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Abstract. This paper studies continuity of the normal form and the context
operators as functions in the infinitary lambda calculus. We consider the
Scott topology on the cpo of the finite and infinite terms with the prefix
relation. We prove that the only continuous parametric trees are Böhm and
Lévy–Longo trees. We also prove a general statement: if the normal form
function is continuous then so is the model induced by the normal form;
as well as the converse for parametric trees. This allows us to deduce that
the only continuous models induced by the parametric trees are the ones of
Böhm and Lévy–Longo trees. As a first application, we prove that there is
an injective embedding from the infinitary lambda calculus of the ∞η-Böhm
trees in D∞. As a second application, we study the relation between the Scott
topology on the prefix relation and the tree topologies. This allows us to prove
that the only parametric tree topologies in which all context operators are
continuous and the approximation property holds are the ones of Böhm and
Lévy–Longo. As a third application, we give an explicit characterisation of
the open sets of the Böhm and Lévy–Longo tree topologies.

1 Introduction

The study of the infinitary lambda calculi has focused on confluence and normal-
isation [4, 9–12, 16, 15] and sequentiality [5]. In this paper we will look at another
property of these calculi, namely continuity.
Our starting point are lambda calculi that extend finite lambda calculus with infinite
terms and transfinite reduction. The β and η reduction rules apply to infinite terms
in much the same way as they apply to finite terms. However, characteristic for
these calculi is that they contain a ⊥-rule that maps a certain set U of meaningless
terms to ⊥. Without such an addition the extension of finite lambda calculus with
infinite terms and reductions immediately would result in loss of confluence [9]. All
infinite calculi that we consider have the same set of finite and infinite terms Λ∞⊥ .
The variation comes from the choice of the set U and the strength of extensionality.
Figure 1 summarises the infinitary lambda calculi studied so far [4, 9, 10, 12, 16, 15].
An interesting aspect of infinitary lambda calculus is the possibility of capturing the
notion of tree (such as Böhm and Lévy–Longo trees) as a normal form. These trees
were originally defined for finite lambda terms only, but in the infinitary lambda
calculus we can also consider normal forms of infinite terms. The three infinitary
lambda calculi mentioned in the first three rows of Figure 1 capture the well-known
cases of Böhm, Lévy–Longo and Berarducci trees [4, 9, 10]. In the fourth row, there
is an uncountable class of infinitary lambda calculi with a ⊥-rule parametrised by a
set U of meaningless terms [11, 12]. By changing the parameter set U of the ⊥-rule,



REDUCTION RULES NORMAL FORMS NF

Beta and Bottom for terms without tnf Berarducci trees BeT = TT

Beta and Bottom for terms without whnf Lévy–Longo trees LT = TW

Beta and Bottom for terms without hnf Böhm trees BT = TH

Beta, Bottom parametric on U Parametric trees TU

Beta, Bottom for terms w.o. hnf and Eta η-Böhm trees ηBT

Beta, Bottom for terms w.o. hnf and EtaBang ∞η-Böhm trees ∞ηBT

Fig. 1. Infinitary Lambda Calculi

we obtain different infinitary lambda calculi. If U is the set of terms without head
normal form, we capture the notion of Böhm tree. If U is the set of terms without
weak head normal form we obtain the Lévy–Longo trees. And if U is the set of terms
without top head normal form to ⊥, we recover the Berarducci trees. The infinitary
lambda calculus sketched in the one but last row incorporates the η-rule [16]. This
calculus captures the notion of η-Böhm tree. The last row in Figure 1 mentions
the infinitary lambda calculus incorporating the η!-rule, a strengthened form of the
η-rule [15]. The normal forms in this calculus capture the notion of ∞η-Böhm trees.
When the infinite extensions are confluent and normalising (normal forms can now
be infinite too!) they induce a function NF : Λ∞⊥ → Λ∞⊥ mapping a term to its unique
normal form. The normal form functions NF induce models of the finite lambda
calculus: just interpret a term M by its normal form NF(M) and application M ·N
of two terms M and N by NF(MN).
It is natural to compare terms, in particular normal forms, by the prefix relation �.
When terms are represented as trees, prefixes of a tree are obtained by pruning some
of its subtrees and replacing them by ⊥. Whereas application in the model of Böhm
trees is well-known to be continuous with respect to the Scott topology induced
by the prefix relation, it is perhaps less well-known that in case of the model of
Berarducci trees, the normal form function BeT : Λ∞⊥ → Λ∞⊥ and the application
operator are not even monotone [8]. For the models induced by NF, it makes sense
to study continuity of all context operators and this includes not only the application
operator but also the abstraction.
In this paper we will make a systematic study of continuity of the following two
functions and the relation between them:

– the normal form functions NF with respect to the Scott topology on (Λ∞⊥ ,�) and
– the context operators λλM ∈ NF(Λ∞⊥ ).NF(C[M ]) : NF(Λ∞⊥ ) → NF(Λ∞⊥ ) in the

models induced by NF.



We first prove that the only continuous parametric tree functions are the ones that
correspond to Böhm and Lévy–Longo trees. We also show that the η and ∞η-Böhm
tree functions are not continuous.
We also study the relation between continuity of NF and continuity of the context
operators in the models induced by NF. We prove that if NF is continuous then so
is the model induced by NF; as well as the converse when NF is a parametric tree.
This allows us to deduce that the only continuous models induced by the parametric
trees are the ones of Böhm and Lévy–Longo trees.
As a first application of our results on continuity, we show that there is an injective
embedding from the infinitary lambda calculus of ∞η-Böhm trees in Scott’s models
D∞. We use the fact that the model induced by BT is continuous to prove that the
interpretation on D∞ extended to infinite terms is homomorphic with the abstraction
and the application.
As a second application, we study the relation between the Scott topology on the pre-
fix relation and the tree topologies. We prove that the only parametric tree topologies
that make all context operators continuous and in which the approximation prop-
erty holds are the ones of Böhm and Lévy–Longo. Continuity of the finite context
operators λλM ∈ Λ.C[M ] : Λ → Λ in the Böhm and Lévy–Longo tree topologies is
proved in [2, 14] using the labelled reduction. We show that it can also be deduced
from confluence via the infinitary lambda calculus
As a third application, we define the notion of NF-topology and prove that the BT-
topology and the LT-topology coincide with the old notions of Böhm and Lévy–Longo
tree topologies.

2 Infinite Lambda Calculus

We will now briefly recall some notions and facts of infinite lambda calculus from our
earlier work [9, 10, 12, 16, 15]. We assume familiarity with basic notions and notations
from [2].
Let Λ be the set of λ-terms and Λ⊥ be the set of finite λ-terms with ⊥ given by the
inductive grammar:

M ::= ⊥ | x | (λxM) | (MM)

where x is a variable from some fixed set of variables V. We follow the usual conven-
tions on syntax. Terms and variables will respectively be written with (super- and
subscripted) letters M,N and x, y, z. Terms of the form (M1M2) and (λxM) will
respectively be called applications and abstractions. A context C[ ] is a term with
a hole in it, and C[M ] denotes the result of filling the hole by the term M , possibly
by capturing some free variables of M .
The set Λ∞⊥ of finite and infinite λ-terms is defined by coinduction using the same
grammar as for Λ⊥. This set contains the three sets of Böhm, Lévy–Longo and
Berarducci trees. In [10–12], an alternative definition of the set Λ∞⊥ is given using a
metric. The coinductive and metric definitions are equivalent [3]. In this paper we
consider only one set of λ-terms, namely Λ∞⊥ , in contrast to the formulations in [10,
11] where several sets (which are all subsets of Λ∞⊥ ) are considered. The paper [12]
shows that the infinitary lambda calculi can be formulated using a common set Λ∞⊥ ,
confluence and normalisation still hold since the extra terms added by the superset
Λ∞⊥ are meaningless and equated to ⊥.



Many notions of finite lambda calculus apply and/or extend more or less straight-
forwardly to the infinitary setting. The main idea which goes back to Dershowitz
e.a. in [7] is that reduction sequences can be of any transfinite ordinal length α:
M0 → M1 → M2 → . . .Mω → Mω+1 → . . .Mω+ω → Mω+ω+1 → . . .Mα. This
makes sense if the limit terms Mω,Mω+ω, . . . in such sequence are all equal to the
corresponding Cauchy limits, limβ→λ Mβ , in the underlying metric space for any
limit ordinal λ ≤ α. If this is the case, the reduction is called Cauchy converging.
We need the stronger concept of a strongly converging reduction that in addition
satisfies that the depth of the contracted redexes goes to infinity at each limit term:
limβ→λ dβ = ∞ for each limit ordinal λ ≤ α, where dβ is the depth in Mβ of the
reduced redex in Mβ →Mβ+1. Note that any finite reduction is strongly converging.
We use the following notation:

1. M → N denotes a one step reduction from M to N ;
2. M →→ N denotes a finite reduction from M to N ;
3. M →→→ N denotes a strongly converging reduction from M to N .

We define several rules used to define different infinite lambda calculi. The β, η and
η−1-rules are extensions of the rules for finite lambda calculus to infinite terms. The
η!-rule does not appear in the finite lambda calculus. The ⊥-rule is parametric on a
set U ⊂ Λ∞ of meaningless terms [11, 12] where Λ∞ is the set of terms in Λ∞⊥ that
do not contain ⊥.
The notions of head normal form, weak head normal form and top normal form are
defined as follows:

1. A head normal form (hnf) is a term of the form λx1 . . . xn.yM1 . . .Mk.
2. A weak head normal form (whnf) is either a hnf or an abstraction λx.M .
3. A top normal form (tnf) is either a whnf or an application (MN) if there is no

P such that M →→β λx.P .

We define the following sets:

H = {M ∈ Λ∞ |M →→β N and N in head normal form}
W = {M ∈ Λ∞ |M →→β N and N in weak head normal form}
T = {M ∈ Λ∞ |M →→β N and N in top normal form}

Instances of U ⊆ Λ∞ are H, W and T the respective complements of H, W and T .
Since the ⊥-rule is parametric, each set U of meaningless terms gives a different
infinitary lambda calculus λ∞β⊥.

Definition 1. We define the following rewrite rules on Λ∞⊥ :

(λx.M)N →M [x := N ] (β)
M [⊥ := Ω] ∈ U

(⊥)
M → ⊥

x 6∈ FV (M)
(η)

λx.Mx→M

x 6∈ FV (M)
(η−1)

M → λx.Mx

x→→→η−1 N x 6∈ FV (M)
(η!)

λx.MN →M

In this paper we need various rewrite relations constructed from these rules on the set
Λ∞⊥ . These are defined in the standard way, eg.→β⊥η! is the smallest binary relation
containing the β, ⊥ and η!-rules which is closed under contexts. Variations on the
reduction rules will give rise to different calculi (see Figure 1). The resulting infinite
lambda calculus (Λ∞⊥ ,→ρ) we will denote by λ∞ρ for any ρ ∈ {β⊥, β⊥η, β⊥η!}.



Definition 2. 1. We say that a term M in λ∞ρ is in ρ-normal form if there is no
N in λ∞ρ such that M →ρ N .

2. We say that λ∞ρ is confluent (Church-Rosser) if (Λ∞⊥ ,→→→ρ) satisfies the diamond
property, i.e. ρ←←← ◦ →→→ρ ⊆ →→→ρ ◦ ρ←←←.

3. We say that λ∞ρ is normalising if for all M ∈ Λ∞⊥ there exists an N in ρ-normal
form such that M →→→ρ N .

4. Let α be an ordinal. We say that λ∞ρ is α-compressible if for all M,N such that
M →→→ρ N there exists a strongly converging reduction sequence from M to N
of length at most α.

Theorem 3. [10–12] The calculi λ∞β⊥ with a parametric ⊥-rule on the set U are
confluent, normalising, ω-compressible and satisfy postponement of ⊥ over β.

In [12], confluence of the parametric calculi is proved for any Cauchy converging
reduction, not only strongly converging ones.

Theorem 4. [16, 15] The infinite lambda calculi of ∞η-Böhm and η-Böhm trees
are confluent and normalising.

Assumption. In the rest of the paper whenever we refer to the function NF : Λ∞⊥ →
Λ∞⊥ , we are assuming that the infinitary lambda calculus in question is confluent
and normalising and that NF is the function that maps a term to its unique normal
form.

3 Equality induced by the normal form

The theory given by NF is the set Eq(NF) = {(M,N) ∈ Λ∞⊥ ×Λ∞⊥ | NF(M) = NF(N)}.
Figure 1 shows an order between the calculi. On the first row we see the smallest
theory of λ-terms given by the equality of Berarducci trees and in the last row we
see the largest theory given by equality of ∞η-Böhm trees. Hence,

Eq(BeT) ⊂ Eq(LT) ⊂ Eq(BT) ⊂ Eq(ηBT) ⊂ Eq(∞ηBT)

Note that T ⊃ W ⊃ H and T ⊂ W ⊂ H.

Lemma 5. Let U be a set of meaningless terms satisfying the axioms of [11, 12]. If
the theory Eq(TU ) is consistent then T ⊆ U ⊆ H.

Proof. By the axioms of meaningless terms [11, 12], we know that T ⊆ U . Suppose
now towards a contradiction that there exists M ∈ U such that M 6∈ H. Then M
has a head normal form. Suppose M = λx1 . . . xn.yP1 . . . Pk. Once more applying
the axioms of meaningless terms, we have that (Mx1 . . . xn)[y := λy1 . . . yk.P ] →→β

P ∈ U for any P ∈ Λ∞⊥ . It follows that all terms P ∈ Λ∞⊥ have the same normal form
and hence the theory is not consistent.

As a consequence of the previous lemma, any consistent theory of parametric trees
lays between the theories of Berarducci and Böhm trees:

Eq(BeT) ⊆ Eq(TU ) ⊆ Eq(BT)



Theorem 6. The class of parametric trees is uncountable.

Proof. For each subset X of the set of finite closed β-normal forms, we define a set
UX as follows:

UX = {M ∈ Λ∞ |M →→β RP1 . . . Pn, n ∈ ω, R ∈ T and P1, . . . , Pn ∈ X}

It is possible to prove that the set UX satisfies the axioms of [11, 12].

4 Truncation and preorders

In this section we define the notion of truncation and some preorders used in this
paper. In the next section we will use truncations instead of approximants to prove
continuity.

Definition 7. Let M ∈ Λ∞⊥ .

1. We define the truncation of M at depth n, denoted as Mn, as the result of
replacing in M all subterms at depth n by ⊥.

2. The truncation of the normal form of M at depth n is denoted by NFn(M).

The following lemma is proved by induction on the depth of the hole in the context.

Lemma 8. Let C[M ] ∈ Λ∞⊥ and d the depth of the hole in C. If n > d then
(C[M ])n = Cn[Mn−d]. Otherwise C[M ]n = Cn is a term without a hole in it.

Definition 9. Let M,N ∈ Λ∞⊥ . We say that M is a prefix of N (we write M � N)
if M is obtained from N by replacing some subterms of N by ⊥

The pair (Λ∞⊥ ,�) is an algebraic cpo. The compact elements are the finite λ-terms.
In particular, truncations of terms are compact. We denote the supremum of a
directed subset X of (Λ∞⊥ ,�) by

⋃
X. In the particular case of Böhm trees, the pair

(BT(Λ∞⊥ ),�) is isomorphic to (B,⊆) where B is the set of Böhm–like trees and ⊆ is
the prefix relation on trees [2].

Definition 10. Let M,N ∈ Λ∞⊥ .

1. We say that M �fin N if M is the result of replacing a finite number of subterms
of N by ⊥.

2. Let NF : Λ∞⊥ → Λ∞⊥ . Then, M �NF N if NF(M) � NF(N).
3. M �η−1 N if BT(M)→→→η−1 P � Q η−1←←← BT(N) for P,Q in β⊥-normal form.
4. We say that M ⊆hf

N if for all finite contexts C, if C[M ] β-reduces to a head
normal form then so does C[N ].

5. We say that M ⊆h N if for all (finite or infinite) contexts C, if C[M ] β-reduces
to a head normal form then so does C[N ].

The relation �NF is a preorder, i.e. it is reflexive and transitive. It is also a partial
order if restricted to the set of normal forms, i.e. it is antisymmetric.

Definition 11. We say that NF quasi-preserves �fin if NF(M) � NF(N) for all
M �fin N .



5 Continuity of the normal form function NF

We will now consider the Scott topology on the cpo (Λ∞⊥ ,�) and study continuity
of the normal form function NF : Λ∞⊥ → Λ∞⊥ . We prove that the only parametric
trees satisfying continuity are BT and LT.

We give some counterexamples against continuity of the normal form function:

Counterexample 12. The map NF : Λ∞⊥ → Λ∞⊥ is not continuous in (Λ∞⊥ ,�) in
the following cases:

1. Case NF = BeT. We show that BeT is not monotone in (Λ∞⊥ ,�). Take M = ⊥y,
N = (λx.⊥)y. Then M � N but NF(M) 6� NF(N).

2. Case NF = {ηBT,∞ηBT}. We show that ηBT and ∞ηBT are not monotone.
Take M = λx.y⊥ and N = λx.yx. Then M � N but NF(M) 6� NF(N).

3. Case NF = TO and O = W ∪ {M ∈ Λ∞ | M →→β λx1 . . . xn.N and N ∈ W}.
Then TO is monotone but it is not continuous. The infinite sequence of abstrac-
tions O = λx1x2 . . . is in normal form but the truncations On = λx1 . . . xn.⊥
reduce to ⊥ for all n. Hence

⋃
n∈ω On = O = NF(O) 6=

⋃
n∈ω NF(On) = ⊥.

Definition 13. We say that the truncations are NF-increasing if there exists m such
that M →ρ N implies Mn+m �NF Nn for all n.

Lemma 14. Let λ∞ρ be ω-compressible. If the truncations are NF-increasing then
for all n there exists l such that NFn(P ) �NF Pn+l.

Proof. By confluence, normalisation and ω-compression for λ∞ρ , there exists a
strongly convergent reduction sequence of length ω from P to NF(P ):

P = P0 →ρ P1 →ρ P2 . . .NF(P )

Since this reduction sequence is strongly convergent, there exists Pi such that
NFn(P ) = (Pi)n. Since the truncations are NF-increasing, we construct the following
(finite) chain from Pn+l to NFn(P ):

Pn+im = (P0)n+im �NF (P1)n+(i−1)m . . . �NF (Pi−1)n+m �NF (Pi)n = NFn(P )

Taking l = im we have that NFn(P ) �NF Pn+l.

Lemma 15. Let P,Q ∈ Λ∞⊥ . Then, Pn[x := Qn] � (P [x := Q])n.

This is proved by induction on the number of symbols of Pn.

Lemma 16. If TU quasi-preserves �fin then the truncations are TU -increasing.

Proof. Suppose M →⊥ ⊥. We have that Mn �TU ⊥. Suppose M = C[(λx.P )Q]→β

C[P [x := Q]] = N . Let d be the position of the hole in C[ ] and k = n− d > 0.

(C[(λx.P )Q])n+2 = Cn+2[(λx.P k)Qk+1] by Lemma 8
→β Cn+2[P k[x := Qk+1]
� Cn[P k[x := Qk]]
� Cn[(P [x := Q])k] by Lemma 15
= (C[P [x := Q]])n by Lemma 8



Since β⊥ is confluent (Theorem 4) and TU quasi-preserves �fin ,

(C[(λx.P )Q])n+2 �TU (C[P [x := Q]])n

Definition 17. Let σ be a function from positions of ⊥’s to Λ∞⊥ . We define Mσ as
the result of replacing ⊥’s in M by the corresponding terms given by σ.

Lemma 18. Let M,N ∈ Λ∞⊥ . Then, M � N if and only if Mσ = N for some σ.

Lemma 19. Let σ be a function from positions of ⊥’s to Λ∞⊥ . If M →→→β N then
there exists σ′ such that Mσ →→→β Nσ′ .

This is proved by induction on the length of the reduction sequence from M to N .

Theorem 20. BT and LT are monotone in (Λ∞⊥ ,�).

Proof. Let M,N ∈ Λ∞⊥ such that M � N . We prove that BT(M) � BT(N). By
normalisation of β⊥ and postponement of ⊥ over β (Theorem 4 and Theorem 3), we
have that there exists P such that M →→→β P →→→⊥ BT(M). By Lemma 19 we have
that N = Mσ →→→β Pσ′ . We prove that for all n, BTn(P ) � BTn(Pσ′) by induction
on n. Suppose n = h + 1. We have three cases:

1. Case P = ⊥. Then BTn(P ) = ⊥ � BTn(Pσ′).
2. Case P = λx1 . . . xn.y Q1 . . . Qk.

Then BTn(P ) = λx1 . . . xn.y BTh1(Q1) . . .BThk(Qk). It follows by induction
hypothesis that BThi(Qi) � BThi(Q

σhi
i ). Hence Pn �BT (Pσ′)n.

3. Case P = λx1 . . . xn.(λy.R)SQ1 . . . Qk. Since P →→→⊥ BT(M), P cannot have
head normal form. Hence BTn(P ) = ⊥ � BTn(Pσ′).

This proof can be easily adapted to Lévy–Longo trees with some minor adjustments.

Corollary 21. The functions BT and LT are continuous in (Λ∞⊥ ,�).

Proof. By Theorem 20, we have that
⋃

n∈ω BT(Mn) � BT(M). The truncations
are BT-increasing by Theorem 20 and Lemma 16. The calculus of Böhm trees is
ω-compressible by Theorem 3. Hence, we have that:

BT(M) =
⋃

n∈ω BTn(M)
=

⋃
n∈ω BT(BTn(M)) because BTn(M) is in normal form

�
⋃

n∈ω BT(Mn) by Lemma 14

The same proof works for LT.

We prove that the only parametric tree functions TU : Λ∞⊥ → Λ∞⊥ satisfying conti-
nuity are the Böhm tree function and the Lévy–Longo tree function.

Theorem 22. If TU : Λ∞⊥ → Λ∞⊥ is continuous then TU = BT or TU = LT.

Proof. By Lemma 5, we have that T ⊆ U ⊆ H. We prove that U = H or U =W.
Suppose that M ∈ W −T . We can also suppose that M ∈ BeT(Λ∞⊥ ) because T ⊆ U
and TU (BeT(M)) = TU (M) by confluence of β⊥. We have two cases:



1. Let M = ⊥Pk . . . P1 and N = (λx1 . . . xk.⊥)Pk . . . P1. Since TU is monotone and
M � N , we have that TU (M) � TU (N) = ⊥. Hence M ∈ U .

2. Let M = (((. . . P3)P2)P1). Then, TU (M) =
⋃

n∈ω TU (Mn) = ⊥. Hence M ∈ U .

Hence, we have that W − T ⊆ U and also W ⊆ U . Suppose now that W ⊂ U ⊆ H.
Then there exists M ∈ U such that M ∈ H −W. We prove that H −W ⊆ U and
hence U = H. We can suppose that the terms in H −W are in LT(Λ∞⊥ ) and then
they are either of the form λx1 . . . λxk.⊥ or λx1x2x3 . . .. We have two cases:

1. Let M = λx1 . . . λxk.⊥ for some k.

TU (λx.⊥) = TU (Mx1 . . . xk−1) because Mx1 . . . xk−1 →→β λx.⊥
= TU (⊥x1 . . . xk−1) because M ∈ U
= ⊥ because W ⊆ U

Then, we also have that TU (λx1 . . . xn.⊥) = ⊥ for all n. Since TU is continuous,
we also have that TU (λx1x2 . . .) = ⊥.

2. Let M = λx1x2 . . .. Then ⊥ = TU (M) � TU (Mn) = λx1 . . . xn.⊥ for all n.

6 Models induced by NF

In this section we define the model induced by NF and give a notion of continuity
for these models.

Definition 23. The model induced by NF, denoted by M(NF), is the applicative
structure (NF(Λ∞⊥ ), . , [[ ]]) defined as follows:

1. M.N = NF(MN) for all M,N ∈ NF(Λ∞⊥ ),
2. [[M ]]σ = NF(Mσ) for all M ∈ Λ and where Mσ is the simultaneous substitution

of all free variables of M by σ.

By Theorem 6, the class of models induced by the parametric trees is uncountable.
It is easy to prove that M(NF) is indeed a λ-model of the finite lambda calculus
using confluence and normalisation (see Definition 5.3.2 in [2]).
We consider the prefix relation � on NF(Λ∞⊥ ). For NF ∈ {BT, LT,BeT,∞ηBT, ηBT},
the pair (NF(Λ∞⊥ ),�) is a cpo. We can deduce that the set of normal forms is closed
under directed suprema by showing first that a redex in a term should also be present
in some finite prefix. In general, the pair (NF(Λ∞⊥ ),�) may not be a cpo:

Counterexample 24. We show an example of a pair (TU (Λ∞⊥ ),�) which is not a
cpo. Let I = λx.x and K = λxy.x. We consider the infinite term K∞ = ((. . .K)K)I).
The set K = T ∪ {M ∈ Λ∞ | M →→β K∞} satisfies the axioms of [11, 12] and, then,
TK : Λ∞⊥ → Λ∞⊥ is a parametric tree function. The term K∞ is a redex but none of
its prefixes contain any redex. The pair (TK(Λ∞⊥ ),�) is not a cpo because the set
X = {TKn(K∞) | n ∈ ω} ⊂ TK(Λ∞⊥ ) but K∞ =

⋃
X 6∈ TK(Λ∞⊥ ).

For the models induced by NF, it makes sense to define a notion of continu-
ity that considers all context operators and not only the application. In partic-
ular, we can consider the abstraction operator as a function in the model, i.e.
abs(M) = NF(λx.M) for M ∈ NF(Λ∞⊥ ).



Definition 25. Let C[ ] be a context in Λ∞⊥ . The context operator C[ ] restricted
to NF is the function λλM∈NF(Λ∞⊥ ).NF(C[M ]) : NF(Λ∞⊥ )→ NF(Λ∞⊥ ).

Definition 26. M(NF) is continuous if the following holds:

1. (NF(Λ∞⊥ ),�) is a cpo,
2. the context operators C[ ] restricted to NF are continuous in the Scott topology

on the cpo (NF(Λ∞⊥ ),�) for all context C[ ] ∈ Λ∞⊥ .
3. the approximation property holds: NF(M) =

⋃
n∈ω NF(NFn(M)) for M ∈ Λ∞⊥ .

Counterexample 27. We give examples against continuity ofM(NF):

1. Case NF = BeT. The application is not monotone, though the abstraction is
continuous. Take M = ⊥, N = λx.⊥ and P = y. Then M � N but M ·P 6� N ·P .
The approximation property holds since BeTn(M) is in normal form for all n.

2. Case NF = {ηBT,∞ηBT}. Neither the abstraction nor the application operators
are monotone:
(a) Take M = y⊥ and N = yx. Then M � N but abs(M) 6� abs(N).
(b) Take M = λzx.zx⊥, N = λzx.zxx and P = λx.y. Then M � N but

M · P 6� N · P .
Note that in this case the approximation property does not hold.

3. Case NF = TO and O = W ∪ {M ∈ Λ∞ | M →→β λx1 . . . xn.N and N ∈ W}.
The abstraction and the application are not continuous:
(a) Take O = λx1x2 . . .. Then O = abs(O) 6=

⋃
n∈ω abs(On) = λx.⊥.

(b) Take fix = λf.f(f(. . .)) and K = λxy.x. Then O = fix ·K 6=
⋃

n∈ω fixn ·K = ⊥.
Note that in this case the approximation property does not hold.

We recall a notion of continuous λ-model defined by Welch to deduce that all fixed
point operators are equal in the model [2]. For models induced by NF, this result
can be deduced instead from confluence and normalisation since the normal form of
a fixed point operator is λf.f(f(. . .)).

Definition 28. An applicative continuous λ-model is a structure (X, ·,v) such that:

1. (X,v) is a cpo,
2. the operation · is continuous in the Scott topology on the cpo (X,v) and
3. the approximation property holds for Böhm trees on finite λ-terms: [[M ]] =
t{[[BTn(M)]] | n ∈ ω}, for all M ∈ Λ.

According to Definition 28, the model induced by BT is the only one from Figure 1
which is applicative continuous. None of the remaining trees satisfy the third clause.
By replacing BT by the general form NF, we got the third clause in Definition 26.

7 Continuity of the context operators

In this section we study continuity of M(NF) in relation to continuity of NF. We
prove that if NF is continuous in (Λ∞⊥ ,�) then so is M(NF); and the converse for
NF = TU . This allows us to deduce that the only continuous models induced by the
parametric trees are M(BT) andM(LT).



Theorem 29. If NF is continuous in (Λ∞⊥ ,�) then

1. (NF(Λ∞⊥ ),�) is an algebraic cpo.
2. The Scott topology on (NF(Λ∞⊥ ),�) is the subset topology and the quotient topol-

ogy by NF. In other words, it is initial for the inclusion and final for NF.
3. If f : Λ∞⊥ → Λ∞⊥ is continuous in (Λ∞⊥ ,�) then NF ◦ f�NF(Λ∞⊥ ) is continuous in

(NF(Λ∞⊥ ),�).

Proof. 1. This follows from Proposition 1.2.21 in [2]. Because NF(Λ∞⊥ ) is a retract
of Λ∞⊥ , the set NF(Λ∞⊥ ) of normal forms is closed under directed suprema. It is
also easy to see that it is algebraic. The compact elements in (NF(Λ∞⊥ ),�) are
the finite normal forms.

2. See Proposition 5.0.11 in [17].
3. Let f be continuous in (Λ∞⊥ ,�). Since NF : Λ∞⊥ → Λ∞⊥ is continuous, then so

is the inclusion inc : NF(Λ∞⊥ ) → Λ∞⊥ . Then, NF ◦ f�NF(Λ∞⊥ ) = NF ◦ f ◦ inc is
composition of continuous functions.

Theorem 30. If NF is continuous in (Λ∞⊥ ,�) then so is M(NF).

Proof. The first clause in Definition 26 is Theorem 29 part 1. For the second clause,
since C[

⋃
X] =

⋃
C[X], we have that λλM ∈ Λ∞⊥ .C[M ] : Λ∞⊥ → Λ∞⊥ is continu-

ous in (Λ∞⊥ ,�) and, then, we apply Theorem 29 part 3. For the third clause, we
have that X = {NFn(M) | n ∈ ω} is a directed set and NF(M) = NF(NF(M)) =⋃

n∈ω{NF(NFn(M)) | n ∈ ω}.

The converse holds for the parametric trees:

Theorem 31. If M(TU ) is continuous then so is TU : Λ∞⊥ → Λ∞⊥ .

Proof. It is enough to prove that TU quasi-preserves �fin . In that case, TU (Mn) �
TU (M), by Lemma 16 the truncations are TU -increasing and then we have that:

TU (M) =
⋃

n∈ω TU (Tn
U (M))

�
⋃

n∈ω TU (Mn) by Lemma 14

We now prove that TU quasi-preserves �fin . Let P �fin Q. We do induction on the
number n of subterms that are replaced by ⊥ in Q. The case n = 1 is P = C[⊥]
and Q = C[M ]. Since all context operators are monotone, TU (C[⊥]) � TU (C[M ]) =
TU (C[NF(M)]). The case n > 0 is similar.

Theorem 32. M(BT) andM(LT) are the only continuous models induced by para-
metric trees.

Proof. By Corollary 21, Theorem 22 and Theorem 31.

8 An embedding from ∞ηBT(Λ∞
⊥ ) in D∞

In this section we use the fact thatM(BT) is continuous to prove that the interpre-
tation on D∞ extended to infinite terms is homomorphic with the application and
the abstraction. We can, then, show that there is an injective embedding from the
infinitary lambda calculus of ∞η-Böhm trees in D∞.
Using the Approximation Theorem [19] we extend the interpretation to infinite terms
as follows: [[M ]] = t{[[BTn(M)]] | n ∈ ω} for an infinite term M .



Lemma 33. Let M,N ∈ Λ∞⊥ .

1. If BT(M) � BT(N) then D∞ |= M v N .
2. If BT(M)→→→η−1 BT(N) then D∞ |= M = N .

The first part is proved using the Characterisation Theorem on finite terms. For the
second part, we have to re-do some work and prove a similar statement to Proposition
19.1.13 in [2] for infinite β⊥-normal forms.

Lemma 34. [[C[M ]]] = t{[[C[BTn(M)]]] | n ∈ ω}

Proof. By Theorem 32, we have that λλM ∈BT(Λ∞⊥ ).BT(C[M ]) is continuous. Hence,

1. C[BTn(M)] �BT C[M ] by monotonicity.
2. for all n there exists k such that BTn(C[M ]) �BT C[BTk(M)] because the trun-

cations are compact in (BT(Λ∞⊥ ),�).

By Lemma 33, [[C[BTn(M)]]] v [[C[M ]]] and [[BTn(C[M ])]] v [[C[BTk(M)]]].

The following lemma is a triviality in the finite lambda calculus but for the infinite
case we need to prove it and use continuity.

Lemma 35. Let M,N ∈ Λ∞⊥ .

1. [[(MN)]] = [[M ]].[[N ]].
2. [[(λx.M)]] = λGd ∈ D∞.[[M ]]ρ(x:=d).

Proof. Using Lemma 34.

Lemma 36. If D∞ |= M v N then D∞ |= C[M ] v C[N ].

Proof. This is proved by induction on the position of the hole in C using Lemma 35.

Lemma 37. Let M ∈ Λ∞⊥ . Then [[M ]] = ⊥ iff M has no head normal form.

Proof. Using the Characterisation Theorem on finite terms.

Theorem 38 (Characterisation Theorem extended to infinite terms).
The following statements are equivalent for terms M,N in Λ∞⊥ :

1. M �η−1 N .
2. D∞ |= M v N .
3. M ⊆h N .
4. M ⊆hf

N .

Proof. (1⇒ 2) follows from Theorem 33. We prove (2⇒ 3). By Lemma 36, D∞ |=
C[M ] v C[N ]. Hence, by Lemma 37, if C[M ] has head normal form, so does C[N ].
(3⇒ 4) is trivial. (4⇒ 1) follows by applying the Böhm-out technique to �η−1 and
it is rather long, though the use of commutation properties of the reductions helps
to make it shorter than the proof found in [2] for the finite lambda calculus.

Remark 39. As a consequence of Theorem 38, the interpretation function [[ ]] is an
injective embedding from ∞ηBT(Λ∞⊥ ) to D∞. The following example shows that it
is not surjective, i.e. D∞ contains more elements than ∞ηBT(Λ∞⊥ ).
We define M0 = y⊥ and Mn = λx1 . . . xn.y(x1x2 . . . xn⊥)x1x2 . . . xn. Clearly X =
{Mn | n ∈ ω} is directed in (Λ∞⊥ ,�η−1) and so is [[X]] = {[[Mn]] | n ∈ ω} in D∞ by
the Characterisation Theorem. The supremum of [[X]] exists in D∞ but not in Λ∞⊥ .



9 Tree topologies

In this section we study the relation between the Scott topology on the prefix re-
lation and the tree topologies. This allows us to deduce that the only parametric
tree topologies that make all context operators continuous and in which the ap-
proximation property holds are the ones of Böhm and Lévy–Longo. We also give
an alternative proof of continuity of the context operator with respect to the Böhm
and Lévy–Longo tree topologies on the set of finite lambda terms via the infinitary
lambda calculus [2, 14].
The (Böhm) tree topology is defined in [2] as the initial topology for BT�Λ : Λ →
BT(Λ∞⊥ ) where BT(Λ∞⊥ ) is considered with the Scott topology on the prefix relation.
By just replacing BT by NF, we get the following two notions of tree topologies:

Definition 40. Suppose that (NF(Λ∞⊥ ),�) is a cpo. We consider the Scott topology
on (NF(Λ∞⊥ ),�).

1. The tree topology on Λ∞⊥ is the initial topology for NF : Λ∞⊥ → NF(Λ∞⊥ ).
2. The tree topology on Λ is the initial topology for NF�Λ : Λ→ NF(Λ∞⊥ ).

Remark 41. 1. The open sets in the tree topology on Λ∞⊥ are of the form NF−1(O)
with O open in NF(Λ∞⊥ ). They are closed under =NF.

2. The tree topology on Λ is the subspace topology of the tree topology on Λ∞⊥ .

In the following lemma, the function NF might not be continuous in (Λ∞⊥ ,�).

Lemma 42. Suppose (NF(Λ∞⊥ ),�)) is a cpo.

1. The inclusion inc : NF(Λ∞⊥ ) → Λ∞⊥ is a continuous function from the Scott
topology on (NF(Λ∞⊥ ),�) to the tree topology on Λ∞⊥ .

2. Let f : Λ∞⊥ → Λ∞⊥ be a function such that NF ◦ f = NF ◦ f ◦ NF

(a) The function f is continuous in the tree topology on Λ∞⊥ if and only if
NF ◦ f�NF(Λ∞⊥ ) : NF(Λ∞⊥ ) → NF(Λ∞⊥ ) is continuous in the Scott topology on
(NF(Λ∞⊥ ),�)).

(b) Suppose f�Λ : Λ→ Λ. If f : Λ∞⊥ → Λ∞⊥ is continuous in the tree topology on
Λ∞⊥ then f�Λ : Λ→ Λ is continuous in the tree topology on Λ.

Proof. 1. An open set in the tree topology on Λ∞⊥ is of the form NF−1(O) with
O open in (NF(Λ∞⊥ ),�)). Then, inc−1(NF−1(O)) = {M ∈ NF(Λ∞⊥ ) | M ∈
NF−1(O)} = {M ∈ NF(Λ∞⊥ ) | NF(M) ∈ O} = O because NF(M) = M for
all M ∈ NF(Λ∞⊥ ).

2. (a) (⇒). Let f be continuous in the tree topology on Λ∞⊥ . Then, NF◦f�NF(Λ∞⊥ ) =
NF ◦ f ◦ inc is composition of continuous functions.
(⇐). Let NF ◦ f�NF(Λ∞⊥ ) be continuous. Then NF ◦ f�NF(Λ∞⊥ ) ◦ NF : Λ∞⊥ →
NF(Λ∞⊥ ) is a continuous function from the tree topology to (NF(Λ∞⊥ ),�)).
We know that NF ◦ f�NF(Λ∞⊥ ) ◦ NF = NF ◦ f ◦ NF = NF ◦ f . By Proposition
5.0.2 [17], we have that f is continuous in the tree topology on Λ∞⊥ .

(b) Any open set in the tree topology on Λ is of the form NF−1(O) ∩ Λ. Then
f−1

�Λ (NF−1(O) ∩ Λ) = f−1(NF−1(O)) ∩ Λ is open in the tree topology on Λ.



Theorem 43.

1. The Böhm and Lévy–Longo tree topologies are the only parametric tree topologies
on the set Λ∞⊥ that satisfies the following two conditions:
(a) continuity of all context operators λλM ∈ Λ∞⊥ .C[M ] : Λ∞⊥ → Λ∞⊥ and
(b) the approximation property, i.e. NF(M) =

⋃
n∈ω NF(NFn(M)) for M ∈ Λ∞⊥ .

2. The finite context operators λλM ∈ Λ.C[M ] : Λ→ Λ are continuous in the Böhm
and Lévy–Longo tree topologies on Λ.

Proof. They follow from Lemma 42 and Theorem 32.

Continuity of the finite context operators with respect to the Böhm tree topology
on Λ is proved in [2] and with respect to the Lévy–Longo tree topology on Λ is
proved in [14] along the lines of [2]. The proof in [2] uses the notion of approximants
(approximants are finite β⊥-normal forms) and essentially the following proposition
(called syntactic continuity in [1]): For all finite β⊥-normal form P such that P �BT

C[M ] there exists N in finite β⊥-normal form such that N �BT M and C[N ] �BT N .
This proposition has been proved using a variety of methods by Wadsworth [18],
Lévy [13] and Welch [20]. Our proof (Theorem 43 part 2) uses the continuity of NF
and properties of initial and final topologies.

10 The NF-topology

We will now give an explicit characterisation of the open sets in the Böhm and
Lévy–Longo tree topologies.

Definition 44. A subset O of Λ∞⊥ is an open set in the NF-topology provided

1. O is open in the Scott topology of (Λ∞⊥ ,�) and
2. O is closed under =NF.

It is easy to see that the NF-topology makes the normal form NF and the context
operators continuous.

Lemma 45. Suppose that NF : Λ∞⊥ → Λ∞⊥ is continuous in (Λ∞⊥ ,�). Then the tree
topology is exactly the set of open sets of (Λ∞⊥ ,�) closed under =NF.

Proof. Since the tree topology is initial for NF, the open sets of the tree topology
are open in (Λ∞⊥ ,�). They are also closed under =NF.
Let O be an open set in (Λ∞⊥ ,�) closed under =NF. Then, O = NF−1(NF(O)). Since
the Scott topology on (NF(Λ∞⊥ ),�) is final for NF, NF(O) is open in NF(Λ∞⊥ ) and
hence O = NF−1(NF(O)) is open in the tree topology.

Corollary 46. The BT-topology and LT-topology coincide with the Böhm and Lévy–
Longo tree topologies respectively.

Proof. This follows from Corollary 21 and Lemma 45.

Unfortunately, the BeT-topology coincides with the LT-topology. In general, the
TU -topology is either the BT-topology or the LT-topology.
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