Inferring Finite-State Models with Temporal Constraints

Neil Walkinshaw, Kirill Bogdanov

Department of Computer Science, The University of Sheffield
E-mail: {n. wal ki nshaw, k. bogdanov}@ics. shef. ac. uk

Abstract sult, validation, verification and maintenance are indhta
hampered; a lack of a model means that the tasks mentioned
Finite state machine-based abstractions of software be-above need to be carried out at an implementation-level, and
haviour are popular because they can be used as the basisare therefore unlikely to highlight any high-level functad
for a wide range of (semi-) automated verification and val- faults.

idation techniques. These can however rarely be applied aAn automated approach to infer specifications of soft-
in practice, because the specifications are rarely kept up-are behaviour would enable the application of these veri-
to-date or even generated in the first place. Several tech-fication and validation techniques at a design level. Sévera
nigues to reverse-engineer these specifications have beethference techniques have been proposed, most of which
proposed, but they are rarely used in practice because theirrely on obtaining some set of execution traces that are in
input requirements (le the number of execution traC%) ar some way “representative" of the system behaviour in gen-
often very high if they are to produce an accurate result. An grg| [2, 6, 14, 20, 21]. One major problem that hampers
insufficient set of traces usually results in a state machinehe widespread application of these approaches is that, un-
that is either too general, or incomplete. Temporal logic |ess the system is trivial, it will often require a vast numbe
formulae can often be used to concisely express constraintsf traces to produce an accurate result with any confidence.
on system behaviour that might otherwise require thousandsparticular properties of the underlying system that may be

of execution traces to identify. This paper describes an ex-gbvious to the developer can require a vast number of traces
tension of an existing state machine inference technicate th tg infer in practice.

accounts for temporal logic formulae, and encourages the
addition of new formulae as the inference process converges, |
on a solution. The implementation of this process is openlyth
available, and some preliminary results are provided.

This paper describes a technique that substantially re-
ces the reliance upon large numbers of traces. It enables
e provision of linear temporal logic (LTL) constraintsth
are known to hold for the target machine, alongside the
usual sets of traces. These properties may be obvious to the
developer, but require lots of traces to capture. The tech-
1. Introduction nigue is an extension of a conventional state machine infer-
ence process, but uses a model checker to ensure that any

Abstract specifications that capture the behaviour of a intermediate hypothesis machines do not violate any of the
software system are used for several important software deSupplied constraints. If they do, counter examples from the
velopment tasks. Developers can use them as a basis fomodel checker are fed back into the inference engine, and
communicating with each other, they are used for model- the process is restarted.
based testing, they can be inspected, and they can be used The technique can either be run passively, where con-
by model checkers to verify properties. If the model is com- straints and traces are provided a priori, or actively, wher
plete and up-to-date, the aforementioned techniques can bé& will iteratively query the developer about the behaviour
used in harmony to ensure that the software ultimately be-of the system as it “homes in” on an accurate result. The
haves correctly. active approach forces the developer to consider scenarios

In practice however a model is rarely available. Software that may not have been envisaged, and enables the addi-
development is often carried out under restrictive time-con tion of new LTL constraints and scenarios that either con-
straints, which means that developers tend to concentratdirm or contradict the scenarios suggested by the inference
on writing the source code, and do not have the time to gen-technique. As such the active approach can also be used to
erate models in tandem. Even if a model is generated, itaddress the acknowledged problem of identifying suitable
is rarely kept up-to-date as the software evolves. As a re-temporal logic constraints for finite state verificationkes

[9]. The contributions are as follows: Initial traces

1. A state machine inference process that incorporates ST = {< load, edit, edit, save, edit, exit >,
LTL constraints. < load, edit, save, close, load, exit >
. .) . < load, edit, close, exit >
2. An active version of the inference algorithm that al- ¢— _ {< close >
lows for the addition of new LTL during the inference < load, edit, save, load >,
process. < load, close, save >}
3. An openly available proof of concept implementation Augmented Prefix Tree Acceptor
that uses the SPIN model checker to check LTL con- exit

straints.

Section 2 presents an overview of the state of the art of re-
verse engineering behavioural models from software sys-
tems. Section 3 shows how LTL can be integrated into the
process. Section 4 presents implementation details, @&Aad se
tion 5 evaluates the practicality of the technique by illus-

trating it with respect to two case studies. Finally secfion Figure 1. Augmented Prefix Tree Automaton
concludes the paper and discusses plans for future work.

close v
~ — pre \SE E e T

2. Reverse Engineering Software Behaviour knows of particular traces that would be impossible, these
Modes can be added, and tagged as impossible. The APTA is con-

structed by representing the set of traces as a single tree,
where each node in the tree represents a particular prefix.

T.h's sgctlon pro_wdes an introduction to curre.nt reverse Figure 1illustrates the APTA for a set of sequences that cor-
engineering techniques. Due to space constraints it is not . : : .
. . . . ; . respond to executions of a simple text editor. Valid traces
exhaustive, but it provides an introduction to the generic ¥ :) -
! . : . belong to the se$™, and invalid traces belong t&~.
state mergingechnique, which forms the basis for most

state machine inference techniques (as well as the one we Thet stqte n;e;gl{ng ;ha:llleng(i IS to selectt antd tmerger;[_he
present in this paper). It also includes a small running ex- correct pairs ot states that lead to an accurate state machin

i i i i 1
ample to show how such techniques, which are based purel)ptontvfem'o?ﬁl /(f;_ls_zwe)dmer%mg tecrlniques [ﬁ.’ 2’. 6; l‘.l]
on execution traces, can be impractical. The example is Ofslar trom The an pfrct)h uceas ?].e maccj: ine :jn a Slrt]r-1
a simple text editor. In the text editor, once documents are9'€ Step. € accuracy of tnese machinés depends on the

loaded they can be edited. Documents can be saved only i]number of relevant traces provided. Without enough traces

they have been changed in some way. Other documents calP distinguish states that are different, these techniqars

only be loaded once the current document has been cIosed.either fall prey toovergeneralisatior{too many states that
should be separate are merged together) or the APTA is so

sparse that the resulting machine is very big because too
many states have not been merged due to a lack of evidence
of their equivalence.

In an effort to prevent this, active techniques [8, 20] at-
tempt to garner the missing information from the devel-
oper and to validate state merges as they are encountered.
For example, one could validate the merger of the two
states with the outgoing transition “edit” by asking the sjue

2.1. State merging

The majority of existing approaches to reverse engineer
state machines adoptséate mergingapproach. These ap-
proaches, which are typified by Biermat'sails approach
[4], work on the basis that two states (points in an execu-
tion trace) are equivalent and can be merged if their future
behaviour is identical. This notion of equivalence is ahlle .~ """ ; -
the Myhill-Nerode relation [17]. The challenge of identify tion: "is the path.< load, save > a valid one: If the
ing a state machine from a set of traces is thus reduced 1o S€F Says yes, .thls path (and_other question-paths such as
identifying pairs of points in the traces that may be suitabl < (0% €dit, edit, edit =) are introduced to the new hy-

merging candidates. Each merge results in a machine that igothess machine that would not have been present in the

more general, i.e. it represents a broader range of softwaré c/'OUS Version qf the machine. This process continues
behaviour until no new questions can be generated.

To begln with, the set of traces is usua”y represented 1Due to space constraints, these are only a sample of tecmigee

by an augmented prefix tree accgptor (APTA)Sl"a"y have however compiled an overview [1] that can be referrefdrta more
the traces represent actual executions, but if the developecomplete list of techniques.

Machine from merging states where k=2 Conversely, ifk is too low, the machine can be overgener-
. . alised, as shown in the second machine (it permits saving
edit exit . . . i
w—” without having edited the file).
load . . .
save The bottom machine is created by adopting Dupont
close load . . .
et al’s active QSM state merging approach [8] (using a
slightly modified question generation algorithm [20]). Ev-
ery time a pair of states are selected to be merged in the
APTA (hyothesis machine), it generates a set of question
sequences that would belong to the new merged machine.
Answers from the user are added to sgts(positive) and
S~ (negative as appropriate. If none of these conflict with
the user's answers, the merge proceeds. Although the final
machine is complete and correct, it requires a substargtial 2
guestions to gather the required information. Since this is
(Correct) Machine from active inference (29 questions) 3 relatively simple machine, the number of questions will
increase sharply as the target machine becomes more com-
plex.
The restriction of traces and questions as the sole form of
input for inference algorithms is often frustrating. Enegr
that the final machine adheres to a simple constraint can
require large numbers of traces. As an example, to establish
the simple property that a file can only be saved after it has
been changed, positive examples are required to show that
a single edit can occur before a save and that multiple edits
can also occur before a save. Negative examples are also
required to show that a save cannot happen after the file has
been closed, and to show that two saves in a row cannot
These active state merging techniques have been empirihappen etc. Thus, the reliable inference of any non-trivial
cally shown to fare particularly well when the initial sarapl ~ machine is often hampered by far too many traces or trivial
of traces is sparse [8, 20, 21] - which is often the case in dy-questions.
namic analysis. Despite their increased accuracy, these ac
tive techniques can often also be impractical, because the\3, Specifying and Model Checking LTL Con-
can end up asking too many questions during inference. ¢y aints
Large numbers of questions are particularly tedious when
they have to be answered by a human (usually the devel-
oper).

Machine from merging states where k=1

edit save exit

close load

exit

Figure 2. Inferred machines of text editor
(given the initial APTA from figure 1)

This paper presents a constraint-based approach to re-
duce the input requirements of state merging techniques
(both passive and active). The technique allows certain con
2.2. Demanding input requirements straints on the target machine to be specified in linear tem-
poral logic (LTL) axioms, and to be supplied alongside the
Current state machine inference approaches are unsatissonventional sets of valid and invalid traces. The conven-
factory, because they are bound to produce inaccurate mational inference approach is augmented; every time a pair
chines unless provided with an unrealistic amount of exter- of states is merged, the resulting machine is checked with
nal knowledge about the target system. They are cumber-an LTL model checker to ensure that it does not violate any
some because that information can only be supplied (a) inof the supplied properties. If it does, a counter example is
the form of program traces or (b) in the form of questions supplied as a negative sequence to the learner. Section 3.1
to some oracle (usually the developer). Dependence uporprovides a brief introduction to LTL, and section the use
large numbers of relevant traces often renders them imprac-of model checkers to verify the conformance of a model to
tical. LTL properties.
Figure 2 contains the three inferred machines. The top
two are generated by adopting the simple k-tails approach.3.1. LTL safety properties
The value ofk is crucial. If it is too big, not enough states
will be merged with each other, and the machine willnotbe Temporal properties are rules that govern the behaviour
general enough. This is demonstrated by the top machineof a system in time. LTL [18] is a specification language

that can be used to describe these properties. Besides th8.2. Identifying safety property violations
usual logic connectives, Vv, - and—, LTL also contains
the following temporal operators:

Thenextoperator0), where()¢ means that the prop-
erty ¢ has to hold in the next state.

Theglobaloperatoi], where[J¢ means that the prop-
erty ¢ has to hold for every state.

The eventuallyoperator}, where<>¢ means that the
property¢ has to hold eventually.

Theuntil operatoi/, wherepU ¢ means that the prop-
erty ¢ has to hold until property holds.

The releaseoperatorR, wherepR¢ means that the
property¢ is true untilp becomes true, or forever @
is never true.

A number of model checkers exist that can establish
whether a model conforms to a set of LTL properties
[10, 16]. Model checkers ensure that a safety property
is never violated by systematically searching through the
states in the model, and checking each state against the set
of safety properties. If they do detect a violation, they can
provide acounter examplewhich is an execution path that
leads to the violation.

For the sake of illustration, let the model inferred when
k=1 in figure 2 be our current hypothesis, and the exam-
ple properties shown in section 3.1 be our LTL specifica-
tion. In this case, a merge has occurred that overgenesalise
from the sample; it wrongly claims that, after a document
has been loadeddit and save can be used interchange-
ably until the document is closed or the program is termi-

nated. A counter example is a path that is valid in the hy-

LTL properties can be d|V|d_ed Into two categories [19]: pothesis, but invalid with respect to the specification €her
those that must never be violated (safety properties) and(editRﬂsave) A O(save — Oedit R —save)). The se-

those that must always hold (liveness properties). This d"quences< load, save > and< load, edit, save, save >

chotomy is useful because, depending on the type of PrOP%om the hypothesis machine are both counter examples
erty, different model checking approaches are required to,ith respect to that property

ensure that a property holds. This work is concerned solely
with the safety properties - we use LTL to specify properties
that the final state machine must not violate.

Conventional state machine inference techniques often
require many example execution sequences to suggest thata
pair of states can or cannot be merged. As an example (from This section presents an algorithm that adapts existing
the text editor in the previous section), we consider the fol state-merging algorithms to accept LTL constraints as well
lowing requirementa text file can only be saved once it as conventional valid and invalid execution sequences. The
has been edited”For the state-merging approach, it is very presented approach not only ensures that the final machine
difficult to identify a set of traces (and invalid traces)ttha conforms to given LTL properties, but uses counter exam-
are required to produce a machine that satisfies the propertyples from a model checker to extend the set of provided
Although the set of traces provided in figure 1 all conform sequences as is necessary. The approach can be used with
to the property, they fail to ensure that the final machine ad- existing passive approaches that infer the machine in a sin-
heres to it (as shown by the machine where 1 in figure gle step, or it can be integrated into an active inference ap-
2). The active approach does produce the correct machineproach, that permits the addition of new properties during
but only because it asks numerous guestions which pre-the inference process. The algorithm is presented in sec-
ventthe overgeneralisation. By adding additional seqegnc tion 4.1. Section 4.2 contains details of a proof-of-coricep
(such as< load, save > is invalid, < load, edit, save > implementation that works in conjunction with the SPIN
is valid but< load, edit, save, save > is invalid etc.), it model checker, and is openly available.
eventually converges to a correct machine.

This information can however instead be expressed as &.1. The inference algorithms
concise LTL expression, eliminating the challenge of iden-
tifying suitable sets of example traces. The above comdtrai
can be expressed as follows: section 2.1) start with the APTA (built frorf™ and S™).

(edit R —save) A O(save — O(edit R —save)) They iteratively merge pairs of states until they end up with

Other properties can be expressed in a similarly concisea minimal state machine where any further merges would
manner. Whereas, for example, 8 of the 29 sequences genproduce a machine inconsistent wiHandS—. If the ap-
erated for the active inference merely confirmed that exit is proach is passive, the pairs of states are selected in a&sing|
always the final event, these could all be summarised by thecontinuous process until the algorithm produces the final
constraint: machine. If the approach is active, the hypothesis machine

exit — O(exit) that is produced by each merge is used to formulate queries

4. Constraint-based
chines

inference of state ma-

Conventional state merging algorithms (as described in

Questions

o
oeSer Traces
xo%

Abstract inference

Abstracti Hypothesis Input
stractions Traces Machine P
C‘O(/
g (8) l 3
(@h) er@*eo, 3) Output
LTL (2 “lesModel Checkin Uses

Figure 3. Inference process

to the developer, who can provide feedback (usually in the
form of scenarios) that (in)-validate the merge.

Figure 3 contains an overview of the inference process.; while (q,
It is based upon the conventional active state machine in-3 4’ <
ference process [3, 8, 20], but is augmented by the steps la:
belled (1-4). The essential novelty of this is that, instead &:

Algorithm Passiveln fer

(SJr , ST, LTL) sets of valid and invalid sequences, and a set of LTL prop-
erties

A minimal DFA A consistent with an extended coIIecti@ﬁ*, S™,LTL)
generate APTA(S, S’) Generates an augmented prefix tree acceptor
from S andS’

selectState Pairs(A) Selects merge candidates frofn

merge(A, q,q¢')Merges nodeg andq’ in A, and ensures that the result-
ing machine is deterministic

modelCheck(A, LT L) checks model againstLT L and returns one

or more counter examples

A — generateAPTA(ST,S7)

q') « selectStatePairs(A) do
merge(A, ,q)

Counter «+ modelCheck(A’, LTL)
if (Counter # 0)
ST «— S UCounter

. . . 7: eturn Passivel st, 87, LTL
relying on a human oracle for feedback during the inference i Fessivelnien()
process, we can use a model checker to provide feedback ir% “ A Z A

creturn

the form of counter examples as well. As the inference pro-

cess continues to refine the hypothesis machine, the human
oracle can augment the set of LTL constraints as well.

Essentially, the algorithms that are presented here check P
the results of each merge to ensure that none of the LTL
properties are violated. If they are violatel; is aug-
mented with a counter example and the algorithm recur-
sively restarts. The active version provides the additiona
ability to manually augment thé7'L set during the infer-
ence process. Thus, as the user is forced to contemplate new
aspects of system behaviour that hadn’'t been considered
when the initial LT L set was generated, new constraints
and scenarios can be added to produce an accurate model,
as well as a more complete set of accompanyifig. con-
straints. Figure 4 presents both the passive and active ver-
sions of the algorithm.

t

Output

The passivePassivelnfer algorithm (see figure 4) 2 while(q,
starts off by generating an APTA froisiTand S—. Every 4 Ao
iteration, theselectState Pairs function selects a suitable gf
pair of states to be merged (ensuring that the machine pro-:

8:

duced by merging the pair would not conflict with"and &
S7). A number of established techniques, such as the Blue;.
Fringe technique, exist to do this (see Lastel. [12] and 11:
previous work by the authors [20] for pseudo code). The ig

Algorithm Activeln fer

(8T, 8™, LTL) sets of valid and invalid sequences, and a set of LTL prop-
erties

A minimal DFA A consistent withS*, S~ and a potentially expanded set
LTL

all functions used byPassiveln fer as well as:

modelCheck(query, LT L) checks that a single sequence conforms to
LTL, returns a counter example if not

generateQueries(A, A’) Returns a set of sequences o' that are
classified differently byA

sV alid(query) returns) if guery is valid, otherwise returns the shortest
negative part ofjuery

newConstraintsFromU ser() Returns new LTL constraints from the
user, may be empty

1. A — generate APTA(ST,57)

q') « selectStatePairs(A) do
merge(A, ¢, q)

Counter «— modelCheck(A’, LTL)
if (Counter = 0)
foreach query « generateQueries(A, A”)
userCounter «— isValid(query)
ifuserCounter = 0

St — St U query

else

LTL «— LTL U newConstraintsFromU ser()
S~ «— S7 UuserCounter
return Activelnfer(St,S~, LTL)

«— S~ U Counter
rn Activelnfer(S*,S~, LTL)

selected pair of states is merged usinghe-ge function. 14 dse
This merge function differs from the conventional state- 12 fetu
merging process (see Dupagttal. [8] for a more elabo- 171 A — 4’

rate description). The process of determinising the (poten 18;return A
tially non-deterministic) merged automaton is not equiva-
lent to Hopcroftet al’s standard conversion from a non de-
terministic machine to a deterministic one [11], because th
merged machine is intended to describe a broader range of
behaviour than the non deterministic machine it starts from

Figure 4. Passive and active algorithms

So far, the process conforms to the standard state merganever clainis generated that represents the Biichi automa-
ing process. However, once the states have been mergedon of the disjunction of all supplied constraints. SPIN
the passiveln fer algorithm differs. The hypothesis ma- checks the supplied model, and if it finds that thever
chine A’ is checked by thenodelCheck process to ensure claim is violated it returns a counter example. Althoughiti
that it conforms to the set of constraints provided by LTL. If possible to carry on searching after a counter-example has
any of the properties are violated by, the model checker been found, to identify further counter examples, our im-
will return a counter example (or, depending on the model plementation currently restarts learning as soon as the firs
checker, a set of counter examples), that demonstrate thi€ounter example has been identified.
violation. If there are no counter examples, the process car It is important that the counter example supplied by the
ries on merging pairs of states #f until no further states model checker is only invalid with respect to the final ele-
can be found. If however counter exampdesfound bythe ~ ment (i.e. its prefix must be valid). The grammar inference
model checker, they are added to t$ie set and the entire process will presume that the preivalid, and if this is not
merging process is restarted. This carries on recursively u the case it will produce a machine that accepts sequences
til no further states can be merged, and no counter exampleshat are invalid. In SPIN the shortest counter example is en-

can be provided by the model checker. sured by using the “breadth-first” switch to check for LTL
The activeInfer algorithm (also in figure 4) properties [10].
is an active version ofpassivelnfer. As with

passivelnfer, every time a pair of states is merged, 4 3. Example
it calls modelCheck(A, LTL) to ensure that the merge

does not contradict any of the current LTL clauses. At this
point, with no counter examples from the model checker,
passiveln fer would simply carry on merging. Instead,

ActiveInfer proceeds to ensure that the merge is correct
by querying the user. It generates a list of sequences

. _ , .
by calling the generateQueries(A, A') function. The tracesSTand S~ that are presented in figure 1 (although

guestion generation process is based on Dugbreal’s . L .
QSM technique [7, 8] and produces scenarios that would bthe negative sequences are useful, it is possible to start th

handled differently ind and A’ (i.e. would be valid in one inference from just positive sequences abstracted from pro

but not in the other). When faced with these sequences, the;glrjametsrzecfsi%' sVeVStigﬁglsnl\éwzlhtt]ge LTL ;OAnSérf"m thi was
user can either confirm / reject the posed scenarios, or Can@?gd'tR) ~Hedit fimsave save
provide an LTL property that accounts for a larger range = *"* =¥ ~#4v¢)).

of scenarios (including the posed scenario). Depending. Figure 5 proyidesafull listing of questions asked by the
on how specific the supplied LTL properties are, this can inference algorithm, answered by the user, and information

substantially reduce the number of scenarios that need toorowde_d by the r.nod.el (_:hecker. The final rgsult is the same
be supplied and queried. as the final machine in figure 2. However, without the use of

the model checker, the QSM technique posed 29 questions
to the user, whereas here only 10 needed to be answered.
The rest of the information about system behaviour was en-

_ lated in the LTL traints that ided by th
The approach has been implemented as part of our Statf:apsu aledinthe constraints that were provided by the

N . user.
eChum state machine inference Java frametyottkat is

. . . . One of the barriers to the widespread adoption of logics
openly available. A (currently very simple) interface i®pr : . . .
. . I . such as LTL is the fact that it requires a substantial amount
vided, that accepts a text file that specifies whether the in-

) . S . of effort to identify and denote those constraints thatale r
ference should be active, an optioalimit for the infer- o . .
- . . : . evantand useful [9]. This is lessened by the iterative eatur
ence, as well as an initial set of valid and invalid execution

. of our active approach - by asking the developer questions
sequences. It is assumed that the traces are encoded as hp y 9 perq

guences of functions at a suitable level of abstractions Thi 1 ey are forced to contemplate potentially unexpected sys-

; . : tem behaviour. For any questions that suggest an invalid
can be achieved by adopting the trace annotation process : . .

. : System execution, there should exist a corresponding LTL
detailed by Ammonst al. ([2] - section 3).

LTL constraints are checked with the SPIN model Zﬁrfesifenfti?;t Sﬁg{ir:)ann(ssiz Wg)yatQII(ssI\?v::h(ﬁsfr.leﬁz;;czz
checker [10]. Every iteration, the current hypothesisestat Pi€, d P

machine is translated into PROMELA code (the modelling be succeeded by another. In practice the system can only

. o load one file at a time. This property is expressed as the
language for SPIN). Every time an LTL constraint is added, more general LTL rule (also shown at step 3). At step 9,

2http://statechum.sourceforge.net/ the model checker provides a counter example for the cur-

This example demonstrates the implementation, how
LTL constraints reduce the number of questions, and how
the questions encourage the addition of new and relevant
LTL constraints. To do so we use the text-editor exam-
ple introduced in sections 2 and 3. We start off with the

4.2. Implementation

| St ep || Question to user Manual i nput Model checker
1 - |l oad, save
2 - load, edit, save, save
3 | oad, | oad? =(0O(load — O(close R—load)))
4 - load, | oad
5 | oad, cl ose, | oad, exi t? + | oad, cl ose, | oad, exi t
6 | oad, edit,exit? + |l oad, edit, exit
7 - load, edit, edit, save, save
8 - load, edit, save, | oad
9 - load, edit, edit, save, cl ose, save
10 =(0O(close — O(load R —(save V edit V close))))
11 | oad, edit, edit, save, cl ose, | oad, exi t? + load, edit, edit, save, cl ose, | oad, exi t
12 | oad, edit,edit,close,exit? + load, edit,edit,close, exit
13 load, edit,edit,exit? + load, edit,edit,exit
14 load,edit,edit,edit? + load,edit,edit,edit
15 - load, edit, close, save
16 - load, edit, save, cl ose, save
17 | oad, edi t, save, edit,exit? + |l oad, edit, save, edit, exit
18 - load, edit,edit,cl ose, save
19 - load, edit,close, cl ose
20 - load,edit,edit, close,cl ose
21 exit? + exit
22 - save
23 | oad, exi t? + | oad, exi t
24 - exit, save
25 - load, close, exit, edit
26 =(exit — O(exit))
27 - exit,edit
28 - exit,load
29 - load, exit, save
30 - load, edit,exit,save
31 - load,edit,edit,exit, save

[edit |

M1003

Figure 5. Questions asked, along with information added by d
sequence , ‘+' valid sequence), with screen shot from infere

1000

A screen shot from iteration no. 12. The QSM
approach employs the “Blue Fringe” merging
approach [12], where the blue fringe of nodes
moves down the PTA, and each node on the blue
fringe is considered for merging with any of the
nodes in its wake. The dark (blue) nodes rep-
resent the blue fringe nodes, the (red) nodes are

those that have been passed over already. The
(green) tail nodes are yet to be considered for

merging.

nce process

eveloper and model checker (*-" invalid

rent hypothesis model, because it breaks the rule that a filecommon approach of simply pointing out where the ques-
cannot be saved unless it has been edited since the previouson becomes invalid). So, out of the 20 questions that were
save. However, the developer would notice that this con-asked for JHotDraw using the model checker-assisted ap-
straint does not account for the fact that it is impossible to proach, only 4 were invalid, and required LTL, and out of
do anything to a file once it is closed, and expresses thisthe 44 CVS questions, 20 were invalid.

at step 10. This rule eventually causes the model checker For both systems there was a substantial reduction in the
to suggest the counter-example at step 25. However, thenumber of questions asked of the user, which is one of the
developer would notice that, once the application has beemmain aims of this technique. The reduction for JHotDraw
terminated it is actually impossible to do anything, so this was 50%, and for Jakarta CVS the reduction was 68%. By
is encapsulated in the constraint at step 26. Besides an acspecifying only four LTL clauses, the number of questions
curate state machine, the user also ends up with an accomasked was halved for JHotDraw. For the Jakarta CVS exam-

panying set of relevant LTL constraints. ple, 20 small LTL clauses were specified, and the remaining
24 questions were answered directly by the developer.
5. Evaluation and Discussion The Prec and Rec columns show the precision and re-

call of the final machines. The notion of precision and recall
is calculated by applying a test set from the (manually gen-
) FEsE) erated) target machine, and quantifying the proportion of
tems, given a ‘typical’ set of executions, and a small set of goq,ences that are correctly accepted and rejected [13, 21]
LTL constraints to start Wlth.. This is foIIoweq by a discus- Eqr JHotDraw, despite halving the number of questions, and
sion of tr_le results,_the merits of the technique, and areasyn|y requiring four LTL clauses, the accuracy for the SPIN-
that require further improvement. assisted machine is slightly higher. For the CVS system,
the SPIN-assisted results significantly improve on the pre-
5.1. Results from JHotDraw and Jakarta cision results, but produce a lower recall result. In pragti
Commons Net CVS client this means the the final machine does not account for as
many sequences as it should (this can happen when it fails
JHotDraw is a widely used, open-sourced drawing to detect loops for example). However, the sequences that
framework that has been used in previous specification min-are accounted for in the final machine are more accurately
ing work by the authors [20]. The Jakarta CommonsNet accepted / rejected.
is an open-source framework that implements a variety of
commonly used network protocols. kebal. [14] used their 5.2. Discussion
implementation of a CVS client in the Jakarta framework to

evaluate .thelr statg machine mlnlrlg approach.)) Although generally positive, it should be clear that the
For this evaluation, the technique was supplied with & yegyts presented above are merely indicative of the perfor
(realistically) sparse selection of (abstracted) tracesf \1,5nce of the technique in general. It is challenging to pro-

JHotDraw and the CVS system. The results show the dif- 4,ce 4 controlled, systematic evaluation of this technique
ference between the presence and absence of the modgjecayse there are so many factors that contribute to its ac-
checker. Although our implementation contains & number ¢ ;racy and scalability. From an inference perspective, the
of question generation strategies that minimise the number, qount of information required by the model checker / de-
of questions asked, we have opted for the most conservayg|gper depends upon the number of initial execution traces
tive, basic approach, to attempt to ensure that the q”esnorbrovided. Initial empirical results by the authors [21hmag
generation algorithm does not interfere with the results. with work by Dupontet al. [7, 8] suggests that the QSM
Due to space constraints we can only show the resultsiechnique performs well with respect to a sparse initial set
summaries in this paper, but a more complete set of re-of races, and the traces provided above were deliberately
sults (in the same format as figure 5) are availdbl®a- gparse. The amount of information that can be automat-
ble 1 shows the results, where Q is the number ofquestionqca"y supplied by the model checker depends upon how
asked by the QSM technique. The results on the left weregpecific the supplied LTL constraints are, and when they are
computed by applying Dupont's QSM technique [8] on ab- gy pplied during the inference process. If lots of constsain
stracted event traces [20]. For the model checker-assistedyye supplied before the inference starts, a large number of
approach, whenever a question was invalid, a concise LTL qestions can be avoided during the inference process. In
clause was supplied that summarised why (instead of thegr future work, we aim to produce a more comprehensive,
Shttp/lwww jhotdraw.org empirical gyaluation (see section 7). . _
“http://jakarta.apache.org/commons/net/ One critique that can be levelled against the technique
Shttp:/Amww.dcs.shef.ac.uk/ nw/Files/asemateriallhtm presented here is that it depends upon the ability of the

Section 5.1 presents results from two well-known sys-

| NoModel Checker || Using SPIN

Questions | Prec | Rec || Questions | LTL | Prec | Rec
JHotDraw 58 0.97 | 0.97 29 4 0.98 | 0.98

JakartaCVS 137 0.86 | 0.97 44 20 | 0.97 | 0.7

Table 1. Results from JHotDraw and Jakarta CVS client

developer to supply reasonable LTL constraints. It is of- 6. Related Work

ten argued [9] that formal specification languages (such as

LTL) have not been widely adopted because their notations The main contribution of this paper is an approach to
are cumbersome to understand and apply in practice. Instate machine inference from event traces as well as LTL
the context of the technique presented here, the difficiilty o constraints. A large number of techniques already exist
constructing LTL formulae is tempered by the facts that (a) to reverse engineer state machines from event traces, and
the required LTL clauses usually follow a very simple tem- many of these techniques have already been covered in
plate (e.g. the question is wrong becauseannot precede section 2. To the best of the author's knowledge, there
B) and (b) the questioning process provides a useful guideare no reverse-engineering techniques that employ LTL and
for the LTL writing process. Itis usually much simpler and counter examples in the way that has been presented. There
less tedious to compose a short LTL clause, than to answehave however been a number of attempts to use other sorts
a lot of questions that are negated by the same rule anywayof inputs to guide or constrain the inference process, and

During the collection of the above results it was observed these are briefly presented here.

that, very occasionally, counter examples can themselves In the d?maln of graTITtar |nrf]ert3n|ce,tMa(11rt|EflsE.1I. [1|5]
contain invalid prefixes. If the hypothesis machine is in- Propose a “more powerlul teacher”. Instead of simply con-

correct in a number of areas, a counter example that high—flrmlng or rejecting queries, they propose that the teacher

lights one area might traverse another part of the machineShoUId augment every negative answer with an expression

that is incorrect (but not captured in an LTL clause). As a thdadt.ts.pec:flets_an additional .S]ftdOfblnva“d §§quences. These
result, the counter example is fed back into the grammarin-a ional stnngs are specilied by providing a sequence

ference algorithm, but containing an incorrect prefix tisat i g; elljeer:(t:-:‘:tsf ELhe'Snggf gﬁ i?wgrlgl)s('e Slljg;xéegr gf\l?ﬁ(:il ;l{cﬁe
presumed to be correct. For instance, let the hypothesis ma- 4 d)- 9

chine be the machine (k=1) in figure 2, and there is an LTL rationale is the same, this approach still forces the user to
formula![|(load — O(-load)). A poésible counter ex- consider the system in terms of its execution sequences, and

ample< load, save, save, close, load, load > starts with to identify these invalid sequences manually. By adopting

an erroneous sequence which is present in the hypothesi%he LTL approach in this paper, the constraints do not have

machine (two consecutive saves cannot happen in practice) 0 be explicitly phrased as execution sequences, they can

The conventional learner would simply assume that the pre-gfsgﬁg\e/fosjrdégnmboerei dgeenr':i?ireac!l t:;:g;:ggaﬂegbat'rﬁee;zrgg:es
fix < load, save, save, close, load > is valid, and add it to y by

g+ checker.

' In their work on the QSM technique Duposttal. [7, 8]

In the PassiveInfer algorithm this will not cause a suggest that the states in the state machine can be decorated
conflict, and the result may still be more accurate than it with data constraints specified as LTL formulae. With these
would be without the faulty counter example, because anformulae, and a set of initial constraints, symbolic ex&out
incorrect merge has been prevented. However, when us<an be used to identify the path conditions that must hold for
ing the ActivelIn fer algorithm, this can lead to problems the rest of the states in the machine. These data constraints
later, during the inference process, the user provides a neware then be used to prevent invalid merges. This work has
LTL constraint / query answer that contradicts the previ- inspired a lot of the work presented by this paper. The work
ously added false prefix. The authors have addressed thipresented here expands upon their work in two principal
problem by implementing thelctiveln fer algorithm in ways: (1) The approach uses a model checker, and counter
such a way that counter examples are added to a speciatxamples are fed back into the inference process, and (2)
cache instead of — (in line 15 in figure 4), and that this this approach permits (encourages) the addition of new LTL
cache is flushed every time the developer adds a new stateeonstraints during the merging process to complement his
ment or manually answers a question. In this case, any po-state labelling approach.
tentially conflicting counter examples are removed, and the Giannakopoulotet al. [5] have carried out a substan-
inference process can start afresh, working only from the tial amount of work on assume-guarantee reasoning, where
reliable data supplied by the user. model checkers are used as oracles to answer queries gen-

erated by a grammar inference learner. In their work, An-

gluin’sinference algorithm [3] is applied to learn moded$ (

assumptions about the environment of their system). Their [3]
approach and the one presented in this paper use the model
checkers to answer the queries in different ways. Their ap-
proach uses a model checker to check that a given property
holds for a component in the context of the learned assump-

[2] G. Ammons, R. Bodik, and J. Larus. Mining specifications

In POPL'02, pages 4-16, Portland, Oregon, 2002.

D. Angluin. Learning regular sets from queries and coun-
terexamples. Information and Computation75:87-106,
1987.

[4] A. W. Biermann and J. Feldman. On the synthesis of finite-

state machines from samples of their behaVlBEE Trans-
actions on Computer1:592-597, 1972.

tion. We use the model checker to check that a set of given [5] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. kearn

properties hold for the learned machine itself.

7. Conclusions and Future Work

Reverse engineering techniques will only be adopted (7]

in practice if they do not demand too much effort from

the user. This paper has presented a technique that g
addresses this weakness in conventional state machine

reverse-engineering techniques. It facilitates the afee

of state machines by enabling the developerto add their LTL
constraints during the inference process, and so reduce the[9]
amount of input required to recover a reasonably accurate
machine. An accompanying tool has been implemented and

demonstrated to be feasible for use with realistic systems.

Our work has so far concentrated on the use of safety- [11
properties, to specify properties that should not happen in
the target model. Our future work will explore the use [12]
of LTL constraints to synthesise positive traces. Thus, it
would be possible to specify constraints that encapsulate
valid traces, and these could be used to spur the question

generation process.

Our inference framework has a large module devoted
to the experimental analysis of inference algorithms. This [14]
has proved useful in past work that evaluates the accu-

racy of conventional algorithms [20, 21]. Our current fo-
cus is on developing a systematic, larger-scale quanttati
study of the LTL-constrained inference technique in this pa

per. We intend to identify more precise measures of how
much knowledge is embedded in the LTL constraints that
are added (e.g. by looking at the complexity of the Buchi [16
automata), and relating this to the accuracy of the final ma-

chines.

Acknowledgements The authors thank David Lo from
the National University of Singapore for kindly providing

the Jakarta CVS client system. This work is sponsored by

EPSRC grant EP/C511883/1.

References

[1] S. Ali, K. Bogdanov, and N. Walkinshaw. A comparative

study on dynamic reverse engineering techniques for state
models. Technical Report CS-07-16, Dept. Comp. Sci, Uni-

versity of Sheffield, 2007.

10

ing assumptions for compositional verification. TACAS
volume 2619 oLNCS pages 331-346. Springer, 2003.

[6] J. E. Cook and A. L. Wolf. Discovering models of software

processes from event-based dafeCM TOSEM 7(3):215-
249, 1998.

C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde.
Generating annotated behavior models from end-user sce-
narios.|[EEE TSE 31(12):1056-1073, 2005.

P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde.
The QSM algorithm and its application to software behavior
model induction Applied Artificial Intelligence22:77-115,
2008. to appear.

M. Dwyer, G. Avrunin, and J. Corbett. Patterns in progert
specifications for finite-state verification. I€SE pages
411-420, 1999.

10] G. Holzmann.The SPIN Model Checker: Primer and Ref-

erence Manual Addison-Wesley, 2004.

J. Hopcroft and J. Ulimarintroduction to Automata Theory,
Languages and ComputatioAddison-Wesley, 1979.

K. Lang, B. Pearlmutter, and R. Price. Results of the Ab-
badingo One DFA learning competition and a new evidence-
driven state merging algorithm. IC€GI'98, volume 1433,
pages 1-12, 1998.

3] D. Lo and S. Khoo. QUARK: Empirical assessment of

automaton-based specification minersWERE pages 51—
60. IEEE Computer Society, 2006.

D.Loand S. Khoo. SMArTIC: towards building an accutate
robust and scalable specification miner. SIGSOFT FSE
pages 265-275. ACM, 2006.

A. L. Martins, H. S. Pinto, and A. L. Oliveira. Using a neor
powerful teacher to reduce the number of queries of the L*
algorithm in practical applications. BPIA'05, pages 325—
336, 2005.

K. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Probleriluwer Academic Publishers,
1993.

A. Nerode. Linear automata transformatiorroceedings

of the American Mathematical Socie8/541-544, 1958.

A. Pnueli. The Temporal Logics of Programs.18th IEEE
Symposium on the Foundations of Computer Scieter.

P. Sistla. Safety, liveness and fairness in tempoxgtld-or-

mal Aspects of Computing(5):495-512, 1994.

N. Walkinshaw, K. Bogdanov, M. Holcombe, and
S. Salahuddin. Reverse engineering state machines by in-
teractive grammar inference. WCRE’07 2007.

N. Walkinshaw, K. Bogdanov, M. Holcombe, and
S. Salahuddin. Improving dynamic software analysis by ap-
plying grammar inference principlesJournal of Software
Maintenance and Evolution: Research and Practi2@08.

to appear.

