Reverse Engineering State M achines by I nteractive Grammar | nference

Neil Walkinshaw, Kirill Bogdanov, Mike Holcombe, Sarah Saliddin

Regent Court, 211 Portobello Street, Sheffield S1 4DP
E-mail:{ n. wal ki nshaw, k. bogdanov, m hol conbe, s. sal ahuddi n} @Ics. shef. ac. uk

Abstract ous (and potentially automated) state machine-baseddesti
techniques can rarely be exploited and are instead replaced
Finite state machine-derived specifications such as X- by inferior ad-hoc techniques.
Machines, Extended Finite State Machines and Abstract srammar inference aims to identify the grammar for a

State Mach_lnes, are an established means to quel S°ﬁ1anguage, given a sample of word sequences that belong to
ware behaviour. They allow for comprehensive testing of an 5, (optionally) do not belong to the language. In prac-
implementation in terms of its intended behavi_our._ln Prac- tice grammar inference has a broad range of applications
tice however they are rarely generated and maintained dur- ey ond its original field of natural language acquisition. A
ing software development, hence their benefits can rarely beregular language can be represented by a finite state ma-
exploited. We address this problem by using an interactivechine, and the provided sample of sequences can be inter-
grammar inference technique to infer the underlying state preted as sequences that are either accepted or rejected by
machine representation of an existing software system. Thnat machine. Because state machines can model the be-
approach is interactive because it generates queries to thepgviour of large variety of systems besides regular languag
user as it constructs a hypothe_sis machine, V_/hich can be in'grammars, grammar inference techniques can be used to
terpreted as system tests. This paper describes (1) how afyeniify the underlying state transition structureaofy sys-

existing grammar inference technique (QSM) can be usedie that can be represented as a finite state machine.
to reverse-engineer state-based models of software frem ex

ecution traces at a developer-defined level of abstraction P T€Vious software engineering research recognises the
and (2) how the QSM technique can be improved for a bet- apparent link between the aforementioned absence of state
ter balance between the number of tests it proposes and thdnachine models of software systems and the possibility
accuracy of the machine it derives. The technique has beerP 9enerating them automatically with grammar inference
implemented, which has enabled us to present a small casd€chniques. Duporgt al’s QSM state-merging approach

study of its use with respect to a real software system, alongl®: 8] takes as input an initial sample of manually gener-
with some preliminary performance results. ated scenarios from the user, and uses these as a basis to

interactively generate a state machine of the system. The
QSM approach is primarily intended to help automating the
. generation of (web-) applications, where it is reasonable t
1. Introduction expect that the developer can be coerced into manually gen-
erating a set of scenarios. In our case however, where we
Perceiving software as a state machine enables a develpresume that the system has already been developed and the
oper to design, document and rigorously test a program inspecification serves the purpose of testing and inspegtion,
terms of its behaviour. States characterise the behaviour ois unrealistic to expect the user to (a) have developed any
the system at a particular point in its execution and transi- specifications in the first place, and (b) have kept them up
tions, which are triggered by system functions, lead from to date. Hungaet al's approach [14, 13] is more suitable
one state to another. Despite their apparent benefits, then that respect; it takes a set of program traces as input and
wide-spread adoption of state machines in software engi-uses an optimised version of Angluin’s L* algorithm [1] to
neering has been hampered by the fact that they are rarelynfer the machine. The use of program traces eliminates the
produced and maintained in the first place. This is usually need for an initial set of manual scenarios because these are
due to the facts that (1) software development is usually generated automatically from a set of program executions.
conducted under restrictive time constraints and (2) the dy However, the L* technique by itself requires a substantial
namic nature of software evolution makes it difficult to keep amount of guidance from the developer and the optimisa-
designs and documentation up to date. As a result, the rigortions they employ to reduce the guidance are tied to a rel-

atively specific application domain (they take advantage of L given a set of sample sequences The set of samples

symmetry and partial-order properties that arise from the must contain a set of positive samplg$ that belong to

distributed and concurrent nature of their phone system). the language and can optionally contain a set of negative
This paper builds on Hageret al’s idea of using exe- samplesS~ that do not. So, denoting as the alphabet
cution traces as an input for grammar inference techniques.of L andX* as the set of all finite sequences o¥&rS =

However instead of using Angluin’s L* technique, it uses S* U S~ whereST™ C L andS~ C ¥*\ L. WhenL

Dupontet al’'s QSM technique which, by placing stronger is a regular language, its grammar can be represented by a

requirements on the set of initial samples than Angluin’s deterministic finite automaton (DFA) and the problem can

technique, requires less guidance and has thus been showbe re-interpreted as one that aims to identify the DFA that
to scale relatively well to systems with large numbers of producesL. This is a particularly suitable representation
states. The paper presents a number of improvements tdor inference algorithms, because of the fact that (a) there

Dupontet al’s technique, which further reduce the amount exists a single minimal DFA for any regular language, and

of guidance required. The main contributions of this paper (b) there exist a host of efficient DFA algorithms for tasks

are as follows: such as minimisation and removing non-determinism [12].
A number of techniques have been developed that at-

tempt to solve the above problem. Angluin’s L* technique

[1] for example uses$™, S~ andX to construct queries of

e The integration of the technique into a testing frame- Various types that systematically explore the target syste
work; whereas the QSM technique conventionally re- behaviour, and in the process constructs a complete DFA for
lies upon a human oracle to answer questions about thethe system. This has successfully been applied to a variety
system under analysis, in our context these questionsof software-engineering problems (c.f. [14, 13, 18]), kst i
can be posed as system tests. often limited by the demands it places on the user. Because

of the fact that it will always systematically infer the com-

e A number of improvements of the QSM technique, plete automaton, there is no upper bound on the potential
which improve the ability to generate more accurate nymper of membership queries, which can in practice ren-
machines with less input. der the technique impractical. As an example, Hurega.

[13] observed that without their domain-specific optimisa-

tions, the number of queries for a four state system using L*

was 108, which rose to 15425 for 28 states.

e A tractable approach to reverse engineering state ma-
chines from execution traces.

e Animplementation of the technique, along with a case
study that shows how to reverse engineer a state ma
chine from the open-source JHotDraw drawing frame-

work.

, , 2.2, State Merging
Besides the case study, we have obtained some preliminary

results that investigate the scalability of our technigoe t
inferring large state machines. These show that, at least An alternative approach to Angluinkx technique is to

for the class of machines considered herein, the techniqueShnct the emphasis from the oracle that provides input dur-

. . s ing the learning process to the quality of the initial set of
scales to relatively large systems without requiring a sub- : . .
" . . sample sequencés State merging techniques require less
stantial increase in the amount of input from the developer

or system tests guidance from an oracle, but can still produce an accurate
' state machine on the condition that the initial set of sample
S covers enough of the target machine. If this is the case,
2. Regular Grammar Inference and the QSM the process of generating the hypothesis machine simply
Technique consists of generalising from set of samples that has been
provided, without working out which elements of machine
This section introduces the problem of grammar infer- behaviour might have been missed out. Because the process
ence, along with some of the approaches that have beens purely one of generalisation, the number of membership
used to address it in the past. A more detailed introductionqueries is bounded by the size of the initial sample
is provided of the state merging techniques, specifically th State merging techniques usually take as input an ‘aug-
QSM technique which we have used in our implementation. mented prefix tree automaton’ (APTA) constructed frSm
where the common prefixes for each sequence lead to the
2.1. The Grammar Inference Problem and same branch node, and every unique suffix leads to a leaf
its Solution node. Nodes are labelled as either positive or negative, de-
pending on whether the corresponding sequence belongs to
The problem of grammar inference, as first identified by S or S—. Figure 1 illustrates the APTA for a set of se-
Goldin his fundamental paper [10], is to identify a language quences that correspond to executions of a simple text ed-

St = {<load,edit, edit, save, close >,
< load, edit, save, close >,

Algorithm QS M
< load, close,load >} gorithm Q

-~ Input Sets of accepted and rejected sequelises, S)
S”= {< close >} Output A minimal DFA A consistent with an extended collectiofi*, S ™)
Uses initialState(A) Returns the initial state oft
generate APT A(S, S’) Generates an augmented prefix tree acceptor
from S andS’

selectStatePairs(A)Uses the Blue-Fringe EDSM approach to select

merge candidates from (see below)

Figure 1. Aug mented preﬁx tree automaton merge(A, q, ¢')Merges nodeg andq’ in A, and ensures that the result-

with associated sequences ing machine is deterministic
compatible(A, ST, S)Checks thatl is consistent withs "and .S~

generateQuery(A, A’) Returns a set of questions ovdr that cannot

itor. The APTA is not minimal and presumably, sinfds be classified as accepted or rejectedy
only a sample of the target language, does not correctly ac- checkW ith EndU ser(query)Retums true if the query is accepted, and
ceptorreject every sequence in theConsequently it is the false otherwise

algorithm’s task to generalise and minimise the APTA by Dedare Test: sequence imd which (in this context) corresponds to a test sequence
strategically selecting nodes to merge. One inherent dange A «— generateAPTA(S™,57)
is th h i iaht b | It init < initialState(A)
is t _att e merging process might be over-zealous, result-foreach (g, ¢') — selectState Pairs(A) do
ing in a machine that is too general, accepting too many A’ < merge(A,lq,{)
. if compatible(A’, ST, S7) then
sequences that would be rejected by the actual system. foreach query < generateQuery(A, A’) do
if checkWithEndU ser(query) then
St — 5T U query
else
. . ST «— ST Uquery
State merging algorithms are guaranteed to produce the return QSM(S+, S-)
target automaton if the training data is exhaustive (i.@-co A — A’
tains all input sequences up to a sufficient size). Their pop-return A
ularity is however due to the fact that they also produce
reasonably accurate results for incomplete or sparse samaigorithm selectState Pairs
ple sets [15]. In fact, if the training set is not exhaustive, nput AutomatonA, initial stateinit
the target machine will still be produced if the training@lat ~ output Ordered sePairs of state pairs ordered by their score

is characteristicof the machine [20], i.e. there is enough uses computeBlue(A, R)retumns the set of states that are neighbours of states

training data to reach every state, as well as differentiate in Rin A but do not themselves belong B

between any pair of non-equivalent states. computeScore(A, q, ¢')Computes the suffixes fa andq’ and incre-
ments the score for every overlapping transition label ia tivo suffixes.

2.3. The QSM Algorithm Returns— oo if the target states for any overlapping suffix transitioasé

different labels ¢ or —) because this implies an incompatible merge.
. . . Declare Blue: set of states
Dupontet al’'s QSM algorithm [8] is a state-merging al-
gorithm with two features that make it particularly appeal-
ing. It employs a sophisticated search mechanism to selectpqirs — ¢
i . 1 inR «— init

candld_ate nodes to merge, f_;lnd prevents over generalhsanoforeach blue « computeBlue(A, R) do
by posing membership queries to the end-user wheneverthe ,,ergabie — false
resulting machine may accept or reject sequences that have foreachr € ki do

score «— computeScore(A, blue, r)

not been ratified by the user. The pairs of merge candidate if score > 0do
states are selected by using the Price’s ‘Blue Fringe’ state mergable « true

Pairs < Pairs U (score, (r, blue))

score: integer

mergable:boolean

merging algorithm [16]. Every time a new hypothesis ma- it ~mergable

chine is generated, any strings that are accepted or rdjecte R = RUblue

by the new machine and are not handled by the previousreturn Pairs

machine are posed as questions for the user to ratify. Figure 2. QSM and merge candidate selection

Figure 2 provides both the QSM algorithm and and aigorithms
Price’s state selection algorithm. The algorithm is based
on Dupontet al’s description [8], which can be referred to
for further details. Given two set§* and S~ it starts by

The blue-fringe technique tags states that cannot be
merged as red, and tags all adjoining non-red states as blue.
The aim is to identify and merge the most suitable pairs
first, to minimise the possibility of carrying out an invalid

close

° load

’ ' : ond merge. The order in which pairs of states are merged is
:: ‘ decided by first evaluating every possible pair of red-blue
Pair | (1,3) (0,4 (©0,3) 1,49 23 (249 merges via theomputeScore function. If a blue state can-
Score | 3 1 0 0 0 -00 not be merged with any red stat@f{uputeScore returns a
negative value), it is upgraded to a red state and the process
Figure 3. lllustration of the blue fringe with is repeated. Figure 3 shows the pool of merge candidates
respect to the APTA in figure 1 along with their scores for the APTA in figure 1. P&lr, 3)

has the highest score, because a pathiit, save, close >

can be followed from both of them; the merging algorithm

. , , would attempt this pair first, because the available evidenc
co_nst,ructmg th? augmented Pq'@ee flgurg 1). 1t |.nvokes suggests that they are most likely to be equivalent states.
Price’s Blue-Fringeselect State Pairs function, which re- _Pairs(2,3) and (2, 4) receive negative scores because the

tur_r;sbz?ll_sett(r)]f s?atelpglrs E[hgt;rle Orde_lfﬁd ac;:\)/lrdlrg t?[r;‘he'rmerging process entails an accepting state to be merged
suitability (this is elaborated below). The Q algorinm - vith a non-accepting one (leading to a contradiction with

lterates thrqugh _t?]e hcarrwlfjlgate pairs in th.e ordgr OLsthﬁ'r S7). For further details on the Blue-Fringe algorithm and
score (Sta”'T‘g with t € nig est_ scoring pair), and ca ; N results on its performance in comparison with other state
merge function. Merging a pair of states may result in a merging strategies, the reader is referred to Labgl’s

non-deterministic machine, so theerge function is also - ;
: ; ’ S .__original paper [16] and Duport al's QSM paper [8].
responsible for ensuring that a non-deterministic machine g paper [16] P QSM paper (8]

is transformed into a deterministic one. If the resulting ma))) .
chine remains compatible with+and S~ (checked by the ~ 3- USINg QSM with Dynamic Analysisto Infer
compatible function), thegenerateQuery function pro- State Machines
duces a set of sequences that do not belon§'tar S,
but are part of the language of the new machine. In the con- The QSM approach has so far primarily been applied in
text of Dupontet al’s application, these are posed to the a software requirements engineering context, which does
end-user (as will be described in section 3, these queriesnot presume the availability of an existing implementation
can be formulated as tests for the implementation itsefif). | This work applies the QSM technique to the problem of
the query is accepted, the test sequence is addéd tthe reverse-engineering a specification from its implementa-
input machine is updated to the merged version, and the altion. The intrinsic benefit of applying the QSM technique
gorithm loops onto the next pair of candidate states. If it is in a reverse engineering environment is the fact that it does
unsuccessful, the merge is invalidated by adding the querynot rely as much on human input. Whereas Dupirdl.’s
sequence t6&—and@SM is called recursively with the ex- work [6, 8] relied upon the end-user to manually generate
tendedS™ andS~sets. an initial set of scenarios and to correctly answer the en-

As mentioned previously, theelectStatePairs is re- suing membership queries, the technique presented herein
sponsible for generating an ordered set of candidate nodesllows the user to initially provide a set of traces. Answer-
to be merged. An effective selection strategy is key to the ing membership queriesis also less error-prone, becaase th
efficiency of the algorithm. Conventional state merging al- query can be answered by directly executing the system.
gorithms such RPNI (Regular Positive Negative Inference) This section describes the technique in detail, and previde
[20] would order candidate node pairs in their breadth-first an overview of our implementation.
order, so for figure 1 the order of possible merges would The state machines considered in this paper form the ba-
be{(0,1),(0,2),(0,3)...(1,3), (1,4), (1,5)...}. Anumber sis of a number of established state-based modelling tech-
of much improved pair selection strategies have been de-niques, such as Extended-Finite State Machines (EFSMs),
veloped, one of which is the ‘Blue-Fringe’ technique [16], X-Machines [11], and Abstract State Machines [3]. Al-
which works by restricting the set of candidate pairs and ap- though this technique does not reverse engineer the data
plying a heuristic to order them in terms of their suitalyilit ~ constraints that are required to generate a complete specifi
cation, it does generate the underlying state transitircst

LIt should be noted that Dupont initially present & M algorithm as ture, which suffices for some of their most useful appli-
using just the non-augmented PTA, which is based only ortipesiam- — oatinns such as test set generation. The underlying state
ples. However, if the Blue-Fringeelect State Pairs is used, it requires a . L.
tree that is constructed from both positive and negativeptesr(see Lang ~ Machine can be represented as a labelled transition system
et al. [16] and Duponet al. [8] for details). (LTS), which can be represented as a 4-tugke X, 4, qo),

manual membership queries

2] abstraction 4. QSM: In this activity the QSM algorithm presented in
analyst Abstraction function % . . .
i‘ T 2 2 section 2 is applied to the sequences of abstract func-
T A . . .
Abstaction | spepactimaien . OV st st tions. One of the benefits of the availability of an ex-
% scenios Dynamic 14 sequences machine isting implementation is the fact that it is no longer the
nalysis Ly
source : sole responsibility of the end-user to act as an oracle.
code

The version presented herein alters the behaviour of
checkWithEndUser. Now, checkWithEndU ser
Figure 4. Combining dynamic analysis with !nterprets mgmbershlp_quenes as either tests for the
QSM implementation or queries that can be answered man-
ually. If interpreted as a test a trace can be generate
lly. If interpreted testat be g ted
from a membership query. If its abstracted sequence
of functions matches the membership query, it can be
where(is the set of states; is the set of inputs§ is the added taS™, otherwise it is added t§—.
transition function x ¥ — 2% andq is the initial state.
These modelling techniques can scale to complex system$.2, Implementation
by defining a set of system functions, which can encapsulate
potentially complex system behaviour. Instead of labgllin - & jmplementation consists of three components: dy-
transitions with simple symbols, these techniques lat®l th o mic analysis (activity 1) is carried out with the Eclipse
transitions with the abstract processing functions inktea 1ost and Performance Tools Platform (TPTRpstraction
Consequently, a series of transitions across the graph (a$nq trace analysis (activities 2 and 3) are carried out by a
might be specified by a test sequence for example) corre-gingje apstraction component and the QSM algorithm (ac-
sponds to the sequential execution of a series of abstrachvity 4) is implemented by dedicated QSM component.
system functions. While the TPTP tool could be used as-is, the other two com-
ponents were implemented by the authors.

tests (of membership queries)

3.1. Technique

Dynamic analysiswith TPTP The Eclipse TPTP frame-
The process of using QSM to reverse engineer a statework provides a range of tools for the dynamic analysis of
machine from a software system is shown in figure 4. The Java programs. Program executions can be monitored at
four main activities along with their respective inputs are various degrees of granularity. We use TPTP to record pro-
described in detail below: gram traces as sequences of method invocations, which are
recorded to an XML file.
1. Dynamic analysis. This activity is responsible for
generating a collection of system traces. The system isAbstracting from traces In this implementation, an
exercised according to a selection of end-user scenar-apstract function is identified as a pattern of method
ios that are supplied by the analyst. Depending on thecalls that occur in the trace. As an example, in the
desired level of abstraction, the resulting traces can ei- JHotDraw drawing framework from our evaluation, if
ther be sequences of method invocations or statementsthe pal ett eBut t on. mouseRel eased method is followed
For this paper and our implementation, by execution at some point by thefext Tool . activate (in the same
trace we mean a sequence of method invocations. call-stack), we can map that to thetivate_text_t ool
function. Depending on the desired level of abstraction
2. Abstraction: Ultimately, a reverse engineered state a method-level trace will not be sufficiently granular (iife.
machine will only be of practical use if itis constructed the execution of two abstract functions is distinguished by
at a level of abstraction that can be readily interpreted two branches through the same method). If this is the case,
by the analyst. The abstraction process serves to genthe trace and abstraction functions have to be generated at a
erate a function that takes as input a low-level program statement-level [22]. Each trace is abstracted in turnrEve
trace (produced by activity 1) and produces as output time a sequence of method calls is identified that belong to
an equivalent sequence of abstract functions. an abstract function (they needn’t be consecutive), theenam

of the function is inserted into the abstracted trace.
3. Trace abstraction: This activity applies the abstrac-

tion function identified in step 2 to the set of traces

generated by step 1. This results in a set of abstract
function sequences that serve as input for the follow-
ing step. 2http://www.eclipse.org/tptp/

The QSM component The QSM component takes as in-
put a set of positive function sequencés'j, and a set of

rejected sequenceST(). Asillustrated in figure 4, there are . ‘
two ways to answer membership queries (i.e. of identifying H‘@ @

whether a sequence belongs to the final state machine or ‘
not). Dupontet al’s approach relies on the user to manually

state whether or not the sequence is accepted. Because we pre-merge post-merge
can also treat the software implementation as an oracle, our Q = {abc, abd} Q=
implementation provides two means to answer membership {abc, abd, ac, ad}
gueries. For a given query, the user can either state explic- Conventional set of questions Improved set of
itly whether or not the sequence is accepted , or there is the questions

option to obtain an answer by means of testing the imple- .) .
mentation. If the user opts to answer the membership query Figure 5. lllustration of a merge, along with
by testing the system, they are asked to provide an XML the questions generated for the hypothesis
file (from TPTP) that corresponds to an execution of the se- machine

guence of abstract functions represented by the membership

qguery. The XML file is abstracted (step 3 in figure 4) and

the resulting abstract sequence of functions is checked to4. Evaluation

identify whether it contains the membership query as a sub-

sequence. If the membership query is not a subsequence of e use the JHotDraw framework as a case study because
the trace, the query is answered negatively. Ultimately, we it js openly available and has been used as the basis for a
look to fully automate this testing step for simple function nymber of other case studies. In this study we show how
sequences. to reverse-engineer its underlying state transition $tmec
During our implementation of the QSM algorithm, we jith respect to a specific set of abstract functions, along
have added a number of improvements over the original al-wjth their mappings to sequences of method calls. Section
gorithm, which improve its accuracy in a number of ways. 4.2 takes a more systematic approach to evaluating the ac-
These are summarised below: curacy of the technique. The purpose of this section is to

e Our implementation uses an improved question gen_show that the process of identifying a state machine using
eration technique. The aim of the questions is to, for ourtechniqu_e is feasible a_nd practical, and also to higilig
a pair of candidate nodes that are to be merged, iden-SOme of the issues that arise.
tify possible paths in the resulting machine that are not
explicitly accepted or rejected by the current machine. 4.1. Case Study
The conventional QSM technique constructs a list of
guestions by concatenating a prefix of the red node
with all of the suffixes of the blue nodes in the current
machine. However, this does not account for edges
that may appear in the hypothesis machine once the
machine has been minimised (by merging) and non-
determinism has been removed, and can result in in-
valid questions. Our improved approach generates the
guestionsafter the merge has been computed, by tak-
ing the prefix to the red node with any suffixes of the
merged state. The technique results in a more com-

prehensive set of questions and is illustrated in figure S€&rch projects. y
5. In this case study we concentrate on the specific be-

haviour of the JavaDraw application, that is included as
e Once the QSM algorithm is complete the resulting an example application in the JHotDraw release. A sim-
state machine may still contain invalid edges. Our ple state machine of its high-level behaviour, along with a
implementation enables the user to add negative se-screen shot of JavaDraw is shown in figure 6. It details the
quences that eliminate them. This can be achieved byprocesses of either adding a figure or a text box to the figure.
selecting a faulty edge — b. The implementation To reverse engineer the machine we start by extracting
then constructs a list of sequences by taking the prefix program traces from JHotDraw and constructing a set of
of a and concatenating it with all non-negated suffixes apstraction functions (in any order). The abstractionfro

from b. The user can select an invalid sequence, which sequences of methods to abstract functions are shown in the
is added taS—and the algorithm is restarted.

JHotDraw is a well established, open-source Java
framework for constructing drawing tools. HotDraw was
originally developed in the eighties by Cunningham and
Beck as a Smalltalk drawing editor framework. It was then
rewritten for Java as JHotDraw, and serves as a showcase to
illustrate the use of object-oriented design patterns.tJHo
Draw is particularly suitable as a case study because it has
been extensively explored in other software engineering re

Shttp://www.jhotdraw.org

figure_tool

set_dimensions

(b)

text _tool <Pal et t eBut t on. nouseRel eased, Text Tool . acti vate>
figure_tool <Pal et t eBut t on. nouseRel eased, CreationTool . activate>
set _position <Creati onTool . mouseDown>
edit <JText Conponent . car et Posi ti on>
finalize_textbox | <TextTool .deactivate, TextTool.endEdit, TextFi gure.setText>
set _di nmensi ons <CreationTool . mouseDr ag>

Figure 6. JavaDraw hypothesis machines and the abstraction s

table in figure 6. In theory, in order to guarantee that the only applies to figures in JHotDraw, not text boxes. This
resulting machine is an exact match, the user would be ex-information can either be supplied directly by the user if
pected to provide a set of inputs that is characteristic (i.e they have sufficient knowledge of the underlying system, or
covers every transition and differentiates between evaity p it can be posed as a system test. In the latter case we attempt
of non-equal states). In practice this is not always going to to execute the query and generate another trace with TPTP
be the case, and the QSM questions are designed to elicit am the process. The trace is then supplied to our tool, which
much of the missing characteristic set as possible. For thechecks whether the query is a subsequence of the supplied
case study the system has been executed four times, tracinggace or not, and answers the query accordingly.

the method calls with TPTP in the process. The resulting

XML files are processed in turn, and result in the following

abstract function sequences:

ti= <figure_tool, figure_tool, set_position,

set di mensi ons, set di mensions, set_di mensi ons, The resulting machine is shown in figure 6 (a). Closer

set_dinensions, figure_ tool, set_position, inspection reveals that, although the machine would cor-
set _di mensi ons> rectly accept all of the sequences of abstract functions, it
tp= <figure_tool, figure_tool, set_position, would also accept sequences that should be rejected in prac-

set_dimensi ons, set_di mensi ons, set_di mensi ons, tice. This is due to the fact that none of the questions man-

text_tool, set_position, edit> d to elicit ” i howina that the ed
t3= <text_tool, text tool, set_position, edit, age_ 0_8 ICIt a sequence of tunctions showing tha e edge
finalize textbox

finalize_textbox, text_tool> qa — ge is not valid, because it cannot be fol-
4= <text_tool, text_tool, set_position, edit, lowed by the functioret _di nensi ons. When such an edge
finalize textbox, figure tool> y . is observed once the learning process has finished, thg fault
The QSM algorithm, which was modified according 1o gqge can be selected, and the user is presented with a list

section 3.2, poses 44 queries. An example of such as queryy 5| apparently valid edge sequences (by taking the short-

might be: est prefix ofg, and concatenating all suffixes @f). Some

Is the sequence <text_tool, set_position, of these should be invalid, such astext_tool, text_tool,
set_dimensions, set_dimensions, set_dimensions, text_tool, set_position, edit, finalize_textbcset_position>. When a
set_position, edit> possible? sequence is selected from this list, it is addedtoand the

This query should be rejected at the first occurrence of algorithm is restarted, finally resulting in the correct ma-
set_dimensions, because the process of setting dimensionshine, which is depicted in figure 6 (b).

Number of Questions or Tests ply an equal number of accepted and rejected sequences,
e our study assumes that only positive sequences are supplied
Bz and relies on the question generation process to produce a
sufficient set of negative questions. Three sets of ten ran-
dom graphs of sizes =5, 25 and 50 states were generated,
25001 with an alphabet of six transition functions (previous $ami
evaluations have only used an alphabet of two). The graphs
are deliberately densely connected, with many state transi
tions labelled by multiple functions, in an attempt to syath

3500~

3000

Questions
g
i

1500 o

1000

. . sise state machines of relatively complex software systems
= +Q ﬁ *; .- iﬁ * “ ;i -F *F A training set of sizeln with distinct random sequences
o =" was generated, where the length of a sequence forms a
1000 2000 3000 4000 5000 6000 7000 8000 9000 100.00 rough|y uniform d|str|but|0r[0’ P + 5] Wherep is the depth

Learning Sample %

of the machine. The test set, which is used to measure the
accuracy of the hypothesis machine, was created in a sys-
tematic manner by using the W-Method [4] state machine

100- ﬁ Vﬁ *é I!é ‘m !_H !lq] testing technique (also ensuring that there was no overlap

Accuracy

between the test and training samples). For each random
graph, the inference algorithm was applied to 10%, 20% ...
100% of the4n samples. Each hypothesis was evaluated
in terms of (a) the number of questions that were asked to
reach the final solution and (b) the accuracy with respect to
the set of test sequences. Due to space restrictions we have
not included the exhaustive set of results, but try to quote
relevant results when appropriate.

Bearing in mind the complexity of the synthesised ma-
. i‘i chines (alphabet of size 6, large numbers of multi-function
I — =" transitions) and the fact that we start off with only postiv
R arming sample o samples, these preliminary results are encouraging. They
show that the technique is capable of producing relatively
accurate results from a sparse sample of initial sequences
(i.e. dynamic traces). The results for 5 states at 10% rarely
achieve an accuracy of above 80%, but this is primarily be-
cause they are only given two strings to start with. As the
number of initial strings increases, the accuracy improves
Given all4n input sequences the accuracy of the technique
4.2. Results and Discussion is consistently above 95%.
Depending on the complexity of the target machine and
The purpose of these results is to provide an insight into the initial sample of data, the technique can however pro-
the scalability and accuracy of the technique. The stan-duce a large number of questions, which are vital to ensure
dard process for evaluating state-merging grammar infer-that the inference step is correct. If answered autométical
ence techniques, which is inspired by Laagal's Ab- (by posing questions as tests to the system), this is reason-
badingo competition [16], is to generate random machinesable, particularly if the transition functions are govenirimy
of various sizes, along with a sample of random walks simple inputs that do not imply complex data constraints
across the machine. An equal number of accepted and reon the state of the system. However, if this is not the case
jected walks are used to infer the hypothesis machine, andand they require manual intervention, the technique could
a further sample of random walks in the target machine arebe rendered impractical for complex systems. There does
used to establish the accuracy of the hypothesis machine. however seem to be much scope for reducing the number
The performance study presented here differs slightly of questions. The merging heuristic is very accurate; most
from previous grammar inference evaluations. The tech- of the questionsonfirmedhat the hypothesis machine was
nigue presented here presumes that, at least to begin withcorrect, and only around 10 - 15% of the questions ever
the algorithm will only be supplied with positive traces of caused the algorithm to restart. Investigating the reducti
the software system. Thus, whereas previous studies supef the number of questions produced is an important part of

0.80-

Accuracy

Figure 7. Results for 5, 25 and 50 states,
where the complete training set contains 4n
strings

our future work. derlying state machine is complex. The QSM technique on
the other hand presumes that the input sequences at least

5. Related Work offer some basic coverage of the essential functionality of
the system (they are characteristic of the underlying trans

A b f h ist that ¢ ftion structure), in which case the machine can be inferred
number of approaches exist that use some form o relatively cheaply by a process of state merging.

source cod_e analysis to reverse engineer state mach.ines, Our technique depends on the developer to provide a
some at object-level, others at higher levels of abgtractlo set of abstraction functions that map from some pattern of
F_’rewous wor_k by t_he aqth_ors [22] has u;gd symbolic EXECU- ethod sequences that occur in the trace to an abstract func-
tion as a basis for identifying state transitions between-ma tion that represents a user-level system function. Althoug

u;’;tlly7suppollls\.\/(\j/hal73tratct lsta;e;. ,IAuthors including Iguatte this has been relatively straightforward in our experience
al. [7] an aleyet al. [23] also use source code as a with the case study, it inevitably requires some degree-of fa

:)hasls forlreyergtz,\hedng|ne§r|rt1g statefrPhachln?s, blfl_thaugme%iliarity with the underlying system. A number of feature-
eiranalysis with dynamic traces ot the systém. 1hese ap-qq pification techniques do exist that can facilitate.titis

proaches differ_ from the approac_h presented in this paperapproach by Eisenbar#t al. [9], which is particularly suit-
in two ways. Firstly, they all require some form of analy-

. X . .. able with the availability of dynamic traces as produced by
sis of the underlying source code structure in terms of its

. our technique, combines formal concept analysis and trace
data / control flow. Our approach may require the user to

) o X analysis to similarly map user-level functions to their im-
inspect the source code to a more superficial extent in order

to identify which method sequences abstract to the higher_plementanon.
level functions that label the state transitions. Secondly .
approach is interactive and, if questions are interpreted a 6. Conclusionsand Future Work
tests, suggests which sequences of inputs need to be exe-
cuted in order to produce an accurate result. This is partic- This paper has presented the application of an interac-
ularly beneficial, because it lessens the risk of producing a tive, tractable grammar inference approach to the problem
incomplete result, a problem that is intrinsic to most tech- of reverse engineering state machines from software imple-
nigues that are based entirely on dynamic analysis. mentations. The technique generates hypothesis machines
The idea of constructing a state machine of a program from sequences of valid system functions. As new hypothe-
from example computations was conceived by Biermann sis machines are produced, queries are presented in the user
and Feldman [2]. They proposed tlietails algorithm which can either be answered manually, or fed to the system
which, like the QSM algorithm, merges states based on theas tests. The integrated question / test generation taestiniq
similarity of their behaviour. A number of other authors aims to ultimately produce a set of sequences that are a char-
(e.g. [5, 21, 19]) have used variants of such algorithms to acteristic sample of the underlying state machine which, if
generate state machines from scenarios (usually manuallytrue, will result in a complete, minimal and deterministic
generated scenarios). One weakness of these algorithms istate machine of the underlying system. This ultimately
that they do not incorporate membership queries and, in theallows the application of powerful functional testing tech
case of k-tails at least, only work from positive samples. niques, and also serves as a useful means to comprehen-
Generalising a set of samples to a state machine if only pos-sively document system behaviour.
itive samples are provided is reasonable under the conditio = The implementation of the technique has enabled the
that the sample is complete (i.e. every possible sequence ugeneration of some preliminary data. These show that, even
to a given length is provided). Dynamic analysis is however with a sparse set of initial sequences, the technique will st
generally prone to incompleteness which is why our appli- produce a reasonably accurate machine. Given that the final
cation demands the presumption that the provided samplemachine is subjectto a manual inspection, it can be used as a
is not complete, in which case an interactive approach thatreliable basis for the application of established modeleiia
accepts negative sequences is more appropriate. testing techniques [17], which can be used to comprehen-
As mentioned in the introduction, Hungetral. [13] ad- sively establish whether the underlying system conforms to
dress this problem by applying Angluin’s L* inference tech- the model and is therefore correct.
nigue [1] to reverse engineering the state machine strectur The technique can, depending on the initial sequences
of a phone system. There are two key differences betweenand complexity of the underlying machine, produce a sub-
the L* technique and the QSM approach adopted in this pa-stantial number of questions. If these can be answered au-
per. Both assume that the sets of input sequences are intomatically as system tests, this is not a problem. If on the
complete, but the L* technique proceeds to systematically other hand they have to be answered manually, it could ren-
and comprehensively explore the state space of the targetler the technique impractical. However, it can also be ar-
machine, which can become extremely expensive if the un-gued that the necessity of a large number of execution se-

guences is essential to any dynamic analysis technique if [9] T.Eisenbarth, R. Koschke, and D. Simon. Locating Festur
its results are to be reasonably sound, in which case this
technique excels because it provides a powerful guidance
mechanism. We also believe that there is scope for a sub-[10]
stantial reduction in the number of questions asked; if only
10-15% of them result in a restart, and most of them con-
firm the hypothesis, a major proportion of them are possibly
unnecessary.

In the immediate future we will work on ways to reduce
the number of questions asked. This will involve looking
at the distribution of confidence scores associated with the

guestions, and investigating the use of score thresholds to
keep the number of questions to an effective minimum. At [1

the same time we will take a more applied approach in the
evaluation of this technique, by evaluating it in a more con-
trolled manner, with respect to larger scale real-life eyst

(as well as synthesised ones).

Acknowledgments We thank Pierre Dupont for helping
us to gain a better understanding of his QSM approach
and providing a number of insights that helped in its im-
plementation. Our work is supported by EPSRC grant [17]
EP/C51183/1.

References

(1]

D. Angluin. learning regular sets from queries and coun-
terexamples. Information and Computatign75:87—-106,
1987.

[2] A. W. Biermann and J. Feldman. On the synthesis of finite-

(3]

state machines from samples of their behaviBEE Trans-
actions on Computer21:592-597, 1972.

E. Borger. Abstract state machines and high-level syste
design and analysisTheoretical Computer Sciencg36(2-
3):205-207, 2005.

[4] T. Chow. Testing Software Design Modelled by Finite 8tat

[5] J. E. Cook and A. L. Wolf.

(6]

(7]

(8]

Machines. |IEEE Transactions on Software Engineering
4(3):178-187, 1978.

Discovering models of soft-
ware processes from event-based dad&M Transactions

on Software Engineering and Methodolpdy(3):215-249,
1998.

C. Damas, B. Lambeau, P. Dupont, and A. van Lam-
sweerde. Generating annotated behavior models from end-
user scenario3EEE Transactions on Software Engineering
31(12):1056-1073, 2005.

L. M. Duarte, J. Kramer, and S. Uchitel. Model extrac-
tion using context information. In O. Nierstrasz, J. Whit-
tle, D. Harel, and G. Reggio, editor8loDELS volume
4199 ofLecture Notes in Computer Scienpages 380—394.
Springer, 2006.

P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde.
The QSM algorithm and its application to software behavior
model induction. Applied Artificial Intelligence 2007. to
appear.

[11]

[12]

[13]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

(23]

in Source CodelEEE Transactions on Software Engineer-
ing, 29(3):210-224, 2003.

M. Gold. Language identification in the limitnformation
and Contro| 10:447-474, 1967.

M. Holcombe and F. Ipate.Correct Systems - Building
A Business Process SolutiorApplied Computing Series.
Springer, 1998.

J. Hopcroft and J. Ulimarintroduction to Automata Theory,
Languages and ComputatioAddison-Wesley, 1979.

H. Hungar, T. Margaria, and B. Steffen. Test-based rhode
generation for legacy systems.IIFC, pages 971-980. IEEE
Computer Society, 2003.

4] H. Hungar, O. Niese, and B. Steffen. Domain-specifig-opt

mization in automata learning. International Conference
on Computer Aided Verification (CAV’Q3)003.

K. Lang. Random DFA's can be approximately learned from
sparse uniform examples. @OLT, pages 45-52, 1992.

K. Lang, B. Pearimutter, and R. Price. Results of the
Abbadingo One DFA learning competition and a new
evidence-driven state merging algorithm. In V. Honavar
and G. Slutzki, editorsGrammatical Inference; 4th Interna-
tional Colloquium, ICGI-98 volume 1433 ofLNCS/LNA]
pages 1-12. Springer, 1998.

D. Lee and M. Yannakakis. Principles and Methods of -Test
ing Finite State Machines - A Survey. Rroceedings of the
IEEE, volume 84, pages 1090-1126, 1996.

K. Li, R. Groz, and M. Shahbaz. Integration testing afnco
ponents guided by incremental state machine learning. In
P. McMinn, editor, TAIC PART pages 59-70. IEEE Com-
puter Society, 2006.

D. Lorenzoli, L. Mariani, and M. Pezze. Inferring state
based behavior models. Rroceedings of the International
Workshop on Dynamic Analysis (WODA'02D06.

J. Oncina and P. Garcia. Inferring regular languaggmig-
nomial update time. In N. P. de la Blanca, A. Sanfeliu, and
E. Vidal, editors,Pattern Recognition and Image Analysis
volume 1 ofSeries in Machine Perception and Artificial In-
telligence pages 49-61. World Scientific, Singapore, 1992.
M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeld an
F. I. Vokolos. Scenariographer: A tool for reverse engi-
neering class usage scenarios from method invocation se-
quences. INCSM, pages 155-164. IEEE Computer Society,
2005.

N. Walkinshaw, K. Bogdanov, and M. Holcombe. Identi-
fying state transitions and their functions in source code.
In Testing: Academic and Industrial Conference (TAIC
PART’06) pages 49-58. IEEE Computer Society, 2006.

J. Whaley, M. Martin, and M. Lam. Automatic Extraction
of Object-Oriented Component InterfacesPimceedings of
the International Symposium on Software Testing and Anal-
ysis July 2002.

