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SUMMARY

Finite-state machine specifications form the basis for a number of rigorous state-based testing techniques
and can help to understand program behaviour. Unfortunately they are rarely maintained during software
development, which means that these benefits can rarely be fully exploited. This paper describes a technique
that, given a set of states that are of interest to a developer, uses symbolic execution to reverse-engineer
state transitions from source code. A particularly novel aspect of our approach is that, besides determining
whether or not a state transition can take place, it also identifies the paths through the source code
that govern a transition. The technique has been implemented as a prototype, enabling its preliminary
evaluation with respect to real software systems. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Perceiving software as a state machine enables the developer to design, document and rigorously
test a program in terms of its behaviour. A system can be decomposed into a set of states, where
each state characterizes the system at a particular point in its execution. The behaviour of the system
is determined by a set of state transitions, where each transition leads from one state to another
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and is governed by some trigger (e.g. a user input) and, depending on the modelling technique, a
(partial) function that attributes semantics to the state transition. Several powerful techniques have
been developed to produce test sets for systems that have been modelled as state machines. (Lee
and Yannakakis provide a comprehensive overview [1].)

One notable weakness with conventional state-based software modelling techniques is that they
tend to specify only the input/output behaviour of a system and fail to provide insights into how
and why state transitions take place. This can render them difficult to read, understand and validate,
which in turn undermines the integrity of any test sets that are generated from them. This has
inspired the development of more expressive state-based modelling techniques such as X-Machines
[2], Abstract State Machines [3] and Extended Finite State Machines [4]. These introduce the notion
of state transition functions, which enable the developer to precisely specify the functionality that
governs state transitions. State machines with transition functions are easier to understand because,
even if the states of the system are unintuitive, the semantics that underlie the state changes are
made explicit.

To illustrate some of the problems that arise with conventional state-based specifications, Figure 1
shows a simple state machine for a binary search tree. Transitions are annotated with the inputs
that trigger them. (Note that two transitions with the same trigger do not necessarily exhibit the
same transition behaviour—this is elaborated below.) In practice the developer may ask questions
such as

d d
How exactly does behaviour of Emptyﬁ—n> Empty differ from Populatedﬁ—n> Populated?

or

T . . . . .. insertNode
Tests indicate that a fault in the implementation results in the transition Empty  —  Empty

insertNode

being executed instead of Empty ~ —  Populated. Where is the fault in the source code?

Conventional state-based modelling techniques fail to answer these questions because they can
only identify the states and whether state transitions take place. They fail to provide any insights
into how and why the system transitions from one state to another.

Y

) find,
Populated . n
insertNode,
[root !=null]
removeNode
removeNode insertNode

Empty ) find,
[root=null] removeNode

Figure 1. State machine for a simple binary search tree.
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The ability to mine an implementation for its state machine would enable the developer to
produce state-based functional test sets for the system at any time throughout its development
[1,2]. This has spurred the development of several approaches to reverse-engineer state-based
specifications. Although existing reverse-engineering techniques can suggest states or detect whether
a state transition can take place [5-8], their practicality is limited for the reasons presented above;
they do not provide any insights into the semantics of the state transitions.

This paper introduces a technique that not only reverse-engineers state transitions but also anno-
tates each transition with its respective source code. The source code for a state transition is referred
to as the state transition function. The technique is based upon the observation that the start and
exit points of a state transition function can usually be mapped to particular syntax elements of
the source code. In UML state charts, for example, state transitions are labelled with the name
of the method that initiates the state change. A state transition function for a state chart tran-

sition Af—>()B consists of the source code that is executed between the entry and exit points of
method f() (i.e. the outermost ‘{” and °}’), when it is called in the execution context represented by
state A.

A state transition function makes an explicit connection between the design and the source code,
thus aiding the traceability from requirements to the implementation [9] and helping the developer
to answer questions such as those presented above. This makes the technique particularly useful
for understanding, inspecting and testing the dynamics of software that is designed in terms of
states and transitions. This is especially the case for state machines with potentially complex state
transition semantics, such as X-Machines and Abstract State Machines.

This paper makes the following three principal contributions:

1. It introduces a technique to reverse-engineer state transitions from source code, along with
their respective transition functions.

2. Tt describes the implementation of the technique as a proof of concept, using a novel approach
to program conditioning.

3. It evaluates the performance and scalability of the approach by applying the implementation
to a small selection of case studies.

The following section provides a brief introduction to program conditioning and symbolic execution,
the analysis technique upon which our approach is based. Section 3 provides an overview of our
technique. Section 4 shows how the technique has been implemented. Section 5 contains a small
example that demonstrates how the technique can be used to answer questions about the binary
search tree presented above, as well as a larger example based on the JHotDraw drawing framework.
Section 6 provides an overview of related work and Section 7 discusses the future work and
conclusions.

2. PROGRAM CONDITIONING AND SYMBOLIC EXECUTION

There are a number of approaches that could be adopted to identify the statements that correspond
to a state transition function. The most straightforward approach would be to simply execute the
program, and to record those statements that are executed between the transition function entry and
exit points. Although the results would be precise, determining the necessary set of input sequences
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to exhaustively execute the relevant paths in the source code is widely acknowledged as a laborious
and expensive task. Conventional static analysis techniques such as data flow analysis [10] are also
difficult to apply effectively, because it is challenging to restrict the results to only those statements
that are executed from a specific execution context (or program state).

Program conditioning [11] is a novel program analysis technique that circumvents the afore-
mentioned problems. Danicic et al. [12] define program conditioning as follows: ‘Conditioning is
the act of simplifying a program assuming that the states of the program at certain points in its
execution satisfy certain properties’. In other words, it identifies those statements that are executed,
provided that certain conditions expressed as constraints on program variables at particular program
points hold true.

In the context of this work, a state transition is embodied by a set of paths through the program
that cause the system to change state. This paper is concerned with trying to identify these paths.

Program conditioning is a useful technique to achieve this; given a transition A f—(>> B,if A and B
can be encoded as conditions on the program variables at particular points during its execution,
a program conditioner will remove those lines of code that do not contribute to the process of
reaching B from A; it will identify the transition function f ().

Figure 2 illustrates program conditioning on a function that classifies triangles (this is inspired by
a similar example by Fox et al. [13]). The left column contains the whole (unconditioned) program.
By adding the condition that a and c are never equal, it can be inferred that the predicates in lines
2 and 7 will always execute the false branch. A program conditioner retains the behaviour of the
program with respect to the condition by removing these predicates, along with their branches that
will not be executed (lines 3 and 8).

A program conditioner determines which statements to retain or remove by symbolic execution
[14,15]. When a program is symbolically executed, its input values are substituted with symbolic
values. During the symbolic execution program, variables are manipulated as symbolic expressions
instead of concrete values. The outputs of a symbolic execution are expressed as a set of constraints
on the input symbols (referred to as the ‘path condition’).

The state S of a symbolically executed program can be denoted as follows:

S=(V, PCondition, PCounter)

where V represents the (symbolic) values of program variables, PCondition is a quantifier-free
boolean formula over the symbolic program inputs and PCounter represents the program counter
that points to the current statement. A symbolic execution can be represented as a tree [15], where
nodes are symbolic states, and each leaf node corresponds to the termination of a potential path
through the program. The symbolic execution tree for the triangle program is shown in Figure 2.
Elliptic nodes correspond to conditional branches (i.e. if predicates) that are encountered during
program execution. The statement line number # that corresponds to a given node is shown as (n),
the path condition is denoted as PC. Dotted edges represent elements that would be removed in
the conditioned version of the program.

The program conditioner uses a constraint solver to establish whether the path condition for each
state concurs with the user-supplied condition. For example, in Figure 2 the supplied condition is
—(a =c) and the path condition at the node for line 3 is (¢ =b Aa =c). Because there is no solution
to the constraint —(a =c) A (a =b Aa=c), the conditioner can remove line 3.
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Unconditioned Conditioned:—(a = c)
1 if(a==b){ 1 if(a==b){
2 if(a==c) 2
3 r="equilateral’’; 3
4 else r = ‘‘isosceles’’; 4 r = ‘““isosceles’’;
5} 5}
6 else{ 6 elseq{
7 if(a==c) 7
8 r="’isosceles’’; 8
9 else if (b==c) 9 if (b==c)
10 r="isosceles’’; 10 r="’isosceles’’;
11 else r=’’scalene’’; 11 else r="’scalene’’;
12} 12}

Uirug alse ‘true

=iz : =43 e :E:
. PC: : PC: : PC: : P?
s bk | G REME N pisbtale]

(alse
<10z <l
PC: PC:

[al=b"al=c [al=bral=c”
h=¢] hl=c]

Figure 2. Small example of a conditioned program and its symbolic execution tree.

The potential for a program conditioner to limit the size of the program depends on the capabilities
of the underlying theorem prover(s). These are often limited to reasoning about linear constraints,
although there has been work on combining symbolic executors with a selection of solvers fitting
particular types of problems [16]. It should however be noted that several papers that involve
symbolic execution (cf. [14,16]) have commented that it is often the case that, even with complex
programs, the control flow itself is often governed by relatively simple conditions for which simple
boolean and linear constraint solvers will often suffice.
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Problems can arise in the symbolic execution of loops. If the termination of a loop cannot be
inferred from the current path condition or the loop has no concrete upper bound, it can result
in an infinite execution tree. Current symbolic execution techniques usually address this by either
manually inserting upper bounds on specific loops or providing an absolute limit on the depth of
the execution tree, regardless of loops. More sophisticated techniques to address this problem will
be discussed in Section 7.

3. DISCOVERING STATE TRANSITIONS AND THEIR FUNCTIONS

The main contribution of this paper is a technique that, given a set of rules that indicate when state
transitions occur in the source code and (optionally) a set of abstract states, returns the set of all
possible state transitions in the program along with the source code that governs their execution.
The technique is based on the observation that the start and end points of a state transition usually
map directly to particular syntax constructs in the source code. For example, in an object-oriented
system, the method calls trigger state transitions. If method f() causes a transition from state A to
state B, the state transition function consists of the source code that is executed between the entry
and exit points of f(), given that the system is in state A when f() commences and in state B
when it terminates.

This section provides an overview of the approach. The process of recovering a set of state
transitions from an implementation follows the following four steps (Steps 2—4 are illustrated in
Figure 3):

1. Identify state transition points in terms of the source code syntax (e.g. method calls, exceptions,
etc.).

2. Construct the symbolic execution tree, marking all symbolic execution states that correspond
to transition points.

3. Map marked transition points to abstract machine states (these will be referred to simply as
‘machine states’).

4. Identify state transitions between the abstract states by detecting consecutive marked transition
points in the symbolic execution tree. Since every symbolic state corresponds to the execution
of a statement in the source code, the statements belonging to a transition function simply
correspond to those symbolic states between a pair of marked transition points.

Conceptually, the process of identifying state transitions is relatively simple. Given that we know
where a transition can start (a transition point) and end (a subsequent transition point), we establish
an abstract machine state for every transition point in the symbolic execution tree. The interval
between a pair of transition points thus corresponds to a state transition function. The following
subsections elaborate on the four steps presented above.

3.1. Identifying state transition points in the source code syntax
This technique is primarily motivated by the observation that, for most modelling approaches, it is

straightforward to map the start and end of a state transition to the syntax of the source code. The
type of statements that encapsulate a potential state transition depends on the state-based model
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Step 4

O Symbolic state

X
@ Marked transition point

Figure 3. Illustration of the state transition identification process.

that is employed. Identifying them is, however, so straightforward that this step can usually be
fully automated. As an example, in UML state charts transitions are triggered by calls to methods.
Because the method is therefore responsible for the state change in the system, it makes sense to
observe the state of the system before and after each method is executed. Consequently, the state
transition points can be identified as the entry and exit points for every method body.

Although we are adopting the aforementioned conventional state-based object model in this paper,
it should be noted that it would be straightforward to adapt this technique to more complicated state
machine models. As long as state transition points can be mapped to specific control structures in
the source code (e.g. a thrown exception or catch point), these can be marked as transition points for
this technique. This makes it particularly suitable as a basis for experimenting with new state-based
models, for the sake of assessing their utility for testing and comprehension.

3.2. Marking transition points in the symbolic execution tree

The previous step identified those statements in the source code that correspond to transition points.
This step maps these transition points to symbolic states in the symbolic execution tree. This
is achieved by simply identifying those symbolic states where the program counter matches the
transition point statement. As an example, if we know that a state transition happens every time a
given method is executed, we identify the symbolic states for every return point of that method. It
should be noted that there can be a one-to-many mapping from source code statements to symbolic
execution states, because loops can result in a single statement being executed multiple times. In the
following sections, the set of symbolic states that correspond to transition points are denoted as 7.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2007)
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3.3. Mapping transition points to machine states

Depending on the underlying state machine model, the definition of what constitutes a state may
vary. States often correspond to well-defined equivalence classes of variable values (such as the
Populated and Empty states in Figure 1). Alternatively, in models of control-based systems such as
network protocols, for example, states merely act as separators to impose an order on the possible
sequence of state transitions.

The approach that is presented in this paper is sufficiently general that it can be applied to either
state representation. A function getState: T — M is required that identifies a respective machine
state M for each transition point 7. As mentioned in Section 2, a symbolic state can be represented
as the tuple S=(V, PCondition, PCounter). Thus, if M contains a set of abstract data states, the
getState function uses the symbolic variables Ty. Alternatively, if M consists of a set of control
states, the getState function will use the program counter Tpcounser- For the sake of generating a
sound state machine, the getState function must be total; there must be a member of M for every
transition point r € T'.

As a simple example, in the binary search tree state machine in Figure 1, M = {Populated, Empty}.
For each symbolic state ¢ € T, the symbolic value of root can be obtained from #y. Thus, defining
getState is straightforward; getState(root=null) = Empty and getState(root! =null) = Populated.

Ultimately, it is up to the user to select a suitable set of states that fit their application (it is
generally accepted that different applications require different abstractions [17]). Section 4 shows
a small example that reverse-engineers the state transition functions for the abstract data states in
the binary search tree example, and Section 5 shows a larger example that reverse-engineers state
transition functions with respect to control states in the NanoXML application. Potential approaches
to (partially) automate the identification of candidate states are elaborated in Section 6.

3.4. Identifying state transitions and their functions

Previous steps have generated the set 7 of nodes in the tree that correspond to state transi-
tion points, along with the function getState:T — M that identifies a suitable machine state for
every symbolic state that belongs to 7. In this final step, the symbolic execution tree is used to
identify feasible state transitions, along with the set of statements that are responsible for each
transition.

A feasible state transition consists of a pair of subsequent transition points in the symbolic execu-
tion tree. These can be identified with conventional tree-search algorithms. For every set of consec-
utive transition points (a, b) we store the (machine) state transition getState(a) — getState(b).

Once a state transition has been identified in the symbolic execution tree, it is relatively straight-
forward to identify its corresponding state transition function (i.e. the source code that is responsible
for the state transition). Given a pair of marked states in the symbolic execution tree, the function
corresponds to the source code that is executed between them. Because there is a direct mapping
from states in the symbolic execution tree to statements in the source code (via the program counter),
the transition function statements can be readily identified as part of the search process that identifies
consecutive transition points.

This process is akin to program conditioning (see Section 2). Conditioning conventionally
involves the manual insertion of assert statements, which contain conditions on program variables

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2007)
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at specific points. The approach used here to identify state transition functions specifies conditioning
criteria slightly differently; instead of specifying a single program point and a single set of variable
constraints, it specifies multiple program points (transition points in 7") and multiple sets of variable
constraints (defined by the gerState function). Similar to program conditioning, this approach takes
a set of constraints as input from the user, but, instead of specializing a program with respect to
these constraints, this approach highlights how the statements belonging to a program are related
in terms of the constraints.

4. IMPLEMENTATION

The implementation is designed to compute the possible state transitions and transition functions of
Java systems. It uses the Java PathFinder (JPF) explicit state model checker [18] and its symbolic
execution extension [19] to construct and traverse the symbolic execution tree. JPF uses a custom-
made Java virtual machine to explore the byte code of Java programs. The model is constructed
largely automatically by identifying branches in the class files. The implementation consists of two
parts: The first part is responsible for instrumenting the program to make a program symbolically
executable and inserting annotations at transition points, which communicate the state at that point
back to the model checker. The second part is a listener class that monitors the JPF search process
and identifies the state transitions as they are encountered.

Before a program can be symbolically executed with JPF, it has to be instrumented. The instru-
mentation process is detailed by Khurshid ef al. [19] and simply consists of identifying branches
where the predicate is to be added to the path condition, along with which variables should be
processed symbolically. The step is relatively straightforward and will be automated in future
versions of JPF, hence it is not elaborated in this paper.

During the symbolic execution, whenever the model checker encounters a state transition point,
it needs to identify the current abstract state (see step 3 in Figure 3). Our implementation uses
the Soot byte code transformation (and instrumentation) framework [20] to insert instructions to
communicate the current state to the model checker at each transition point. The rules that state what
constitutes a state transition point can thus be stated in terms of the Soot intermediate representation,
which is relatively straightforward. The rules presume by default that the source code that is executed
between the first and last statement of every public method (possibly including code executed in
other methods called by that method) is responsible for a state transition. Therefore, the first and
last statements of each method are instrumented and flagged as transition points. (It should be noted
that these rules can be customized and extended.)

Once the system has been instrumented, JPF can traverse a model of its state space. By using
the symbolic execution extension, this traversal is akin to a search of the symbolic execution tree.
The construction of the actual state machine is implemented as a listener for the model checker
that extracts the state machine given that the subject program has been instrumented as above. In
terms of the technique overview in Section 3, this corresponds to step 4.

JPF provides several listeners that can be used to monitor the progress of the model checker as
it traces along each execution path (see JPF literature for further information [18]). As the model
is a symbolic execution tree, the termination of each path corresponds to a leaf node in the tree.
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procedure getTransitionsFromPath(P)

Input:

P=<s0,...,5, >: A list of symbolic states constituting a symbolic execution path.

Output:

T: A set of state transitions, initially empty.

Use:

getAnnotation(S) returns the string used to annotate symbolic state S.

getState(A) returns the substring of annotation A that corresponds to the machine state.

getPC(A) returns the substring of annotation A that corresponds to the program counter.
getCurrentBasicBlock(S) returns a string ‘‘a—b’’, where a and b represent the first and last lines in the
basic block of source code that corresponds to the execution of symbolic state S.

createTransition(S,S',B,PC) returns a new state transition. § and § are strings that denote the source and

target states, B is a set of basic blocks and PC is a path condition.

Declare:
currentState, nextState, pathCondition, annotation: Strings
B: 1list of strings

€: empty string

1) T—0

(2) currentState <’init’”’

(3) foreach s;€P

(4)  annotation — getAnnotation(s;)
(5)  if annotation # €

(6) nextState « getState(annotation)

(7 pathCondition «— get PC(annotation)

(8) T — T UcreateTransition(currentState,nextState, B, pathCondition)
9) currentState «— nextState

(10) B—0

(11) else

(12) B+~ BU getCurrentBaxicBlack(s,- )

(13)endfor

(14)return T

Figure 4. Algorithm that processes a path to extract state transitions and their functions.

Every time the search reaches a leaf node it notifies the listener, which stores the execution path.
Once the search is finished, every path is processed to extract its state transitions.

This process is detailed in the getTransitionsFromPath procedure in Figure 4. The
purpose of auxiliary functions is implied by their name; for example, get State reads the annota-
tion and returns the substring containing the instrumented state. A path, which is a list of symbolic
states, is processed sequentially. If a state is not annotated, it is presumed to be part of the function
that governs the state transition; hence, its source code line numbers are added to a temporary list. If
the state is annotated, it corresponds to a transition point, and a StateTransition is generated
from the prior annotated state. The intervening blocks of source code are treated as the transition
function, and the symbolic path condition at the annotated state represents the conditions on the
inputs required to execute the function.
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5. EXAMPLES AND DISCUSSION

The previous section shows how the tool is implemented. This section uses the implementation
to demonstrate how it can be used to understand the essential behaviour of two systems. First,
a simple binary search tree is analysed. This is used to provide a detailed demonstration of the
working implementation, and to answer the two motivating questions posed in the Introduction. In
Section 5.2, the technique is applied to the larger JHotDraw system to show how it can be used to
understand the behaviour of abstract state transition functions from a model that has been generated
a priori. Section 5.3 looks into the limitations of the technique.

5.1. Small example—binary search tree

The binary search tree implementa‘[ioni is shown in Figures 1 and 5. The BSTree class provides
the interface methods for manipulating or querying the tree and contains a pointer to the root node
of the tree. The BSTNode class implements the nodes of the tree, and each node contains a pointer
to its left node (containing a node with a lower value) and its right node (containing a node with a
greater value).

5.1.1. Obtaining state transitions and transition functions
This subsection demonstrates how the implementation detailed in Section 4 can be used to extract the

transitions and their functions from the binary search tree system. It is presumed that the developer
wants to find out precisely how the system behaves in terms of the Empty and Populated states;

parent

BSTree root BSTNode

root:BSTNode left:BSTNode
right:BSTNode

BSTree(BSTNode) BSTNodoGin)

insertNode(BSTNode) )

find(int) gethtftChllfl()

remove(int) getRightChild()
findNode(int)
insertNode(BSTNode)

setLeftChild(BSTNode)
setRightChild(BSTNode)

Figure 5. Binary search tree classes.

IThe binary search tree source code is too large to include in its entirety. It can, however, be downloaded along with its
instrumented version from http://www.dcs.shef.ac.uk/~nw/autoAbstract/downloads.html.
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ese — ™ find(int):START find(int):END > ¢

EMPTY EMPTY

Figure 6. Extract from an annotated symbolic execution path.

hence, these are encoded in the getState function. It is also presumed that every public method can
be responsible for a state transition.

Having identified the relevant abstract states and state transition points, the program is
symbolically executed so that the state transitions can be identified. This involves symbolically
executing every possible permutation of calls to BSTree.find, BSTree. insertNode and
BSTree.remove, where each combination of calls can reach a specified limit. This can be
achieved with the model checker (the approach is documented by Visser et al. [21]) by forcing
the model checker to search through each permutation, automatically backtracking once each
execution has been exhausted.

Transition functions are obtained by determining the set of statements that are executed between
a pair of state transition points. Figure 6 shows an extract from an execution path of the binary
search tree as the find method is executed. Square boxes correspond to annotated state transition
points. The transition function simply consists of the statement if (root!=null); (the body
of the if statement is not executed because root==null and corresponds to the state transition

find
Empty— Empty.

5.1.2.  Understanding the state transitions of the binary search tree

State transition functions are particularly useful for understanding and debugging software from a
state-based perspective. This is demonstrated by using them to answer the two questions about the
behaviour of the binary search tree from the introduction. These were

ind ind
How exactly does behaviour of Empty‘fz) Empty differ from Populatedjﬁ) Populated?

and

o . . . . .. insertNod
Tests indicate that a fault in the implementation results in the transition Emptylmer—>0 eEmpty

instead of Emptymser—ﬂ>v OdePopulated. Where is the fault in the source code?

This section shows that the functions for these transitions can help to answer these questions.
The relevant transition functions (as extracted by the JPF extension described previously) are all
presented in Figure 7.

Answering the first question, the source code in Figure 7(a) shows that, although it is possible to
call the £ind function when the tree is empty, it will simply return null. The source code in (b)
shows that, if the tree is populated, a call to £ind will traverse the tree until it finds the node that
corresponds to the value provided, or return null if it finds nothing. Note that in (a) the body for

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2007)
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ind
(a) Empty fﬂ Empty

ind
(b) Populated fing Populated

BSTree.find(int val)

public BSTNode find(int val){
if (root '= null){}
return null;

}

BSTree.find(int val)

public BSTNode find(int val){
if (root !'= null){
return root.findNode(val);

}

}

BSTreeNode.findNode(int val)

public BSTNode findNode(int val){
if (val<this.value)q{
if (left!=null)
return left.findNode(val);
else return null;
}
else if (val>this.value){
if(right !'= null)
return right.findNode(val);
else return null;
}

return this;

b;

insertNode

(¢c) Empty — —  Empty

BSTree.insert (BSTNode node)

public void insert(BSTNode node){
if(root != null){}
}

(cropped unconditioned version) |

public void insert(BSTNode node){
if (root != null){
root.insert (node)

}
}

Figure 7. Transition functions.

the if condition is empty because the program conditioner has determined that it cannot be executed
for this state transition.

The second question is particularly interesting, as the example stems from a genuine fault in
the source code that was discovered during the process of validating the implementation. The state
transitions that were reverse-engineered initially did not match the transitions that were predicted
(see Figure 1). From the Empty state, the insertNode state transition remained in the Empty state
instead of the Populated state. To investigate why this is the case, it is straightforward to analyse
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the transition function that is triggered by calling insertNode in the Empty state. By analysing

] ‘Nod .. . . . .
the Emptymsego eEmpty transition function in (c), the fault becomes immediately apparent; the

insertion of a node is guarded by a condition ensuring that root is not null. If root is null
(as is the case when the tree is empty), the insert method does nothing. A probable reason is the
use of two constructors, one of which inserts a root node by default, meaning that the tree starts off
in the Populated state. If the programmer always used this constructor, and never removed all of
the nodes from the tree, the problem of populating the tree from the Empty state might never have
been encountered. The fault is fixed by inserting an else clause that stores the inserted node as
the root if the tree is empty. Although this example is relatively simple, it still demonstrates that
this approach has the potential to be particularly useful for debugging by improving traceability
between the design and implementation.

5.2. Larger example—JHotDraw

JHotDraw® is a well-established, open-source Java framework for constructing drawing tools.
HotDraw was originally developed in the eighties by Cunningham and Beck as a Smalltalk drawing
editor framework. It was then rewritten for Java as JHotDraw, and serves as a showcase to illustrate
the use of object-oriented design patterns. JHotDraw is particularly suitable as a case study because
it has been extensively explored in other software engineering research projects.

In this case study we concentrate on the specific behaviour of the JavaDraw application, which
is included as an example application in the JHotDraw release. A simple state machine of its high-
level behaviour, along with a screen shot of JavaDraw, is shown in Figure 8. The behaviour of
the system is decomposed into six system functions, which are described in the table below the
transition diagram.

5.2.1. Model analysis

In its entirety, JHotDraw is too large to symbolically execute, as is using our JPF-based implemen-
tation. For the sake of this experiment, the symbolic execution was restricted to the 10 classes that
contribute the core functionality in terms of the diagram shown above. The rest of the system was
replaced by stubs using the ‘Model-Java Interface’ infrastructure provided by JPF.

One inevitable problem that arises, particularly with JHotDraw, is the fact that a large number
of methods operate on non-primitive data types. In this case, if the parameter was a relatively
simple object (e.g. an Integer or String object), it was replaced with a symbolic counterpart. If the
object was more complex, including multiple data members that affect the execution path through
the method, a symbolic version was generated, with relevant data members replaced by symbolic
counterparts. In certain cases a parameter can contribute to a condition that is beyond the capabilities
of the constraint solver, in which case it is simply omitted (at the potential expense of the accuracy
of the final model—see the limitations in Section 5.3). Once the stubs and parameters have been
set up, the program was instrumented as described in Section 4.

§http: //www.jhotdraw.org.
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text_tool

finalize_textbox

set_position

figure_tool

set_dimensions

set_dimensions

System Function Description
text_tool text tool is selected and activated
figure_tool figure tool is selected and activated
set_position user selects position on canvas
edit user edits text box
finalize_textbox | text box is committed to canvas
set_dimensions user sets dimensions of a figure

Figure 8. JavaDraw hypothesis machines and the abstractions.

Every time JPF enters a new symbolic state, the getState function checks whether the new state
corresponds to one of the states go—gg. This is done by checking the path counter and current
variable values. Note that the states in the previous binary search tree example could be ascertained
from the variable values alone. The mappings from abstract states to control and data states are
shown in Table I. The [RET] means that the state is recorded at the return point of the method.

Having carried out the preliminary steps of preparing the system for symbolic execution, it is
now possible to map the high-level system functions as specified in Figure 8 to the blocks of code
that implement them, along with the associated conditions on the input variables that govern their
execution.

In this example, the model in Figure 8 was generated a priori, as part of a case study [22] that
illustrates the use of X-Machines to model software systems. The decomposition into these six
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Table I. Mapping from abstract states to control and data states as encoded in getState function.

State Data Control
40 - -
q1 selectedTool =1 PaletteButton.mouseReleased [RET]
q2 selectedTool =2 PaletteButton.mouseReleased [RET]
q3 selectedTool =2 StandardDrawingView.mousePressed [RET]
q4 selectedTool =1 StandardDrawingView.mousePressed [RET]
q5 — TextTool.beginEdit [RET]
q6 — CreationTool.mouseDrag [RET]
soe set Position s set Position
Transition: g1~ — =~ g3 Transition: ¢~ — =~ g5
PC: selectedTool = 1 (text) PC: selectedTool =2 (figure)
1. anchor = co-ordinates of mouse click 1. anchor = co-ordinates of mouse click
2. figure = find figure at anchor 2. figure = generate new figure at anchor

3. if figure != null

3.1 textHolder= get text holder from figure

4. if textHolder = null

4.1 edit rextHolder

5. else

5.1.  figure = generate new text box at anchor
5.2. textHolder = get text holder from figure

5.3. edit textHolder

. .. setPosition setPosition
Figure 9. Pseudocode of transitions g1 — g3 and g3 —

abstract system functions matches the developer’s perception of the behaviour. Thus, according

. .. setPosition setPosition
to the diagram, one would assume that transitions gg — g3 and g2 — g5 should have a

similar underlying implementation.

By using the state mappings in Figure 1, the tool automatically identifies the source code that
implements the two state transitions. For the sake of readability, the source code identified by the
tool for the two transitions has been summarized in pseudo-code form in Figure 9. Contrary to
what might be expected from the abstract functional decomposition shown in Figure 8, although
the two transitions are labelled with the same abstract function, their behaviours are quite different.
If the text tool is selected and the mouse is clicked on the canvas, the setPosition function checks
whether the mouse has been clicked on a figure and whether that figure has a text holder; if this is
the case it activates the editor. (This leads to the edit transition function.) If there is no figure, or
the clicked figure does not contain a text holder, a new text box figure is created, and its text holder
is made available for editing. If, on the other hand, the figure tool is selected, the previous steps of
checking the mouse click location are skipped, and the tool simply generates a new figure straight
away.

Although this example is relatively simple (small scale, and only computed with respect to a small
number of symbolic variables), it demonstrates the benefits of being able to relate abstract state
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transition functions to their implementations. The benefits are obvious for tasks such as software
design and code inspections [23], general program comprehension and also for identifying test
inputs to execute sequences of abstract state transitions identified by transition-testing techniques
such as the W-Method [1,24].

5.3. Limitations

The previous sections have demonstrated that, although the approach is feasible, there are
certain limitations common to most symbolic-execution-based techniques that must be discussed.
Constraining the size of the symbolic execution tree can result in an incomplete set of state
transitions and transition functions. Also, certain path conditions can be too expensive to solve with
conventional constraint solvers, and can thus result in the inclusion of infeasible state transitions and
transition functions. These two problems are elaborated below, and potential means of addressing
them are discussed in Section 7. Coward [14] provides a more comprehensive discussion of both
of these problems.

5.3.1. Missing or incomplete state transitions

The size of the symbolic execution tree increases exponentially, especially in the presence of
constructs such as loops and if predicates. As a result, it becomes necessary to impose certain
constraints on the symbolic execution. These constraints are usually limits either on the number
of times individual loops can execute (i.e. execute every loop three times), or on the depth of the
symbolic execution tree as a whole (regardless of the number of times individual loops execute).
In the context of this technique, such limitations mean that, depending on the abstract states that
may be of interest to the developer, certain state transitions or transition functions may never be
symbolically executed. If, for example, a state of interest is reached only after a loop is executed
a substantial number of times and the symbolic tree depth limit is relatively low, it may not be
observed. If the state transition is identified, it could still be the case that certain blocks of code only
contained at a certain depth of the execution tree are not executed and thus not correctly attributed
to the transition.

5.3.2. Infeasible state transitions

Most symbolic executors are supplied with theorem provers that deal only with linear or boolean
constraints. These are straightforward to solve, with a relatively low computational overhead.
Nonlinear constraints (e.g. constraints that contain variables that are squared) are more challenging
and usually require specialized theorem provers that require the developer to provide additional
information about the problem domain. It should be noted that the JPF symbolic executor does
provide the facility to interface with nonlinear solvers, but these are not integrated with the current
implementation. The current inability to eliminate infeasible paths with nonlinear path condi-
tions can result in the possible inclusion of infeasible state transitions and transition functions.
Whenever a nonlinear transition is encountered during symbolic execution, JPF alerts the user (by
printing the warning to the screen) to permit a manual inspection of transitions with nonlinear path
conditions.
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5.3.3.  Manually identifying abstract states

In its current form, the approach relies on the developer identifying a suitable set of states. This
can become problematic if the developer identifies conflicting states; for example, the developer
may identify two ‘overlapping’ states, such that the system can be in two abstract states at the same
time. At the moment, the approach would simply choose one of the two states, and the resulting
machine would be incorrect. This can be avoided only if the user chooses a suitable set of initial
states. Nonetheless, there are a number of more systematic abstract state identification approaches
(for example, see the work by Dallmeier et al. [25]), which can be used in conjunction with this
technique.

6. RELATED WORK

Section 6.1 puts this work into the context of existing approaches to reverse-engineer state-based
specifications. Section 6.3 discusses this technique in the context of program conditioning and
symbolic execution.

6.1. Reverse-engineering axiomatic specifications

There exist several approaches to reverse-engineering invariants and axiomatic specifications from
software. The information provided by these techniques can be seen as complementing the technique
presented in this paper, because they are useful for constraining the size of the symbolic execution
tree (e.g. with loop invariants), as well as for providing hints at abstract states that may be of interest
to the developer, which can be used to define the getState function for this technique.

Ernst et al. [8] have developed a tool called Daikon to reverse-engineer invariants from source
code. Using their approach the subject program is (automatically) instrumented and executed using
a test set. Daikon can then be used to infer invariants at particular points in the program, such as
procedure entry and exit points as well as loop invariants.

Henkel and Diwan [26] have developed a dynamic technique to reverse-engineer algebraic spec-
ifications from Java classes (axioms are reverse-engineered at an interface level as opposed to the
lower-level Daikon invariants). They heuristically generate a large number of terms, which are
sequences of method invocations that do not result in an exception. The outcomes of terms are
compared with each other, generalizing these comparisons to axioms, and then term rewriting is
used to eliminate redundant axioms.

Tillmann et al. [27] note that dynamic approaches rely on a comprehensive test set, which can
often be difficult to produce. Their approach uses symbolic execution to discover axiomatic class
specifications. For a given class they identify its modifier methods (methods that modify the state of
the class). For each modifier method they also identify a set of observer methods, which reflect the
state change caused by the modifier method. They then symbolically execute each modifier method,
recording the symbolic paths. For each path they symbolically execute the observer methods at the
initial and final execution states. The symbolic terms over the implementation state are then mapped
to equivalent terms of the observer methods. Ultimately this results in multiple path-specific axioms
in terms of the observer methods.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2007)
DOI: 10.1002/stvr



@ AUTOMATED DISCOVERY OF STATE TRANSITIONS AND THEIR FUNCTIONS

6.2. Reverse-engineering state machines

There have been several attempts to reverse-engineer state machines from software systems.
Biermann and Feldman [28] developed a dynamic analysis technique that reverse-engineers
machines with states that are points of control in the source code. Their k-Tails technique merges
two states together if for both states the following k successor states are identical. Lorenzoli
et al. [29] combine Bierman’s algorithm with Daikon [8] (discussed above) as a basis for reverse-
engineering state machines, where state transitions between the control states are annotated with
the data conditions that govern them.

Kung et al. [6] have developed a technique that is based on symbolic execution to reverse-engineer
state machines from an object-oriented system. Besides identifying possible state transitions, their
method also includes a technique to infer possible abstract states from the symbolic path conditions.
However, they do not consider abstract states that are composed of multiple variables.

Whaley et al. [30] describe an approach to extract component interfaces as state machines. As
with the Bierman and Lorenzoli approaches, states are based entirely on the control/data flow of
the system, as opposed to the variable values. They process a system in two steps, using static
flow analysis to indicate potential states and transitions, and then confirming these by attempting
to execute them.

Xie et al. have produced a substantial amount of work on reverse-engineering state machines of
classes, using various analysis approaches. Their Obstra tool [31] uses dynamic analysis to reverse-
engineer Object State Machines (OSMs). The abstract states of an OSM is described in terms of
a set of observer methods of the class under analysis. Owing to the inherent problems of dynamic
analysis discussed in the previous subsection, they extend their approach to use symbolic execution
with the Symstra tool [32].

Dallmaier et al. [25] also use dynamic analysis to reverse-engineer state machines of objects.
Their approach is motivated by the need to find ‘meaningful’ abstract states. To achieve this, they
extract the state of an object via its observer methods.

The key difference between all of those techniques and the technique presented in this paper
is the fact that the technique presented in this paper emphasizes on how a program reaches one
state from another, as opposed to simply determining whether this is possible. Instead of simply
indicating what the states are, and whether it is possible for one to reach the other, our technique
specifies when and why states interact with each other as a transition function. A number of papers
mentioned above do, however, employ more sophisticated means to abstract states (as embodied
in our getState function), and it should certainly be noted that these could be combined with our
approach. Nonetheless, it is this shift in emphasis from states to state transitions as the principle
entities in a state machine that underpins our ongoing research into the use of more advanced state
machine representations such as X-Machines [2] and Abstract State Machines [3,33].

6.3. Symbolic execution and program conditioning

There has been a substantial amount of progress in the field of software model checking and symbolic
execution. Sophisticated model checkers such as JPF [18,19] and Bogor (with its Kiasan extension
[34]) have made it possible to prove the feasibility of symbolic-execution-based techniques such
as this one, which might have been considered too expensive and infeasible in the past. Bogor
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is particularly interesting, because it dispenses with the need to instrument the source code for
symbolic execution. (This is currently also being implemented for the JPF symbolic executor.)
There are a number of other similar projects (such as Microsoft’s XRT model checker [35]), which
similarly enable the symbolic execution of a variety of other languages.

A major problem that arises with model checkers is the fact that the number of possible program
states to be explored rapidly becomes intractable with complex programs. A substantial amount of
research is concerned with identifying strategies to reduce this by means of novel state abstraction
and search techniques. These techniques have not been extensively explored with respect to this
implementation, but provide a potent avenue for improving its scalability.

Program conditioning has become established as a means for specializing a program to increase
the accuracy of static analysis techniques such as conditioned code slicing [11,12]. Conventionally,
a program has been conditioned with respect to its inputs. Fox et al. [36] have proposed the use
of ‘backward conditioning’ as a means to impose conditions on the values of variables at arbitrary
points in the program. Each approach requires a set of conditions as well as a point where these
conditions are true. (In conventional conditioning the point is implicitly the start of the program.)
The technique presented in this paper is essentially a state-based approach to program conditioning.
Once we have observed that state transitions can (usually) be tied to particular points in the source
code, the developer can supply a means of identifying the state at a given point (the getState
function), and the technique provides those statements that are responsible for each state transition.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a technique for reverse-engineering transitions from source code. It uses program
conditioning to identify branches of source code that are responsible for the execution of a particular
transition. This allows a developer to determine which states of the system they are interested
in, and our (largely automated) technique will state whether or not, and in what manner, these
states are related to each other. This is particularly useful for software testing, documentation and
comprehension.

The approach has been implemented as an extension of the JPF model checker as a proof of
concept. The results demonstrate that the technique is feasible, but also show that the technique
becomes very expensive as the subject program increases in complexity. This is largely due to an
inherent weakness of symbolic execution—namely, that it becomes expensive in the presence of
nested branches and loops.

There have been no significant attempts to improve its performance and scalability yet, but there
are a number of readily available model-checking techniques that offer much potential in this
area. A key problem with respect to poor performance in symbolic execution is the presence of
unbounded and potentially infinite loops. To address these problems, future work will concentrate
on the following areas:

1. Inferring loop invariants from symbolic executions. (This has already been investigated by
Pasareanu and Visser [37].)

2. The use of loop-squashing program transformations to replace loops with simple conditionals.
(This is based on the work by Hu et al. [38] with respect to amorphous program slicing.)
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3. The use of slicing to restrict the program to what is relevant. (This has already been investigated
by Dwyer et al. [39].)

4. Combining symbolic execution with dynamic analysis to reduce the symbolic search space.
(This is influenced by Sen et al.’s work on Concolic execution [40].)

Currently, the approach has been used in conjunction with two notions of state: abstract data states
that are supplied by the user and control states that simply correspond to transition points in the
source code syntax. The benefit of the abstract states is that the resulting state machine is presented
in the developer’s terms; transitions are reverse-engineered at a useful level of abstraction, producing
results that are easier to inspect. The downside, however, is that it requires a prior knowledge about
the system and its potential states. The benefit of the control states is that they are easy to identify,
but the downside is that the abstraction level of the resulting machine may be too low to be of much
practical use to the developer.

Future work will investigate the use of different state abstractions. Prenninger and Pretschner [17]
note that the desired type of abstraction depends on the ultimate application of the machine. Abstract
data states of the type used previously to model the binary search tree are already useful for manual
validation, because they present the system in the developer’s terms. Ultimately, however, the aim is
to reverse-engineer machines that form a suitable basis for rigorous model-based testing [2,41]. For
this purpose, states will inevitably need to combine data and control elements to fully characterize
the intended functional behaviour of the system.
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