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Abstract. This works is motivated by a real-world case study where
it is necessary to integrate and relate existing ontologies through meta-
modelling. For this, we introduce the Description Logic ALCQM which
is obtained from ALCQ by adding statements that equate individuals
to concepts in a knowledge base. In this new extension, a concept can
be an individual of another concept (called meta-concept) which itself
can be an individual of yet another concept (called meta meta-concept)
and so on. We define a tableau algorithm for checking consistency of an
ontology in ALCQM and prove its correctness.
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1 Introduction

Our extension of ALCQ is motivated by a real-world application on geographic
objects that requires to reuse existing ontologies and relate them through meta-
modelling [10].
Figure 1 describes a simplified scenario of this application in order to illustrate
the meta-modelling relationship. It shows two ontologies separated by a line. The
two ontologies conceptualize the same entities at different levels of granularity.
In the ontology above the line, rivers and lakes are formalized as individuals
while in the one below the line they are concepts. If we want to integrate these
ontologies into a single ontology (or into an ontology network) it is necessary to
interpret the individual river and the concept River as the same real object.
Similarly for lake and Lake.
Our solution consists in equating the individual river to the concept River
and the individual lake to the concept Lake. These equalities are called meta-
modelling axioms and in this case, we say that the ontologies are related through
meta-modelling. In Figure 1, meta-modelling axioms are represented by dashed
edges. After adding the meta-modelling axioms for rivers and lakes, the concept
HydrographicObject is now also a meta-concept because it is a concept that
contains an individual which is also a concept.
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The kind of meta-modelling we consider in this paper can be expressed in OWL
Full but it cannot be expressed in OWL DL. The fact that it is expressed in
OWL Full is not very useful since the meta-modelling provided by OWL Full is
so expressive that leads to undecidability [11].
OWL 2 DL has a very restricted form of meta-modelling called punning where
the same identifier can be used as an individual and as a concept [7]. These
identifiers are treated as different objects by the reasoner and it is not pos-
sible to detect certain inconsistencies. We next illustrate two examples where
OWL would not detect inconsistencies because the identifiers, though they look
syntactically equal, are actually different.

Example 1. If we introduce an axiom expressing that HydrographicObject is a
subclass of River, then OWL’s reasoner will not detect that the interpretation
of River is not a well founded set (it is a set that belongs to itself).

Example 2. We add two axioms, the first one says that river and lake as indi-
viduals are equal and the second one says that the classes River and Lake are
disjoint. Then OWL’s reasoner does not detect that there is a contradiction.

Fig. 1. Two ontologies on Hydrography

In this paper, we consider ALCQ (ALC with qualified cardinality restrictions)
and extend it with Mboxes. An Mbox is a set of equalities of the form a =m A
where a is an individual and A is a concept. In our example, we have that
river =m River and these two identifiers are semantically equal, i.e. the in-
terpretations of the individual river and the concept River are the same. The
domain of an interpretation cannot longer consists of only basic objects but it
must be any well-founded set. The well-foundness of our model is not ensured by
means of fixing layers beforehand as in [12, 8] but it is our reasoner which checks
for circularities. Our approach allows the user to have any number of levels (or
layers) (meta-concepts, meta meta-concepts and so on). The user does not have
to write or know the layer of the concept because the reasoner will infer it for
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him. In this way, axioms can also naturally mix elements of different layers and
the user has the flexibility of changing the status of an individual at any point
without having to make any substantial change to the ontology.
We define a tableau algorithm for checking consistency of an ontology inALCQM
by adding new rules and a new condition to the tableau algorithm for ALCQ.
The new rules deal with the equalities and inequalities between individuals with
meta-modelling which need to be transferred to the level of concepts as equalities
and inequalities between the corresponding concepts. The new condition deals
with circularities avoiding non well-founded sets. From the practical point of
view, extending tableau for ALCQ has the advantage that one can easily change
and reuse the code of existing OWL’s reasoners. From the theoretical point of
view, we give an elegant proof of correctness by showing an isomorphism be-
tween the canonical interpretations of ALCQ and ALCQM. Instead of re-doing
inductive proofs, we “reuse” and invoke the results of correctness of the tableau
algorithm for ALCQ from [1] wherever possible.

Related Work. As we mentioned before, OWL 2 DL has a very restricted form
of meta-modelling called punning [7]. In spite of the fact that the same iden-
tifier can be used simultaneously as an individual and as a concept, they are
semantically different. In order to use the punning of OWL 2 DL in the example
of Figure 1, we could change the name river to River and lake to Lake. In
spite of the fact that the identifiers look syntactically equal, OWL would not
detect certain inconsistencies as the ones illustrated in Examples 1 and 2, and in
Example 4 which appears in Section 3. In the first example, OWL won’t detect
that there is a circularity and in the other examples, OWL won’t detect that
there is a contradiction. Apart from having the disadvantage of not detecting
certain inconsistencies, this approach is not natural for reusing ontologies. For
these scenarios, it is more useful to assume the identifiers be syntactically dif-
ferent and allow the user to equate them by using axioms of the form a =m A.
Motik proposes a solution for meta-modelling that is not so expressive as RDF
but which is decidable [11]. Since his syntax does not restrict the sets of in-
dividuals, concepts and roles to be pairwise disjoint, an identifier can be used
as a concept and an individual at the same time. From the point of view of
ontology design, we consider more natural to assume that the identifiers for a
concept and an individual that conceptualize the same real object (with different
granularity) will be syntactically different (because most likely they will live in
different ontologies). In [11], Motik also defines two alternative semantics: the
context approach and the HiLog approach. The context approach is similar to
the so-called punning supported by OWL 2 DL. The HiLog semantics looks more
useful than the context semantics since it can detect the inconsistency of Exam-
ple 2. However, this semantics ignores the issue on well-founded sets. Besides,
this semantics does not look either intuitive or direct as ours since it uses some
intermediate extra functions to interpret individuals with meta-modelling. The
algorithm given in [11, Theorem 2] does not check for circularities (see Example
1) which is one of the main contributions of this paper.
De Giacomo et al. specifies a new formalism, “Higher/Order Description Log-
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ics”, that allows to treat the same symbol of the signature as an instance, a
concept and a role [4]. This approach is similar to punning in the sense that the
three new symbols are treated as independent elements.
Pan et al address meta-modelling by defining different “layers” or “strata” within
a knowledge base [12, 8]. This approach forces the user to explicitly write the
information of the layer in the concept. This has several disadvantages: the user
should know beforehand in which layer the concept lies and it does not give the
flexibility of changing the layer in which it lies. Neither it allows us to mix dif-
ferent layers when building concepts, inclusions or roles, e.g. we cannot express
that the intersection of concepts in two different layers is empty or define a role
whose domain and range live in different layers.
Glimm et al. codify meta-modelling within OWL DL [5]. This codification con-
sists in adding some extra individuals, axioms and roles to the original ontology
in order to represent meta-modelling of concepts. As any codification, this ap-
proach has the disadvantage of being involved and difficult to use, since adding
new concepts implies adding a lot of extra axioms. This codification is not enough
for detecting inconsistencies coming from meta-modelling (see Example 4). The
approach in [5] has also other limitations from the point of view of expressibility,
e.g. it has only two levels of meta-modelling (concepts and meta-concepts).

Organization of the paper. The remainder of this paper is organized as follows.
Section 2 shows a case study and explains the advantages of our approach.
Section 3 defines the syntax and semantics of ALCQM. Section 4 proposes
an algorithm for checking consistency. Section 5 proves its correctness. Finally,
Section 6 sets the future work.

2 Case Study on Geography

In this section, we illustrate some important advantages of our approach through
the real-world example on geographic objects presented in the introduction.
Figure 2 extends the ontology network given in Figure 1. Ontologies are delim-
ited by light dotted lines. Concepts are denoted by ovals and individuals by small
filled circles. Meta-modelling between ontologies is represented by dashed edges.
Thinnest arrows denote roles within a single ontology while thickest arrows de-
note roles from one ontology to another ontology.
Figure 2 has five separate ontologies. The ontology in the uppermost position
conceptualizes the politics about geographic objects, defining GeographicObject
as a meta meta-concept, and Activity and GovernmentOffice as concepts. The
ontology in the left middle describes hydrographic objects through the meta-
concept HydrographicObject and the one in the right middle describes flora ob-
jects through the meta-concept FloraObject. The two remaining ontologies con-
ceptualize the concrete natural resources at a lower level of granularity through
the concepts River, Lake, Wetland and NaturalForest.
Note that horizontal dotted lines in Figure 2 do not represent meta-modelling
levels but just ontologies. The ontology “Geographic Object Politics” has the
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meta meta-concept GeographicObject, whose instances are concepts which have
also instances being concepts, but we also have the concepts GovernmentOfice
and Activity whose instances conceptualize atomic objects.

Fig. 2. Case Study on Geography

OWL has only one notion of hierarchy which classifies concepts with respect
to the inclusion v. Our approach has a new notion of hierarchy, called meta-
modelling hierarchy, which classifies concepts with respect to the membership
relation ∈. The meta-modelling hierarchy for the concepts of Figure 2 is depicted
in Figure 3. The concepts are GovernmentOffice, Activity, River, Lake, Wetland
and NaturalForest, the meta-concepts are HydrographicObject and FloraObject,
and the meta meta-concept is GeographicObject.
The first advantage of our approach over previous work concerns the reuse of on-
tologies when the same conceptual object is represented as an individual in one
ontology and as a concept in the other. The identifiers for the individual and the
concept will be syntactically different because they belong to different ontologies
(with different URIs). Then, the ontology engineer can introduce an equation
between these two different identifiers. This contrasts with previous approaches
where one has to use the same identifier for an object used as a concept and as
an individual. In Figure 2, river and River represent the same real object. In
order to detect inconsistency and do the proper inferences, one has to be able
to equate them.
The second advantage is about the flexibility of the meta-modelling hierarchy.
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This hierarchy is easy to change by just adding equations. This is illustrated in
the passage from Figure 1 to Figure 2. Figure 1 has a very simple meta-modelling
hierarchy where the concepts are River and Lake and the meta-concept is Hy-
drographicObject. The rather more complex meta-modelling hierarchy for the
ontology of Figure 2 (see Figure 3) has been obtained by combining the ontolo-
gies of Figure 1 with other ontologies and by simply adding some few meta-
modelling axioms. After adding the meta-modelling equations, the change of the
meta-modelling hierarchy is automatic and transparent to the user. Concepts
such as GeographicObject will automatically pass to be meta meta-concepts and
roles such as associatedWith will automatically pass to be meta-roles, i.e. roles
between meta-concepts.

Fig. 3. Meta-modelling Hierarchy for the Ontology of Figure 2

The third advantage is that we do not have any restriction on the level of
meta-modelling, i.e. we can have concepts, meta-concepts, meta meta-concepts
and so on. Figure 1 has only one level of meta-modelling since there are con-
cepts and meta-concepts. In Figure 2, there are two levels of meta-modelling
since it has concepts, meta-concepts and meta meta-concepts. If we needed, we
could extend it further by adding the equation santaLucia =m SantaLucia for
some concept SantaLucia and this will add a new level in the meta-modelling
hierarchy: concepts, meta-concepts, meta meta-concepts and meta meta meta-
concepts.
Moreover, the user does not have to know the meta-modelling levels, they are
transparent for him. Our algorithm detects inconsistencies without burdening
the user with syntactic complications such as having to explicitly write the level
the concept belongs to.
The fourth advantage is about the possibility of mixing levels of meta-modelling
in the definition of concepts and roles. We can build concepts using union or
intersection between two concepts of different levels (layers). We can also define
roles whose domain and range live in different levels (or layers). For example, in
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Figure 2, we have: 1) a role over whose domain is just a concept while the range
is a meta-concept, 2) a role manages whose domain is just a concept and whose
range is a meta meta-concept. We can also add axioms to express that some of
these concepts, though at different levels of meta-modelling, are disjoint, e.g. the
intersection of the concept Activity and the meta-concept FloraObject is empty.

3 ALCQM

In this section we introduce the ALCQM Description Logics (DL), with the
aim of expressing meta-modelling in a knowledge base. The syntax of ALCQM
is obtained from the one of ALCQ by adding new statements that allow us to
equate individuals with concepts. The definition of the semantics for ALCQM
is the key to our approach. In order to detect inconsistencies coming from meta-
modelling, a proper semantics should give the same interpretation to individuals
and concepts which have been equated through meta-modelling.
Recall the formal syntax of ALCQ [7, 2]. We assume a finite set of atomic in-
dividuals, concepts and roles. If A is an atomic concept and R is a role, the
concept expressions C, D are constructed using the following grammar:
C, D ::= A | > | ⊥ | ¬C | C uD | C tD | ∀R.C | ∃R.C |≥ nR.C |≤ nR.C
Recall also that ALCQ-statements are divided in two groups, namely TBox
statements and ABox statements, where a TBox contains statements of the
form C v D and an ABox contains statements of the form C(a), R(a, b), a = b
or a 6= b.
A meta-modelling axiom is a new type of statement of the form

a =m A where a is an individual and A is an atomic concept.

which we pronounce as a corresponds to A through meta-modelling. An Mbox
is a set M of meta-modelling axioms. We define ALCQM by keeping the
same syntax for concept expressions as for ALCQ and extending it only to in-
clude MBoxes. An ontology or a knowledge base in ALCQM is denoted by
O = (T ,A,M) since it is determined by three sets: a Tbox T , an Abox A and
an Mbox M. The set of all individuals with meta-modelling of an ontology is
denoted by dom(M).
Figure 4 shows the ALCQM-ontologies of Figure 1. In order to check for cycles
in the tableau algorithm, it is convenient to have the restriction that A should
be a concept name in a =m A. This restriction does not affect us in practice at
all. If one would like to have a =m C for a concept expression C, it is enough to
introduce a concept name A such that A ≡ C and a =m A.

Definition 1 (Sn for n ∈ N). Given a non empty set S0 of atomic objects, we
define Sn by induction on N as follows: Sn+1 = Sn ∪ P(Sn)

The sets Sn are clearly well-founded. Recall from Set Theory that a relation R
is well-founded on a class X if every non-empty subset Y of X has a minimal
element. Moreover, a set X is well-founded if the set membership relation is
well-founded on the the set X.
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Tbox

River u Lake v ⊥

Mbox

river =m River

lake =m Lake

Abox

HydrographicObject(river) HydrographicObject(lake)

River(queguay) River(santaLucia)

Lake(deRocha) Lake(delSauce)

Fig. 4. The ALCQM-ontology of Figure 1

Definition 2 (Model of an Ontology in ALCQM). An interpretation I is
a model of an ontology O = (T ,A,M) in ALCQM (denoted as I |= O) if the
following holds:

1. the domain ∆ of the interpretation is a subset of SN for some N ∈ N. The
smallest N such that ∆ ⊆ SN is called the level of the interpretation I.

2. I is a model of the ontology (T ,A) in ALCQ.
3. I is a model of M, i.e. I satisfies each statement in M. An interpretation
I satisfies the statement a =m A if aI = AI .

Usually, the domain of an interpretation of an ontology is a set of atomic objects.
In the first part of Definition 2 we redefine the domain ∆ of the interpretation,
so it does not consists only of atomic objects any longer. The domain ∆ can now
contain sets since the set SN is defined recursively using the power-set operation.
A similar notion of interpretation domain is defined in [9, Definition 1] for RDF
ontologies.

It is sufficient to require that it is a subset of some SN so it remains well-
founded 3. Note that S0 does not have to be the same for all models of an
ontology. The second part of Definition 2 refers to the ALCQ-ontology without
the Mbox axioms. In the third part of the definition, we add another condi-
tion that the model must satisfy considering the meta-modelling axioms. This
condition restricts the interpretation of an individual that has a corresponding
concept through meta-modelling to be equal to the concept interpretation.

Example 3. We define a model for the ontology of Figure 4 where

S0 = {queguay, santaLucia, deRocha, delSauce}

Individuals and concepts equated through meta-modelling are semantically equal:

riverI = RiverI = {queguay, santaLucia}
lakeI = LakeI = {deRocha, delSauce}

3 In principle, non well-founded sets are not source of contradictions since we could
work on non-well founded Set Theory. The reason why we exclude them is because
we think that non well-founded sets do not occur in the applications we are interested
in.
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Definition 3 (Consistency of an Ontology in ALCQM). We say that an
ontology O = (T ,A,M) is consistent if there exists a model of O.

The ALCQM-ontology defined in Figure 4 is consistent.

Example 4. We consider the ontology of Figure 2 and the axioms:

River u Lake v ⊥
Wetland ≡ NaturalForest

and the fact that associatedWith is a functional property. Note that we have
the following axioms in the Abox:

associatedWith(wetland, lake)
associatedWith(naturalForest, river)

As before, the ALCQ-ontology (without the Mbox) is consistent. However, the
ALCQM-ontology (with the Mbox) is not consistent.

Example 1 illustrates the use of the first clause of Definition 2. Actually, this
example is inconsistent because the first clause of this definition does not hold.
Examples 2 and 4 illustrate how the second and third conditions of Definition 2
interact.

Definition 4 (Logical Consequence from an Ontology in ALCQM). We
say that S is a logical consequence of O = (T ,A,M) (denoted as O |= S) if
all models of O are also models of S where S is any of the following ALCQM-
statements, i.e. C v D, C(a), R(a, b), a =m A, a = b and a 6= b.

It is possible to infer new knowledge in the ontology with the meta-modelling
that is not possible without it as illustrated by Examples 1, 2 and 4.

Definition 5 (Meta-concept). We say that C is a meta concept in O if there
exists an individual a such that O |= C(a) and O |= a =m A.

Then, C is a meta meta-concept if there exists an individual a such that
O |= C(a), O |= a =m A and A is a meta-concept. Note that a meta meta-
concept is also a meta-concept.
We have some new inference problems:

1. Meta-modelling. Find out whether O |= a =m A or not.
2. Meta-concept. Find out whether C is a meta-concept or not.

Most inference problems in Description Logic can be reduced to satisfiability by
applying a standard result in logic which says that a formula φ is a semantic
consequence of a set of formulas Γ if and only if Γ ∪ ¬φ is not satisfiable. The
above two problems can be reduced to satisfiability following this general idea.
For the first problem, note that since a 6=m A is not directly available in the
syntax, we have replaced it by a 6= b and b =m A which is an equivalent statement
to the negation of a =m A and can be expressed in ALCQM.
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Lemma 1. O |= a =m A if and only if for some new individual b, O ∪ {a 6=
b, b =m A} is unsatisfiable.

Lemma 2. C is a meta-concept if and only if for some individual a we have that
O∪{¬C(a)} is unsatisfiable and for some new individual b, O∪{a 6= b, b =m A}
is unsatisfiable.

4 Checking Consistency of an Ontology in ALCQM

In this section we will define a tableau algorithm for checking consistency of an
ontology in ALCQM by extending the tableau algorithm for ALCQ. From the
practical point of view, extending tableau for ALCQ has the advantage that one
can easily change and reuse the code of existing OWL’s reasoners.
The tableau algorithm for ALCQM is defined by adding three expansion rules
and a condition to the tableau algorithm for ALCQ. The new expansion rules
deal with the equalities and inequalities between individuals with meta-modelling
which need to be transferred to the level of concepts as equalities and inequalities
between the corresponding concepts. The new condition deals with circularities
avoiding sets that belong to themselves and more generally, avoiding non well-
founded sets.

Definition 6 (Cycles). We say that the tableau graph L has a cycle with respect
to M if there exist a sequence of meta-modelling axioms A0 =m a0, A1 =m a1,
. . . An =m an all in M such that

A1 ∈ L(x0) x0 ≈ a0
A2 ∈ L(x1) x1 ≈ a1
...

...
An ∈ L(xn−1) xn−1 ≈ an−1
A0 ∈ L(xn) xn ≈ an

Example 5. Suppose we have an ontology (T ,A,M) with two individuals a and
b, the individual assignments: B(a) and A(b); and the meta-modelling axioms:

a =m A b =m B.

The tableau graph L(a) = {B} and L(b) = {A} has a cycle since A ∈ L(b) and
B ∈ L(a).

Initialization for the ALCQM-tableau is nearly the same as for ALCQ. The
nodes of the initial tableau graph will be created from individuals that occur
in the Abox as well as in the Mbox. After initialization, the tableau algorithm
proceeds by non-deterministically applying the expansion rules for ALCQM.
The expansion rules for ALCQM are obtained by adding the rules of Figure 5
to the expansion rules for ALCQ.

We explain the intuition behind the new expansion rules. If a =m A and
b =m B then the individuals a and b represent concepts. Any equality at the
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≈-rule: Let a =m A and b =m B in M. If a ≈ b and A t ¬B,B t ¬A does not
belong to T then T ← A t ¬B,B t ¬A.

6≈-rule: Let a =m A and b =m B in M. If a 6≈ b and there is no z such that
A u ¬B tB u ¬A ∈ L(z) then create a new node z with
L(z) = {A u ¬B tB u ¬A}.

close-rule: Let a =m A and b =m B where a ≈ x, b ≈ y, L(x) and L(y) are defined.
If neither x ≈ y nor x 6≈ y are set then equate(a, b,L) or differenciate(a, b,L) .

Fig. 5. Additional Expansion Rules for ALCQM

level of individuals should be transferred as an equality between concepts and
similarly with the difference.
The ≈-rule transfers the equality a ≈ b to the level of concepts by adding two
statements to the Tbox which are equivalent to A ≡ B. This rule is necessary
to detect the inconsistency of Example 2 where the equality river = lake is
transferred as an equality River ≡ Lake between concepts. A particular case
of the application of the ≈-rule is when a =m A and a =m B. In this case, the
algorithm also adds A ≡ B.
The 6≈-rule is similar to the ≈-rule. However, in the case that a 6≈ b, we cannot
add A 6≡ B because the negation of ≡ is not directly available in the language.
So, what we do is to replace it by an equivalent statement, i.e. add an element
z that witness this difference.
The rules ≈ and 6≈ are not sufficient to detect all inconsistencies. With only these
rules, we could not detect the inconsistency of Example 4. The idea is that we
also need to transfer the equality A ≡ B between concepts as an equality a ≈ b
between individuals. However, here we face a delicate problem. It is not enough to
transfer the equalities that are in the Tbox. We also need to transfer the semantic
consequences, e.g. O |= A ≡ B. Unfortunately, we cannot do O |= A ≡ B.
Otherwise we will be captured in a vicious circle 4 since the problem of finding
out the semantic consequences is reduced to the one of satisfiability. The solution
to this problem is to explicitly try either a ≈ b or a 6≈ b. This is exactly what
the close-rule does. The close-rule adds either a ≈ b or a 6≈ b through two new
functions equate and differenciate.. It is similar to the choose-rule which adds
either C or ¬C. This works because we are working in Classical Logic and we
have the law of excluded middle. For a model I of the ontology, we have that
either aI = bI or aI 6= bI (see also Lemma 5). Since the tableau algorithm
works with canonical representatives of the ≈-equivalence classes, we have to be
careful how we equate two individuals or make them different.
Note that the application of the tableau algorithm to an ALCQM knowledge
base (T ,A,M) changes the Tbox as well as the tableau graph L.

Definition 7 (ALCQM-Complete). (T ,L) is ALCQM-complete if none of
the expansion rules for ALCQM is applicable.

4 Consistency is the egg and semantic consequence is the chicken.
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The algorithm terminates when we reach some (T ,L) where either (T ,L)
is ALCQM-complete, L has a contradiction or L has a cycle. The ontology
(T ,A,M) is consistent if there exists some ALCQM-complete (T ,L) such that
L has neither contradictions nor cycles. Otherwise it is inconsistent.

5 Correctness of the Tableau Algorithm for ALCQM

In this section we prove termination, soundness and completeness for the tableau
algorithm described in the previous section. We give an elegant proof of com-
pleteness by showing an isomorphism between the canonical interpretations of
ALCQ and ALCQM.

Theorem 1 (Termination). The tableau algorithm for ALCQM described in
the previous section always terminates.

Proof. Suppose the input is an arbitrary ontology O = (T ,A,M). We define

concepts(M) =
⋃

a=mA,b=mB
{A u ¬B tB u ¬A,A t ¬B,B t ¬A}

Suppose we have an infinite sequence of rule applications:

(T0,L0)⇒ (T1,L1)⇒ (T2,L2)⇒ . . . (1)

where ⇒ denotes the application of one ALCQM-expansion rule. In the above
sequence, the number of applications of the ≈, 6≈ and close-rules is finite as we
show below:

1. The ≈ and 6≈-rules can be applied only a finite number of times in the above
sequence. The ≈ and 6≈-rules add concepts to the Tbox and these concepts
that can be added all belong to concepts(M) which is finite. We also have
that Ti ⊆ T ∪ concepts(M) for all i. Besides none of the other rules remove
elements from the Tbox.

2. Since the set {(a, b) | a, b ∈ dom(M)} is finite, the close-rule can be applied
only a finite number of times. This is because once we set a ≈ b or a 6≈ b, no
rule can “undo” this.

This means that from some n onwards in sequence (1)

(Tn,Ln)⇒ (Tn+1,Ln+1)⇒ (Tn+2,Ln+2)⇒ . . . (2)

there is no application of the rules ≈, 6≈ and close. Moreover, Tn = Ti for all
i ≥ n. Now, sequence (2) contains only application of ALCQ-expansion rules.
This sequence is finite by [1, Proposition 5.2]. This is a contradiction.

The proof of the following theorem is similar to Soundness for ALCQM [1]..

Theorem 2 (Soundness). If O = (T ,A,M) is consistent then the ALCQM-
tableau graph terminates and yields an ALCQM-complete (Tk,Lk) such that Lk

has neither cycles nor contradictions.
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The following definition of canonical interpretation is basically the one in [1,
Definition 4.3]. Instead of <, we use the idea of descendants.

Definition 8 (ALCQ-Canonical Interpretation). We define the ALCQ-canonical
interpretation Ic from a tableau graph L as follows.

∆Ic = {x | L(x) is defined}

(x)Ic =

{
x if x ∈ ∆Ic
y if x ≈ y and y ∈ ∆Ic

(A)Ic = {x ∈ ∆Ic | A ∈ L(x)}
(R)Ic = {(x, y) ∈ ∆Ic ×∆Ic | R ∈ L(x, y), x is not blocked or

R ∈ L(z, y), where x is blocked by z and z is not blocked }

Note that the canonical interpretation is not defined on equivalence classes
of ≈ but by choosing canonical representatives.

Lemma 3. If the tableau algorithm for ALCQM with input O = (T ,A,M)
yields an ALCQM-complete (T ′,L) such that L has no contradictions then Ic
is a model of (T ,A).

Proof. We define rel(AL) as follows.

rel(AL) = {C(x) | C ∈ L(y), y ≈ x}∪
{R(a, b) | R ∈ L(x, y), a ≈ x, b ≈ y, {a, b} ⊆ O}∪
{x = y | x ≈ y} ∪ {x 6= y | x 6≈ y}

By [1, Lemma 5.5]), Ic is a model of (T ′, rel(AL)). Since T ⊆ T ′ andA ⊆ rel(AL),
we have that Ic is a model of (T ,A).

So, how can we now make Ic into a model of the whole ontology (T ,A,M)?
We will transform Ic into a model of (T ,A,M) by defining a function set. The
following lemma allows us to give a recursive definition of set.

Lemma 4. If the tableau graph L has no cycles then (∆Ic ,≺) is well-founded
where ≺ is the relation defined as y ≺ x if y ∈ (A)Ic , x ≈ a and a =m A ∈M.

Proof. Suppose (∆Ic ,≺) is not well-founded. Since ∆Ic is finite, infinite descen-
dent ≺-sequences can only be formed from ≺-cycles, i.e. they are of the form

yn ≺ y1 ≺ . . . ≺ yn

It is easy to see that this contradicts the fact that L has no cycles.

Definition 9 (From Basic Objects to Sets: the function set). Let L a
tableau graph without cycles and Ic be the ALCQ-canonical interpretation from
L. For x ∈ ∆Ic we define set(x) as follows.

set(x) = {set(y) | y ∈ (A)Ic} if x ≈ a for some a =m A ∈M
set(x) = x otherwise
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Lemma 5. Let L be an ALCQM-complete tableau graph without contradictions.
If a =m A and a′ =m A′ then either a ≈ a′ or a 6≈ a′. In the first case, AIc = A′Ic

and in the second case, AIc 6= A′Ic

Lemma 6. Let L be an ALCQM-complete tableau graph that has neither con-
tradictions nor cycles and let Ic be the canonical interpretation from L. Then,
set is an injective function, i.e. x = x′ if and only if set(x) = set(x′).

Proof. We prove first that set is a function. It is enough to consider the case
when x ≈ a =m A and x ≈ a′ =m A′. By Lemma 5, a ≈ a′ and (A)Ic = (A′)Ic .
Hence, set(x) is uniquely determined.

To prove that set is injective, we do induction on (∆Ic ,≺) which we know
that is well-founded by Lemma 4. By Definition of set, we have two cases. The
first case is when set(x) = x. We have that set(x′) = x and x′ is exactly x. This
was the base case. In the second case, we have that for x ≈ a and a =m A,

set(x) = {set(y) | y ∈ (A)Ic}

Since set(x) = set(x′), we also have that x′ ≈ a′ and a′ =m A′ such that

set(x′) = {set(y′) | y′ ∈ (A′)Ic}

Again since set(x) = set(x′), we have that set(y) = set(y′). By Induction Hy-
pothesis, y = y′ for all y ∈ (A)Ic . Hence, (A)Ic ⊆ (A′)Ic . Similarly, we get
(A′)Ic ⊆ (A)Ic . So, (A)Ic = (A′)Ic . It follows from Lemma 5 that a ≈ a′. Then,
x = x′ because the canonical representative of an equivalence class is unique.

We are now ready to define the canonical interpretation for an ontology in
ALCQM.

Definition 10 (Canonical Interpretation for ACLQM). Let L be an ALCQM-
complete tableau graph without cycles and without contradictions. We define the
canonical interpretation Im for ALCQM as follows:

∆Im = {set(x) | x ∈ ∆Ic}
(a)Im = set(a)
(A)Im = {set(x) | x ∈ AIc}
(R)Im = {(set(x), set(y)) | (x, y) ∈ (R)Ic}

Definition 11 (Isomorphism between interpretations of ALCQ).
An isomorphism between two interpretations I and I ′ of ALCQ is a bijective
function f : ∆→ ∆′ such that

– f(aI) = aI
′

– x ∈ AI if and only if f(x) ∈ AI′

– (x, y) ∈ RI if and only if (f(x), f(y)) ∈ RI′ .

Lemma 7. Let I and I ′ be two isomorphic interpretations of ALCQ. Then, I
is a model of (T ,A) if and only if I ′ is a model of (T ,A).
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To prove the previous lemma is enough to show that x ∈ CI if and only if
f(x) ∈ CI′ by induction on C.

Theorem 3 (Completeness). If (T ,A,M) is not consistent then the ALCQM-
tableau algorithm with input (T ,A,M) terminates and yields an ALCQM-
complete (T ′,L) such that L that has either a contradiction or a cycle.

Proof. By Theorem 1, theALCQM-tableau algorithm with input (T ,A,M) ter-
minates. Suppose towards a contradiction that the algorithm yields an ALCQM-
complete (T ′,L) such that that L has neither a contradiction nor a cycle. We
will prove that Im is a model of (T ,A,M). For this we have to check that Im
satisfies the three conditions of Definition 2.

1. In order to prove that ∆Im ⊆ SN for some SN and N , we define S0 = {x ∈
∆Ic | set(x) = x}.

2. We now prove that Im is a model of (T ,A). By Lemma 3, the canonical
interpretation Ic is a model of (T ,A). It follows from Lemma 6 that set :
∆Ic → ∆Im is a bijective map. It is also easy to show that Ic and Im are
isomorphic interpretations in ALCQ. By Lemma 7, Im is a model of (T ,A).

3. Finally, we prove that aIm = (A)Im for all a =m A ∈ M. Suppose that
a =m A ∈M. Then,

aIm = set(a) by Definition 10
= {set(x) | x ∈ (A)Ic} by Definition 9
= AIm by Definition 10

A direct corollary from the above result is that ALCQM satisfies the finite
model property.

6 Conclusions and Future Work

In this paper we present a tableau algorithm for checking consistency of an ontol-
ogy in ALCQM and prove its correctness. In order to implement our algorithm,
we plan to incorporate optimization techniques such as normalization, absorp-
tion or the use of heuristics [2, Chapter9].
A first step to optimize the algorithm would be to impose the following order
on the application of the expansion rules. We apply the rules that create nodes
(∃ and ≥) only if the other rules are not applicable. We apply the bifurcating
rules (t, choose or close-rules) if the remaining rules (all rules except the ∃, ≥,
t, choose and close-rules) are not applicable. One could prove that this strategy
is correct similarly to Section 5.
A second step to optimize the algorithm would be to change the ≈-rule. Instead
of adding A t ¬B and ¬A t B, we could add A ≡ B and treat this as a trivial
case of lazy unfolding.
We would also like to study decidability of consistency for the kind of meta-
modelling presented in this paper in more powerful Description Logics than
ALCQM.
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We believe that consistency in ALCQM has the same complexity as ALCQ,
which is Exp-time complete [13]. We also plan to study worst-case optimal
tableau algorithms for ALCQM [3, 6].

Acknowledgements. We are grateful to Diana Comesaña for sharing with us
the data from the ontology network on geographic objects she is developing in
Uruguay [10].
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A Example of ALCQM-ontology

Figure 6 shows the ALCQM-ontology of Figure 2.
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Tbox

GovernmentOffice v ∃manages.GeographicObject
Activity v ∀over.(HydrographicObject t FloraObject)
FloraObject v ∀associatedWith.HydrographicObject
River u Lake v ⊥

Abox

GeographicObject(hydrographic) GeographicObject(physiographic)
GeographicObject(flora)
GovernmentOffice(environment) GovernmentOffice(agriculture)
Activity(preservation) Activity(irrigation)
manages(environment, physiographic)
promotes(environment, preservation) promotes(agriculture, irrigation)
HydrographicObject(river) HydrographicObject(lake)
FloraObject(wetland) FloraObject(grassland)
FloraObject(naturalForest)
over(preservation,wetland) over(irrigation, grassland)
associatedWith(wetland, lake)
associatedWith(naturalForest, river)
River(queguay) River(santaLucia)
Lake(deRocha) Lake(delSauce)
Wetland(staLuciaWetland) Wetland(deRochaWetland)
NaturalForest(castillosPalmForest) NaturalForest(queguayForest)

Mbox

river =m River wetland =m Wetland hydrographic =m HydrographicObject
lake =m Lake naturalForest =m NaturalForest flora =m FloraObject

Fig. 6. The ALCQM-ontology of Figure 2
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B Tableau Algorithm for ALCQ

We first recall the tableau algorithm for checking consistency in ALCQ [1, 7]. We
follow the presentation of [7] using tableau graphs and make some small changes
to be able to accommodate equalities and inequalities in the Abox. As in [7], we
assume that all concepts in O = (T ,A) are in negation normal form and that T
is a set of concepts. Each statement C v D of the Tbox is transformed into the
concept ¬C tD.

Definition 12 (Tableau Graph). A tableau graph consists of

– a set of nodes, labelled with individual names or variable names,
– directed edges between some pairs of nodes,
– for each node labelled x, L(x) is either undefined or defined. If it is defined

then it is a set of concept expressions,
– for each pair of nodes x and y, L(x, y) is either undefined or defined. If it is

defined, then it is a set of role names,
– two relations between nodes, denoted by ≈ and 6≈. These relations keep record

of the equalities and inequalities of nodes in the algorithm. The relation ≈ is
assumed to be reflexive, symmetric and transitive while 6≈ is assumed to be
symmetric. Canonical representatives are distinguished from non-canonical
ones by setting L to be defined or undefined.

Definition 13 (Equating two nodes). We define a procedure equate(x, y,L)
that equates two nodes x and y in L as follows. Let x′ and y′ be the canonical
representatives of the ≈-equivalence classes of x and y, i.e. x ≈ x′ and y ≈ y′

where L(x′) and L(y′) are defined. Assume that either x′ is not a variable or
that both x′ and y′ are variables (then, x and y will also be variables). When we
equate a variable with an individual of the ontology, we choose the individual of
the ontology as representative of the equivalence class.

1. set L(x′)← L(y′)
2. set L(x′, z)← L(y′, z) and L(z, x′)← L(z, y′)
3. set x′ ≈ y′
4. set L(y′) = L(y′, z) = L(z, y′) to be undefined
5. for all u with u 6≈ y′, differenciate(u, x′,L)
6. close ≈ under reflexivity, symmetry and transitivity.

Definition 14 (Making two nodes different). We define a procedure called
differenciate(x, y,L) that makes two nodes x and y different in L as follows. For
all x′ and y′ such that x ≈ x′ and y ≈ y′, set x′ 6≈ y′. Close 6≈ under symmetry.

Definition 15 (Tableau Initialization). The initial tableau for O = (T ,A)
is defined by the following procedure.

1. For each individual a ∈ O, create a node labelled a and set L(a) = ∅.
2. For all pairs a, b ∈ O of individuals, set L(a, b) = ∅.
3. For each C(a) in A, set L(a)← C.
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4. For each R(a, b) in A, set L(a, b)← R.
5. For each a 6= b in A, set a 6≈ b.
6. For each a = b in A, equate(a, b,L).

We say that y is a successor of x if L(x, y) is neither ∅ nor undefined. We
define that y is a descendant of x by induction.

1. Every successor of x, which is a variable, is a descendant of x.
2. Every successor of a descendant of x, which is a variable, is also a descendant

of x.

Definition 16 (Blocking). We define the notion of blocking by induction. A
node x is blocked by a node y if x is a descendant of y and L(x) ⊆ L(y) or x is
a descendant of z and z is blocked by y.

After initialization, the tableau algorithm proceeds by non-deterministically
applying the expansion rules for ALCQ defined in Figure 7.

u-rule: If C uD ∈ L(x) and {C,D} 6⊆ L(x) then set L(x)← {C,D}.

t-rule: If C tD ∈ L(x) and {C,D} ∩ L(x) = ∅ then set L(x)← {C} or
L(x)← {D}.

∃-rule: If x is not blocked, ∃R.C ∈ L(x) and there is no y with R ∈ L(x, y)
and C ∈ L(y) then
1. Add a new node with label y (where y is a new node label),
2. set L(x, y) = {R},
3. set L(y) = {C}.

∀-rule: If ∀R.C ∈ L(x) and there is a node y with R ∈ L(x, y) and C 6∈ L(y)
then set L(x)← C.

T -rule: If C ∈ T and C 6∈ L(x), then L(x)← C.

≥-rule: If ≥ nR.C ∈ L(x), x is not blocked and there are no y1, . . . , yn such that
R ∈ L(x, yi), C ∈ L(yi), yi 6≈ yj for i, j ∈ {1, . . . n}, then
1. create n new nodes y1, . . . yn.
2. set L(x, yi) = {R}, L(yi) = {C} and yi 6≈ yj for i, j ∈ {1, . . . n}.

choose-rule: If ≤ nR.C ∈ L(x) and there is y such that R ∈ L(x, y), C 6∈ L(y),
NNF(¬C) 6∈ L(y), then set L(y)← C or L(y)← NNF(¬C).

≤-rule: If ≤ nR.C ∈ L(x), there are y1, . . . , yn+1 with R ∈ L(x, yi), C ∈ L(yi)
for i ∈ {1, . . . n + 1} and there are j, k ∈ {1, . . . n + 1} such that yj 6≈ yk
does not hold, then equate(yj , yk,L)

Fig. 7. Expansion Rules for ALCQ
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Definition 17 (Contradiction). L has a contradiction if either

– A and ¬A belongs to L(x) for some atomic concept A and node x or
– we have that x ≈ y and x 6≈ y for some nodes x and y.
– there is a node x such that ≤ nR.C ∈ L(x), R ∈ L(x, yi), C ∈ L(yi), yi 6≈ yj

for all i, j ∈ {1, . . . n+ 1}.

Definition 18 (ALCQ-Complete). L is ALCQ-complete if none of the rules
of Figure 7 is applicable.

The algorithm terminates when we reach some L that is either complete or has
a contradiction. The ontology (T ,A) is consistent if there exists some L without
contradictions. Otherwise it is inconsistent.

C Omitted Proofs

In this section, we show some proofs that we could not include in the main part
of the paper due to space constraints.

Proof of Lemma 1.

Proof. First we prove the ⇒ direction:
Suppose towards a contradiction that there exists a model I of O such that
I |= O ∪ {a 6= b, b =m A}. Then, aI 6= bI and bI = AI . But as O |= a =m A, we
have that aI = AI , bI = AI and aI 6= bI , what results in a contradiction.

⇐ direction:
Suppose towards a contradiction that O 6|= a =m A. Then for some model I of
O, aI 6= AI . We introduce a new individual b such that bI = AI and clearly,
bI 6= AI . This contradicts the hypothesis.

Proof of Lemma 2.

Proof. By Definition 5, C is a meta-concept iff O |= C(a) and O |= a =m A. It
is easy to see that O |= C(a) is equivalent to the statement that O∪{¬C(a)} is
unsatisfiable.

Definition 19 (Abox associated to a Tableau graph). Given a graph L,
the Abox AL associated to L is defined as follows.

AL = {C(x) | C ∈ L(y), y ≈ x}∪
{R(x, y) | R ∈ L(x′, y′), x ≈ x′, y ≈ y′}∪
{x = y | x ≈ y} ∪ {x 6= y | x 6≈ y}

Lemma 8. Let I be a model of (T ,A,M) and L the initial tableau for (T ,A,M).
Then I is also a model of (T ,AL,M).
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Proof. By Definitions 15 and 19 we have that:

AL = {C(a) | b ≈ a,C(b) ∈ A}∪
{R(a, b) | c ≈ a, d ≈ b, R(c, d) ∈ A}∪
{a = b | a ≈ b} ∪ {a 6= b | a ≈ c, b ≈ d, c 6= b ∈ A}

It is also easy to see that ≈ is the reflexive, symmetric and transitive closure of
{(a, b) | a = b ∈ A}. Clearly, I is a model of A iff I is a model of AL.

The following lemma is easy to prove.

Lemma 9. Let I be a model of (T ,AL,M).

1. If (T ′,L′) is obtained from (T ,L) by applying an ALCQM-expansion rule
which is not close, ≤, t or choose then I is a model of (T ′,AL′ ,M).

2. If the rule applied is either close, ≤, t or choose then there exists a choice
that yields a (T ′,L′) where I is a model of (T ′,AL′ ,M).

Proof of Soundness.

Proof. By Lemma 8, we have that I is a model of (T0,AL0 ,M) where T0 = T and
L0 is the initial graph build by the tableau algorithm. By Theorem 1, the tableau
algorithm always terminates. It follows from Lemma 9 and the fact that I is a
model of (T ,A,M) that there is a sequence (T0,L0), (T1,L1), . . . (Tk,Lk) such
that I is also a model of (Tk,ALk

,M), (Ti+1,Li+1) is obtained from (Ti,Li) by
applying an ALCQM-expansion rule, (Tk,Lk) is ALCQM-complete and Lk = L
has no contradictions.
Suppose now towards a contradiction that L has a cycle. By Definition 6, there
exist a set of meta-modelling axioms A0 =m a0, A1 =m a1, . . . An =m an all in
M such that

A1 ∈ L(x0) x0 ≈ a0
A2 ∈ L(x1) x1 ≈ a1
...

...
An ∈ L(xn−1) xn−1 ≈ an−1
A0 ∈ L(xn) xn ≈ an

It follows from Definition 19 and the fact that I is a model of (Tk,ALk
) (Tk,Lk)

5 that

(an)I ∈ (A0)I (a0)I ∈ (A1)I (a1)I ∈ (A2)I . . . (an−1)I ∈ (An)I (3)

Since I is also a model of M, we have that

(an)I ∈ (A0)I = (a0)I ∈ (A1)I = (a1)I ∈ (A2)I . . . (an−1)I ∈ (An)I = (an)I

and hence, the domain of I is not well-founded contradicting the first clause in
Definition 2.

5 If x ≈ a and A ∈ L(x), by Definition of AL, A(x) ∈ AL. Since I is a model of AL,
we have that (x)I = (a)I ∈ (A)I because I is a model of AL.
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Proof of Lemma 5.

Proof. Suppose L is ALCQM-complete and has no contradictions. By the close-
rule, we have that either a ≈ a′ or a 6≈ a′ (but not both).
Suppose a ≈ a′. By the ≈ and T -rules, we have that {At¬A′, A′ t¬A} ⊆ L(y)
for all nodes y such that L(y) is defined. It is easy to prove that A ∈ L(y) iff
A′ ∈ L(y) for all nodes y such that L(y) is defined. Hence, (A)Ic = (A′)Ic .
Suppose now that a 6≈ a′. By 6≈-rule, we have that (A u ¬B t B u ¬A)(z) for
some node z. Either A,¬B ∈ L(z) or B,¬A ∈ L(z). In any case, AIc 6= BIc .


