
Identifying State Transitions and their Functions in Source Code

Neil Walkinshaw, Kirill Bogdanov, Mike Holcombe

Department of Computer Science, The University of Sheffield
Regent Court, 211 Portobello Street,

S1 4DP, Sheffield, UK
E-mail: {n.walkinshaw,k.bogdanov,m.holcombe}@dcs.shef.ac.uk

Abstract

Finite state machine specifications form the basis for a
number of rigorous state-based testing techniques and can
help to understand program behaviour. Unfortunately they
are rarely maintained during software development, which
means that these benefits can rarely be fully exploited. This
paper describes a technique that, given a set of states that
are of interest to a developer, uses symbolic execution to
reverse-engineer state transitions from source code. A par-
ticularly novel aspect of our approach is that, besides deter-
mining whether or not a state transition can take place, it
also precisely identifies the path(s) through the source code
that govern a transition. The technique has been imple-
mented as a prototype, enabling a preliminary evaluation
of our technique with respect to real software systems.

1. Introduction

Perceiving software as a state machine enables the de-
veloper to design, document and rigorously test a program
in terms of its behaviour. The system is decomposed into a
set of states, where each state characterises the system at a
particular point in its execution. The behaviour of the sys-
tem is determined by a set of state transitions, where each
transition leads from one state to another and is governed
by some trigger (e.g. a user input) and, depending on the
modelling technique, a (partial) function that attributes se-
mantics to the state transition. Several powerful techniques
have been developed to produce test sets for systems that
have been modelled as state machines [13].

Despite being useful for a variety of development tasks,
conventional state-based software modelling techniques fail
to provide insights into how and why state transitions take
place. This can render them difficult to read and under-
stand [19], making it difficult to validate any test sets that
are generated from them. This has led to the development
of more expressive state-based modelling techniques such
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Figure 1. State machine for a simple Binary
Search Tree

as X-Machines [8] and Abstract State Machines [2]. These
introduce the notion of state transition functions, which en-
able the developer to specify the functionality that governs
state transitions. State machines with transition functions
are easier to understand because, even if the states of the
system are unintuitive, the semantics that underlie the state
changes are made explicit. Determining state transition
functions when specifying the system in the first place is
straightforward because they can be obtained via functional
decomposition.

To illustrate some of the problems that arise with conven-
tional state-based specifications, figure 1 contains a simple
state machine for a binary search tree. Transitions are an-
notated with the inputs that trigger them. In practice the
developer may ask questions such as:

“How exactly does behaviour of Empty
find→ Empty

differ from Populated
find→ Populated?”

or
“Tests indicate that the transition Empty

insertNode→
Populated is missing, where is the fault?”

Conventional state-based techniques fail to answer these
questions because they can only identify the states and
whether state transitions take place. They fail to provide
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any insights into how and why the system transitions from
one state to the other.

The ability to mine an implementation for its state ma-
chine would enable the developer to produce state-based
functional test sets for the system at any time throughout
its development [13, 8]. This has spurred the development
of several approaches to reverse engineer state-based speci-
fications. Although existing reverse-engineering techniques
can suggest states [6, 4], or detect whether a state transition
can take place [12, 18], their practicality is limited for the
reasons presented above; they do not provide any insights
into the semantics of the state transitions.

This paper introduces a technique that not only reverse
engineers all of the state transitions with respect to a set of
states, but also annotates each transition with the relevant
source code. The source code for a state transition is re-
ferred to as the ‘state transition function’. Providing this
information is a useful tool for state-based software engi-
neering. It makes explicit links between the design and the
source code, thus aiding the traceability of requirements to
the implementation and helping the user to answer ques-
tions such as those presented above. This makes the tech-
nique particularly useful for understanding, inspecting and
testing the dynamics of complex extended state machines
(particularly X-Machines and Abstract State Machines).
The resulting state transition functions are particularly use-
ful for comprehension of both design and source code, state-
based testing and debugging, and inspecting source code
from the behavioural perspective.

The paper makes the following three principal contribu-
tions:

1. It introduces a technique to reverse engineer state tran-
sitions from source code, along with their respective
transition functions.

2. It describes the implementation of the technique as a
proof-of-concept, using a novel approach to program
conditioning.

3. It evaluates the performance and scalability of the ap-
proach by applying the implementation to a small se-
lection of case studies.

Section 2 provides a brief introduction to program con-
ditioning and symbolic execution, the analysis technique
upon which our approach is based. Section 3 provides an
overview of our technique, followed by details on our im-
plementation, along with an illustrative example that shows
how to answer the questions about the binary search tree
presented above. Section 5 evaluates the scalability and per-
formance of our approach. Section 6 provides an overview
of related work and section 7 discusses the future work and
conclusions.

int x,y;

1 if(x>y){

2 x=x+y;

3 y=x-y;

4 x=x-y;

5 if(x>y)

6 assert false;

}

[PC:true] x:X, y:Y

[PC:X>Y] x:X, y:Y

1

[PC:X<=Y] x:X, y:Y

1

[PC:X>Y] x:X+Y, y:Y

2

[PC:X>Y] x:X+Y, y:X

3

[PC:X>Y] x:Y, y:X

4

[PC:X>Y & Y>X ] x:Y, y:X FALSE!

5

[PC:X>Y & Y<=X] x:Y, y:X

5

Figure 2. Symbolic execution tree

2. Program Conditioning and Symbolic Execu-
tion

Program conditioning forms an important part of our
technique (which is presented in the next section). It is used
to identify the source code that governs the execution of a
given state transition. This section presents an overview of
program conditioning and symbolic execution.

Danicic et al. [5] succinctly define program condition-
ing as follows: “Conditioning is the act of simplifying a
program assuming that the states of the program at certain
points in its execution satisfy certain properties”. Using
their approach, the user can specify conditions in the pro-
gram in the form of assertions. Program conditioning re-
moves any statements that cannot be executed when these
assertions are true.

A program conditioner determines a set of feasible paths
that satisfy user-defined conditions by symbolic execution
[11]. When a program is symbolically executed, its input
values are substituted with symbolic values. As the pro-
gram is symbolically executed, its internal variables are ma-
nipulated as symbolic expressions instead of concrete val-
ues. The outputs of a symbolic execution are expressed as
a function of the symbolic values that replaced input val-
ues. The state of a symbolic execution consists of a path
condition, current symbolic values, and a path counter.

Symbolically executed paths through a program can be
summarised in a symbolic execution tree, where each leaf
node represents the termination of a potential path through
the program. An example of a symbolic execution tree for
a program that swaps two integers (taken from Khurshid et
al. [10]) is shown in figure 2. In the initial state the path
condition is set unconditionally to true, indicating that it
is always feasible. In the following branches however, the
path condition reflects the condition in the if statement (so
x>y or x≤y). A state can be deemed infeasible if its path
condition cannot be satisfied, as is the case for statement 6.
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Note also that the symbolic variables are recorded in terms
of their initial/input symbolic variables, hence the symbolic
value for variable Y at branch 3 is simply X as opposed to
X-Y (from the previous statement).

As the path conditions are generated by the symbolic ex-
ecutor the program is conditioned by employing a theorem
prover to reason about the conditions and backtracking as
soon as a path becomes infeasible. The potential for the pro-
gram conditioner to limit the size of the program depends
on the capabilities of the underlying theorem prover. These
are often limited to reasoning about linear constraints (as is
currently the case with our implementation), although there
has been work on combining symbolic executors with a se-
lection of solvers fitting particular types of problems [14].

Besides the problems that are introduced by non-linear
constraints, another important limitation on symbolic exe-
cution is its inability to effectively handle loops. A loop
always has to have a concrete upper-bound, otherwise it can
result in an infinite execution tree. Current techniques tend
to simply apply an artificial limit on the number of times
a loop can be artificially executed, but more advanced tech-
niques (e.g. inferring loop invariants as the program is sym-
bolically executed [15]) are being investigated.

3. Discovering State Transitions and their
Functions

The key contribution of this paper is a technique that,
given a set of program states (in terms of conditions on
the program variables), returns the set of all possible state
transitions in the program, along with the paths through the
source code that are responsible for each state transition.
Our technique is based on the observation that the inputs
that trigger state transitions (i.e. method calls, exceptions
etc.) usually map directly to particular statement types in
the source code. Thus a state transition function can be in-
terpreted as the source code that is executed between a pair
of transition trigger statements.

This section provides an overview of our approach. Our
process of recovering a set of state transitions from an im-
plementation follows the following six steps (Steps 4,5 and
6 are illustrated by figure 3):

1. Identify transition triggers (e.g. method calls, excep-
tions etc.)

2. Identify appropriate abstract states (in terms of condi-
tions on state variables)

3. Map transition triggers to their respective statements in
the source code

4. Construct the symbolic execution tree, marking transi-
tion trigger points as they are encountered

Step 4

A
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B
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B

D

Step 5

C

C
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C

D

A

B

CA
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A
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B C
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C

A

Figure 3. Identifying state transitions

5. For each marked symbolic execution state identify its
corresponding abstract state

6. Identify state transitions between the abstract states by
detecting consecutive marked transition points in the
symbolic execution tree

Since every symbolic state corresponds to the execu-
tion of a statement in the source code, the statements
belonging to a transition function simply correspond to
those symbolic states between a pair of marked transi-
tion points.

Conceptually the process of identifying state transitions is
relatively simple. Given that we know where a transition
can start (a trigger point) and end (a subsequent trigger
point), we establish the current abstract state every time a
trigger point is (symbolically) executed. The interval be-
tween a pair of trigger points thus corresponds to a state
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transition function. To become practical however, several
important issues need to be taken into account. Section
3.1 considers the problem of expressing abstract states as
conditions on symbolic variables. Section 3.2 discusses the
identification of statements that encapsulate potential state
transitions - the main contribution of this work. Section 3.3
shows how symbolic execution can be used to identify state
transitions and their functions.

3.1. Identifying States as Conditions on Symbolic
Variables

To ensure that the final state transitions are reverse-
engineered at a suitable level of abstraction, our tech-
nique currently requires the developer to supply the rele-
vant states. These states have to be provided in the form
of expressions of the program’s symbolic variables. Each
state should be expressed as a quantifier free boolean for-
mula over the state variables, so that it can be derived from
symbolic expressions at the transition trigger points.

There are two options to identify the states of a sys-
tem. They can be identified manually by the developer,
which enables the precise specification of the developer’s
personal state-based perception of the program. Another
option would be to automate the identification of potential
states via existing automated approaches (e.g. by inferring
axiomatic specifications [6, 4]).

3.2. Identifying Statements that Trigger Potential
State Transitions

Our technique is primarily motivated by the observation
that, for most state-based software modelling approaches,
it is straightforward to map state transitions in a state ma-
chine to particular statements in the source code. The type
of statements that trigger a potential state transition depends
on the state-based model that is employed. Identifying them
is however so straightforward that this step can (in most
cases) be fully automated. As an example, in UML state
charts transitions are triggered by calls to methods. Because
a state change occurs as the result of a method call, we want
to know how that method affects the state of the system; we
want to observe the state of the system once the method has
executed. Consequently, for now, the statements that trig-
ger the state transitions can simply be interpreted as the last
statement of every method body.

Ultimately however we aim to use our technique to con-
struct a more elaborate state-based model (Bogdanov’s ob-
ject machine model [1]), which is particularly useful for
testing the responses of an object to various types of trig-
gers. Bogdanov’s model is designed to facilitate the thor-
ough state-based testing of communication between ob-
jects. It extends the UML model described above by in-

creasing the number of potential triggers that can affect the
behaviour of an object. Besides method calls, the behaviour
of objects his state-based model also allows for inputs via
thrown exceptions (i.e. if a collaborating object throws
an exception it may activate some catch clause in the ob-
ject). The extended model also allows for the variation of
behaviour according to the values returned by collaborator
objects (e.g. if a boolean accessor method is called in a
collaborating object, our object may vary its behaviour de-
pending on whether a true or a false value is returned).
If we adopt Bogdanov’s more elaborate model, the process
of extending the set of statement types that trigger state
transitions is straightforward. If a transition is caused by
a method call, the trigger of the transition is still the last
statement of every method, if the cause is a thrown excep-
tion, the trigger is the last statement of every catch clause,
and if the cause is a return from a method call, the trig-
ger statement is simply the statement after every method
call. Although Bogdanov’s model is more complicated than
the conventional state-based object model, these additional
statements can all be identified automatically by analysing
the control structure of the code.

Although we are adopting the straightforward conven-
tional state-based object model in this paper, we want to
stress the flexibility of this technique for adopting more
complicated models. As long as state transition triggers
can be mapped to specific control structures in the source
code (e.g. method calls or catch blocks), extending our
technique is a relatively straightforward task. This makes it
particularly suitable as a basis for experimenting with new
state-based models, for the sake of assessing their utility for
testing and comprehension.

3.3. Identifying State Transitions by Symbolic Exe-
cution

For this step we use the set of ‘trigger’ statements identi-
fied previously, along with the set of abstract states, to deter-
mine which state transitions are feasible. For each feasible
transition we also obtain the source code that is responsi-
ble for its execution via program conditioning. The steps
that are described in this subsection correspond to steps 4,
5 and 6 (see figure 3). We use the symbolic execution tree
to ascertain the following three properties: (1) potential se-
quences of state transition trigger points, (2) the abstract
states at these transition points and (3) the source code that
governs a state transition between a pair of transition points.

First the trigger statements that have been highlighted in
the previous step have to be mapped to nodes in the sym-
bolic execution tree (step 4 in figure 3). This may be a
one-to-many mapping, as a single statement may be exe-
cuted multiple times. We assume that this mapping can be
established via the symbolic executor (i.e. it is possible to
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determine from within the symbolic executor whether the
current statement corresponds to a trigger statement such as
a method call). Once this is done, we use the symbolic vari-
able values at every marked symbolic state s in the symbolic
execution tree to identify its respective abstract state A(s)
as supplied by the developer (step 5 in figure 3). Using the
annotated symbolic execution tree, we can now determine
which states occur in sequence. This is accomplished by
traversing every possible path in the tree, identifying every
consecutive pair of trigger states as they are encountered
(step 6 in figure 3). For every pair of consecutive trigger
states (s, t), we store the state transition A(s) → A(t).

Once a state transition has been identified in the sym-
bolic execution tree, it is relatively straightforward to iden-
tify its corresponding state transition function (i.e. the
source code that is responsible for the state transition).
Given a pair of marked states in the symbolic execution
tree, the state transition function corresponds to the source
code that is executed between them. Because there is a di-
rect mapping from states in the symbolic execution tree to
statements in the source code, the statements can be readily
identified by simply traversing the symbolic states between
a pair of trigger points. If there is a branch statement and
both branches end up in the same state, this can result in
two different state transition functions for the same transi-
tion (each function corresponding to a branch). These can
simply be unified as a single function.

The above process of identifying transition functions is
akin to program conditioning (see section 2). Program con-
ditioning conventionally involves the manual insertion of
assert statements, which contain conditions on program
variables at specific points. Our approach differs from con-
ventional program conditioning. Instead of specifying a sin-
gle program point and a single set of variable constraints,
we supply multiple program points (transition trigger state-
ments) and multiple sets of variable constraints (program
states). Instead of producing a single constrained path
through the source code, our approach produces multiple
paths, which serve to indicate how the program behaves in
terms of the criterion states.

4. Implementation and Example

To establish the feasibility of the approach presented in
the previous section, it was implemented as a small exten-
sion to the Java PathFinder model checker. The implemen-
tation details are contained in the following subsection. The
example in section 4.2 illustrates how our extension can
be used to reverse-engineer the state machine for a binary
search tree implementation in Java. Section 4.3 illustrates
how the information provided by our approach is useful for
software comprehension and debugging.

4.1. Implementation

Our implementation is designed to compute the possi-
ble state transitions of an object in Java (the approach itself
is not restricted to this level of abstraction). It is built on
top of the Java PathFinder model checker and its symbolic
execution extension [10]. The model checker enables us
to exhaustively execute the program (in practice we restrict
the Java PathFinder to considering call strings of a limited
length). The symbolic execution extension ensures that the
program executions as executed by the model checker are
feasible and also enables us to identify those statements that
control a given state transition (i.e. they belong to the state
transition function).

The implementation currently requires the class under
analysis to be instrumented in two steps (this is relatively
straightforward and can be largely automated): First, an ab-
stract class (StateBasedObject) is inserted so that it is ex-
tended by the class under analysis. StateBasedObject con-
tains the logic that is necessary to derive the abstract state
from the current symbolic variables. Second, each state-
ment that corresponds to a transition point in the class under
analysis is instrumented so that it returns the abstract state at
that point to our tool. To use the symbolic execution exten-
sion to Java PathFinder, the program has to be instrumented
further by using a standard set of automatable transforma-
tions [10]. The instrumentation process is elaborated in the
example in section 4.2.

Section 3 conceptually described our technique as using
an existing symbolic execution tree to compute state tran-
sitions. This separated the process of identifying the tran-
sitions from computing the tree, which is implemented by
Java PathFinder and is beyond the scope of this paper. In
our implementation the transitions are discovered ‘on the
fly’, as the symbolic tree is constructed.

PathFinder provides several classes that make it possi-
ble to monitor the process of tracing along each execution
path. As the model checker searches through the set of pos-
sible program executions, every time a search event occurs
(e.g. a new state is discovered, or it backtracks etc.), it noti-
fies any observers. Our approach has been implemented as
a search observer. Every time a new (symbolic) state is en-
countered, our observer checks whether a trigger point has
been encountered (i.e. whether it is instrumented to feed
back the current abstract state to our tool). If this is the case
its abstract state is read from the annotated symbolic state,
state transitions are added from the previous abstract state
to the new state, and the new abstract state is stored until
a newer abstract state is encountered, where the process is
repeated.
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BSTree(BSTNode)
insertNode(BSTNode)
find(int)
remove(int)

BSTNode(int)
getLeftChild()
getRightChild()
findNode(int)
insertNode(BSTNode)
setLeftChild(BSTNode)
seltRightChild(BSTNode)

parent:BSTNode
left:BSTNode
right:BSTNode

BSTNoderoot

parent

BSTree

root:BSTNode

Figure 4. Binary search tree classes

StateBasedObject

checkState(stateVariables)

BSTree

root:BSTNode

Populated: root!=null

Empty: root=null

Figure 5. StateBasedObject contains logic to
detect the current abstract state of BSTree

4.2. Obtaining Transitions and Transition Func-
tions for a Binary Search Tree

Now that we have described the technique and its imple-
mentation, we will demonstrate it on the binary search tree
example1 that was used in the introduction. The BSTree

class provides the interface methods for manipulating or
querying the tree and contains a pointer to the root node
of the tree. The BSTNode class implements the nodes of
the tree, and each node contains a pointer to its left node
(containing a node with a lower value) and its right node
(containing a node with a greater value).

First we must determine the set of states that are of inter-
est. For this example we suppose that the developer is inter-
ested in the system simply in terms of whether it is empty
or populated. These must be expressed as conditions on the
state variables for the object (its attributes) as shown in fig-
ure 5. The checkStatemethod implements these conditions
and returns a string that gives a name to the current state.

Having established the logic that is responsible for iden-
tifying states, we identify the trigger points in the source
code for potential state transitions. For this example we as-
sume that state transitions are simply triggered by method
calls. Because we are interested in the state of the sys-
tem once a method has been executed (i.e. how a trig-
ger affects the state of the system) the trigger points are

1The binary search tree source code is too large to include in its entirety.
It can however be downloaded along with its instrumented version from
http://www.dcs.shef.ac.uk/~nw/autoabstract/downloads.html

1: public SymBSTNode find(Expression val){
2: if(root != null){
3: SymBSTNode result = root.findNode(val);
4: Verify.setAnnotation("find(val) -"+

checkState(root));
5: return result;
6: }
7: Verify.setAnnotation("find(val) -"+

checkState(root));
8: return null;

9: }

Figure 6. Example of the fully instrumented
BSTree.find(int) method

the last nodes of the control flow graph for each method.
At the trigger points we need to relay the current abstract
state to the model checker. To establish the state, a call
to StateBasedObject.checkState is inserted, sending the
current symbolic values as parameters. The state is returned
as a string, which we use as a label for the current symbolic
state by passing it to our tool via PathFinder’s Verify class.

Figure 6 shows an example of the BSTree.find(int)

method. It is instrumented for the symbolic executor (for
example, it takes an argument of type Expression instead of
int). The details of the instrumentation required for sym-
bolic execution in Java PathFinder are provided by Visser
et al. [10]. The most important instrumentations with re-
spect to this work are statements 4 and 7. These are the
last control points in the method (the trigger points) and
serve to send the current state to the model checker (via
the Verify class). As an example, if the destination of
the last encountered state transition was the Populated
state, and abstract state at the new trigger point is anno-
tated as (Empty, removeNode), the resulting transition is

Populated
removeNode→ Empty.

Now that the first two stages (identifying states and
identifying state transition points) have been completed,
the program must be symbolically executed so that the
state transitions can be identified. This involves sym-
bolically executing every possible permutation of calls to
BSTree.find, BSTree.insert and BSTree.remove (up to
a specified limit). This can be achieved with the model
checker (the approach is documented by Visser et al. [16]),
by forcing the model checker to search through each per-
mutation, automatically backtracking once each execution
has been exhausted.

Transition functions are obtained by determining the set
of statements that are executed between a pair of state tran-
sition points. A single pair of transition points corresponds
to a single path in the transition function. If the transition
function contains a branch statement, the complete transi-
tion function is the union of multiple paths between the
multiple symbolic states that correspond to the same ab-
stract states. In our implementation we map each transition
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Empty
find→ Empty (a) Populated

find→ Populated (b)
BSTree.find(int val)

public BSTNode
find(int val){
if(root != null){}
return null;

}

BSTree.find(int val)

public BSTNode find(int
val){
if(root != null){
return root.findNode(val);

}
}

BSTreeNode.findNode(int val)

public BSTNode findNode(int
val){
if(val<this.value){
if(left!=null)
return

left.findNode(val);
else return null;

}
else if (val>this.value){
if(right != null)
return

right.findNode(val);
else return null;

}
return this;

}

Empty
insertNode→ Empty (c)

BSTree.insert(BSTNode node)

public void insert(BSTNode
node){
if(root != null){}

}

(cropped unconditioned version) ↓
public void insert(BSTNode
node){
if(root != null){
root.insert(node)

}

}

Figure 7. Transition functions

function to a set of basic blocks in the source code. Each
time a given state transition is encountered in the symbolic
execution tree, its transition function is united with any ad-
ditional basic blocks that have been identified by other pairs
of trigger points that correspond to the same (abstract) state
transition.

4.3. Understanding the State Transitions of the Bi-
nary Search Tree

In the introduction we noted that although existing state-
based reverse engineering techniques can identify the states
of a system, they provide little information about the nature
of the state transitions. Therefore they provide little infor-
mation about the behaviour of the system as a whole. Our
technique provides this behavioural information in terms of
the state transition functions.

This subsection demonstrates how the state transition
functions by our technique are useful for understanding and
debugging software from a state-based perspective. We
demonstrate this by answering the two questions about the
behaviour of the binary search tree from the introduction.
To recap, the two questions were:

“How does the transition Empty
find→ Empty differ

from Populated
find→ Populated?”

and
“Tests indicate that the transition Empty

insertNode→
Populated is missing, where is the fault?”

Here we demonstrate how transition functions help to
answer these questions. The relevant functions are all pre-
sented in figure 7.

Answering the first question, the source code in (a)
shows that although it is possible to call the find function
when the tree is empty, it will simply return null. The source
code in (b) shows that if the tree is populated, a call to find

will traverse the tree until it finds the node that corresponds
to the value provided, or return null if it finds nothing. Note
that in (a) the body for the if condition is empty because the
program conditioner has determined that it cannot be exe-
cuted for this state transition.

The second question is particularly interesting, as the
example stems from a genuine fault in the source code.
We discovered it because the state transitions that were re-
verse engineered did not match the transitions we predicted
(see figure 1). In the Empty state, the insert state transi-
tion remained in the Empty state instead of the Populated
state. To investigate why this is the case, we can analyse the
transition function that is triggered by calling insertNode

in the Empty state. By analysing the Empty
insertNode→

Empty transition function in (c), the reason becomes im-
mediately apparent; the insertion of a node is guarded by a
condition ensuring that root is not null. If root is null (as
is the case when the tree is empty), the insert method does
nothing. The programmer has forgotten to insert an else

clause that stores the inserted node as the root if the tree is
empty. Although this example is relatively simple, it still
demonstrates that our approach is particularly useful for de-
bugging by improving traceability between the design and
implementation.

5. Evaluation

The previous section shows how we implemented the ap-
proach and used it to reverse engineer the state transitions
for a binary search tree. This demonstrated that the tech-
nique is feasible. However as the approach relies on sym-
bolic execution, which is generally perceived to be expen-
sive, the evaluation in this section is intended to provide
some insight into the performance of our technique. The
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Methods Complexity MethLOC

SimpleStack push, pop 1.75 19

LinkedList
add, get,
remove,
size

1.1846 (6
loops)

61

BSTree
insertNode,
removeNode,
removeMax,
find

3.294 223

Figure 8. Systems with the mean cyclomatic
complexity per method and MethLOC

results in this section are preliminary, and can only serve as
an indicator of the technique’s performance and scalability.
Our future work (section 7) will involve a more comprehen-
sive evaluation that will also evaluate other factors, such as
the soundness of the technique and the practical applicabil-
ity of the technique to software testing and comprehension.

There are two main factors that impact on the scalability
and performance of our approach. The most significant fac-
tor is the size of the symbolic execution tree; if the subject
system is complex, with a large number of branches, the
symbolic execution tree will be large. This in turn affects
the amount of time our approach takes to traverse the tree.
A further important factor is the number of times a trigger
point is encountered in the tree. Each time such a point is
encountered, the conditioned segment of the program has to
be extracted as part of the transition’s function.

To obtain an idea of how these two factors impact our
technique, we have selected three small programs. These
are listed in figure 8 along with their cyclomatic complexity
and the number of non-comment / non-blank lines of code
belonging to methods (MethLOC2). The cyclomatic com-
plexity metric lists the average number of individual paths
through each method. This provides a crude indicator3 of
the expense of the symbolic execution, which has to take
every permutation of paths through all of the methods into
account. SimpleStack is the system that was introduced
in the previous section. LinkedList is particularly inter-
esting because of its extensive use of for and while loops,
which tend to be particularly challenging for symbolic exe-
cution. BSTree is an implementation of a binary search tree
(a corrected version of the one considered in the previous
section) and is larger than the other two, containing many
nested branches.

Results were collected by symbolically executing the

2Metrics were collected by using the Metrics Eclipse plugin
(http://metrics.sourceforge.net/).

3Note that, as it is based upon the control flow graph, it does not dis-
tinguish loop predicates from conventional if statements and therefore
makes the (false) assumption that each loop is executed only once.

systems with method sequences of length N , where N
ranged from 1 to 4. For every value N the symbolic execu-
tor would exhaustively explore every possible permutation
of N method calls. We measured the amount of time re-
quired, the number of states in the symbolic execution tree,
the amount of memory consumed and the number of pairs
of trigger nodes that were encountered in the symbolic exe-
cution tree. These results are presented in figure 9. A loga-
rithmic scale is used to make it easier to distinguish between
the lower values.

The results indicate that the space and time required by
our approach increases exponentially as N increases. For
complex systems with multiple branches and loops our ap-
proach rapidly becomes unpractical for long method se-
quences. It should be noted that no significant attempts have
been made to optimise the performance of our tool in any
way. A significant part of our future work is to investigate
ways to limit the expense incurred by the symbolic execu-
tion (see section 7).

6. Related Work

Section 6.1 puts this work into the context of existing
approaches to reverse engineer state-based specifications.
Section 6.2 discusses this technique in the context of pro-
gram conditioning and symbolic execution.

6.1. Reverse-Engineering State-Based Specifica-
tions

There exist several approaches to reverse engineering in-
variants and axiomatic specifications from software. They
provide (potential) software states that may be of interest to
the developer. These states can then be used as input states
for our technique, which discovers how they are related to
each other. For this reason the technique that we presented
in this paper complements these techniques.

Ernst et al. [6] have proposed a dynamic approach for
reverse engineering axiomatic specifications. Chen et al.
[4] note that dynamic approaches are, by virtue of being
dynamic, only representative of the set of program execu-
tions they are based upon. They propose a technique to
derive axiomatic specifications via symbolic execution in-
stead. A single symbol represents all of the possible val-
ues of the (concrete) variable it represents in the program,
which makes it suitable for summarising multiple program
executions. As a result they claim that the results produced
by their technique are more sound than other dynamic ap-
proaches.

There have been few attempts to reverse-engineer state
machines from software (i.e. state transitions in addition
to the states themselves). Kung et al. [12] developed a

8



Figure 9. Results from Performance and Scalability Study (logarithmic scale)

technique that is based on symbolic execution to reverse-
engineer state machines from an object-oriented system.
They provide an automated technique to identifying the sys-
tem states. They do not consider abstract states that are
composed of multiple variables. Whaley et al. [17] de-
scribe a system to extract component interfaces as state ma-
chines to drive testing. They take a more control-centric
view of the state of an object and describe it in terms of
the method being executed as opposed to the variable val-
ues. Yuan and Xie [18] describe a dynamic technique to
reverse engineer an object-state machine. They then use an
‘abstraction function’ to reduce the complexity of the re-
sulting state machine, by mapping multiple concrete states
to a sensible set of abstract states.

The key difference between all of those techniques and
the technique that is presented in this paper is the fact that
our technique considers how the states are related. Instead
of simply indicating what the states are, and whether it is
possible for one to reach the other, our technique specifies
when and why states interact with each other as a transi-
tion function. It is this shift in emphasis from states to state
transitions as the principle entities in a state machine that
underpins our ongoing research into the use of more ad-
vanced state-based representations such as X-Machines [8]
and Abstract State Machines [2].

6.2. State-Based Program Conditioning

Program conditioning has become established as a
means for specialising a program to increase the accuracy of
static analysis techniques such as conditioned code slicing
[3, 5]. Conventionally a program has been conditioned with
respect to its inputs. Fox et al. [7] have more recently pro-
posed the use of ‘backward conditioning’ as a means to im-
pose conditions on the values of variables at arbitrary points
in the program. Each approach requires a set of conditions
as well as a point where these conditions are true (in con-
ventional conditioning the point is implicitly the start of the
program).

Our technique is a state-based approach to program con-
ditioning. Once we have observed that state transitions can

(usually) be tied to particular points in the source code, the
user no longer needs to supply the point(s) in the source
code that are of interest. All they have to do is supply the
abstract states. This is particularly beneficial when the user
is not intricately familiar with the system at a source code
level.

7. Conclusions and Future Work

This paper presents a technique for reverse engineering
transitions from source code. It uses program conditioning
to identify branches of source code that are responsible for
the execution of a particular transition. This allows a de-
veloper to determine which states of the system they are in-
terested in, and our (largely automated) technique will state
whether or not, and in what manner, these states are related
to each other. This is particularly useful for software test-
ing, documentation and comprehension.

We have implemented our technique as an extension of
the Java PathFinder model checker, and used it to gather
some preliminary data about its performance. The results
demonstrate that our technique is feasible, but also show
that the technique becomes very expensive as the subject
program increases in complexity. This is largely down to
an inherent weakness of symbolic execution; namely that it
becomes expensive in the presence of nested branches and
loops.

We have not seriously attempted to optimise the perfor-
mance of our tool yet and believe that there is much poten-
tial in this area. A key problem with respect to poor perfor-
mance in symbolic execution is the presence of unbounded
and potentially infinite loops. There are three approaches
that we aim to investigate:

1. Inferring loop invariants from symbolic executions
(this has already been investigated by Pasareanu et al.
[15]).

2. The use of loop squashing program transformations to
replace loops with simple conditionals (this is based
on work by Hu et al. [9] with respect to amorphous
program slicing).
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3. The use of slicing to restrict the program to what is
relevant.

Currently the approach presented in this paper relies on the
existence of a suitable set of system states. The benefit in
this is that the resulting state machine is presented in the
developer’s terms; transitions are reverse-engineered at a
useful level of abstraction, producing results that are eas-
ier to inspect. The downside however is that the developer
requires prior knowledge about the system and its potential
states. We will investigate the automation of state discovery,
thus minimising the requirement for prior system knowl-
edge. We will investigate the combination of our technique
with existing state discovery tools, such as Daikon [6].

We need to investigate the soundness and precision of
the transitions produced by this technique, especially if we
use techniques such as invariant detection to impose upper
bounds on loops. If the upper bounds set on loops is not
sufficiently high, the model can omit state transitions. If on
the other hand the symbolic execution considers too many
infeasible paths (e.g. because of the inability to handle
non-linear proofs), the model can end up being too large,
compromising the integrity of a resulting test set.

Ultimately we aim to use our technique as part of a larger
framework that enables the developer to use this technique
as a basis for reverse-engineering a state-based view of the
system at an arbitrary level of abstraction. In line with the
X-Machine method [8], state transition functions can them-
selves be expressed as X-Machines. This results in a func-
tional hierarchy for the entire system, which can be sub-
jected to established state-based testing techniques.
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