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Abstract. Infinite lambda calculi extend finite lambda calculus with infinite
terms and transfinite reduction. In this paper we extend some classical results
of finite lambda calculus to infinite terms. The first result we extend to infinite
terms is Böhm Theorem which states the separability of two finite βη-normal
forms. The second result we extend to infinite terms is the equivalence of
the prefix relation up to infinite eta expansions and the contextual preorder
that observes head normal forms. Finally we prove that the theory given by
equality of∞η-Böhm trees is the largest theory induced by the confluent and
normalising infinitary lambda calculi extending the calculus of Böhm trees.

1 Introduction

Not all computations are finite. The calculation of the meaning of a linguistic ex-
pression can be infinite, whether the language is a natural language or not. Vicious
circles can be a cause. In their book [3] Barwise and Moss give the following example:

The law school professor who had worked for him denounced the judge who
had harassed her.

This sentence can be expressed using the formulæ:

D(P, J)

where D(x, y) means x denounces y, P means the law school professor who had
worked for him and J means the judge who had harassed her. The calculations that
lead to the exact references of a particular judge and professor can be performed
with two rewrite rules:

P →W (J)

J → H(P )

relating to the respective clauses who had worked for him and who had harassed
her. We see that the calculation of the meaning of the whole sentence now does not
terminate. It may go like this:

D(P, J)→ D(W (J), J)→ D(W (J),H(P ))→ D(W (H(P )),H(P ))→

D(W (J),H(W (J))))→ D(W (H(P )),H(W (J))))→ . . .

culminating in a limit D(W (H(W (H(. . .)))),H(W (H(W (. . .))))) which does no
longer seem to refer to any judge or professor.



Infinitary rewriting is the branch of rewriting that deals explicitly with infinite
terms and infinite reductions. Extending a finite rewriting system into a infinite
system has to be done with care when one wants to preserve a useful property like
confluence.
In this paper we focus on one particular theory of rewriting namely lambda calcu-
lus. Lambda calculus is confluent. Just extending finite lambda calculus with infinite
lambda terms and infinite reduction destroys this confluence property.
Define I = λx.x, W = λx.I(xx) and ∆ = λx.xx Then the term ∆W has a one step
reduction to ∆∆ and an infinite reduction to I((I(. . .))), namely

∆W →β WW →β I(WW )→β I(I(WW ))→→→β I(I(I(. . .)))

Both ∆∆ and I(I(I(. . .))) reduce only to themselves, and have no common reduct.
To rescue the confluence property one has to extend the lambda calculus also with
an extra ⊥-rule that replaces a meaningless term by ⊥. Interestingly there are many
different choices for the set of meaningless terms. The set of terms without head
normal form is the largest, the set of terms without top normal form is the small-
est [5]. The infinite lambda calculi that we consider here have all the same set of
finite and infinite terms Λ∞⊥ . Besides the variation that come with the choice of a set
U of meaningless terms, there is another source of variation in the infinitary setting
that comes with the strength of extensionality.

REDUCTION RULES NORMAL FORMS NF

Beta and Bottom for terms without tnf Berarducci trees BerT = PT N

Beta and Bottom for terms without whnf Lévy–Longo trees LLT = PWN

Beta and Bottom for terms without hnf Böhm trees BT = PHN

Beta, Bottom parametric on U Parametric trees NF = PU

Beta, Bottom for terms w.o. hnf and Eta η-Böhm trees ηBT

Beta, Bottom for terms w.o. hnf and EtaBang ∞η-Böhm trees ∞ηBT

Fig. 1. Infinitary Lambda Calculi

Figure 1 summarises the infinitary lambda calculi studied so far [4–6, 8, 10, 9]. An
interesting aspect of infinitary lambda calculus is the possibility of capturing the
notion of tree (such as Böhm and Lévy–Longo trees) as a normal form. These trees
were originally defined for finite lambda terms only, but in the infinitary lambda
calculus we can also consider normal forms of infinite terms. The three infinitary
lambda calculi mentioned in the first three rows of Figure 1 capture the well-known
cases of Böhm, Lévy–Longo and Berarducci trees [4–6]. In the fourth row, there is



an uncountable class of infinitary lambda calculi with a ⊥-rule parametrised by a
set U of meaningless terms [7, 8]. By changing the parameter set U of the ⊥-rule,
we obtain different infinitary lambda calculi. If U is the set HN of terms without
head normal form, we capture the notion of Böhm tree. If U is the set WN of terms
without weak head normal form we obtain the Lévy–Longo trees. And if U is the set
T N of terms without top head normal form to ⊥, we recover the Berarducci trees.
The infinitary lambda calculus sketched in the one but last row incorporates the η-
rule [10]. This calculus captures the notion of η-Böhm tree. The last row in Figure 1
mentions the infinitary lambda calculus incorporating the η!-rule, a strengthened
form of the η-rule [9], whose normal forms correspond to the ∞η-Böhm trees.
In this paper we lift three classical results of finite lambda calculus to infinite lambda
calculus. First we extend Böhm’s Theorem concerning separability of finite βη-
normal forms, also known as finite ηBöhm trees, to possibly infinite ∞ηBöhm trees.
Two terms M and N are separable if for any pair of finite terms P,Q there exists a
context C such that C[M ] →→β P and C[N ] →→β Q. This statement is extended to
infinite terms by considering the variation of η-reduction called η!. We prove then
that two (possibly infinite) βη!-normal forms (also known as ∞ηBöhm) M and N
can be separated, i.e. for any (possible infinite) pair of terms P and Q there exists a
finite context C such that C[M ] →→β P and C[N ] →→β Q. The terms M,N subject
to separability may be infinite. However the discriminating context remains finite
and only finite β-reduction is necessary to ”separate them”. The method for finding
such contexts is called the Böhm out technique [1].
The second result that we extend to infinite terms is the equivalence of the prefix
relation up to infinite eta expansions and the contextual preorder that observes head
normal forms. It is natural to compare terms, in particular normal forms, with help
of the prefix relation �. When terms are represented as trees, prefixes of a tree are
obtained by pruning some of its subtrees and replacing them by ⊥. In [11] we prove
that the function BT is monotone in (Λ∞⊥ ,�) and that the function ∞ηBT is not
so. For ∞ηBT it is the prefix relation up to infinite eta expansions denoted by �η!

that is monotone. Another basic preorder between terms is the contextual preorder
with respect to head normal forms. denoted by M ⊆h N which means that for all
contexts C if C[M ] has a head normal form then C[N ] has a head normal form. In [13]
Wadsworth, generalising Böhm’s theorem, shows that the equivalence between ⊆h

and �η! on the set Λ of finite λ-terms (which is part of the Characterisation Theorem
for D∞). In this paper we will show the equivalence between ⊆h and �η! on the set
Λ∞⊥ of finite and infinite lambda terms. One direction uses only properties of the
reduction. The other direction extends the Böhm out technique to infinite terms.
Finally we prove that the theory given by equality of ∞η-Böhm trees is the largest
theory induced by a confluent and normalising infinitary lambda calculus extending
the calculus of the Böhm trees. The analogous result for finite lambda calculus is
that the theory H∗ = {(M,N) ∈ Λ | M ⊆h N} is the unique Hilbert-Post complete
lambda theory extending the theory H which equates the unsolvables [1].

2 Infinitary Lambda Calculus

In this section we will briefly recall some notions and facts of infinite lambda calculus
from our earlier work [5, 6, 8, 10, 9]. We assume familiarity with basic notions and
notations from [1].



Let Λ be the set of λ-terms and Λ⊥ be the set of finite λ-terms with ⊥ given by the
inductive grammar:

M ::= ⊥ | x | (λxM) | (MM)

where x is a variable from some fixed set of variables V. We follow the usual conven-
tions on syntax. Terms and variables will respectively be written with (super- and
subscripted) letters M,N and x, y, z. Terms of the form (M1M2) and (λxM) will
respectively be called applications and abstractions. A context C[ ] is a term with
a hole in it, and C[M ] denotes the result of filling the hole by the term M , possibly
by capturing some free variables of M . If σ : V → Λ∞ then Mσ is the simultaneous
substitution of the variables in M by σ.
The set Λ∞⊥ of finite and infinite λ-terms is defined by coinduction using the same
grammar as for Λ⊥. This set contains the three sets of Böhm, Lévy–Longo and
Berarducci trees. In [6–8], an alternative definition of the set Λ∞⊥ is given using a
metric. The coinductive and metric definitions are equivalent [2]. In this paper we
consider only one set of λ-terms, namely Λ∞⊥ , in contrast to the formulations in [6,
7] where several sets (which are all subsets of Λ∞⊥ ) are considered. The paper [8]
shows that the infinitary lambda calculi can be formulated using a common set Λ∞⊥ ,
confluence and normalisation still hold since the extra terms added by the superset
Λ∞⊥ are meaningless and equated to ⊥.
We define several rules we use to define various infinite lambda calculi. The β, η and
η−1-rules apply to finite and infinite terms as well. The extra power of the η!-rule
becomes visible on infinite terms. The ⊥-rule is parametric on a set U ⊂ Λ∞ of
meaningless terms [7, 8] where Λ∞ is the set of terms in Λ∞⊥ that do not contain ⊥.

Definition 1. We define the following rewrite rules on Λ∞⊥ :

(λx.M)N →M [x := N ] (β)
M [⊥ := Ω] ∈ U M 6= ⊥

(⊥)
M → ⊥

x 6∈ FV (M)
(η)

λx.Mx→M

x 6∈ FV (M)
(η−1)

M → λx.Mx

x→→→η−1 N x 6∈ FV (M)
(η!)

λx.MN →M

In this paper we need various rewrite relations constructed from these rules on the set
Λ∞⊥ . These are defined in the standard way, eg.→β⊥η! is the smallest binary relation
containing the β, ⊥ and η!-rules which is closed under contexts. Reduction sequences
can be of any transfinite ordinal length α: M0 → M1 → M2 → . . .Mω → Mω+1 →
. . .Mω+ω → Mω+ω+1 → . . .Mα. This makes sense if the limit terms Mω,Mω+ω, . . .
in such sequence are all equal to the corresponding Cauchy limits, limβ→λ Mβ , in the
underlying metric space for any limit ordinal λ ≤ α. If this is the case, the reduction
is called Cauchy converging. We need the stronger concept of a strongly converging
reduction that in addition satisfies that the depth of the contracted redexes goes to
infinity at each limit term: limβ→λ dβ = ∞ for each limit ordinal λ ≤ α, where dβ

is the depth in Mβ of the contracted redex in Mβ →Mβ+1. Any finite reduction is,
then, strongly converging. We use the following notation:

1. M → N denotes a one step reduction from M to N ;
2. M →→ N denotes a finite reduction from M to N ;
3. M →→→ N denotes a strongly converging reduction from M to N .



Variations on the reduction rules give rise to different calculi (see Figure 1).
The resulting infinite lambda calculus (Λ∞⊥ ,→ρ) we will denote by λ∞ρ for any
ρ ∈ {β⊥, β⊥η, β⊥η!}. Since the ⊥-rule is parametric, each set U of meaningless
terms gives a different infinitary lambda calculus λ∞β⊥.
The notions of head normal form, weak head normal form and top normal form are
defined as follows:

1. A head normal form (hnf) is a term of the form λx1 . . . xn.yM1 . . .Mk.
2. A weak head normal form (whnf) is either a hnf or an abstraction λx.M .
3. A top normal form (tnf) is either a whnf or an application (MN) if there is no

P such that M →→β λx.P .

We define the following sets:

HN = {M ∈ Λ∞ |M →→β N and N in head normal form}
WN = {M ∈ Λ∞ |M →→β N and N in weak head normal form}
T N = {M ∈ Λ∞ |M →→β N and N in top normal form}

Instances of U ⊆ Λ∞ are HN , WN and T N the respective complements of HN ,
WN and T N .

Definition 2. 1. We say that a term M in λ∞ρ is in ρ-normal form if there is no
N in λ∞ρ such that M →ρ N .

2. We say that λ∞ρ is confluent (Church-Rosser) if (Λ∞⊥ ,→→→ρ) satisfies the diamond
property, i.e. ρ←←← ◦ →→→ρ ⊆ →→→ρ ◦ ρ←←←.

3. We say that λ∞ρ is normalising if for all M ∈ Λ∞⊥ there exists an N in ρ-normal
form such that M →→→ρ N .

Theorem 3. [6–8] Let U be a set of meaningless terms. The calculi λ∞β⊥ with a
parametric ⊥-rule on the set U are confluent, normalising and satisfy postponement
of ⊥ over β.

In [8], confluence of the parametric calculi is proved for any Cauchy converging
reduction, not only strongly converging ones.

Theorem 4. [10, 9] The infinite lambda calculi of ∞η-Böhm and η-Böhm trees are
confluent and normalising.

We will use the following properties of η!-reduction proved in [9].

Theorem 5. [9]

1. Inverse reductions: M →→→η! N if and only if N →→→η−1 M .
2. The infinitary lambda calculus λ∞η! is confluent.
3. The relations →→→η! and →→β commute.
4. The transfinite η! and η−1-reductions preserves the property of having head nor-

mal form, i.e. if M →→→η! N then the following are equivalent:
(a) there exists a head normal form M ′ such that M →→β M ′,
(b) there exists a head normal form N ′ such that N →→β N ′.



3 The standard prefix relation

Each of the confluent and normalising extensions of finite lambda calculus gives rise
to a normal form function that assigns to a lambda term in Λ∞⊥ a corresponding
normal form. We will denote these various functions with notation used in Figure 1.

Definition 6. Let M,N ∈ Λ∞⊥ .

1. We say that M is a prefix of N (we write M � N) if M is obtained from N by
replacing some subterms of N by ⊥.

2. M �NF N if NF(M) � NF(N).

Definition 7. Let M ∈ Λ∞⊥ . We define the truncation of M at depth n, denoted as
Mn, as the result of replacing in M all subterms at depth n by ⊥.

The following lemmas are particular cases of general lemmas proved in [11, 12] to
deduce continuity of BT and LLT on the cpo (Λ∞⊥ ,�).

Lemma 8. Let C[M ] ∈ Λ∞⊥ . Then, (C[M ])n = Cn[Mk] where k = max(0, n − d)
and d is the depth of the hole in C.

Lemma 9. If M � N and M →→→β M ′ then N →→→β N ′ and M ′ � N ′ for some N ′.

Lemma 10. Let M,N ∈ Λ∞⊥ . If M � N then M �BT N .

Lemma 11. Let P ∈ Λ∞⊥ . For all n there exists i such that (BT(P ))n �BT (P )n+i.

4 Prefix up to infinite eta expansions

In this section we define the relation �η! on β⊥-normal forms which is equivalent to
the relation η ⊆η on Böhm-like trees defined in [1] (up to change of representation
from terms to trees).

Definition 12. Let M,N ∈ Λ∞⊥ . Then, M �η! N if BT(M) →→→η−1 P � Q η−1←←←
BT(N) for some P,Q ∈ BT(Λ∞⊥ ). 1

If M �η! N then there exists “a canonical pair of terms” P,Q such that M →→→η−1

P � Q η−1←←← N . To find this pair of terms we use a bisimulation that imposes the
number of abstractions and arguments to be the same. This bisimulation is used to
simplify the Böhm-out technique.

Definition 13. (Honest bisimulation) Let R be a binary relation on the set of
β⊥-normal forms. Then R is called a honest bisimulation if whenever MRN ,

– if M = λx1 . . . xn.yM1 . . .Mm, N = λx1 . . . xn′ .yN1 . . . Nm′ and n−n′ = m−m′

then n = n′, m = m′ and MiRNi for all 1 ≤ i ≤ m.

The maximal honest bisimulation R is denoted by ∼.

We give some examples of bisimilar terms:
1 By Theorem 5, we could replace →→→η! by η−1←←← and get an equivalent definition.



– The constant ⊥ is bisimilar to any β⊥-normal form.
– We say that two β⊥-normal forms M and N are distinguishable if M =

λx1 . . . xn.yM1 . . .Mm, N = λx1 . . . xn′ .y
′N1 . . . Nm′ and either the head vari-

ables y and y′ are different or n− n′ 6= m−m′. Then, distinguishable terms are
bisimilar.

– The terms y and λx.yz are not bisimilar but by η-expanding the variable y we
get the term λx.yx which is bisimilar to λx.yz.

Theorem 14. (Existence of bisimilar terms) Let M,N be in β⊥-normal form.
Then there are P,Q such that M →→→η−1 P ∼ Q η−1←←← N .

Proof. We define a function bisim : Λ∞⊥ × Λ∞⊥ → Λ∞⊥ × Λ∞⊥ by coinduction such that
bisim(M,N) = (P,Q) and M →→→η−1 P ∼ Q η−1←←← N .
We have two cases:

1. If M = λx1 . . . xn.yM1 . . .Mm, N = λx1 . . . xn′ .yN1 . . . Nm′ and n − n′ = m −
m′ = k then we define

bisim(M,N) = (λx1 . . . xn.yP1 . . . Pm, λx1 . . . xn.yQ1 . . . Qm)

where Pi and Qi are obtained as follows:

(a) If n ≥ n′ and m ≥ m′ then we have to eta expand N until the number of
abstractions and applications coincide with the ones in M . Hence,
bisim(Mi, Ni) = (Pi, Qi) for 1 ≤ i ≤ m′ and
bisim(Mm′+j , xn′+j) = (Pm′+j , Qm′+j) for 1 ≤ j ≤ k.

(b) If n < n′ and m < m′ then we have to eta expand M until the number of
abstractions and applications coincide with the ones in N . Hence,
bisim(Mi, Ni) = (Pi, Qi) for 1 ≤ i ≤ m and
bisim(xn+j , Nm+j) = (Pm+j , Qm+j) for 1 ≤ j ≤ −k.

2. Otherwise, bisim(M,N) = (M,N).

It is easy to see that the function bisim as a relation is an honest bisimulation and
hence, P ∼ Q.

Corollary 15. Let M,N be in β⊥-normal form and (P,Q) = bisim(M,N). Then
M �η N if and only if P � Q.

Proof. Note that if M �η! N and M ∼ N then M � N .

We give some examples of how to find the pair (P,Q) = bisim(M,N). Let J be a
term satisfying the recursive equation Jx = λy.x(Jy) and Ex be the β⊥-normal form
of Jx, i.e. Ex = λy1.x(λy2.y2(. . .)). Note that x→→→η−1 Ex.

M N P Q
y λx.yz λx.yx λx.yz
x⊥(λy.zy) λu.xIzu λu.x⊥(λy.zy)u λu.xI(λy.zy)u
x⊥(λy.zEy) λu.xIzEu λu.x⊥(λy.zEy)Eu λu.xI(λy.zEy)Eu



5 Contextual Preorders

In this section we give two definitions for contextual preorder in the infinitary lambda
calculus and prove that they are equivalent using the previous truncation lemmas.
The definitions will differ in the sets of contexts over which will be quantified. In the
definition of ⊆h the quantification is restricted to finite contexts, in the definition of
⊆∞h the quantification runs over finite and infinite contexts.

Definition 16. 1. We say that M ⊆h N if for all finite contexts C, if C[M] β-
reduces to a head normal form then so does C[N].

2. We say that M ⊆∞h N if for all (finite or infinite) contexts C, if C[M] β-reduces
to a head normal form then so does C[N].

Both notions of contextual preorder coincide:

Theorem 17. The following statements are equivalent for any terms M,N ∈ Λ∞⊥ :

1. M ⊆h N .
2. M ⊆∞h N .

Proof. (2) implies (1) trivially. We show (1) implies 2. Let C be an infinite context.
We will construct a finite context (a truncation of C) that behaves like C. Observe
that:

BT1(C[M ]) �BT (C[M ])1+i for some i by Lemma 11
= C1+i[(M)k] by Lemma 8
�BT C1+i[M ] by Lemma 10

where d is the depth of the hole in C and k = max(0, n + 1− d).
If C[M ] has a head normal form, so does C1+i[M ]. Since C1+i is finite, by (1) we have
that C1+i[N ] has a head normal form. By Lemma 10, we have that C1+i[N ] �BT

C[N ] and hence C[N ] has a head normal form too. ut

6 Separability

In this section we extend Böhm Theorem to infinite terms. We first extend the no-
tion of separability so that it applies to infinite terms as well. Despite this extension
the discriminating contexts that we will construct will be finite so that only finite
β-reduction will be needed to ”fully separate them”. Böhming-out and the separa-
bility of distinguishable terms follow along the lines of [1]. However infinite terms
complicate matters because it is not possible to give a bound for the number q of
the permutator Pq used to Böhm-out the subterms of a term.

Definition 18. Let M,N ∈ Λ∞⊥ . We say that the terms M and N are separable
if for any P,Q ∈ Λ∞ there exists a finite context C such that C[M ] →→β P and
C[N ]→→β Q.

We will use the following notation and terminology::

1. permutators are terms of the form Pq = λx1 . . . xq+1.xq+1x1 . . . xq;
2. selectors are terms of the form Uq

i = λx1 . . . xq.xi; and



3. constants are terms of the form Km = λx1 . . . xm+1.xm+1.

The way we select (“Böhm-out”) subterms in the infinitary lambda calculus is similar
to the finite case:

Theorem 19 (Böhming-out finite and infinite terms). Let M be a β⊥-
normal form such that M = λx1 . . . xn.yM1 . . .Mm. Take q ≥ m. Then there are
contexts Ci for 1 ≤ i ≤ q and a term P such that:

1. Ci[M ]→→β Mσ
i when 1 ≤ i ≤ m,

2. Ci[M ]→→β zi when m + 1 ≤ i ≤ q;

where σ = [y := P ] and zm+1 . . . zqzq+1 are fresh variables.

Proof. Put C ′[ ] = (λy.[ ]x1 . . . xn)Pzm+1 . . . zqzq+1 and Ci[ ] = (λzq+1.C
′[ ])Uq

i .
Then Ci[M ]→→β Mi[y := P ] for 1 ≤ i ≤ m and Ci[M ]→→β zi for m + 1 ≤ i ≤ q. ut

Also the following lemma generalises immediately from finite to infinite lambda
calculus.

Lemma 20. Distinguishable terms are separable.

Proof. Let M = λx1 . . . xn.yM1 . . .Mm and N = λx1 . . . xn′ .y
′N1 . . . Nm′ . Then,

y 6= y′ or n − m 6= n′ − m′. We construct a discriminating context C such that
C[M ]→→→β P and C[N ]→→→β Q for any P and Q as follows:

1. Case y 6= y′. Suppose n ≥ n′. Let k = n−n′. Then for C[ ] we chose the context
(λyy′.[ ]x1 . . . xn)(λx1 . . . xm.P )(λx1 . . . xm′xm′+1 . . . xm′+k.Q).

2. Case y = y′ and n−n′ 6= m−m′. Suppose n ≥ n′. Since n−n′ 6= m−m′, we can
suppose m > m′ + n− n′. Let k = m− (m′ + n− n′). Now we chose for C[ ] the
context (λy.[ ]x1 . . . xn(λy1 . . . yk.P )b1 . . . bk−1Q)Km where y1 . . . yk, b1 . . . bk−1

are fresh variables.
ut

Lemma 21. Let C be a finite context in β⊥-normal form and let M,N be distin-
guishable terms. Then C[M ] and C[N ] are separable.

Proof. We proceed by induction on the depth of the context C.

1. The base case, when C[ ] = [ ], follows from Lemma 20.
2. The inductive case is when C[ ] = λx1 . . . xn.yM1 . . . C ′[ ] . . .Mm, Using

Theorem 19, we can find a context to Böhm-out C ′[M ]σ and C ′[N ]σ where
σ = [y := Pq]. Since C is finite, we can find q big enough so the depth of C ′σ is
equal to depth of C ′ and the two terms Mσ and Nσ are still distinguishable.

Theorem 22 (Böhm Theorem extended to infinite terms). If M,N are two
different βη!-normal forms without ⊥ then M and N are separable.



Proof. By Theorem 14, there exist P and Q such that M →→→η−1 P ∼ Q η−1←←← N .
Since M 6= N and by confluence of βη!, we have that P and Q are different β⊥-
normal forms. Let d be the minimal depth where P and Q differ. We truncate
the common part of P and Q at depth d and obtain a finite context C (possibly
containing ⊥) such that C[P0] � P and C[Q0] � Q. Since P and Q are bisimilar
we have that P0 and Q0 are distinguishable. By Lemma 21, we have that C[P0] and
C[Q0] are separable. By Lemma 9, we see that P and Q are also separable. Since
→→→η! commutes with →→β , we also have that M and N are separable.

ut

We give some examples of separable terms and how to find the separating context:

1. The discriminating context for the terms x and z is C[ ] = (λxz.[ ])PQ.
2. Let M = y and N = λx.yz. Then, M η-expands to λx.yx which is bisimilar to

λx.yz. The context C[ ] = (λy.[ ]x)U1
1 can be used to Böhm-out the variables x

and z. Then, we proceed as in the first part.
3. Let M = yy(yx) and N = yy(yz). In this case we would need to substitute the

first occurrence of the variable y by U2
2 and the second occurrence by U1

1 . This
is of course not possible. For this, Böhm invented the trick of the permutators.
Since the greatest number of arguments of the variable y is 2, we can make use
of the permutator P2. The context C[ ] = (λy.[ ]x)P2U

2
2 does not Böhm-out

exactly yx and yz. What it gives is the result of substituting these terms by P2,
i.e. we get P2x and P2z. Then, C ′[ ] = [ ]aU2

1 can be used to select x and z from
P2x and P2z.

4. Consider the infinite term R1 defined using the following recurrence relation:
R1 = yR2R2, R2 = yR3R3R3 and so on, where in general, Rk+1 adds k argu-
ments Rk to y. Clearly, the number of arguments that y can have in R1 has
no bound. To find the discriminating context for the terms M = yR1(yx) and
N = yR1(yz), we first consider the truncations M0 = y⊥(yx) and N0 = y⊥(yz).
Now a bound on the number of arguments of the variable y is 2 and in this case
we can, then, use the permutator P2 to Böhm-out the second argument of the
first head variable. The discriminating context is, then, exactly the same as for
the third part.

7 Equivalence between �η and the contextual preorder ⊆h

We show that the relations �η and ⊆h are the same in the infinitary lambda calculus.

Lemma 23 (Propagation of ⊆h to substitutions of subterms). Let M,N ∈ BT(Λ∞⊥ )
such that λx1 . . . xn.yM1 . . .Mm and N = λx1 . . . xn.yN1 . . . Nm. If M ⊆h N then
Mσ

i ⊆h Nσ
i for 1 ≤ i ≤ m where σ = [y := Pq].

Proof. If follows from Theorem 19. ut

Mσ ⊆h Nσ does not imply that M ⊆h N . Take M = x, N = yxI and σ = [y := P1].
As in the previous section, we have to find the appropriate permutator Pq to böhm-
out the subterms of a term without changing their meaning.

Lemma 24. Let M,N ∈ BT(Λ∞⊥ ) such that M is finite and M ≡d N where d is the
depth of M . If M ⊆h N then M � N .



Proof. We proceed by induction on the depth of M . If the depth of M is 0 then M =
⊥ � N . If the depth of M is not 0 then M 6= ⊥. Hence, M = λx1 . . . xn.yM1 . . .Mm

and N = λx1 . . . xn′ .y
′N1 . . . Nm′ . By Lemma 20, y = y′ and n − n′ = m − m′.

Since M and N have even eta expansions, we have that n = n′ and m = m′. By
Lemma 23, Mσ

i ⊆h Nσ
i for 1 ≤ i ≤ m and σ = [y := Pq]. Take q greater than

the number of symbols of M . Hence the depth of Mi and Mσ
i are the same and by

induction hypothesis, Mσ
i � Nσ

i for 1 ≤ i ≤ m. Again q is big enough so Mi � Ni.
Hence M ⊆ N . ut

Theorem 25. The following statements are equivalent for terms M,N in Λ∞⊥ :

1. M �η N .
2. M ⊆h N .

Proof. (1) ⇒ (2): Let M ′ � N ′ be such that BT(M) →→→η−1 M ′ and BT(N) →→→η−1

N ′. By confluence of β⊥ and the fact that →→→η−1 preserves the property of having
head normal form, if C[M ] has β-head normal form, so does C[M ′]. By Lemma 10,
C[N ′] has β-head normal form. Hence, again by confluence of β⊥ and→→→η! preserves
the property of having head normal form, C[M ] has β-head normal form.
(2) ⇒ (1): Suppose M ⊆h N . There exists M ′ and N ′ such that BT(M) →→→η−1

M ′ ∼ N ′
η−1←←← BT(N). Since we have that M ′n �η! M and N =η! N ′, by the

previous part, we also have that M ′n ⊆h M ⊆h N =h N ′. By Lemma 24, we have
that M ′n � N ′. Hence,

BT(M)→→→η−1 M ′ =
⋃
{M ′n | n ∈ ω} � N ′

η−1←←← BT(N)

ut

The previous result is part of the infinitary Characterisation Theorem for D∞ in [11].
In particular, it says that two terms that have different ∞η-Böhm trees can be
discriminated. The complication with the application of the Böhm-out technique to
∞η-Böhm trees is clear. The∞η-Böhm trees of finite terms can be infinite. The proof
in [1] deals with the problem using a relation ≡α which coincides with the equality
between ∞η-Böhm trees2. We have solved the problem in a slightly different way
using a bisimulation and properties of the truncations.

8 Theories induced by infinitary lambda calculi

We have seen that confluent and normalising infinite extensions (where normal forms
can now be infinite too!) induce a normal form function NF : Λ∞⊥ → Λ∞⊥ that maps a
term to its unique normal form. Each normal form function gives rise to an lambda
theory:

Eq(NF) = {(M,N) ∈ Λ× Λ | NF(M) = NF(N)}
Because T N ⊂ WN ⊂ HN we get the following strict inclusions:

Eq(BerT) ⊂ Eq(LLT) ⊂ Eq(BT) ⊂ Eq(ηBT) ⊂ Eq(∞ηBT)

We say that Eq(NF) is consistent if it is not the set of all equations Λ× Λ.
2 The relation ≡α gives a syntactic characterisation of two β⊥-normal forms with the same
∞η-Böhm tree.



Theorem 26. If Eq(NF) is consistent and Eq(BT) ⊆ Eq(NF) then Eq(NF) ⊆
Eq(∞ηBT).

Proof. Suppose there are two finite terms M,N ∈ Λ such that NF(M) = NF(N) and
∞ηBT(M) 6= ∞ηBT(N). Then by Theorem 25 there exists a context C such that
C[M ] β-reduces to a head normal form and C[N ] does not. Then it is easy to see
that for any P ∈ BT(Λ∞⊥ ) we have that P = NF(C[M ]) = NF(C[N ]) = ⊥. ut
It is tempting to conjecture that the smallest lambda theory that is induced by a
confluent and normalising extension of the finite lambda calculus is the one related
to the Berarducci trees.

Conjecture 27. Eq(BerT) ⊆ Eq(NF) ⊆ Eq(∞ηBT).

The previous generalises to infinitary theories. These are defined as follows:

Eq∞(NF) = {(M,N) ∈ Λ∞⊥ × Λ∞⊥ | NF(M) = NF(N)}

It is clear that the previous theorem generalises with help of Theorem 25:

Theorem 28. If Eq∞(NF) is consistent and Eq∞(BT) ⊆ Eq∞(NF) then Eq∞(NF) ⊆
Eq∞(∞ηBT).

The exact relationship between finitary and infinitary theories is not clear yet.
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