machine is created by adopting Dupont
et al.’s active QSM state merging approach [8] (using a
slightly modified question generation algorithm [20]). Ev-
ery time a pair of states are selected to be merged in the
APTA (hyothesis machine), it generates a set of question
sequences that would belong to the new merged machine.
Answers from the user are added to setsS+ (positive) and
S− (negative as appropriate. If none of these conflict with
the user’s answers, the merge proceeds. Although the final
machine is complete and correct, it requires a substantial 29
questions to gather the required information. Since this is
a relatively simple machine, the number of questions will
increase sharply as the target machine becomes more com-
plex.

The restriction of traces and questions as the sole form of
input for inference algorithms is often frustrating. Ensuring
that the final machine adheres to a simple constraint can
require large numbers of traces. As an example, to establish
the simple property that a file can only be saved after it has
been changed, positive examples are required to show that
a single edit can occur before a save and that multiple edits
can also occur before a save. Negative examples are also
required to show that a save cannot happen after the file has
been closed, and to show that two saves in a row cannot
happen etc. Thus, the reliable inference of any non-trivial
machine is often hampered by far too many traces or trivial
questions.

3. Specifying and Model Checking LTL Con-
straints

This paper presents a constraint-based approach to re-
duce the input requirements of state merging techniques
(both passive and active). The technique allows certain con-
straints on the target machine to be specified in linear tem-
poral logic (LTL) axioms, and to be supplied alongside the
conventional sets of valid and invalid traces. The conven-
tional inference approach is augmented; every time a pair
of states is merged, the resulting machine is checked with
an LTL model checker to ensure that it does not violate any
of the supplied properties. If it does, a counter example is
supplied as a negative sequence to the learner. Section 3.1
provides a brief introduction to LTL, and section the use
of model checkers to verify the conformance of a model to
LTL properties.

3.1. LTL safety properties

Temporal properties are rules that govern the behaviour
of a system in time. LTL [18] is a specification language
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that can be used to describe these properties. Besides the
usual logic connectives∧, ∨, ¬ and→, LTL also contains
the following temporal operators:

• Thenextoperator©, where©φ means that the prop-
ertyφ has to hold in the next state.

• Theglobaloperator�, where�φ means that the prop-
ertyφ has to hold for every state.

• The eventuallyoperator♦, where♦φ means that the
propertyφ has to hold eventually.

• Theuntil operatorU , whereϕUφ means that the prop-
ertyϕ has to hold until propertyφ holds.

• The releaseoperatorR, whereϕRφ means that the
propertyφ is true untilϕ becomes true, or forever ifϕ
is never true.

LTL properties can be divided into two categories [19]:
those that must never be violated (safety properties) and
those that must always hold (liveness properties). This di-
chotomy is useful because, depending on the type of prop-
erty, different model checking approaches are required to
ensure that a property holds. This work is concerned solely
with the safety properties - we use LTL to specify properties
that the final state machine must not violate.

Conventional state machine inference techniques often
require many example execution sequences to suggest that a
pair of states can or cannot be merged. As an example (from
the text editor in the previous section), we consider the fol-
lowing requirement:“a text file can only be saved once it
has been edited”. For the state-merging approach, it is very
difficult to identify a set of traces (and invalid traces) that
are required to produce a machine that satisfies the property.
Although the set of traces provided in figure 1 all conform
to the property, they fail to ensure that the final machine ad-
heres to it (as shown by the machine wherek = 1 in figure
2). The active approach does produce the correct machine,
but only because it asks numerous questions which pre-
vent the overgeneralisation. By adding additional sequences
(such as< load, save > is invalid, < load, edit, save >

is valid but< load, edit, save, save > is invalid etc.), it
eventually converges to a correct machine.

This information can however instead be expressed as a
concise LTL expression, eliminating the challenge of iden-
tifying suitable sets of example traces. The above constraint
can be expressed as follows:

(edit R¬save) ∧ �(save → ©(edit R¬save))
Other properties can be expressed in a similarly concise

manner. Whereas, for example, 8 of the 29 sequences gen-
erated for the active inference merely confirmed that exit is
always the final event, these could all be summarised by the
constraint:

exit → �(exit)

3.2. Identifying safety property violations

A number of model checkers exist that can establish
whether a model conforms to a set of LTL properties
[10, 16]. Model checkers ensure that a safety property
is never violated by systematically searching through the
states in the model, and checking each state against the set
of safety properties. If they do detect a violation, they can
provide acounter example, which is an execution path that
leads to the violation.

For the sake of illustration, let the model inferred when
k=1 in figure 2 be our current hypothesis, and the exam-
ple properties shown in section 3.1 be our LTL specifica-
tion. In this case, a merge has occurred that overgeneralises
from the sample; it wrongly claims that, after a document
has been loaded,edit andsave can be used interchange-
ably until the document is closed or the program is termi-
nated. A counter example is a path that is valid in the hy-
pothesis, but invalid with respect to the specification - here
(edit R¬save) ∧ �(save → ©(edit R¬save)). The se-
quences< load, save > and< load, edit, save, save >

from the hypothesis machine are both counter examples
with respect to that property.

4. Constraint-based inference of state ma-
chines

This section presents an algorithm that adapts existing
state-merging algorithms to accept LTL constraints as well
as conventional valid and invalid execution sequences. The
presented approach not only ensures that the final machine
conforms to given LTL properties, but uses counter exam-
ples from a model checker to extend the set of provided
sequences as is necessary. The approach can be used with
existing passive approaches that infer the machine in a sin-
gle step, or it can be integrated into an active inference ap-
proach, that permits the addition of new properties during
the inference process. The algorithm is presented in sec-
tion 4.1. Section 4.2 contains details of a proof-of-concept
implementation that works in conjunction with the SPIN
model checker, and is openly available.

4.1. The inference algorithms

Conventional state merging algorithms (as described in
section 2.1) start with the APTA (built fromS+ andS−).
They iteratively merge pairs of states until they end up with
a minimal state machine where any further merges would
produce a machine inconsistent withS+andS−. If the ap-
proach is passive, the pairs of states are selected in a single
continuous process until the algorithm produces the final
machine. If the approach is active, the hypothesis machine
that is produced by each merge is used to formulate queries
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Figure 3. Inference process

to the developer, who can provide feedback (usually in the
form of scenarios) that (in)-validate the merge.

Figure 3 contains an overview of the inference process.
It is based upon the conventional active state machine in-
ference process [3, 8, 20], but is augmented by the steps la
belled (1-4). The essential novelty of this is that, insteadof
relying on a human oracle for feedback during the inference
process, we can use a model checker to provide feedback in
the form of counter examples as well. As the inference pro-
cess continues to refine the hypothesis machine, the human
oracle can augment the set of LTL constraints as well.

Essentially, the algorithms that are presented here check
the results of each merge to ensure that none of the LTL
properties are violated. If they are violated,S− is aug-
mented with a counter example and the algorithm recur-
sively restarts. The active version provides the additional
ability to manually augment theLTL set during the infer-
ence process. Thus, as the user is forced to contemplate new
aspects of system behaviour that hadn’t been considered
when the initialLTL set was generated, new constraints
and scenarios can be added to produce an accurate model,
as well as a more complete set of accompanyingLTL con-
straints. Figure 4 presents both the passive and active ver-
sions of the algorithm.

The passivePassiveInfer algorithm (see figure 4)
starts off by generating an APTA fromS+andS−. Every
iteration, theselectStatePairs function selects a suitable
pair of states to be merged (ensuring that the machine pro-
duced by merging the pair would not conflict withS+and
S−). A number of established techniques, such as the Blue
Fringe technique, exist to do this (see Langet al. [12] and
previous work by the authors [20] for pseudo code). The
selected pair of states is merged using themerge function.
This merge function differs from the conventional state-
merging process (see Dupontet al. [8] for a more elabo-
rate description). The process of determinising the (poten-
tially non-deterministic) merged automaton is not equiva-
lent to Hopcroftet al.’s standard conversion from a non de-
terministic machine to a deterministic one [11], because the
merged machine is intended to describe a broader range of
behaviour than the non deterministic machine it starts from.

Algorithm PassiveInfer

Input (S+, S−, LTL) sets of valid and invalid sequences, and a set of LTL prop-

erties

Output A minimal DFAA consistent with an extended collection(S+, S−, LTL)

Uses generateAPTA(S, S′) Generates an augmented prefix tree acceptor

from S andS′

selectStatePairs(A) Selects merge candidates fromA

merge(A, q, q′)Merges nodesq andq′ in A, and ensures that the result-

ing machine is deterministic

modelCheck(A, LTL) checks modelA againstLTL and returns one

or more counter examples

1: A← generateAPTA(S+ , S−)
2: while (q, q′)← selectStatePairs(A) do
3: A′ ← merge(A, q, q′)
4: Counter ← modelCheck(A′, LTL)
5: if (Counter 6= ∅)

6: S− ← S− ∪Counter

7: return PassiveInfer(S+ , S−, LTL)
8: else
9: A← A′

10; return A

Algorithm ActiveInfer

Input (S+, S−, LTL) sets of valid and invalid sequences, and a set of LTL prop-

erties

Output A minimal DFA A consistent withS+, S− and a potentially expanded set

LTL

Uses all functions used byPassiveInfer as well as:

modelCheck(query, LTL) checks that a single sequence conforms to

LTL, returns a counter example if not

generateQueries(A, A′) Returns a set of sequences overA′ that are

classified differently byA

isV alid(query) returns∅ if query is valid, otherwise returns the shortest

negative part ofquery

newConstraintsFromUser() Returns new LTL constraints from the

user, may be empty

1: A← generateAPTA(S+ , S−)
2; while (q, q′)← selectStatePairs(A) do
3: A′ ← merge(A, q, q′)
4: Counter ← modelCheck(A′, LTL)
5: if (Counter = ∅)
6: foreach query ← generateQueries(A, A′)
7: userCounter ← isV alid(query)
8: ifuserCounter = ∅
9: S+ ← S+ ∪ query

10: else
11: LTL← LTL ∪ newConstraintsFromUser()

12: S− ← S− ∪ userCounter
13: return ActiveInfer(S+, S−, LTL)
14: else
15: S− ← S− ∪ Counter

16: return ActiveInfer(S+, S−, LTL)
17: A← A′

18; return A

Figure 4. Passive and active algorithms
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So far, the process conforms to the standard state merg-
ing process. However, once the states have been merged,
the passiveInfer algorithm differs. The hypothesis ma-
chineA′ is checked by themodelCheck process to ensure
that it conforms to the set of constraints provided by LTL. If
any of the properties are violated byA′, the model checker
will return a counter example (or, depending on the model
checker, a set of counter examples), that demonstrate this
violation. If there are no counter examples, the process car-
ries on merging pairs of states inA′ until no further states
can be found. If however counter examplesare found by the
model checker, they are added to theS− set and the entire
merging process is restarted. This carries on recursively un-
til no further states can be merged, and no counter examples
can be provided by the model checker.

The activeInfer algorithm (also in figure 4)
is an active version ofpassiveInfer. As with
passiveInfer, every time a pair of states is merged,
it calls modelCheck(A, LTL) to ensure that the merge
does not contradict any of the current LTL clauses. At this
point, with no counter examples from the model checker,
passiveInfer would simply carry on merging. Instead,
ActiveInfer proceeds to ensure that the merge is correct
by querying the user. It generates a list of sequences
by calling the generateQueries(A, A′) function. The
question generation process is based on Dupontet al.’s
QSM technique [7, 8] and produces scenarios that would be
handled differently inA andA′ (i.e. would be valid in one
but not in the other). When faced with these sequences, the
user can either confirm / reject the posed scenarios, or can
provide an LTL property that accounts for a larger range
of scenarios (including the posed scenario). Depending
on how specific the supplied LTL properties are, this can
substantially reduce the number of scenarios that need to
be supplied and queried.

4.2. Implementation

The approach has been implemented as part of our Stat-
eChum state machine inference Java framework2, that is
openly available. A (currently very simple) interface is pro-
vided, that accepts a text file that specifies whether the in-
ference should be active, an optionalk-limit for the infer-
ence, as well as an initial set of valid and invalid execution
sequences. It is assumed that the traces are encoded as se-
quences of functions at a suitable level of abstraction. This
can be achieved by adopting the trace annotation process
detailed by Ammonset al. ([2] - section 3).

LTL constraints are checked with the SPIN model
checker [10]. Every iteration, the current hypothesis state
machine is translated into PROMELA code (the modelling
language for SPIN). Every time an LTL constraint is added,

2http://statechum.sourceforge.net/

anever claimis generated that represents the Büchi automa-
ton of the disjunction of all supplied constraints. SPIN
checks the supplied model, and if it finds that thenever
claim is violated it returns a counter example. Although it is
possible to carry on searching after a counter-example has
been found, to identify further counter examples, our im-
plementation currently restarts learning as soon as the first
counter example has been identified.

It is important that the counter example supplied by the
model checker is only invalid with respect to the final ele-
ment (i.e. its prefix must be valid). The grammar inference
process will presume that the prefixis valid, and if this is not
the case it will produce a machine that accepts sequences
that are invalid. In SPIN the shortest counter example is en-
sured by using the “breadth-first” switch to check for LTL
properties [10].

4.3. Example

This example demonstrates the implementation, how
LTL constraints reduce the number of questions, and how
the questions encourage the addition of new and relevant
LTL constraints. To do so we use the text-editor exam-
ple introduced in sections 2 and 3. We start off with the
tracesS+andS− that are presented in figure 1 (although
the negative sequences are useful, it is possible to start the
inference from just positive sequences abstracted from pro-
gram traces). We begin with the LTL constraint that was
suggested in section 3.1:(edit R¬save) ∧ �(save →
©(edit R¬save)).

Figure 5 provides a full listing of questions asked by the
inference algorithm, answered by the user, and information
provided by the model checker. The final result is the same
as the final machine in figure 2. However, without the use of
the model checker, the QSM technique posed 29 questions
to the user, whereas here only 10 needed to be answered.
The rest of the information about system behaviour was en-
capsulated in the LTL constraints that were provided by the
user.

One of the barriers to the widespread adoption of logics
such as LTL is the fact that it requires a substantial amount
of effort to identify and denote those constraints that are rel-
evant and useful [9]. This is lessened by the iterative nature
of our active approach - by asking the developer questions
they are forced to contemplate potentially unexpected sys-
tem behaviour. For any questions that suggest an invalid
system execution, there should exist a corresponding LTL
expression that summarises why this is the case. As an ex-
ample, the first question (step 3) asks whether one load can
be succeeded by another. In practice the system can only
load one file at a time. This property is expressed as the
more general LTL rule (also shown at step 3). At step 9,
the model checker provides a counter example for the cur-
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Step Question to user Manual input Model checker

1 - load,save

2 - load,edit,save,save

3 load,load? ¬(�(load→©(close R¬load)))

4 - load,load

5 load,close,load,exit? + load,close,load,exit

6 load,edit,exit? + load,edit,exit

7 - load,edit,edit,save,save

8 - load,edit,save,load

9 - load,edit,edit,save,close,save

10 ¬(�(close→©(load R¬(save ∨ edit ∨ close))))

11 load,edit,edit,save,close,load,exit? + load,edit,edit,save,close,load,exit

12 load,edit,edit,close,exit? + load,edit,edit,close,exit

13 load,edit,edit,exit? + load,edit,edit,exit

14 load,edit,edit,edit? + load,edit,edit,edit

15 - load,edit,close,save

16 - load,edit,save,close,save

17 load,edit,save,edit,exit? + load,edit,save,edit,exit

18 - load,edit,edit,close,save

19 - load,edit,close,close

20 - load,edit,edit,close,close

21 exit? + exit

22 - save

23 load,exit? + load,exit

24 - exit, save

25 - load, close, exit, edit

26 ¬(exit→ �(exit))

27 - exit,edit

28 - exit,load

29 - load,exit,save

30 - load,edit,exit,save

31 - load,edit,edit,exit,save

A screen shot from iteration no. 12. The QSM
approach employs the “Blue Fringe” merging
approach [12], where the blue fringe of nodes
moves down the PTA, and each node on the blue
fringe is considered for merging with any of the
nodes in its wake. The dark (blue) nodes rep-
resent the blue fringe nodes, the (red) nodes are
those that have been passed over already. The
(green) tail nodes are yet to be considered for
merging.

Figure 5. Questions asked, along with information added by d eveloper and model checker (‘-’ invalid
sequence , ‘+’ valid sequence), with screen shot from infere nce process
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rent hypothesis model, because it breaks the rule that a file
cannot be saved unless it has been edited since the previous
save. However, the developer would notice that this con-
straint does not account for the fact that it is impossible to
do anything to a file once it is closed, and expresses this
at step 10. This rule eventually causes the model checker
to suggest the counter-example at step 25. However, the
developer would notice that, once the application has been
terminated it is actually impossible to do anything, so this
is encapsulated in the constraint at step 26. Besides an ac-
curate state machine, the user also ends up with an accom-
panying set of relevant LTL constraints.

5. Evaluation and Discussion

Section 5.1 presents results from two well-known sys-
tems, given a ‘typical’ set of executions, and a small set of
LTL constraints to start with. This is followed by a discus-
sion of the results, the merits of the technique, and areas
that require further improvement.

5.1. Results from JHotDraw and Jakarta
Commons Net CVS client

JHotDraw3 is a widely used, open-sourced drawing
framework that has been used in previous specification min-
ing work by the authors [20]. The Jakarta Commons Net4

is an open-source framework that implements a variety of
commonly used network protocols. Loet al. [14] used their
implementation of a CVS client in the Jakarta framework to
evaluate their state machine mining approach.

For this evaluation, the technique was supplied with a
(realistically) sparse selection of (abstracted) traces from
JHotDraw and the CVS system. The results show the dif-
ference between the presence and absence of the model
checker. Although our implementation contains a number
of question generation strategies that minimise the number
of questions asked, we have opted for the most conserva-
tive, basic approach, to attempt to ensure that the question
generation algorithm does not interfere with the results.

Due to space constraints we can only show the results
summaries in this paper, but a more complete set of re-
sults (in the same format as figure 5) are available5. Ta-
ble 1 shows the results, where Q is the number of questions
asked by the QSM technique. The results on the left were
computed by applying Dupont’s QSM technique [8] on ab-
stracted event traces [20]. For the model checker-assisted
approach, whenever a question was invalid, a concise LTL
clause was supplied that summarised why (instead of the

3http://www.jhotdraw.org
4http://jakarta.apache.org/commons/net/
5http://www.dcs.shef.ac.uk/˜nw/Files/asematerial.html

common approach of simply pointing out where the ques-
tion becomes invalid). So, out of the 20 questions that were
asked for JHotDraw using the model checker-assisted ap-
proach, only 4 were invalid, and required LTL, and out of
the 44 CVS questions, 20 were invalid.

For both systems there was a substantial reduction in the
number of questions asked of the user, which is one of the
main aims of this technique. The reduction for JHotDraw
was 50%, and for Jakarta CVS the reduction was 68%. By
specifying only four LTL clauses, the number of questions
asked was halved for JHotDraw. For the Jakarta CVS exam-
ple, 20 small LTL clauses were specified, and the remaining
24 questions were answered directly by the developer.

ThePrec andRec columns show the precision and re-
call of the final machines. The notion of precision and recall
is calculated by applying a test set from the (manually gen-
erated) target machine, and quantifying the proportion of
sequences that are correctly accepted and rejected [13, 21].
For JHotDraw, despite halving the number of questions, and
only requiring four LTL clauses, the accuracy for the SPIN-
assisted machine is slightly higher. For the CVS system,
the SPIN-assisted results significantly improve on the pre-
cision results, but produce a lower recall result. In practice,
this means the the final machine does not account for as
many sequences as it should (this can happen when it fails
to detect loops for example). However, the sequences that
are accounted for in the final machine are more accurately
accepted / rejected.

5.2. Discussion

Although generally positive, it should be clear that the
results presented above are merely indicative of the perfor-
mance of the technique in general. It is challenging to pro-
duce a controlled, systematic evaluation of this technique,
because there are so many factors that contribute to its ac-
curacy and scalability. From an inference perspective, the
amount of information required by the model checker / de-
veloper depends upon the number of initial execution traces
provided. Initial empirical results by the authors [21], along
with work by Dupontet al. [7, 8] suggests that the QSM
technique performs well with respect to a sparse initial set
of traces, and the traces provided above were deliberately
sparse. The amount of information that can be automat-
ically supplied by the model checker depends upon how
specific the supplied LTL constraints are, and when they are
supplied during the inference process. If lots of constraints
are supplied before the inference starts, a large number of
questions can be avoided during the inference process. In
our future work, we aim to produce a more comprehensive,
empirical evaluation (see section 7).

One critique that can be levelled against the technique
presented here is that it depends upon the ability of the
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No Model Checker Using SPIN

Questions Prec Rec Questions LTL Prec Rec

JHotDraw 58 0.97 0.97 29 4 0.98 0.98
Jakarta CVS 137 0.86 0.97 44 20 0.97 0.7

Table 1. Results from JHotDraw and Jakarta CVS client

developer to supply reasonable LTL constraints. It is of-
ten argued [9] that formal specification languages (such as
LTL) have not been widely adopted because their notations
are cumbersome to understand and apply in practice. In
the context of the technique presented here, the difficulty of
constructing LTL formulae is tempered by the facts that (a)
the required LTL clauses usually follow a very simple tem-
plate (e.g. the question is wrong becauseA cannot precede
B) and (b) the questioning process provides a useful guide
for the LTL writing process. It is usually much simpler and
less tedious to compose a short LTL clause, than to answer
a lot of questions that are negated by the same rule anyway.

During the collection of the above results it was observed
that, very occasionally, counter examples can themselves
contain invalid prefixes. If the hypothesis machine is in-
correct in a number of areas, a counter example that high-
lights one area might traverse another part of the machine
that is incorrect (but not captured in an LTL clause). As a
result, the counter example is fed back into the grammar in-
ference algorithm, but containing an incorrect prefix that is
presumed to be correct. For instance, let the hypothesis ma-
chine be the machine (k=1) in figure 2, and there is an LTL
formula ![](load → ©(¬load)). A possible counter ex-
ample< load, save, save, close, load, load > starts with
an erroneous sequence which is present in the hypothesis
machine (two consecutive saves cannot happen in practice).
The conventional learner would simply assume that the pre-
fix < load, save, save, close, load > is valid, and add it to
S+.

In the PassiveInfer algorithm this will not cause a
conflict, and the result may still be more accurate than it
would be without the faulty counter example, because an
incorrect merge has been prevented. However, when us-
ing theActiveInfer algorithm, this can lead to problems
later, during the inference process, the user provides a new
LTL constraint / query answer that contradicts the previ-
ously added false prefix. The authors have addressed this
problem by implementing theActiveInfer algorithm in
such a way that counter examples are added to a special
cache instead ofS− (in line 15 in figure 4), and that this
cache is flushed every time the developer adds a new state-
ment or manually answers a question. In this case, any po-
tentially conflicting counter examples are removed, and the
inference process can start afresh, working only from the
reliable data supplied by the user.

6. Related Work

The main contribution of this paper is an approach to
state machine inference from event traces as well as LTL
constraints. A large number of techniques already exist
to reverse engineer state machines from event traces, and
many of these techniques have already been covered in
section 2. To the best of the author’s knowledge, there
are no reverse-engineering techniques that employ LTL and
counter examples in the way that has been presented. There
have however been a number of attempts to use other sorts
of inputs to guide or constrain the inference process, and
these are briefly presented here.

In the domain of grammar inference, Martinset al. [15]
propose a “more powerful teacher”. Instead of simply con-
firming or rejecting queries, they propose that the teacher
should augment every negative answer with an expression
that specifies an additional set of invalid sequences. These
additional strings are specified by providing a sequence
of elements (this can be a prefix, suffix, or general sub-
sequence of the set of all invalid sequences). Although the
rationale is the same, this approach still forces the user to
consider the system in terms of its execution sequences, and
to identify these invalid sequences manually. By adopting
the LTL approach in this paper, the constraints do not have
to be explicitly phrased as execution sequences, they can
be expressed in more general terms, and negative examples
of behaviour can be identified automatically by the model
checker.

In their work on the QSM technique Dupontet al. [7, 8]
suggest that the states in the state machine can be decorated
with data constraints specified as LTL formulae. With these
formulae, and a set of initial constraints, symbolic execution
can be used to identify the path conditions that must hold for
the rest of the states in the machine. These data constraints
are then be used to prevent invalid merges. This work has
inspired a lot of the work presented by this paper. The work
presented here expands upon their work in two principal
ways: (1) The approach uses a model checker, and counter
examples are fed back into the inference process, and (2)
this approach permits (encourages) the addition of new LTL
constraints during the merging process to complement his
state labelling approach.

Giannakopoulouet al. [5] have carried out a substan-
tial amount of work on assume-guarantee reasoning, where
model checkers are used as oracles to answer queries gen-
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erated by a grammar inference learner. In their work, An-
gluin’s inference algorithm [3] is applied to learn models (of
assumptions about the environment of their system). Their
approach and the one presented in this paper use the model
checkers to answer the queries in different ways. Their ap-
proach uses a model checker to check that a given property
holds for a component in the context of the learned assump-
tion. We use the model checker to check that a set of given
properties hold for the learned machine itself.

7. Conclusions and Future Work

Reverse engineering techniques will only be adopted
in practice if they do not demand too much effort from
the user. This paper has presented a technique that
addresses this weakness in conventional state machine
reverse-engineering techniques. It facilitates the inference
of state machines by enabling the developer to add their LTL
constraints during the inference process, and so reduce the
amount of input required to recover a reasonably accurate
machine. An accompanying tool has been implemented and
demonstrated to be feasible for use with realistic systems.

Our work has so far concentrated on the use of safety-
properties, to specify properties that should not happen in
the target model. Our future work will explore the use
of LTL constraints to synthesise positive traces. Thus, it
would be possible to specify constraints that encapsulate
valid traces, and these could be used to spur the question
generation process.

Our inference framework has a large module devoted
to the experimental analysis of inference algorithms. This
has proved useful in past work that evaluates the accu-
racy of conventional algorithms [20, 21]. Our current fo-
cus is on developing a systematic, larger-scale quantitative
study of the LTL-constrained inference technique in this pa-
per. We intend to identify more precise measures of how
much knowledge is embedded in the LTL constraints that
are added (e.g. by looking at the complexity of the Büchi
automata), and relating this to the accuracy of the final ma-
chines.
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