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Abstract. We investigate a modality for controlling the behaviour of recursive
functional programs on infinite structures which is completely silent in the syntax.
The latter means that programs do not contain “marks” showing the application
of the introduction and elimination rules for the modality. This shifts the burden
of controlling recursion from the programmer to the compiler.
To do this, we introduce a typed lambda calculus à la Curry with a silent modality
and guarded recursive types. The typing discipline guarantees normalisation and
can be transformed into an algorithm which infers the type of a program.

1 Introduction

The quest of finding a typing discipline that guarantees that functions on coinductive
data types are productive has prompted a variety of works that rely on a modal operator
[17,15,23,6,1,7,3]. All these works except for Nakano’s [17] have explicit construc-
tors and destructors in the syntax of programs [15,23,6,7]. This has the advantage that
type inference is easy but it has the disadvantage that they do not really liberate the
programmer from the task of controlling recursion since one has to know when to ap-
ply the introduction and elimination rules for the modal operator. As far as we know,
decidability of type inference for Nakano’s type system remains an open problem.

In this paper we consider the pure functional part of a type system studied previ-
ously [24]. This is a typed lambda calculus which has the advantage of having a modal
operator silent in the syntax of programs without resorting to a subtyping relation as
Nakano while keeping the nice properties of subject reduction and normalisation. We
show that the type inference problem is decidable for the system under consideration.
Even without a subtyping relation, this variant of the modal operator is still challenging
to deal with because it is intrinsically non-structural, not corresponding to any expres-
sion form in the calculus.

Apart from the modal operator, we also include guarded recursive types which gen-
eralize the recursive equation Strt = t×•Strt for streams [15,23]. This allows us to
type productive functions on streams such as

skip xs = 〈fst xs,skip (snd (snd xs))〉

which deletes the elements at even positions of a stream using the type StrNat →
Str2Nat where Str2t = t×••Str2t .

Lazy functional programming is acknowledged as a paradigm that fosters software
modularity [12] and enables programmers to specify computations over possibly infi-
nite data structures in elegant and concise ways. We give some examples that show how
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modularization and compositionality can be achieved using the modal operator. An im-
portant recursive pattern used in functional programming for modularisation is foldr
defined by

foldr f xs = f (fst xs) (foldr f (snd xs))

The type of foldr which is (t→•s→ s)→ Strt → s, is telling us what is the safe way
to build functions. While it is possible to type

iterate f = foldr (λxy.〈 f x,y〉)

by assigning the type t → t to f , and assuming s = Strt , it is not possible to type
the unproductive function foldr (λxy.y). This is because λxy.y does not have type
(t→•s→ s).

In spite of the fact that StrNat → Str2Nat is the type of skip with the minimal
number of bullets, it does not give enough information to the programmer to know that
the composition of skip with itself is still typeable. In order to assist the user in the
task of modularization, we need to infer a more general type for skip, which would
look like

Stream(N,X)→ Stream(N +1,X)

where Stream(N,X)=X×•NStream(N,X) and N and X are integer and type variable,
respectively. It is clear now that from the above type, a programmer can deduce that it
is possible to do the composition of skip with itself.

Contributions and Outline. Section 2 defines the typed lambda calculus λ •→ with a
silent modal operator and proves subject reduction and normalisation. Section 3 gives
an adequate denotational semantics for λ •→ in the topos of trees as a way of linking our
system to the work by Birkedal et al [2]. Section 4 shows the most important contri-
bution of this paper which is decidability of the type inference problem for λ •→. This
problem is solved by an algorithm which has the interesting feature of combining uni-
fication of types with integer linear programming. Sections 5 and 6 discuss related and
future work, respectively.

2 A Light Modality for Typed Lambda Calculus

The syntax for expressions and types is given by the following grammars.

e ::=ind Expression
| x (variable)
| λx.e (abstraction)
| ee (application)
| 〈e,e〉 (pair)
| (fst e) (first)
| (snd e) (second)

t ::=coind Pseudo-type
X (type variable)

| t× t (product)
| t→ t (arrow)
| •t (delay)

In addition to the usual constructs of the λ -calculus, expressions include pairs. We do
not need a primitive constant for the fixed point operator because it can be expressed
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and typed inside the language. Expressions are subject to the usual conventions of the
λ -calculus. In particular, we assume that the bodies of abstractions extend as much as
possible to the right, that applications associate to the left, and we use parentheses to
disambiguate the notation when necessary.

The syntax of pseudo-types is defined co-inductively. A type is a possibly infinite
tree, where each internal node is labelled by a type constructor →, × or • and has as
many children as the arity of the constructor. The leaves of the tree (if any) are labelled
by either type variables or end. We use a co-inductive syntax to describe infinite data
structures (such as streams). The syntax for pseudo-types include the types of the simply
typed lambda calculus, arrows and products and the delay type constructor • [17]. An
expression of type •t denotes a value of type t that is available “at the next moment in
time”. This constructor is key to control recursion and attain normalisation.

Definition 1 (Types). We say that a pseudo-type t is

1. regular if its tree representation has finitely many distinct sub-trees.
2. guarded if every infinite path in its tree representation has infinitely many •’s.
3. a type if it is regular and guarded.

The regularity condition implies that we only consider types admitting a finite rep-
resentation. It is equivalent to representing types with µ-notation and a strong equality
which allows for an infinite number of unfoldings. This is also called the equirecursive
approach since it views types as the unique solutions of recursive equations [10,19].
The existence and uniqueness of a solution satisfying condition 1 follow from known
results (see [9] and also Theorem 7.5.34 of [5]). For example, there are unique types
Str′Nat, StrNat, and •∞ that respectively satisfy the equations Str′Nat = Nat×Str′Nat,
StrNat = Nat×•StrNat, and •∞ = ••∞.

The guardedness condition intuitively means that not all parts of an infinite data
structure can be available at once: those whose type is prefixed by a • are necessarily
“delayed” in the sense that recursive calls on them must be deeper. For example, StrNat
is a type that denotes streams of natural numbers, where each subsequent element of the
stream is delayed by one • compared to its predecessor. Instead Str′Nat is not a type:
it would denote an infinite stream of natural numbers, whose elements are all available
right away. If the types are written in µ-notation, the guardedness condition means that
all occurrences of X in the body t of µX .t are in the scope of a •.

The type •∞ is somehow degenerated in that it contains no actual data constructors.
Unsurprisingly, we will see that non-normalising terms such as Ω = (λx.x x)(λx.x x)
can only be typed with •∞ (see Theorem 1). Without Condition 2, Ω could be given any
type since the recursive pseudo-type D= D→ t would become a type.

Sometimes we will write •nt in place of •· · ·•︸ ︷︷ ︸
n-times

t.

We adopt the usual conventions regarding arrow types (which associate to the right)
and assume the following precedence among type constructors:→, ×, • with • having
the highest precedence.

Expressions reduce according to a standard call-by-name semantics:

[R-BETA]

(λx.e1) e2 −→ e1[e2/x]
[R-FIRST]

fst 〈e1,e2〉 −→ e1

[R-SECOND]

snd 〈e1,e2〉 −→ e2

[R-CTXT]

e−→ f
E [e]−→ E [ f ]
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where the evaluation contexts are E ::= [ ] | E e | (fst E ) | (snd E ). Normal forms are
defined as usual as expressions that do not reduce.

The type assignment system λ •→ is defined by the following rules.

[AXIOM]

Γ ,x : t ` x : t

[•I]

Γ ` e : t
Γ ` e : •t

[→I]

Γ ,x : •nt ` e : •ns
Γ ` λx.e : •n(t→ s)

[→E]

Γ ` e1 : •n(t→ s) Γ ` e2 : •nt
Γ ` e1e2 : •ns

[×I]

Γ ` e1 : •nt Γ ` e2 : •ns
Γ ` 〈e1,e2〉 : •n(t× s)

[×E1]

Γ ` fst : t1× t2→ t1

[×E2]

Γ ` snd : t1× t2→ t2

They are essentially the same as those for the simply typed lambda calculus except
for two important differences. First, we now have an additional rule [•I] for introducing
the modality. This rule is unusual in the sense that the expression remains the same,
i.e. we do not have a constructor for • at the level of expressions. Second, each rule
allows for an arbitrary delay in front of the types of the entities involved. Intuitively, the
number of •’s represents the delay at which a value becomes available. So for example,
rule [→I] says that a function which accepts an argument x of type t delayed by n and
produces a result of type s delayed by the same n has type •n(t→ s), that is a function
delayed by n that maps elements of t into elements of s. Crucially, it is not possible to
anticipate a delayed value: if it is known that a value will only be available with delay
n, then it will also be available with any delay m≥ n, but not earlier.

Using rule [•I] and the recursive type D= •D→ t, we can derive that the fixed point
combinator fix = λy.(λx.y (x x))(λx.y (x x)) has type (•t → t)→ t by assigning the
type D→ t to the first occurrence of λx.y (x x) and •D→ t to the second one [17].

Let skip = fix λ f x.〈(fst x), f (snd (snd x))〉 be the function that deletes the
elements at even positions of a stream. In order to assign the type StrNat→ Str2Nat to
skip, the variable f has to be delayed once and the first occurrence of snd has to be
delayed twice. Note also that when typing the application f (snd (snd x)) the rule [→E]

is used with n = 2.
The following lemma expresses the fact that the type of an expression should be

delayed as much as the types in the environment. The proof is by induction on the
derivation.

Lemma 1 (Delay). If Γ ` e : t, then Γ1,•Γ2 ` e : •t for Γ1,Γ2 = Γ .

For example, from x : t ` λy.x : s→ t we can deduce that x : •t ` λy.x : •(s→ t),
but we cannot deduce x : •t ` λy.x : s→ t. The Delay Lemma is crucial for proving
Inversion Lemma:

Lemma 2 (Inversion).

1. If Γ ` x : t, then t = •nt ′ and x ∈ dom(Γ).
2. If Γ ` λx.e : t, then t = •n(t1→ t2) and Γ ,x : •nt1 ` e : •nt2.
3. If Γ ` e1e2 : t, then t = •nt2 and Γ ` e2 : •nt1 and Γ ` e1 : •n(t1→ t2).
4. If Γ ` fst : t, then t = •n(t1× t2→ t1).
5. If Γ ` snd : t, then t = •n(t1× t2→ t2).
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Proof. By case analysis and induction on the derivation. We only show Item 2 which
is interesting because we need to shift the environment in time and apply Lemma 1. A
derivation of Γ ` λx.e : t ends with an application of either [→I] or [•I]. For the former
case, the proof is immediate. If the last applied rule is [•I], then t = •t ′ and Γ ` λx.e : t ′.
By induction t ′ = •n(t1 → t2) and Γ ,x : •nt1 ` e : •nt2. Hence t = •t ′ = •n+1(t1 → t2)
and by Lemma 1 Γ ,x : •n+1t1 ` e : •n+1t2.

An important consequence of Inversion Lemma is Subject Reduction:

Lemma 3 (Subject Reduction). If Γ ` e : t and e−→ e′ then Γ ` e′ : t.

Proof. By induction on the definition of −→. We only do the case (λx.e1) e2 −→
e1[e2/x]. Suppose Γ ` (λx.e1) e2 : t. By Item 3 of Lemma 2

t = •nt2 Γ ` e2 : •nt1 Γ ` (λx.e1) : •n(t1→ t2)

It follows from Item 2 of Lemma 2 that Γ ,x : •nt1 ` e1 : •nt2. By applying Substi-
tution Lemma (which follows by an easy induction on expressions), we deduce that
Γ ` e1[e2/x] : •nt2.

Neither Nakano’s type system nor ours is closed under η-reduction. For example,
y : •(t → s) ` λx.(y x) : (t → •s) but y : •(t → s) 6` y : (t → •s). The lack of subject
reduction for η-reduction does not seem important in the context of lazy evaluation
where programs are closed terms and only weak head normalised.

Theorem 1 (Normalisation). [24,25] If Γ ` e : t and t 6= •∞, then e reduces (in zero or
more steps) to a normal form.

The proof of the above theorem follows from the fact that λ •→ is included in the
type system of [24] and the latter is normalising [25]. Notice that there are normalising
expressions that cannot be typed, for example λx.ΩI, where Ω= (λy.y y)(λy.y y) and
I = λ z.z. In fact Ω has type •∞ and by previous theorem it cannot have other types, and
this implies that the application ΩI has no type.

3 Denotational Semantics

This section gives a denotational semantics for λ •→ where types and expressions are
interpreted as objects and morphisms in the topos of trees Setωop

[2]. We give a self-
contained description of this topos as a cartesian closed category for a reader familiar
with λ -calculus. The topos of trees S has as objects A families of sets A1,A2, . . . in-
dexed by positive integers, equipped with family of restrictions rA

i : Ai+1 → Ai. Types
will be interpreted as family of sets (not just sets). Intuitively the family represents bet-
ter and better sets of approximants for the elements of that type. Arrows f : A→ B are
families of functions fi : Ai→ Bi obeying the naturality condition fi ◦ rA

i = rB
i ◦ fi+1.

A1

f1
��

A2
rA
1oo

f2
��

A3
rA
2oo

f3
��

. . .

B1 B2
rB
1

oo B3
rB
2

oo . . .
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We define rA
ii = idA and rA

i j = r j ◦ . . .◦ ri−1 for 1≤ j < i. Products are defined pointwise.
Exponentials BA have as components the sets:

(BA)i = {( f1, . . . , fi) | f j : A j→ B j and f j ◦ rA
j = rB

j ◦ f j+1}

and as restrictions rA⇒B
i ( f1, . . . fi+1) = ( f1, . . . , fi). We define eval : BA × A → B as

evali(( f1, . . . , fi),a) = fi(a) and curry( f ) : C→ BA for f : C×A→ B as

curry( f )i(c) = (g1, . . . ,gi)

where g j(a) = f j(rA
i j(c),a) for all a ∈ A j and 1 ≤ j ≤ i. The functor I: S → S is

defined on objects as (I A)1 = {∗} and (I A)i+1 = Ai where rIA
1 =! and rIA

i+1 = rA
i and

on arrows (I f )1 = id{∗} and (I f )i+1 = fi. We write In for the n-times composition
of I.

The natural transformation nextA : A→IA is given by (nextA)1 =! and (nextA)i+1 =
rA

i which can easily be extended to a natural transformation nextn
A : A →In A . It

is not difficult to see that there are isomorphisms θ :I A× I B →I (A× B) and
ξ : (I B)(IA) →I (BA) which are also natural. These can also be easily extended to
isomorphisms θ n :In A×In B→In (A×B) and ξ n : (In B)(I

nA)→In (BA).
A type t is interpreted as a functor [[t]] ∈ (S op×S )k → S by fixing a superset

X1 . . .Xk of its free variables. The mixed variance is a way of solving the problem of the
contra-variance and the functoriality of [[t]] since variables can appear positively and
negatively [7].

[[X ]]
−−−→
(V,W ) = Wj if X = X j for 1≤ j ≤ k

[[t× s]]
−−−→
(V,W ) = [[t]]

−−−→
(V,W )× [[s]]

−−−→
(V,W )

[[t→ s]]
−−−→
(V,W ) = [[s]]

−−−→
(V,W )[[t]]

−−−→
(W,V )

[[•t]] = I ◦[[t]]
In order to justify that the interpretation is well-defined, it is necessary to view the
above definition as indexed sets and we do induction on the pair (i,rank(t)) taking
the lexicographic order where rank(t) is defined by rank(•t) = 0 and rank(t × s) =
rank(t→ s) = max(rank(t),rank(s))+1. By writing the indices explicitly for [[•t]], we
obtain

([[•t]]
−−−→
(V,W ))1 = {∗} ([[•t]]

−−−→
(V,W ))i+1 = ([[t]]

−−−→
(V,W ))i

where the index decreases. For t× s and t→ s, the interpretation at i is defined in terms
of the interpretations of t and s at i, so the rank decreases.

Alternatively, if we represent types in µ-notation, the interpretation can be defined
by induction on the type by adding the case:

[[µX .t]]
−−−→
(V,W ) = Fix(F) where F(V1,W1) = [[t]](

−−−→
(V,W ),(V1,W1))

and Fix(F) is the unique A such that F(A,A)∼= A

The existence of the fixed point Fix(F) follows from [2, Section 4.5] since F is locally
contractive.

As it is common in categorical semantics, the interpretation is not defined on lambda
terms in isolation but on typing judgements. In order to define terms as morphisms, we
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need the context and the type to specify their domain and co-domain. Typing contexts
Γ = x1 : t1, . . .xk : tk are interpreted as [[t1]]× . . .× [[tk]]. The interpretation of typed ex-
pressions [[Γ ` e : t]] : [[Γ ]]→ [[t]] is defined by induction on e (using Inversion Lemma):

[[Γ ` x : •nt]] = nextn ◦π j if x = x j and t j = t and 1≤ j ≤ k
[[Γ ` e1e2 : •ns]] = eval◦ 〈(ξ n)−1 ◦ [[Γ ` e1 : •n(t→ s)]], [[Γ ` e2 : •nt]]〉
[[Γ ` λx.e : •n(t→ s)]] = ξ n ◦ curry([[Γ ,x : •nt ` e : •ns]])
[[Γ ` 〈e1,e2〉 : •n(t× s)]] = (θ n)◦ 〈[[Γ ` e1 : •nt]], [[Γ ` e2 : •ns]]〉
[[Γ ` (fst e) : •nt]] = π1 ◦ (θ n)−1 ◦ [[Γ ` e : •n(t× s)]]
[[Γ ` (snd e) : •nt]] = π2 ◦ (θ n)−1 ◦ [[Γ ` e : •n(t× s)]]

Lemma 4 (Semantic Substitution).

[[Γ ,x : •nt ` e1 : •ns]]◦ 〈id, [[Γ ` e2 : •nt]]〉= [[Γ ` e1[e2/x] : •ns]]

Proof. This follows by induction on e1. We only show the case e1 = x. By Inversion
Lemma s = •mt. Then,

[[Γ ,x : •nt ` e1 : •m+nt]]◦ 〈id, [[Γ ` e2 : •nt]]〉 = nextm ◦ [[Γ ` e2 : •nt]] = [[Γ ` e2 : •n+mt]]

The last equality follows from a semantic delay lemma.

Theorem 2 (Soundness). If Γ ` e : t and e−→ e′ then [[Γ ` e : t]] = [[Γ ` e′ : t]].

Proof. We show the case of [R-BETA]. Let v1 = [[Γ ,x : •nt ` e1 : •ns]] and v2 = [[Γ ` e2 : •nt]].

[[Γ ` (λx.e1)e2 : •ns]] = eval◦ 〈(ξ n)−1 ◦ξ n ◦ curry(v1),v2〉= v1 ◦ 〈id,v2〉
= [[Γ ` e1[e2/x] : •ns]] by Lemma 4

The denotational semantics of λ •→ in the topos of trees can be generalised to SetAop

for a set A equipped with a well-founded relation.

4 A Type Inference Algorithm

In this section, we define a type inference algorithm for λ •→. Apart from the usual com-
plications that come from having no type declarations, the difficulty of finding an ap-
propriate type inference algorithm for λ •→ is due to the fact that the expressions do not
have a constructor and destructor for •. We do not know which sub-expressions need
to be delayed as illustrated by the type derivation of fix where the first occurrence of
(λx.y (x x)) has a different derivation from the second one since [•I] is applied in dif-
ferent places [17]. Even worse, in case a sub-expression has to be delayed, we do not
know how many times needs to be delayed to be able to type the whole expression.

The type inference algorithm infers meta-types which are a generalization of types
where the • can be exponentiated with integer expressions, e.g. •N1X → •N2−N1X . The
algorithm proceeds in several stages. The first stage generates a meta-type T0 and a set
C0 of meta-type constraints from a given closed expression e. Secondly, the unification
algorithm transforms C0 into a set C of recursive equations and it simultaneously gen-
erates a set E of integer constraints to guarantee that the meta-types have non-negative
exponents. Thirdly, a set gC(C ) of integers constraints is computed to ensure that the
solution is guarded. If E ∪ gC(C ) is solvable then e is typable and its type is obtained
by substituting T0 by the solutions of C and E ∪gC(C ).
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4.1 Meta-types

The syntax for pseudo meta-types is defined below. A pseudo meta-type can contain
type variables and (non-negative) integer expressions with variables. In this syntax, •t
is written as •1t. We identify •0t with t and •E •E ′ t with •E+E ′t. We define a meta-type
as a pseudo meta-type that is regular and guarded.

E ::=ind Integer Expression
N (integer variable)

| n (integer number)
| E +E (addition)
| E−E (substraction)

T ::=coind Pseudo Meta-type
X (type variable)

| T ×T (product)
| T → T (arrow)
| •ET (delay)

Let τ be a finite mapping from type variables to meta-types, denoted as {X1 7→
T1, . . . ,Xn 7→ Tn}, and let ρ be a finite mapping from integer variables to integer ex-
pressions, denoted as {N1 7→ E1, . . . ,Nm 7→ Em}. Let also σ = τ ∪ ρ . We define the
substitution on a meta-types and an integer expression as follows.

Nρ = E if N 7→ E ∈ ρ

nρ = n

(E1 +E2)ρ = E1ρ +E2ρ

(E1−E2)ρ = E1ρ−E2ρ

Xσ = T if X 7→ T ∈ τ

(T1→ T2)σ = T1σ → T2σ

(T1×T2)σ = T1σ ×T2σ

(•ET )σ = •Eρ T σ

We say that σ = τ ∪ρ is a ground substitution if ρ maps all integer variables into
natural numbers. We say that T is ground if it contains no integer variables and all the
exponents of • are natural numbers. We identify a ground type with the type obtained
from replacing the type constructor •n in the syntax of meta-types with n consecutive
•’s in the syntax of types.

Definition 2 (Constraints). A meta-type constraint is an equation T
?= T ′ between

finite meta-types. An integer constraint is either E
?= E ′ or E

?
≥ E ′ or E

?
< E ′.

Moreover, σ |= T
?= T ′ means that T σ = T ′σ . Similarly, we define ρ |= E

?= E ′,

ρ |= E
?
≥ E ′ and ρ |= E

?
< E ′. This notation extends to a set C (or E ) of constraints

in the obvious way.

We say that C is substitutional if C = {X1
?= T1, . . . ,Xn

?= Tn} and all variables
X1, . . . ,Xn are pairwise different. Since a substitutional C is a set of recursive equations
where T1, . . . ,Tn are finite meta-types, there exists a unique solution τC such that τC (Xi)
is regular for all 1≤ i≤ n [9], [5, Theorem 7.5.34]. Note that the unicity of the solution
of a set of recursive equations would not be guaranteed if we were following the iso-
recursive approach which allows only for a finite number of unfoldings µX .t = t{X 7→
µX .t} [4,5].

We say that E grounds T if T ρ is ground for all ground substitutions ρ such that
ρ |= E . For example, N1 ≥ N2 grounds (•N1−N2X) but N1 ≤ N2 does not.
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4.2 Constraint Typing Rules

Table 1 defines the constraint typing rules. We assume that ∆ only contains declarations
of the form x : X . This is needed for the proof of Item 2 of Theorem 3. If instead of
generating the fresh variable x in [→I] we directly put •NX1 in the context, then we
would not know what value to assign N in the case of e = x unless we look at the rest
of the type derivation. For example, consider x : •5Nat ` x : •7Nat. Then N should be
assigned the value 3 and not 5 if later we derive that λx.x : •2(•3X →•5X).

Note that given an expression e, it is always possible to derive ∆ and C such that
∆ ` e : T | C and the set C contains only constraints between finite meta-types.

Theorem 3 (Correctness of Constraint Typing). Let ∆ ` e : T | C and Γ = x1 :
t1, . . . ,xm : tm and ∆ = x1 : X1, . . . ,xm : Xm.

1. Let ∆σ and T σ be ground. If σ |= C then ∆σ ` e : T σ .
2. If Γ ` e : t then there exists a ground substitution σ ⊇ {X1 7→ t1, . . . ,Xm 7→ tm} such

that σ |= C and T σ = t and dom(σ)\{X1, . . . ,Xm} is the set of fresh variables in
the derivation of Γ ` e : t.

Proof. Items 1 and 2 follow by induction on e. For Item 1, we prove the case of the
abstraction. It follows from induction hypothesis that ∆σ ,x : T1σ ` e : T2σ . Since σ |=
{T1

?= •NX1,T2
?= •NX2}, it is obvious that we also have that ∆σ ,x : •Nσ X1σ ` e :

•Nσ X2σ . We can, then, apply [→I] to conclude that the abstraction has type •Nσ (X1σ →
X2σ) from the context ∆σ .

For Item 2 we prove a few cases. Suppose e = x. By Inversion Lemma, we have that
x = xi and t = •nti for some i. We define σ = {X1 7→ t1, . . . ,Xm 7→ tm}∪{N 7→ n}. It is
easy to see that ∆σ = Γ and t = (•NXi)σ .

Table 1. Constraint Typing Rules

[AXIOM]

∆ ,x : X ` x : •NX | /0

[→I]
∆ ,x : X ` e : T | C X ,X1,X2,N are fresh

∆ ` λx.e : •N(X1→ X2) | C ∪{X ?= •NX1,T
?= •NX2}

[→E]
∆ ` e1 : T1 | C1 ∆ ` e2 : T2 | C2 X1,X2,N are fresh

∆ ` e1e2 : •NX2 | C1∪C2∪{•N(X1→ X2)
?= T1,•NX1

?= T2}

[×I]
∆ ` e1 : T1 | C1 ∆ ` e2 : T2 | C2 X1,X2,N are fresh

∆ ` 〈e1,e2〉 : •N(X1×X2) | C1∪C2∪{•NX1
?= T1,•NX2

?= T2}

[×E1]

N,X1,X2 are fresh

∆ ` fst : •N(X1×X2→ X1) | /0

[×E2]

N,X1,X2 are fresh

∆ ` snd : •N(X1×X2→ X2) | /0
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Suppose e = e1e2. By Inversion Lemma, t = •nt2 and Γ ` e2 : •nt1 and Γ ` e1 :
•n(t1 → t2). By induction hypotheses there are σ1,σ2 ⊇ {X1 7→ t1, . . . ,Xm 7→ tm} such
that σ1 |= C1 and σ2 |= C2 and T1σ1 = •n(t1→ t2) and T1σ2 = •nt2. Since, by induction
hypotheses, dom(σ1) \ {X1, . . . ,Xm} is the set of fresh variables in the derivation of
Γ ` e1 : t and dom(σ2) \ {X1, . . . ,Xm} is the set of fresh variables in the derivation of
Γ ` e2 : t, we have that σ1 ∪σ2 is a function. We can now define the substitution σ as
(σ1∪σ2){N 7→ n}{X1 7→ t1}{X2 7→ t2}.

4.3 Unification Algorithm

The unification algorithm is defined in Table 2. Given a set C of constraints, it returns
a set of pairs (C ′,E ) such that C ′ is substitutional and E grounds the meta-types in
C ′. The extra argument D keeps tracks of the “visited type constraints” and guarantees
termination. The function unify does not return only one solution but a set of solutions.

If •NX
?= •N′X ′ then there are two ways of solving this equation: either N ≥ N′ and

X ′ = •N−N′X or N′ > N and X = •N′−NX ′. We use⊕ for the disjoint union to guarantee
that the type constraint that is being processed is removed from the set C . The case

C ′ ⊕{•EX
?= •E ′T} assumes T is of the form T1 op T2. It is clear that if E ′ < E,

then the unification does not have a solution, e.g. •−2X
?= T1 op T2. The case for C ′⊕

{T1
?= T2,X

?= T2} is crucial for getting a substitutional set. By adding T1
?= T2

and removing X
?= T2 from the set C , we obtain an equivalent set of constraints that

“reduces” the set of constraints for X . Since D already contains T1
?= T2, this constraint

will not be added again avoiding non-termination. The unification algorithm for the
simply typed lambda calculus solves the problem of termination in this case by reducing
the number of variables, i.e. checks if X 6∈ T1 and then, substitutes the variable x by T1
in the remaining set of constraints. With recursive types, however, we do not perform
the occur check and the number of variables may not decrease since the variable X may
not disappear after substituting X by T (because X occurs in T ). In order to decrease
the number of variables, we could perhaps substitute X by FIX (λ X .T1) where FIX
gives the solution of the recursive equation X = T1 as a possible infinite tree. But the
problem of guaranteeing termination would still be present if the meta-type constraints
are allowed to be infinite since the size of the constraints may not decrease in some
cases. We would also have a similar problem with termination if we use multi-equations
and a rewrite relation instead of giving a function such as unify [20].

We start the algorithm by invoking unify(C0,C0) where the first and second argu-
ment are the same. In the remaining recursive calls, the second argument either remains
the same or it is extended with the type constraint that has been just processed.

The size | C | of a set of constraints is the sum of the number of type variables and
type constructors in the left hand side of the type constraints. Since the type constraints
are finite, the size is always finite. We define

SubT(C0) = {T | S1
?= S2 ∈ C0 and either S1 or S2 contains T}

SubC(C0) = {T1
?= T2 | T1,T2 ∈ SubT(C0)}
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Table 2. Unification Algorithm

unify(C ,D) = if C is substitutional then {(C , /0)}
else Case C of

C ′⊕{T ?= T}⇒ unify(C ′,D)

C ′⊕{T ?= X}⇒ unify(C ′∪{X ?= T},D ∪{X ?= T})
C ′⊕{X ?= T1,X

?= T2}⇒
if T1

?= T2 ∈D then unify(C ′∪{X ?= T1},D)

else unify(C ′∪{X ?= T1,T1
?= T2},D ∪{T1

?= T2})
C ′⊕{•E X

?= •E ′X ′}⇒
{(C0,E0∪{E ′ ≥ E} | (C0,E0) ∈ unify(C1,D)}∪
{(C0,E0∪{E > E ′}) | (C0,E0) ∈ unify(C2,D)}
where C1 = C ′∪{X ?= •E ′−E X ′} and C2 = C ′∪{X ′ ?= •E−E ′X}

C ⊕{•E X
?= •E ′T}⇒

{(C0,E0∪{E ′ ≥ E}) | (C0,E0) ∈ unify(C1,D)}
where C1 = C ∪{X ?= •E ′−E T}

C ⊕{•E ′T
?= •E X}⇒ unify(C ∪{•E X

?= •E ′T},D)

C ⊕{•E(T1 op1 T2)
?= •E ′(T ′1 op2 T ′2)}⇒

if op1 6= op2 then fail

else {(C0,E0∪{E
?= E ′)}) | (C0,E0) ∈ unify(C ′,D)}

where C ′ = C ∪{T1
?= T ′1,T2

?= T ′2}

In the evaluation of unify(C0,C0), the argument D of the recursive calls satisfies C0 ⊆
D ⊆ SubC(C0).

Theorem 4 (Termination and Correctness of Unification). Let D ⊆ SubC(C0).

1. unify(C ,D) terminates
2. If (C0,E0) ∈ unify(C ,D) then C0 is substitutive.
3. If σ |= C then there exists (C0,E0) ∈ unify(C ,D) such that σ |= C0 and σ |= E0.
4. If (C0,E0) ∈ unify(C ,D) and ρ is a ground substitution such that ρ |= E0 then

ρ ∪ τC0 |= C and ρ(τC0(X)) is ground for all X.

Proof. In order to prove Item 1, observe that the second argument increases or remains
the same in each recursive call. In the cases it remains the same, it is easy to see that
| C | decreases. Since D ⊆ SubC(C0), we have that

(| SubC(C0) | − |D |, | C |)

decreases with each recursive call and hence, the unification algorithm terminates.
Items 2, 3 and 4 follow by induction on the number of recursive calls. For Item 3

we prove the case C = C ′⊕{•E(T1 op T2)
?= •E ′(T ′1 op T ′2)}. It follows from σ |= C



12 Paula Severi

Table 3. Generation of Guard Constraints

Let C = {X1
?= T1, . . . ,Xn

?= Tn} be substitutional. We compute the set of inequality
constraints as follows.

gC(C ) =
⋃
{0

?
< E | E ∈ gE(Xi,Ri) 1≤ i≤ n}

where R1, . . . ,Rn are obtained by performing substitutions:

S1 = T1, S2 = T2{X1 7→ S1}, . . . , Sn = Tn{X1 7→ S1} . . .{Xn−1 7→ Sn−1}
Rn = Sn, Rn−1 = Sn−1{Xn 7→ Sn}, . . . , R1 = S1{X2 7→ S2, . . . ,Xn 7→ Sn}

and gE is defined as follows:

gE(X ,X) = {0}
gE(X ,•E T ) = {E +E ′ | E ′ ∈ gE(T )}
gE(X ,T1 op T2) = gE(X ,T1)∪gE(X ,T2)

that σ |= C ′ ∪{T1
?= T ′1 ,T2

?= T ′2} and σ |= E
?= E ′. By induction hypothesis there

exists (C0,E0) ∈ unify(C ′ ∪{T1
?= T ′1 ,T2

?= T ′2},D) such that σ |= C0 and σ |= E0.

Then (C0,E0∪{E
?= E ′}) ∈ unify(C ,D) and σ |= E0∪{E

?= E ′}.
For Item 4 we prove the case C = C ′⊕{•E(T1 op T2)

?= •E ′(T ′1 op T ′2)}. Suppose

(C0,E0)∈ unify(C ,D) and ρ |= E0. Then E0 = E ′0∪{E
?= E ′}. By induction hypothesis

τC0 ∪ρ |= C ′∪{T1
?= T ′1 ,T2

?= T ′2}. Since ρ |= {E ?= E ′}, we have that τC0 ∪ρ |= C .

The unification algorithm is exponential on the size of the input. If we are only
interested in knowing if the program is typeable or not, then the complexity could be
reduced to PSpace since it would be sufficient to store just one solution at a time.

4.4 Generation of Guard Constraints

Table 3 defines an algorithm for computing the set of integer constraints needed to en-
force that the types are guarded. Intuitively, the function gE(X ,T ) adds up the exponents
of the bullets from the root of T to wherever X occurs in T and gC forces the resulting
integer expression to be greater than 0. However, just forcing gE(X ,T ) to be greater
than 0 does not work because C is a set of mutually recursive equations. The simplest
way to track the exponents along several recursive equations seems to perform substi-
tutions in the spirit of Bekič law [14]. Suppose C = {X1 = T1,X2 = T2}. The constraint
gE(X1,T1)> 0 is sufficient only if X1 does not occur in T2. If X1 occurs in T2, however,
we should also be able to “see the recursive occurrences of X1” coming from the second
recursive equation. For this, we define Si and Ri similarly to the way one calculates the
solution in µ-notation from a set of recursive equations (see Theorem 8.1.1 in [5]). We
can omit the µ’s because they are not needed.

Since the solutions of the recursive equations X = •(X → Y ) and X = •X → Y are
different and both guarded, the integer constraint to guarantee guardedness for X =
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Table 4. Type Inference Algorithm

Let e be a closed expression. The type inference algorithm infer(e) proceeds as follows.

1. It first calculates the meta-type T0 and the set C0 of meta-type constraints such that
/0 ` e : T0 | C0 using the typing rules of Table 1.

2. Then infer(e) returns the set of pairs (T0τC ,E ) such that (C ,E ) ∈ unify(C0,C0) and
the following two conditions hold:
(a) T0τC is either •E X or •E(T1→ T2) or •E(T1×T2) and
(b) the set E ∪gC(τC ) has a solution of non-negative integers where gC is the set of

constraints computed as in Table 3.

•N(•MX → Y ) should be N +M ≥ 1 which is more general than just M ≥ 1. It gets
more complicated if we have several mutual recursive equations because the recursive
variable has to be tracked through several equations. For example, consider the set

X1
?= •N1(•N2X1→•N3X2) X2

?= •M1(•M2X2→•M3X3) X3
?= •K1(•K2X1→•K3X3)

then, the set E of integer constraints to enforce that the types are guarded is:

{N1 +N2 ≥ 1,N1 +N3 +M1 +M3 +K1 +K2 ≥ 1,M1 +M2 ≥ 1,K1 +K3 ≥ 1}

Theorem 5 (Correctness of the Guard Constraint Generation). Let C = {X1
?=

T1, . . . ,Xn
?= Tn} be substitutive and τC = {X1 7→ S1, . . . ,Xn 7→ Sn} and Siρ be grounded.

Then, Siρ is guarded for all 1≤ i≤ n iff ρ |= gC(C ).

Proof. Suppose ρ 6|= gC(C ). Then, there is E ∈ gE(Xi,Ri) such that ρ(E) = 0 then the
path from the root of Riρ to Xi has no bullets. Since Siρ = Ti(ρ ◦ τC ) = Ri(ρ ◦ τC ′)
where τC ′ = {X1 7→ R1, . . . ,Xn 7→ Rn}, we have that there exists an infinite path in Siρ

that has no bullets at all. For the converse, suppose ρ |= gC(C ). Then, an infinite path
in Siρ is an infinite path in Ri(ρ ◦ τC ′) and this path has an infinite number of bullets
because the path from the root of Riρ to Xi has a number n = Eρ > 0 of bullets.

4.5 Type Inference Algorithm

The type inference algorithm defined in Table 4 returns a finite set of meta-types that
cover all the possible types of a closed expression e, i.e. any type of e is an instantiation
of one of those meta-types. Item 2a checks that the type is different from •∞. Here, we
are using the fact that t 6= •∞ if and only if t is either •nX or •n(t1→ t2) or •n(t1× t2).
In order to check that E ∪ gC(τC ) has a solution of non-negative integers in Item 2b,
we can use any algorithm for linear integer programming [18]. It is easy to modify
this algorithm to give a set of minimal solutions by minimizing the sum of all integer
variables. For instance, if the solution is a meta-type T satisfying the recursive equation
T = •N1(•N2T → S) with N1 +N2 ≥ 1 then we have two minimal solutions N1 = 1,
N2 = 0 and N1 = 0, N2 = 1.
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As an example, consider λx.x. Then infer(λx.x) yields only one solution •N(X →
•MX) which it is actually its most general type.

Consider now λx.xx. Then infer(λx.xx) gives a set of two meta-types. The first
meta-type is •N1(X1→•N2−N1X4) where X1 should satisfy the recursive equation

X1
?= •N2−(N1+N3)(•N1+N4−N2 X1→ X4)

and N1,N2,N3,N4 should all be non-negative and satisfy N1 +N4 ≥ N2 ≥ N1 +N3 and
N4−N3≥ 1. The second meta-type is •N1(•N2−(N1+N4)X3→•N2−N1X4) where X3 should
satisfy the recursive equation

X3
?= •N4−N3(X3→ X4)

and N1,N2,N3,N4 should all be non-negative and satisfy N2 > N1+N4 and N4 ≥N3 and
N4−N3 ≥ 1. These two meta-types “cover all solutions” in the sense that any type of
λx.xx is an instantiation of one of these two meta-types.

Theorem 6 (Correctness of Type Inference).

1. infer(e) gives a finite set of pairs (T,E ) such that there exists at least one ground
substitution ρ such that ρ |= E .

2. If (T,E )∈ infer(e) then ` e : t and T ρ = t 6= •∞ for all ground substitutions ρ |= E .
3. If ` e : t and t 6= •∞ then there exists (T,E )∈ infer(e) such that T σ = t and σ |= E .

Proof. This follows from Theorems 3, 4 and 5.

Type checking for λ •→ (given an an expression e and a type t check if ` e : t) can
easily be solved by inferring the (finite) set of meta-types for e and checking whether
one of these meta-types unifies with t.

We could try to define an alternative type inference algorithm for λ •→ by re-using
the one for λ µ [4,5]. However, this option does not make the problem simpler. Consider

skipRep xs = 〈fst xs,〈fst xs,skipRep (snd (snd xs))〉〉

This function has type StrNat→ SStr2Nat where SStr2Nat= Nat×Nat×••SStr2Nat.
The type of this function without bullets is Str′Nat → Str′Nat. How can we decorate
Str′Nat→ Str′Nat in order to obtain StrNat→ SStr2Nat? Since a recursive type can be
seen as an infinite tree with a finite number k of sub-trees, we could decorate each sub-
tree with a certain number nk of bullets. However, since StrNat has only one sub-tree,
it would mean that all sub-trees are decorated with the same number of bullets. In order
to obtain SStr2Nat, the domain Str′Nat of the function can be decorated by putting 1
bullet in all its subtrees. However, in order to obtain SStr2Nat, the range Str′Nat of the
function needs to be decorated by putting 0 bullets in some subtrees and 1 in others.

5 Related Work

This paper is an improvement over past typed lambda calculi with a temporal modal
operator in two respects. Firstly, we do not need any subtyping relation as in [17] and
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secondly programs are not cluttered with constructs for the introduction and elimination
of individuals of type • as in [15,23,16,1,6,7,3]. The type system of [3] is designed
having that denotational semantics in mind and it is syntactically more involved. Section
3 shows that our type system being syntactically simpler (and not designed having the
semantics in mind) still admits the same semantics.

If we restrict to the recursive types Strt = t ×•Strt for infinite lists then, λ •→ is
essentially the same as the type system of [15]. If only recursive types for lists are
available, one cannot create other recursive types such as trees but having only one
bullet also limits the amount of functions on streams we can type, e.g. skip is not
typable in the type systems of [15,23].

Another type-based approach for ensuring productivity are sized types [13]. Type
systems using size types do not always have neat properties: strong normalisation is
gained by contracting the fixed point operator inside a case and they lack the prop-
erty of subject reduction [22]. Another disadvantage of size types is that they do not
include negative occurrences of the recursion variable [13] which are useful for some
applications [26].

The proof assistant Coq does not ensure productivity through typing but by means
of a syntactic guardedness condition (the recursive calls should be guarded by construc-
tors) [11,8] which is somewhat restrictive since it rules out some interesting functions
[23,7].

A sound but not complete type inference algorithm for Nakano’s type system is pre-
sented in [21]. This means that the expressions typable by the algorithm are also typable
in Nakano’s system but the converse is not true. Though this algorithm is tractable, it is
not clear to which type system it corresponds.

6 Conclusions and Future Work

The typeability problem (finding out if the program is typeable or not) is trivial in λ µ

because all expressions are typeable using µX .X → X . In λ •→, this problem turns out
to be interesting because it gives us a way of filtering non-normalising programs when
the type is not •∞. It is also challenging because it involves the generation of integer
constraints. The type inference algorithm presented in this paper does not give a unique
principal type but a finite set of “principal” types. Since this (finite) set of types cov-
ers all possible types, it is possible to have modularity. Moreover, this algorithm can be
easily extended to infer types for the processes of [24] since an initial process is the par-
allel composition of the main thread x⇐ e with an arbitrary number of (server a ei)
where e and ei are closed expressions typable in λ •→ extended with IO and session
types. As we mentioned at the end of Section 4.3, the typeability problem in λ •→ can be
solved in PSpace but it still remains to see if this problem is PSpace-hard. In any case,
it is important to refine this algorithm and find optimization techniques (heuristics, use
of concurrency, etc) to make it practical.

It will be interesting to investigate the interaction of this variant of the modal op-
erator with dependent types. As observed in Section 2, our type system is not closed
under η-reduction. We leave the challenge of attaining a normalising and decidable
type system closed under βη-reduction for future research.
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