
Using Compression Algorithms to Support the
Comprehension of Program Traces

Neil Walkinshaw
Department of Computer

Science
The University of Sheffield

Sheffield, UK
nw@dcs.shef.ac.uk

Sheeva Afshan
Department of Computer

Science
The University of Sheffield

Sheffield, UK
s.afshan@dcs.shef.ac.uk

Phil McMinn
Department of Computer

Science
The University of Sheffield

Sheffield, UK
p.mcminn@dcs.shef.ac.uk

ABSTRACT
Several software maintenance tasks such as debugging, phase-
identification, or simply the high-level exploration of sys-
tem functionality, rely on the extensive analysis of program
traces. These usually require the developer to manually dis-
cern any repeated patterns that may be of interest from
some visual representation of the trace. This can be both
time-consuming and inaccurate; there is always the dan-
ger that visually similar trace-patterns actually represent
distinct program behaviours. This paper presents an au-
tomated phase-identification technique. It is founded on
the observation that the challenge of identifying repeated
patterns in a trace is analogous to the challenge faced by
data-compression algorithms. This applies an established
data compression algorithm to identify repeated phases in
traces. The SEQUITUR compression algorithm not only
compresses data, but organises the repeated patterns into a
hierarchy, which is especially useful from a comprehension
standpoint, because it enables the analysis of a trace at at
varying levels of abstraction.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
tracing

General Terms
Algorithms, Documentation

1. INTRODUCTION
Many questions about program behaviour can only be an-
swered by observing the program as it executes. A range of
dynamic analysis techniques have been developed that are
based on the use of program traces (recorded program execu-
tions), which can incorporate any run-time information such
as variable values, as well as the sequence of function calls
or events during the execution. Powerful tracing frameworks
are increasingly becoming part of the routine development

WODA 2010 Trento, Italy

process (c.f. the Eclipse TPTP framework, or the extensive
tracing frameworks that are built into emerging languages
such as Erlang).

One of the main comprehension tasks [13] is the task of
identifying repeated phases of behaviour – repeated patterns
of trace elements such as method calls – that occur at run-
time. Such phases indicate cohesive units of functionality
that can be used as a basis for investigating the broader
behaviour of the program. The task of identifying repeated
phases becomes particularly challenging when the trace is
large, and the patterns are complex. Identifying whether
one part of a trace is similar to another part, and working
out whether and how it relates to other phases is virtually
infeasible if the trace is merely presented to the developer
in a textual format.

Several visualisation tools have been developed that are in-
tended to address this problem (amongst other comprehen-
sion tasks). Visual abstractions such as message sequence
charts (and variants) [10, 3], signals [7, 12], and similar-
ity matrices [12, 2] have all been used to identify potential
phases in traces. The value of visualisation techniques lies
in their ability to summarise large volumes of information,
providing a succinct visual overview. However, they are ulti-
mately dependent on the expertise of the person using them,
and can be open to ambiguity. Two phases of a trace may
appear visually similar, but contain significant functional
differences. Furthermore, it is up to the developer to iden-
tify any relationships between low-level program phases and
macroscopic phases that aggregate them.

The challenge of identifying repeated patterns of behaviour
within a sequence is not unique to trace analysis. The work
in this paper is based on the observation that the notion
of phases also forms the basis for data compression algo-
rithms. Compression algorithms are designed specifically
to highlight repetitions in the data, so that these can be
collapsed into a compressed form. Of course, compression
algorithms are routinely used to compress program traces
for storage. However, to the best of the authors’ knowl-
edge there has been no work on exploiting the mechanisms
of compression algorithms for the sake of highlighting re-
peated phases and understanding program behaviour. The
SEQUITUR algorithm by Nevill-Manning and Whitten [9] is
particularly appealing in this respect. Whereas conventional
dictionary compression algorithms store repeated patterns



of behaviour in a lookup-table, the SEQUITUR algorithm
stores repeated patterns as a hierarchy. Thus, it not only
identifies the repeated patterns of behaviour, but also iden-
tifies how they are related to each other.

The contribution of this paper is to show how the SEQUITUR
algorithm can be used to understand program traces in terms
of their repeated phases of behaviour. It is envisaged that
the resulting approach will present a useful basis for under-
standing program behaviour. An openly-available frame-
work is presented that (1) recodes traces into a suitable for-
mat for the SEQUITUR algorithm and (2) provides a visual
representation of the resulting phase hierarchy. The tech-
nique is assessed on a large trace from an openly available
systems (JHotDraw). The trace has previously formed the
basis for the evaluation of the ExtraVis trace-visualisation
system by Cornelissen et al. [3].

The rest of the paper is organized as follows. Section 2
describes the necessary background knowledge. Section 3
shows how phase hierarchies can be extracted from phases
with the SEQUITUR algorithm. Section 4 presents a case
study that shows how the approach is applied to a JHot-
Draw trace. Section 5 describes related work, and section 6
describes our conclusions and future work.

2. BACKGROUND
2.1 Context-Free Grammars
The SEQUITUR algorithm, which is introduced in the next
section, produces a context-free grammar (CFG). A CFG is
formally defined by four components G = (Σ, N, S, P ): Σ is
a finite set of terminals - the set of symbols that belong to
the underlying language. N is a finite set of non-terminals,
where each non-terminal represents a set of sequences of
terminals. S is a single non-terminal that represents the
starting point for the language. P is a set of production
rules that map a non-terminal to a string of zero or more
terminals and non-terminals.

As a small example, we could have a grammar where Σ =
{a, b, c}, N = {A,B}, S = A and P is the set of rules
A→ abB, B → A, and B → c. This represents the language
of all sequences that contain at least one sequence < a, b >
and terminate with a c.

When a sequence is generated from a grammar, it can be
interpreted in terms of a parse-tree. The root of the tree
is S, the branch nodes are non-terminals in N , branches
are defined by P , and the leaves from left to right are the
terminals that constitute the sequence. This provides a hi-
erarchical overview of the rules in the grammar that were
used to construct the sequence.

2.2 The SEQUITUR Compression Algorithm
The SEQUITUR algorithm was developed by Nevill-Manning
and Witten [9] specifically for the compression of strings (se-
quences of discrete symbols). Its strength is the fact that,
as an artefact of the compression process, it produces an
explicit hierarchical structure of how repeated patterns of
elements in the sequence are related to each other. The ba-
sic idea is that a sequence such as: “coding compiling com-
pressing and comprehending” contains a lot of repeated sub-
sequences. An effective compression algorithm will reduce

0 → 1 d 2 i l 2 3 s s 4 a 5 1 m p 3 h e 5 6
1 → c o
2 → 4 1 m p
3 → r e
4 → 6
5 → n d
6 → i n g

Table 1: Rules produced for phrase “coding compil-
ing compressing and comprehending”

this redundancy as much as possible. To provide an intu-
ition of the SEQUITUR algorithm, a CFG that it produces
is shown in table 1. The grammar exactly produces the
phrase. The initial rule (0) starts off with a reference to rule
1, which produces “co”, this is followed by a “d”, followed by
a reference to rule 2, which contains a reference to rule 6,
which produces “ing”, etc. The compression occurs because
a sequence of symbols that occurs multiple times (such as
“co” in rule 1) can be replaced by simple references to the
rule that represents that sequence. The hierarchical struc-
ture of the CFG is apparent; Rule 0 is the root of the tree,
and the terminals are the leaves.

The algorithm is founded on two constraints: (1) no pair of
adjacent symbols can appear more than once in the gram-
mar, and (2) every rule has to be used more than once. The
input sequence is processed one symbol at a time. If a pair
of symbols < x, y > is observed that has appeared previ-
ously (violating constraint 1), a new rule R →< x, y > is
generated and the pair are replaced by that rule. However,
if there is already an existing rule S →< x, y >, the pair
are replaced by S instead. If the replacement with S in
turn produces a repeating pair, then the rule generation /
replacement process is repeated until constraint 1 is not vi-
olated. This forms a hierarchy of rules that summarise the
input sequence.

So far the rules have only two terminals / non-terminals
on their right-hand side. Several rules may have been gen-
erated that are only used once, violating property 2 (rules
must appear more than once). When this is the case, every
occurrence of the unique rule is replaced with the sequence of
terminals and non-terminals on its right-hand side. This can
in turn lead to larger rules with more complex right-hand
sides. It is important to note that, for a given sequence,
there are multiple possible valid CFGs that a SEQUITUR
implementation could produce, for the work in this paper we
adopt the openly available Java implementation by Frank1.
For a more detailed discussion and illustration of the com-
pression process, the reader is referred to the original paper
by Nevill-Manning and Witten [9].

3. PHASE EXTRACTION
The process of extracting phase hierarchies and using these
to understand program behaviour is illustrated with respect
to a trace from a fictional text editor. The trace records
the following sequence: Loading and displaying a text file,
editing it by inserting text and copying and pasting, saving
the file, and reloading it. We begin by showing how such a

1http://sequitur.info/java/



Original trace:
load, displayDir, selectFile, renderChar, render-
Char, renderChar, renderChar, insertChar, render-
Char, insertChar, renderChar, insertChar, render-
Char, select, copy, paste, renderChar, renderChar,
select, copy, paste, renderChar, renderChar, ren-
derChar, saveFile, displayDir, selectFile, load,
displayDir, selectFile, renderChar, renderChar,
renderChar, renderChar, renderChar, renderChar,
renderChar, renderChar, renderChar

Mappings:
load=a, displayDir=b, selectFile=c, renderChar=d,
insertChar=e, select=f, copy=g, paste=h, save-
File=i

Recoded trace:
abcddddedededfghddfghddddibcabcddddddddd

Figure 1: Pre-processing a trace from text editor

trace is processed, to enable the SEQUITUR algorithm to
process it. We then show the resulting hierarchy of trace-
phases, and show how it forms a suitable basis for established
comprehension processes. This example is small and only
serves to demonstrate how the process works. The true value
of the process will become clear with the case study in the
next section.

3.1 Pre-processing a trace
As input, we take a trace in its raw format (e.g. a large XML
file of method calls generated by Eclipse TPTP). Before a
trace can be processed by the SEQUITUR algorithm it needs
to be pre-processed. It would not make sense to simply use
the text file produced by the tracing framework, with its long
method signatures, XML tags etc. Were this to be done,
the vast majority of rules would be the result of repeated
patterns in the naming conventions, and tags, as opposed to
the patterns of repeated method invocations that constitute
program phases.

The pre-processing step consists of reducing each trace el-
ement (i.e. method-signature) into a single symbol for the
trace. Our pre-processor implementation can take traces
from the Eclipse TPTP format, and the format used for
the ExtraVis tool [3]. We select characters from the Uni-
code character set, which means that we can process traces
with a virtually unlimited number of different event types
or function names. The process is illustrated in figure 1 on a
trace from a fictional text editor – the trace is simplified to
short method names and the coding is restricted to ASCII
characters for the sake of illustration.

3.2 Running the SEQUITUR algorithm
Running the SEQUITUR algorithm on the (recoded) text-
editor trace in figure 1 produces the rules shown in table 2,
where the initial rule S is rule 0. To make sense of the set of
rules, the terminals have to be mapped back to their original
method names, and the decoded set of rules is shown in the
lower section of the table.

The algorithm produces six rules. Rule 0 represents the com-
plete trace, and the other rules represent phases and sub-
phases that occur within the trace. There is only one ter-

Production rules
0 → 1 2 2 2 3 3 4 i 5 1 4 4
1 → a 5 4 4
2 → e d
3 → f g h 4
4 → d d
5 → b c

Uncoded production rules
0 → 1 2 2 2 3 3 4 saveFile 5 1 4 4
1 → load 5 4 4
2 → insertChar renderChar
3 → select copy paste 4
4 → renderChar renderChar
5 → displayDir selectFile

Table 2: Rules produced from text editor trace

minal in the top-level rule (0), because the saveFile method
only appears once in the trace. All of the other elements
are part of repeated patterns that are encoded by their own
rules. From here on we refer to the CFG as the phase-
hierarchy, where each phase corresponds to a rule.

We adopt a bottom-up approach to reading the hierarchy,
and start off with phases that consist only of terminals.
Phase 5 denotes the displaying of the contents of a direc-
tory and the subsequent selection of a file. Phase 4 denotes
the repeated rendering of characters on the screen. Phase 2
denotes the typing of a character, followed by its rendering
on the screen. There are also higher-level phases that are
composed of both terminals and non-terminals. Phase 3 de-
notes the process of selecting, copying and pasting, followed
by phase 4 (repeatedly rendering characters). Phase 1 de-
notes the process of loading and displaying a file; the load
command, followed by phase 5 (displaying a directory and
saving a file), followed by two occurrances of phase 4 (re-
peatedly rendering characters). Phase 0 is a special phase,
because it represents the trace in its entirety, in terms of the
rest of the identified phases.

Having identified the hierarchy of phases, there remains the
challenge of actually using them as a basis for understanding
how the program behaves. Attempting to understand phase
hierarchies in their textual form, as shown in table 2 is a
tedious process. The mental burden can be alleviated by
displaying the hierarchy diagrammatically. Figure 2 displays
the hierarchy in table 2 in a diagrammatical format. Each
phase is displayed within its own rectangle (the thickness of
the rectangle corresponds to the number of times that a rule
has been referenced). Terminals are shown in ellipses and
non-terminals are shown in rectangles. Each non-terminal is
connected to its corresponding phase with a dashed arrow.

When the trace is large and complex, and produces a large
phase hierarchy, the developer can resort to beacons (fa-
miliar identifiers or method names) to home-in on relevant
phases. If the developer has no prior knowledge of the im-
plementation, there is an alternative heuristic. If a phase is
large and frequent, it can be assumed that it plays a signifi-
cant role. Thus, each phase can be annotated with a weight,
which is computed by multiplying its size (number of termi-



0

1

2

3

4

5

1 2

load

2

insertChar

2 3 3

select

4 saveFile

renderChar

5 1

displayDir

4 4

5 4 4

renderChar

copy paste 4

renderChar

selectFile

Figure 2: Diagram of phase hierarchy in table 2

Figure 3: Screenshot from JHotDraw[3]

nals, including terminals belonging to its subphases) by the
number of times it is executed. Phases with a higher weight
tend to play a significant role, and form a good starting-
point for exploring the general behaviour of the trace.

4. CASE STUDY - A JHOTDRAW TRACE
To assess the usefulness of the phase-hierarchies identified by
SEQUITUR, it was evaluated on a trace from JHotDraw2,
a Java drawing framework that was developed with a strong
emphasis on the use of design-patterns. The trace has been
used previously for the evaluation of the ExtraVis tool by
Cornelissen et al. [3]. For this evaluation, we presume that
there is very little prior knowledge of the key features of the
system. For the sake of generality, we ignore trace-features
that are specific to object-oriented systems; we ignore ob-
ject instances and simply reduce the trace to a sequence of
method calls, where each method is denoted in terms of its
signature.

The JHotDraw trace is intended to exercise the main fea-
tures of JHotDraw. It consists of creating a new drawing
canvas, and then adding five figures (a diamond, triangle,
rectangle, rounded rectangle and ellipse). This is repeated
a further two times, resulting in three similar canvasses, as
shown in figure 3. According to Cornelissen et al., the final
trace is slightly filtered to remove noise in the form of mouse

2http://www.jhotdraw.org

events. The trace consists of 161,087 method calls. The
phase hierarchy was generated by encoding it (as described
in section 3.1) and running the SEQUITUR algorithm. The
resulting hierarchy consists of 858 rules. In other words,
the SEQUITUR algorithm has identified 858 sequences of
method calls (phases) that are known to be repeated multi-
ple times at different points in the trace. These phases are
related to each other; each phase is explicitly linked to its
constituent sub-phases.

The complete hierarchy is very large; there are 2051 links
between the 858 phases. Large, high-level phases tend to oc-
cur infrequently, but are built from large numbers of small,
lower-level phases that can occur very frequently in lots of
different contexts. The hierarchy of phases can be explored
by selecting a reasonably large, frequent phase, and explor-
ing its constituent lower-level phases. For the sake of illus-
tration we select phase 709, which is shown in figure 4; it is
reasonably large (consists of 93 method calls), and frequent
(occurs 30 times in the trace). Due to space constraints the
labels have been shortened; instead of labelling terminals
by their complete method signatures, they just contain the
name of the method. Due to the scaling, labels are difficult
to read as-is, though these are zoomable in the PDF ver-
sion of the paper. A full list of grammar-rules, as well as a
stand-alone diagram with full-length method signatures are
available online3.

To explore the sub-hierarchy, the authors adopted a pro-
cess of sequentially tracing through the rules in a depth-first
manner. In doing so, the sub-phases are explored in the
order in which they are executed. The high-level process of
reading through the sub-hierarchy is enumerated below, and
this can be followed with the annotations in figure 4, where
each step is highlighted. Many of the steps described below
require knowledge of the full method signatures (e.g. with-
out knowing the class names, it is impossible to say which
figure is being displayed), and these can be found in the
online version4.

(1) To explore phase 709 we start with phase R709.
(2)Tracing the references in a depth-first manner, phase
R303 is the first major sub-phase to be fully executed. This
sub-phase consists of a total of 22 method calls (including
its sub-phases), and is itself executed 376 times throughout
the trace.
(3) It begins with a sequence of method calls that set up

3http://www.dcs.shef.ac.uk/∼nw/Files/woda2010/



R709

R615

R613

R701

R75

R515

R509

R61

R677

R696

R740

R700

R736

R734

R672

R729

R671

R699

R333

R821

R697

R314

R303

R713

R4

R712

R711

R740

R696 R734

draw

nextFigure

getPolygon

displayBox

getFillColor

R701

getFrameColor

R677

R701

hasNextFigure

R613

R615 drawHandles

hasNextHandle HandleEnumerator

reset

selectionHandles

R75getAttribute

R61

R509getID

R515

getName

R509

getName

getName

getID

getDefaultAttribute

getID

draw

getDecoratedFigure

R696 R671

draw

getPolygon

displayBox

getFillColor

R700

getFrameColor

R736

R700

hasNextFigure

R75 getAttribute

getDefaultAttribute

getID

R696 R821

draw

getFillColor

R672

drawBackground

R729

displayBox

getFrameColor

R672

drawFrame

displayBox

hasNextFigure

R75 getAttribute

isTransparent getDefaultAttribute

getID

nextFigure R711

draw

getDecoratedFigure

draw

getFillColor

R699

drawBackground

R333

displayBox

getFrameColor

R699

drawFrame

displayBox

hasNextFigure

R75getAttribute

isTransparentgetDefaultAttribute

getID

R303

getScale

nextFigure R711

draw

getDecoratedFigure

draw

getFillColor

R697

drawBackground

R314

displayBox

getFrameColor

R697

drawFrame

displayBox

hasNextFigure

R75 getAttribute

isTransparent getDefaultAttribute

getID

getDisplayUpdate

getDisplayUpdate

draw

drawAll

drawBackground

getBackground

R712

R712

getBoundsdrawDrawing

drawing

draw

R713

draw figures

hasNextFigure R4

current

createList

FigureEnumerator

reset

getScale

transformGraphics

(1) 

(2)

(3)

(4) 

(5) 

(6) 
(7) 

(9) 

(8) 

(10) 

Figure 4: Annotated hierarchy for phase 709.

the canvas (working out the scale, background, etc.).
(4) It ends with a reference to a small phase R713 (executed
a total of 414 times throughout the trace), which is respon-
sible for setting up an iterable list of figures in the canvas,
and commences to iterate through the figures.
(5) Having completed R303, the next phase to be fully exe-
cuted is R821. From the class names we can see that this is
responsible for rendering a rectangle figure.
(6) This phase contains two references to a subphase R697
which, together with R314 is responsible for processing figure-
attributes that are specific to rectangle figures.
(7) However, R697 includes references to phase R75, which
is responsible for processing attributes that are generic to all
figure types. This subphase appears 2298 times throughout
the trace.
(8) Having rendered the rectangle, it is followed by R671,
which renders the round-rectangle figure in a similar way.
(9) Again, this contains references to a phase that is re-
sponsible for round-rectangle specific attributes, but which
includes references to phase R75 to render the generic at-
tributes.
(10) The subsequent phases (R734, R740, and R709) all
draw their respective figures (ellipse, triangle and diamond
respectively) in a similar fashion, first processing their figure-
specific attributes with their own sub-phases, before they all
end up referring to phase R75 to process generic figure at-
tributes.

From this phase hierarchy we gain a useful insight into the
way the figures are processed. JHotDraw figures are associ-
ated with sets of attributes, some of which are shape-specific,
and some of which are more general. The phase hierarchy
shows that each figure first calls specific methods that pro-
cess its own shape-specific attributes, but that all figures
subsequently call the same sequence of methods to process
attributes that are general to all figures (see the cluster at
the bottom of the hierarchy). As shown in the above de-
scription, the individual sub-phases are not used uniquely
within the context of phase 709. Smaller phases such as

R75, which is responsible for processing attributes for ev-
ery figure, can appear thousands of times within the trace.
However, within the context of rendering all of the figures
onto the canvas – as shown in phase 709 – this shows how
it is used.

5. RELATED WORK
Trace Visualisation
Currently the most popular approach to identifying phases
in traces is to adopt visualisation techniques. Tracing tools
such as Eclipse TPTP are equipped with the ability to visu-
alise traces as large sequence diagrams [10]. Sherwood et al.
[12] and Cornelisson and Moonen [2] independently describe
an approach that identifies phases of behaviour with the aid
of a matrix-based approach, where similar phases are clus-
tered together as different-sized blocks along the diagonal of
a similarity-matrix. Reiss [11] describes a block-based phase
visualisation of method invocations, where the height of a
block represents the number of calls made, and the width
represents the number of allocations made. Finally, Kuhn
and Greevy [7] present a technique to visualise a trace as a
signal.

Visualisation is ultimately concerned with the challenge of
summarising a large amount of information onto a physical
window [3]. One inherent danger is that pertinent or in-
teresting information can be lost in the abstraction process.
Although a set of phases may look similar to each other, it
is difficult to explore the nature of any possible interrela-
tionships between phases from the visualisation alone. As
shown above, the information that is produced in the phase-
hierarchies is complementary to existing visualisations. It
shows which chunks of a trace are identical, and shows how
they relate to each other.

Trace Compression and Reduction
Compression algorithms and traces go hand in hand. A con-
ventional trace may be several gigabytes in size and need to



be compressed in some way. So far, compression algorithms
have been mainly used solely to reduce the amount of space
required to store a trace. To the best of the author’s knowl-
edge, the fact that they intrinsically identify phases has not
been exploited so far.

Larus [8] used the SEQUITUR algorithm to capture a com-
plete execution profile from an execution trace in terms of
its basic blocks and control-flow edges. Ultimately the trace
serves merely as a means of recording trace information, and
the actual hierarchical information that is generated during
compression is ignored. This work uses the SEQUITUR al-
gorithm, but with the expressed aim of exploiting the gener-
ated phase-hierarchy to better understand the hidden trace
structure. Preliminary work by the authors [1] employed the
LZW dictionary compression algorithm to identify phases
from traces. However, with this approach the resulting set
of phases is ‘flat’, there are no explicit relationships be-
tween high-level phases and lower-level ones. Furthermore,
if there is a large phase at the beginning of the trace, it is
not discovered. These weaknesses are eliminated by using
SEQUITUR.

Feature Identification Approaches
The feature-identification challenge is to answer the ques-
tion: “Which source code statements are responsible for im-
plementing feature X?”. The problem has its roots in the
work on software reconnaissance by Wilde et al. [15], who
combine traces that are known to execute a feature with
those that are known not to in order to identify the relevant
source code. Eisenbarth et al. [4] have attempted to com-
bine dynamic analysis with static analysis and Formal con-
cept analysis to identify potential features. More recently,
Greevy and Ducasse [5], Kothari et al. [6] and Wanatabe et
al. [14] have all worked on the identification of trace phases
to identify features in the source code.

6. CONCLUSIONS AND FUTURE WORK
The process of understanding program traces largely re-
volves around the identification of repeated patterns of trace
elements, and working out how different patterns might be
related to each other. Similarly, the process of compressing
a stream of data revolves around identifying repeated pat-
terns, so that redundant repetitions can be eliminated where
possible. This paper shows that, thanks to this analogy,
established data compression techniques can be exploited
for the purpose of program comprehension, and has demon-
strated this with the SEQUITUR algorithm.

The evaluation has so far been largely qualitative, but shows
that the technique is promising. In our future work we will
use a larger set of traces from a broader range of systems.
We will also identify a set of metrics to form the basis for a
more quantitative approach. This will involve the identifica-
tion of a set of target phases for each trace, and measuring
the precision. Our future work will also look at existing
visualisation tools to investigate how the hierarchical infor-
mation can be used to make the visualisations more useful
to the developer.

Acknowledgments
Walkinshaw and McMinn are supported by the EPSRC REGI
grant EP/F065825/1, McMinn is also supported by the EP-

SRC Misbehaviour grant EP/G009600/1, and Walkinshaw
is also supported by the EPSRC STAMINA grant EP/H002456/1.

7. REFERENCES
[1] S. Afshan, P. McMinn, and N. Walkinshaw. Using

dictionary compression algorithms to identify phases
in program traces. Technical Report CS-10-01,
Department of Computer Science, The University of
Sheffield, 2010.

[2] B. Cornelissen and L. Moonen. Visualizing similarities
in execution traces. In Proceedings of the International
Workshop on Program Comprehension through
Dynamic Analysis (PCODA’07), 2007.

[3] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen,
A. van Deursen, and J. van Wijk. Execution trace
analysis through massive sequence and circular bundle
views. Journal of Systems and Software,
81(12):2252–2268, 2008.

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating
Features in Source Code. IEEE Transactions on
Software Engineering, 29(3):210–224, 2003.

[5] O. Greevy and S. Ducasse. Correlating Features and
Code using a Compact Two-sided trace analysis
approach. In In Proceedings of the 9th European
Conference on Software Maintenance and
Reengineering (CSMR’05), 2005.

[6] J. Kothari, T. Denton, S. Mancoridis, and
A. Shokoufandeh. On computing the canonical
features of software systems. In 13th IEEE Working
Conference on Reverse Engineering (WCRE 2006),
Oct. 2006.

[7] A. Kuhn and O. Greevy. Exploiting the analogy
between traces and signal processing. In Proceedings of
the International Conference on Software Maintenance
(ICSM’06), pages 320–329. IEEE Computer Society,
2006.

[8] J. Larus. Whole program paths. In PLDI, pages
259–269, 1999.

[9] C. Nevill-Manning and I. Witten. Compression and
explanation using hierarchical grammars. Computer
Journal, 40(2/3):103–116, 1997.

[10] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman.
Execution patterns in object-oriented visualization. In
Proceedings of Conference on Object-Oriented
Technologies and Systems (COOTS’98), pages
219–234. USENIX, 1998.

[11] S. Reiss. Dynamic detection and visualization of
software phases. In Proceedings of the Workshop on
Dynamic Analysis WODA’05, St. Louis, USA, 2005.

[12] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
IEEE Micro, 23(6):84–93, 2003.

[13] T. Systä, K. Koskimies, and H. Müller. Shimba - an
environment for reverse engineering java software
systems. Softw, Pract. Exper, 31(4):371–394, 2001.

[14] Y. Wanatabe, T. Ishio, and K. Inoue. Feature-level
phase detection for execution trace using object cache.
In Workshop on Dynamic Analysis (WODA’08), 2008.

[15] N. Wilde and M. Scully. Software Reconnaissance:
Mapping Program Features to Code. Software
Maintenance: Research and Practice, 7:46–62, 1995.


