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Abstract

Finite state machine-derived specifications such as X-
Machines, Extended Finite State Machines and Abstract
State Machines, are an established means to model soft-
ware behaviour. They allow for comprehensive testing of an
implementation in terms of its intended behaviour. In prac-
tice however they are rarely generated and maintained dur-
ing software development, hence their benefits can rarely be
exploited. We address this problem by using an interactive
grammar inference technique to infer the underlying state
machine representation of an existing software system. The
approach is interactive because it generates queries to the
user as it constructs a hypothesis machine, which can be in-
terpreted as system tests. This paper describes (1) how an
existing grammar inference technique (QSM) can be used
to reverse-engineer state-based models of software from ex-
ecution traces at a developer-defined level of abstraction
and (2) how the QSM technique can be improved for a bet-
ter balance between the number of tests it proposes and the
accuracy of the machine it derives. The technique has been
implemented, which has enabled us to present a small case
study of its use with respect to a real software system, along
with some preliminary performance results.

1. Introduction

Perceiving software as a state machine enables a devel-
oper to design, document and rigorously test a program in
terms of its behaviour. States characterise the behaviour of
the system at a particular point in its execution and transi-
tions, which are triggered by system functions, lead from
one state to another. Despite their apparent benefits, the
wide-spread adoption of state machines in software engi-
neering has been hampered by the fact that they are rarely
produced and maintained in the first place. This is usually
due to the facts that (1) software development is usually
conducted under restrictive time constraints and (2) the dy-
namic nature of software evolution makes it difficult to keep
designs and documentation up to date. As a result, the rigor-

ous (and potentially automated) state machine-based testing
techniques can rarely be exploited and are instead replaced
by inferior ad-hoc techniques.

Grammar inference aims to identify the grammar for a
language, given a sample of word sequences that belong to
and (optionally) do not belong to the language. In prac-
tice grammar inference has a broad range of applications
beyond its original field of natural language acquisition. A
regular language can be represented by a finite state ma-
chine, and the provided sample of sequences can be inter-
preted as sequences that are either accepted or rejected by
that machine. Because state machines can model the be-
haviour of large variety of systems besides regular language
grammars, grammar inference techniques can be used to
identify the underlying state transition structure ofanysys-
tem that can be represented as a finite state machine.

Previous software engineering research recognises the
apparent link between the aforementioned absence of state
machine models of software systems and the possibility
of generating them automatically with grammar inference
techniques. Dupontet al.’s QSM state-merging approach
[6, 8] takes as input an initial sample of manually gener-
ated scenarios from the user, and uses these as a basis to
interactively generate a state machine of the system. The
QSM approach is primarily intended to help automating the
generation of (web-) applications, where it is reasonable to
expect that the developer can be coerced into manually gen-
erating a set of scenarios. In our case however, where we
presume that the system has already been developed and the
specification serves the purpose of testing and inspection,it
is unrealistic to expect the user to (a) have developed any
specifications in the first place, and (b) have kept them up
to date. Hungaret al.’s approach [14, 13] is more suitable
in that respect; it takes a set of program traces as input and
uses an optimised version of Angluin’s L* algorithm [1] to
infer the machine. The use of program traces eliminates the
need for an initial set of manual scenarios because these are
generated automatically from a set of program executions.
However, the L* technique by itself requires a substantial
amount of guidance from the developer and the optimisa-
tions they employ to reduce the guidance are tied to a rel-



atively specific application domain (they take advantage of
symmetry and partial-order properties that arise from the
distributed and concurrent nature of their phone system).

This paper builds on Hagereret al.’s idea of using exe-
cution traces as an input for grammar inference techniques.
However instead of using Angluin’s L* technique, it uses
Dupontet al.’s QSM technique which, by placing stronger
requirements on the set of initial samples than Angluin’s
technique, requires less guidance and has thus been shown
to scale relatively well to systems with large numbers of
states. The paper presents a number of improvements to
Dupontet al.’s technique, which further reduce the amount
of guidance required. The main contributions of this paper
are as follows:

• A tractable approach to reverse engineering state ma-
chines from execution traces.

• The integration of the technique into a testing frame-
work; whereas the QSM technique conventionally re-
lies upon a human oracle to answer questions about the
system under analysis, in our context these questions
can be posed as system tests.

• A number of improvements of the QSM technique,
which improve the ability to generate more accurate
machines with less input.

• An implementation of the technique, along with a case
study that shows how to reverse engineer a state ma-
chine from the open-source JHotDraw drawing frame-
work.

Besides the case study, we have obtained some preliminary
results that investigate the scalability of our technique to
inferring large state machines. These show that, at least
for the class of machines considered herein, the technique
scales to relatively large systems without requiring a sub-
stantial increase in the amount of input from the developer
or system tests.

2. Regular Grammar Inference and the QSM
Technique

This section introduces the problem of grammar infer-
ence, along with some of the approaches that have been
used to address it in the past. A more detailed introduction
is provided of the state merging techniques, specifically the
QSM technique which we have used in our implementation.

2.1. The Grammar Inference Problem and
its Solution

The problem of grammar inference, as first identified by
Gold in his fundamental paper [10], is to identify a language

L given a set of sample sequencesS. The set of samples
must contain a set of positive samplesS+ that belong to
the language and can optionally contain a set of negative
samplesS− that do not. So, denotingΣ as the alphabet
of L andΣ∗ as the set of all finite sequences overΣ, S =
S+ ∪ S− whereS+ ⊆ L andS− ⊆ Σ∗ \ L. WhenL

is a regular language, its grammar can be represented by a
deterministic finite automaton (DFA) and the problem can
be re-interpreted as one that aims to identify the DFA that
producesL. This is a particularly suitable representation
for inference algorithms, because of the fact that (a) there
exists a single minimal DFA for any regular language, and
(b) there exist a host of efficient DFA algorithms for tasks
such as minimisation and removing non-determinism [12].

A number of techniques have been developed that at-
tempt to solve the above problem. Angluin’s L* technique
[1] for example usesS+, S− andΣ to construct queries of
various types that systematically explore the target system’s
behaviour, and in the process constructs a complete DFA for
the system. This has successfully been applied to a variety
of software-engineering problems (c.f. [14, 13, 18]), but is
often limited by the demands it places on the user. Because
of the fact that it will always systematically infer the com-
plete automaton, there is no upper bound on the potential
number of membership queries, which can in practice ren-
der the technique impractical. As an example, Hungaret al.
[13] observed that without their domain-specific optimisa-
tions, the number of queries for a four state system using L*
was 108, which rose to 15425 for 28 states.

2.2. State Merging

An alternative approach to Angluin’sL∗ technique is to
shift the emphasis from the oracle that provides input dur-
ing the learning process to the quality of the initial set of
sample sequencesS. State merging techniques require less
guidance from an oracle, but can still produce an accurate
state machine on the condition that the initial set of samples
S covers enough of the target machine. If this is the case,
the process of generating the hypothesis machine simply
consists of generalising from set of samples that has been
provided, without working out which elements of machine
behaviour might have been missed out. Because the process
is purely one of generalisation, the number of membership
queries is bounded by the size of the initial sampleS.

State merging techniques usually take as input an ‘aug-
mented prefix tree automaton’ (APTA) constructed fromS,
where the common prefixes for each sequence lead to the
same branch node, and every unique suffix leads to a leaf
node. Nodes are labelled as either positive or negative, de-
pending on whether the corresponding sequence belongs to
S+ or S−. Figure 1 illustrates the APTA for a set of se-
quences that correspond to executions of a simple text ed-
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Figure 1. Augmented prefix tree automaton
with associated sequences

itor. The APTA is not minimal and presumably, sinceS is
only a sample of the target language, does not correctly ac-
cept or reject every sequence in theL. Consequently it is the
algorithm’s task to generalise and minimise the APTA by
strategically selecting nodes to merge. One inherent danger
is that the merging process might be over-zealous, result-
ing in a machine that is too general, accepting too many
sequences that would be rejected by the actual system.

State merging algorithms are guaranteed to produce the
target automaton if the training data is exhaustive (i.e. con-
tains all input sequences up to a sufficient size). Their pop-
ularity is however due to the fact that they also produce
reasonably accurate results for incomplete or sparse sam-
ple sets [15]. In fact, if the training set is not exhaustive,
the target machine will still be produced if the training data
is characteristicof the machine [20], i.e. there is enough
training data to reach every state, as well as differentiate
between any pair of non-equivalent states.

2.3. The QSM Algorithm

Dupontet al.’s QSM algorithm [8] is a state-merging al-
gorithm with two features that make it particularly appeal-
ing. It employs a sophisticated search mechanism to select
candidate nodes to merge, and prevents over-generalisation
by posing membership queries to the end-user whenever the
resulting machine may accept or reject sequences that have
not been ratified by the user. The pairs of merge candidate
states are selected by using the Price’s ‘Blue Fringe’ state
merging algorithm [16]. Every time a new hypothesis ma-
chine is generated, any strings that are accepted or rejected
by the new machine and are not handled by the previous
machine are posed as questions for the user to ratify.

Figure 2 provides both the QSM algorithm and and
Price’s state selection algorithm. The algorithm is based
on Dupontet al.’s description [8], which can be referred to
for further details. Given two setsS+ andS− it starts by

Algorithm QSM

Input Sets of accepted and rejected sequences(S+, S−)

Output A minimal DFA A consistent with an extended collection(S+, S−)

Uses initialState(A) Returns the initial state ofA

generateAPTA(S, S′) Generates an augmented prefix tree acceptor

from S andS′

selectStatePairs(A)Uses the Blue-Fringe EDSM approach to select

merge candidates fromA (see below)

merge(A, q, q′)Merges nodesq andq′ in A, and ensures that the result-

ing machine is deterministic

compatible(A, S+, S−)Checks thatA is consistent withS+andS−

generateQuery(A, A′) Returns a set of questions overA′ that cannot

be classified as accepted or rejected byA

checkWithEndUser(query)Returns true if the query is accepted, and

false otherwise

Declare Test: sequence inA which (in this context) corresponds to a test sequence

A← generateAPTA(S+, S−)
init ← initialState(A)
foreach (q, q′)← selectStatePairs(A) do

A′ ← merge(A, q, q′)

if compatible(A′, S+, S−) then
foreach query ← generateQuery(A, A′) do

if checkWithEndUser(query) then
S+ ← S+ ∪ query

else
S− ← S− ∪ query

return QSM(S+, S−)
A← A′

return A

Algorithm selectStatePairs

Input AutomatonA, initial stateinit

Output Ordered setPairs of state pairs ordered by their score

Uses computeBlue(A, R)returns the set of states that are neighbours of states

in R in A but do not themselves belong toR

computeScore(A, q, q′)Computes the suffixes forq andq′ and incre-

ments the score for every overlapping transition label in the two suffixes.

Returns−∞ if the target states for any overlapping suffix transitions have

different labels (+ or−) because this implies an incompatible merge.

Declare Blue: set of states

score: integer

mergable:boolean
Pairs← ∅
R← init
foreach blue← computeBlue(A, R) do

mergable← false
foreach r ∈ R do

score← computeScore(A, blue, r)
if score ≥ 0 do

mergable ← true

Pairs← Pairs ∪ (score, (r, blue))
if ¬mergable

R← R ∪ blue

return Pairs

Figure 2. QSM and merge candidate selection
algorithms
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constructing the augmented PTA1 (see figure 1). It invokes
Price’s Blue-FringeselectStatePairs function, which re-
turns a set of state pairs that are ordered according to their
suitability (this is elaborated below). The QSM algorithm
iterates through the candidate pairs in the order of their
score (starting with the highest scoring pair), and calls the
merge function. Merging a pair of states may result in a
non-deterministic machine, so themerge function is also
responsible for ensuring that a non-deterministic machine
is transformed into a deterministic one. If the resulting ma-
chine remains compatible withS+andS−(checked by the
compatible function), thegenerateQuery function pro-
duces a set of sequences that do not belong toS+ or S−,
but are part of the language of the new machine. In the con-
text of Dupontet al.’s application, these are posed to the
end-user (as will be described in section 3, these queries
can be formulated as tests for the implementation itself). If
the query is accepted, the test sequence is added toS+, the
input machine is updated to the merged version, and the al-
gorithm loops onto the next pair of candidate states. If it is
unsuccessful, the merge is invalidated by adding the query
sequence toS−andQSM is called recursively with the ex-
tendedS+ andS−sets.

As mentioned previously, theselectStatePairs is re-
sponsible for generating an ordered set of candidate nodes
to be merged. An effective selection strategy is key to the
efficiency of the algorithm. Conventional state merging al-
gorithms such RPNI (Regular Positive Negative Inference)
[20] would order candidate node pairs in their breadth-first
order, so for figure 1 the order of possible merges would
be{(0, 1), (0, 2), (0, 3)...(1, 3), (1, 4), (1, 5)...}. A number
of much improved pair selection strategies have been de-
veloped, one of which is the ‘Blue-Fringe’ technique [16],
which works by restricting the set of candidate pairs and ap-
plying a heuristic to order them in terms of their suitability.

1It should be noted that Dupont initially present theQSM algorithm as
using just the non-augmented PTA, which is based only on positive sam-
ples. However, if the Blue-FringeselectStatePairs is used, it requires a
tree that is constructed from both positive and negative samples (see Lang
et al. [16] and Dupontet al. [8] for details).

The blue-fringe technique tags states that cannot be
merged as red, and tags all adjoining non-red states as blue.
The aim is to identify and merge the most suitable pairs
first, to minimise the possibility of carrying out an invalid
merge. The order in which pairs of states are merged is
decided by first evaluating every possible pair of red-blue
merges via thecomputeScore function. If a blue state can-
not be merged with any red state (computeScore returns a
negative value), it is upgraded to a red state and the process
is repeated. Figure 3 shows the pool of merge candidates
along with their scores for the APTA in figure 1. Pair(1, 3)
has the highest score, because a path< edit, save, close >

can be followed from both of them; the merging algorithm
would attempt this pair first, because the available evidence
suggests that they are most likely to be equivalent states.
Pairs(2, 3) and (2, 4) receive negative scores because the
merging process entails an accepting state to be merged
with a non-accepting one (leading to a contradiction with
S−). For further details on the Blue-Fringe algorithm and
results on its performance in comparison with other state
merging strategies, the reader is referred to Langet al.’s
original paper [16] and Dupontet al.’s QSM paper [8].

3. Using QSM with Dynamic Analysis to Infer
State Machines

The QSM approach has so far primarily been applied in
a software requirements engineering context, which does
not presume the availability of an existing implementation.
This work applies the QSM technique to the problem of
reverse-engineering a specification from its implementa-
tion. The intrinsic benefit of applying the QSM technique
in a reverse engineering environment is the fact that it does
not rely as much on human input. Whereas Dupontet al.’s
work [6, 8] relied upon the end-user to manually generate
an initial set of scenarios and to correctly answer the en-
suing membership queries, the technique presented herein
allows the user to initially provide a set of traces. Answer-
ing membership queries is also less error-prone, because the
query can be answered by directly executing the system.
This section describes the technique in detail, and provides
an overview of our implementation.

The state machines considered in this paper form the ba-
sis of a number of established state-based modelling tech-
niques, such as Extended-Finite State Machines (EFSMs),
X-Machines [11], and Abstract State Machines [3]. Al-
though this technique does not reverse engineer the data
constraints that are required to generate a complete specifi-
cation, it does generate the underlying state transition struc-
ture, which suffices for some of their most useful appli-
cations, such as test set generation. The underlying state
machine can be represented as a labelled transition system
(LTS), which can be represented as a 4-tuple(Q, Σ, δ, q0),
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whereQ is the set of states,Σ is the set of inputs,δ is the
transition functionQ × Σ → 2Q andq0 is the initial state.
These modelling techniques can scale to complex systems
by defining a set of system functions, which can encapsulate
potentially complex system behaviour. Instead of labelling
transitions with simple symbols, these techniques label the
transitions with the abstract processing functions instead.
Consequently, a series of transitions across the graph (as
might be specified by a test sequence for example) corre-
sponds to the sequential execution of a series of abstract
system functions.

3.1. Technique

The process of using QSM to reverse engineer a state
machine from a software system is shown in figure 4. The
four main activities along with their respective inputs are
described in detail below:

1. Dynamic analysis: This activity is responsible for
generating a collection of system traces. The system is
exercised according to a selection of end-user scenar-
ios that are supplied by the analyst. Depending on the
desired level of abstraction, the resulting traces can ei-
ther be sequences of method invocations or statements.
For this paper and our implementation, by execution
trace we mean a sequence of method invocations.

2. Abstraction: Ultimately, a reverse engineered state
machine will only be of practical use if it is constructed
at a level of abstraction that can be readily interpreted
by the analyst. The abstraction process serves to gen-
erate a function that takes as input a low-level program
trace (produced by activity 1) and produces as output
an equivalent sequence of abstract functions.

3. Trace abstraction: This activity applies the abstrac-
tion function identified in step 2 to the set of traces
generated by step 1. This results in a set of abstract
function sequences that serve as input for the follow-
ing step.

4. QSM: In this activity the QSM algorithm presented in
section 2 is applied to the sequences of abstract func-
tions. One of the benefits of the availability of an ex-
isting implementation is the fact that it is no longer the
sole responsibility of the end-user to act as an oracle.
The version presented herein alters the behaviour of
checkWithEndUser. Now, checkWithEndUser

interprets membership queries as either tests for the
implementation or queries that can be answered man-
ually. If interpreted as a test a trace can be generated
from a membership query. If its abstracted sequence
of functions matches the membership query, it can be
added toS+, otherwise it is added toS−.

3.2. Implementation

Our implementation consists of three components: dy-
namic analysis (activity 1) is carried out with the Eclipse
Test and Performance Tools Platform (TPTP)2, abstraction
and trace analysis (activities 2 and 3) are carried out by a
single abstraction component and the QSM algorithm (ac-
tivity 4) is implemented by dedicated QSM component.
While the TPTP tool could be used as-is, the other two com-
ponents were implemented by the authors.

Dynamic analysis with TPTP The Eclipse TPTP frame-
work provides a range of tools for the dynamic analysis of
Java programs. Program executions can be monitored at
various degrees of granularity. We use TPTP to record pro-
gram traces as sequences of method invocations, which are
recorded to an XML file.

Abstracting from traces In this implementation, an
abstract function is identified as a pattern of method
calls that occur in the trace. As an example, in the
JHotDraw drawing framework from our evaluation, if
the PaletteButton.mouseReleased method is followed
at some point by theTextTool.activate (in the same
call-stack), we can map that to theactivate_text_tool
function. Depending on the desired level of abstraction
a method-level trace will not be sufficiently granular (i.e.if
the execution of two abstract functions is distinguished by
two branches through the same method). If this is the case,
the trace and abstraction functions have to be generated at a
statement-level [22]. Each trace is abstracted in turn. Every
time a sequence of method calls is identified that belong to
an abstract function (they needn’t be consecutive), the name
of the function is inserted into the abstracted trace.

The QSM component The QSM component takes as in-
put a set of positive function sequences (S+), and a set of

2http://www.eclipse.org/tptp/



rejected sequences (S−). As illustrated in figure 4, there are
two ways to answer membership queries (i.e. of identifying
whether a sequence belongs to the final state machine or
not). Dupontet al.’s approach relies on the user to manually
state whether or not the sequence is accepted. Because we
can also treat the software implementation as an oracle, our
implementation provides two means to answer membership
queries. For a given query, the user can either state explic-
itly whether or not the sequence is accepted , or there is the
option to obtain an answer by means of testing the imple-
mentation. If the user opts to answer the membership query
by testing the system, they are asked to provide an XML
file (from TPTP) that corresponds to an execution of the se-
quence of abstract functions represented by the membership
query. The XML file is abstracted (step 3 in figure 4) and
the resulting abstract sequence of functions is checked to
identify whether it contains the membership query as a sub-
sequence. If the membership query is not a subsequence of
the trace, the query is answered negatively. Ultimately, we
look to fully automate this testing step for simple function
sequences.

During our implementation of the QSM algorithm, we
have added a number of improvements over the original al-
gorithm, which improve its accuracy in a number of ways.
These are summarised below:

• Our implementation uses an improved question gen-
eration technique. The aim of the questions is to, for
a pair of candidate nodes that are to be merged, iden-
tify possible paths in the resulting machine that are not
explicitly accepted or rejected by the current machine.
The conventional QSM technique constructs a list of
questions by concatenating a prefix of the red node
with all of the suffixes of the blue nodes in the current
machine. However, this does not account for edges
that may appear in the hypothesis machine once the
machine has been minimised (by merging) and non-
determinism has been removed, and can result in in-
valid questions. Our improved approach generates the
questionsafter the merge has been computed, by tak-
ing the prefix to the red node with any suffixes of the
merged state. The technique results in a more com-
prehensive set of questions and is illustrated in figure
5.

• Once the QSM algorithm is complete the resulting
state machine may still contain invalid edges. Our
implementation enables the user to add negative se-
quences that eliminate them. This can be achieved by
selecting a faulty edgea → b. The implementation
then constructs a list of sequences by taking the prefix
of a and concatenating it with all non-negated suffixes
from b. The user can select an invalid sequence, which
is added toS−and the algorithm is restarted.

RED
a

BLUE
b b

c

d
RED

a

b

c

d

pre-merge post-merge

Q = {abc, abd} Q =

{abc, abd, ac, ad}

Conventional set of questions Improved set of
questions

Figure 5. Illustration of a merge, along with
the questions generated for the hypothesis
machine

4. Evaluation

We use the JHotDraw framework as a case study because
it is openly available and has been used as the basis for a
number of other case studies. In this study we show how
to reverse-engineer its underlying state transition structure
with respect to a specific set of abstract functions, along
with their mappings to sequences of method calls. Section
4.2 takes a more systematic approach to evaluating the ac-
curacy of the technique. The purpose of this section is to
show that the process of identifying a state machine using
our technique is feasible and practical, and also to highlight
some of the issues that arise.

4.1. Case Study

JHotDraw3 is a well established, open-source Java
framework for constructing drawing tools. HotDraw was
originally developed in the eighties by Cunningham and
Beck as a Smalltalk drawing editor framework. It was then
rewritten for Java as JHotDraw, and serves as a showcase to
illustrate the use of object-oriented design patterns. JHot-
Draw is particularly suitable as a case study because it has
been extensively explored in other software engineering re-
search projects.

In this case study we concentrate on the specific be-
haviour of the JavaDraw application, that is included as
an example application in the JHotDraw release. A sim-
ple state machine of its high-level behaviour, along with a
screen shot of JavaDraw is shown in figure 6. It details the
processes of either adding a figure or a text box to the figure.

To reverse engineer the machine we start by extracting
program traces from JHotDraw and constructing a set of
abstraction functions (in any order). The abstractions from
sequences of methods to abstract functions are shown in the

3http://www.jhotdraw.org
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Figure 6. JavaDraw hypothesis machines and the abstraction s

table in figure 6. In theory, in order to guarantee that the
resulting machine is an exact match, the user would be ex-
pected to provide a set of inputs that is characteristic (i.e.
covers every transition and differentiates between every pair
of non-equal states). In practice this is not always going to
be the case, and the QSM questions are designed to elicit as
much of the missing characteristic set as possible. For the
case study the system has been executed four times, tracing
the method calls with TPTP in the process. The resulting
XML files are processed in turn, and result in the following
abstract function sequences:

t1= <figure_tool, figure_tool, set_position,
set_dimensions, set_dimensions, set_dimensions,
set_dimensions, figure_tool, set_position,
set_dimensions>

t2= <figure_tool, figure_tool, set_position,
set_dimensions, set_dimensions, set_dimensions,
text_tool, set_position, edit>

t3= <text_tool, text_tool, set_position, edit,
finalize_textbox, text_tool>

t4= <text_tool, text_tool, set_position, edit,
finalize_textbox, figure_tool>

The QSM algorithm, which was modified according to
section 3.2, poses 44 queries. An example of such as query
might be:

Is the sequence <text_tool, set_position,
set_dimensions, set_dimensions, set_dimensions, text_tool,
set_position, edit> possible?

This query should be rejected at the first occurrence of
set_dimensions, because the process of setting dimensions

only applies to figures in JHotDraw, not text boxes. This
information can either be supplied directly by the user if
they have sufficient knowledge of the underlying system, or
it can be posed as a system test. In the latter case we attempt
to execute the query and generate another trace with TPTP
in the process. The trace is then supplied to our tool, which
checks whether the query is a subsequence of the supplied
trace or not, and answers the query accordingly.

The resulting machine is shown in figure 6 (a). Closer
inspection reveals that, although the machine would cor-
rectly accept all of the sequences of abstract functions, it
would also accept sequences that should be rejected in prac-
tice. This is due to the fact that none of the questions man-
aged to elicit a sequence of functions showing that the edge

q4
finalize textbox

→ q6 is not valid, because it cannot be fol-
lowed by the functionset_dimensions. When such an edge
is observed once the learning process has finished, the faulty
edge can be selected, and the user is presented with a list
of all apparently valid edge sequences (by taking the short-
est prefix ofq4 and concatenating all suffixes ofq6). Some
of these should be invalid, such as: <text_tool, text_tool,
set_position, edit, finalize_textbox,set_position> . When a
sequence is selected from this list, it is added toS− and the
algorithm is restarted, finally resulting in the correct ma-
chine, which is depicted in figure 6 (b).



Figure 7. Results for 5, 25 and 50 states,
where the complete training set contains 4n

strings

4.2. Results and Discussion

The purpose of these results is to provide an insight into
the scalability and accuracy of the technique. The stan-
dard process for evaluating state-merging grammar infer-
ence techniques, which is inspired by Langet al’s Ab-
badingo competition [16], is to generate random machines
of various sizes, along with a sample of random walks
across the machine. An equal number of accepted and re-
jected walks are used to infer the hypothesis machine, and
a further sample of random walks in the target machine are
used to establish the accuracy of the hypothesis machine.

The performance study presented here differs slightly
from previous grammar inference evaluations. The tech-
nique presented here presumes that, at least to begin with,
the algorithm will only be supplied with positive traces of
the software system. Thus, whereas previous studies sup-

ply an equal number of accepted and rejected sequences,
our study assumes that only positive sequences are supplied,
and relies on the question generation process to produce a
sufficient set of negative questions. Three sets of ten ran-
dom graphs of sizesn =5, 25 and 50 states were generated,
with an alphabet of six transition functions (previous similar
evaluations have only used an alphabet of two). The graphs
are deliberately densely connected, with many state transi-
tions labelled by multiple functions, in an attempt to synthe-
sise state machines of relatively complex software systems.

A training set of size4n with distinct random sequences
was generated, where the length of a sequence forms a
roughly uniform distribution[0, p + 5] wherep is the depth
of the machine. The test set, which is used to measure the
accuracy of the hypothesis machine, was created in a sys-
tematic manner by using the W-Method [4] state machine
testing technique (also ensuring that there was no overlap
between the test and training samples). For each random
graph, the inference algorithm was applied to 10%, 20% ...
100% of the4n samples. Each hypothesis was evaluated
in terms of (a) the number of questions that were asked to
reach the final solution and (b) the accuracy with respect to
the set of test sequences. Due to space restrictions we have
not included the exhaustive set of results, but try to quote
relevant results when appropriate.

Bearing in mind the complexity of the synthesised ma-
chines (alphabet of size 6, large numbers of multi-function
transitions) and the fact that we start off with only positive
samples, these preliminary results are encouraging. They
show that the technique is capable of producing relatively
accurate results from a sparse sample of initial sequences
(i.e. dynamic traces). The results for 5 states at 10% rarely
achieve an accuracy of above 80%, but this is primarily be-
cause they are only given two strings to start with. As the
number of initial strings increases, the accuracy improves.
Given all4n input sequences the accuracy of the technique
is consistently above 95%.

Depending on the complexity of the target machine and
the initial sample of data, the technique can however pro-
duce a large number of questions, which are vital to ensure
that the inference step is correct. If answered automatically
(by posing questions as tests to the system), this is reason-
able, particularly if the transition functions are governed by
simple inputs that do not imply complex data constraints
on the state of the system. However, if this is not the case
and they require manual intervention, the technique could
be rendered impractical for complex systems. There does
however seem to be much scope for reducing the number
of questions. The merging heuristic is very accurate; most
of the questionsconfirmedthat the hypothesis machine was
correct, and only around 10 - 15% of the questions ever
caused the algorithm to restart. Investigating the reduction
of the number of questions produced is an important part of



our future work.

5. Related Work

A number of approaches exist that use some form of
source code analysis to reverse engineer state machines,
some at object-level, others at higher levels of abstraction.
Previous work by the authors [22] has used symbolic execu-
tion as a basis for identifying state transitions between man-
ually supplied abstract states. Authors including Duarteet
al. [7] and Whaleyet al. [23] also use source code as a
basis for reverse engineering state machines, but augment
their analysis with dynamic traces of the system. These ap-
proaches differ from the approach presented in this paper
in two ways. Firstly, they all require some form of analy-
sis of the underlying source code structure in terms of its
data / control flow. Our approach may require the user to
inspect the source code to a more superficial extent in order
to identify which method sequences abstract to the higher-
level functions that label the state transitions. Secondlyour
approach is interactive and, if questions are interpreted as
tests, suggests which sequences of inputs need to be exe-
cuted in order to produce an accurate result. This is partic-
ularly beneficial, because it lessens the risk of producing an
incomplete result, a problem that is intrinsic to most tech-
niques that are based entirely on dynamic analysis.

The idea of constructing a state machine of a program
from example computations was conceived by Biermann
and Feldman [2]. They proposed thek-tails algorithm
which, like the QSM algorithm, merges states based on the
similarity of their behaviour. A number of other authors
(e.g. [5, 21, 19]) have used variants of such algorithms to
generate state machines from scenarios (usually manually
generated scenarios). One weakness of these algorithms is
that they do not incorporate membership queries and, in the
case of k-tails at least, only work from positive samples.
Generalising a set of samples to a state machine if only pos-
itive samples are provided is reasonable under the condition
that the sample is complete (i.e. every possible sequence up
to a given length is provided). Dynamic analysis is however
generally prone to incompleteness which is why our appli-
cation demands the presumption that the provided sample
is not complete, in which case an interactive approach that
accepts negative sequences is more appropriate.

As mentioned in the introduction, Hungaret al. [13] ad-
dress this problem by applying Angluin’s L* inference tech-
nique [1] to reverse engineering the state machine structure
of a phone system. There are two key differences between
the L* technique and the QSM approach adopted in this pa-
per. Both assume that the sets of input sequences are in-
complete, but the L* technique proceeds to systematically
and comprehensively explore the state space of the target
machine, which can become extremely expensive if the un-

derlying state machine is complex. The QSM technique on
the other hand presumes that the input sequences at least
offer some basic coverage of the essential functionality of
the system (they are characteristic of the underlying transi-
tion structure), in which case the machine can be inferred
relatively cheaply by a process of state merging.

Our technique depends on the developer to provide a
set of abstraction functions that map from some pattern of
method sequences that occur in the trace to an abstract func-
tion that represents a user-level system function. Although
this has been relatively straightforward in our experience
with the case study, it inevitably requires some degree of fa-
miliarity with the underlying system. A number of feature-
identification techniques do exist that can facilitate this. An
approach by Eisenbarthet al. [9], which is particularly suit-
able with the availability of dynamic traces as produced by
our technique, combines formal concept analysis and trace
analysis to similarly map user-level functions to their im-
plementation.

6. Conclusions and Future Work

This paper has presented the application of an interac-
tive, tractable grammar inference approach to the problem
of reverse engineering state machines from software imple-
mentations. The technique generates hypothesis machines
from sequences of valid system functions. As new hypothe-
sis machines are produced, queries are presented in the user,
which can either be answered manually, or fed to the system
as tests. The integrated question / test generation technique
aims to ultimately produce a set of sequences that are a char-
acteristic sample of the underlying state machine which, if
true, will result in a complete, minimal and deterministic
state machine of the underlying system. This ultimately
allows the application of powerful functional testing tech-
niques, and also serves as a useful means to comprehen-
sively document system behaviour.

The implementation of the technique has enabled the
generation of some preliminary data. These show that, even
with a sparse set of initial sequences, the technique will still
produce a reasonably accurate machine. Given that the final
machine is subject to a manual inspection, it can be used as a
reliable basis for the application of established model-based
testing techniques [17], which can be used to comprehen-
sively establish whether the underlying system conforms to
the model and is therefore correct.

The technique can, depending on the initial sequences
and complexity of the underlying machine, produce a sub-
stantial number of questions. If these can be answered au-
tomatically as system tests, this is not a problem. If on the
other hand they have to be answered manually, it could ren-
der the technique impractical. However, it can also be ar-
gued that the necessity of a large number of execution se-



quences is essential to any dynamic analysis technique if
its results are to be reasonably sound, in which case this
technique excels because it provides a powerful guidance
mechanism. We also believe that there is scope for a sub-
stantial reduction in the number of questions asked; if only
10-15% of them result in a restart, and most of them con-
firm the hypothesis, a major proportion of them are possibly
unnecessary.

In the immediate future we will work on ways to reduce
the number of questions asked. This will involve looking
at the distribution of confidence scores associated with the
questions, and investigating the use of score thresholds to
keep the number of questions to an effective minimum. At
the same time we will take a more applied approach in the
evaluation of this technique, by evaluating it in a more con-
trolled manner, with respect to larger scale real-life systems
(as well as synthesised ones).
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