Encoding Graph Transformation in
Linear Logic

Paolo Torrini
joint work with Reiko Heckel

pt95@mcs.le.ac.uk

University of Leicester

GTLL-p.1

Graph Transformation

Graph Transformation Systems (GTS) — high-level
approach to system modelling, UML, model-driven
development, stochastic simulation

Existing formalisations — algebraic-categorical (SPO,
DPO), 2nd-order predicate logic

High-level character, strong mathematical foundation

Double-pushout (DPO) — mature approach, based on
category theory

GTLL -p. 2

°

°

Linear Logic

Linear logic — can handle resources at the
propositional level, by dropping Weakening and
Contraction

Intuitionistic variant (ILL)

Linearity — each premise used exactly once in a
deduction, each argument used once by a function

Non-linearity recovered by means of !

Interesting proof theory (natural deduction, sequent
calculus), various implementations (declarative
languages, logical frameworks)

GTLL-p.3

o o

Encoding GT In LL — why?

LL close to process algebras (Abramsky, Pfenning,
Cervesato)

Parallel composition (a ®), choice (a&p),
reachability (- a —), replication (!)

Semantic motivation: taking closer graph
transformation and process algebra

Existing approach: hyperedge replacement
What we do: logic-based hyperedge replacement
Practical motivation: making proofs about GTS easier

GTLL - p. 4

Typed hypergraphs

Hypergraph G = (V,E,s)
V set of nodes, E set of hyperedges
assignments:E — V*

H-graph morphism — (¢vy : Vi1 — V5, ¢ : E1 — Ey)
assignment-preserving

Type h-graph TG = (V, &, ar)

V set of node types, & set of h-edge types

ar() : & > V*

TG-typed h-graph (G,t), witht: G - TG

TG-typed h-graph morphism f : (G1,t1) = (G, 1)
IS h-morphism f: G; = Gy withty o f =1

GTLL-p.5

DPO diagram

® Graph transformation rule p : L — K-5R
span of typed h-graph morhisms (I, r),
K interface, L/K to be deleted, R/K to be created,
rule application determined by match morphism m,
m determined up to iso by interface morphism d

DPO conditions — (1) Identification condition:
(a) m never identifies distinct L/K elements
(b) m never identifies L/K elements with K ones
(2) Dangling condition: for each node n € L/K, all
edges connected to n are in L/K, too

g h GTLL -p. 6

°

°

Graph expressions

Algebraic characterisation of DPO-GTS:

edge as predicates over nodes, empty graph, parallel
composition,

restriction for nodes

Graph constituent C = e(nq,...,n,) | NIl | Cq || Co | vn.C
Implicit typing —n : A, e(ny,...,n;) : L(Aq, ..., Ax)

Graph expression X £ C

X C Vis graph interface — generalisation of rule
Interface, includes the free nodes of C and free
Isolated nodes

closed GE has empty interface

GTLL-p.7

Structural congruence

® C=C
» || — associative, commutative
Nil — neutral element
s vn. C =vm. Clm/n], if m does not occur free in C.

vnym.C = vmayn.C

vn.(Cy || G) = G || (vn.Cy)
If n does not occur free in Cq

® XeCz=YeC It X=YandC =

GTLL-p. 8

Transformation

E, = KeL and E, = KER
GEs sharing no free isolated nodes

7

_ . z
AX.L == R rule expression forp: L «— K — R
X =x1,...,X represents K as sequence of variables

restriction to node interfaces (no edges in K)

Application of p at match m (G closed GE),
schema satisfies DPO conditions

AXL LR Gz=valln <=7 C

H = vi.R[n <=7 || C

2 H

GTLL -p. 9

Overall plan

Algebraic characterisation of DPO-GTS — hyperedge
replacement-style (difference: isolated nodes)

Translation to a quantified extension of ILL
up to iso (typing, connectivity): edge expressions
unvaried, Nilas 1, ||as®,vas 4, = as —, AasVY

Nodes: occur as non-linear terms in edge expressions,
but need linear treatment to meet DPO conditions

full translation maps expressions to derivations, and
Involves proof terms (linear A-calculus)

terms represent identity of nodes and edges

We translate individual graphs, then forget about terms
and reason up to isomorphism

GTLL - p. 10

Normal forms

(closed) h-graph as (closed) formula

Ax: Ay

x : A sequence of typed variables,
eithery=1ory =1L; (x1)®...® L (xx)

Adequacy of h-graph representation
Transformation rule as closed formula

Vx:Aa —of

with «, B graph formulas

GTLL-p. 11

Reachabillity

Tansformation — Gy, G closed h-graphs, Gy Initial,
Pq,..., Pk rules

» Gy reachable from by some application of the rules
IP1,...,!1P;, Go F 1

» G4 reachable by applying each rule once
Pi,..., P, GoF Gq

Translation complete with respect to reachability
(sequent provable if graph reachable)

Soundness — work In progress,
general idea — logically valid implications are
“read-only” transformations

GTLL - p. 12

o o

°

QILL

ILL extended with 1st-order quantification
Labels attached to premises (identity of occurrences)

Double-entry sequents — linear premises (A) and
non-linear ones (I', equivalent to !T)

I'=x:(a:term),...,p:(B: form),...
A=u:(a: form),...

Proof-terms based on linear A-calculus
Sequents representing derivations

[CAFN = (a: 1)

GTLL - p. 13

Proof system — language

a=A:term|L(Ni,...,N,) |1|a1 ®@ay | a; — as |'aq |
ocl&oczIVx:ﬁ.oclﬁx:,B.oclocLNloc:a

M=x|p|lu|nil|Ny®N; | Ax.N| Au.N | N{"N, | N1N; |
M| {(N{,N>)|fst N|snd N |id,

a=f =45 (@ — P)&(B — a)

a#(x,N) =47 (a[N/x])[x/N] =«

meaning N does not occur free in Ix.a

let P = Ny N N> =df (/\PNQ)N1
where P is a term pattern (does not contain
abstractions)

£(N1|N3).N3 =df N1®!N»> ® N3

GTLL - p. 14

Application schema

IDAFVYx:Arap —o ag
I';-Fag=ag
IG-F CKHéCKHI

ac =z Aapfz: A, & x: A ®ac
o =z : A,.arlz: A, & x: A ®ac

(p,m)
[CAFac — ay —

GTLL-p. 15

Embedding h-graphs

H-graphs: edge components, empty graph Nil (1) and
parallel composition || (&) — straightforward

restriction v — more problematic

standard quantification (V, d) in ILL deals with
non-linear terms

at first sight — OK, nodes may have multiple
occurrences in edge expressions, all we need is to
handle edges linearly edge

s we could map v to d
— after all, v distributes over ||, 3 over ®

» not enough to meet DPO conditions

GTLL -p. 16

Quantifier and DPO conditions

® ¥ (Jx: B. a(x,x)) —o ﬁxy : B. a(x,y)
the resource for x cannot suffice for x and y.

® ¢Vx:B.Blx®a(lx,x) —o fly : B.a(y, x)
y and x should be instantiated with the same term —
blocked by the freshness condition in 3 introduction

o ¥ (dyx: B. a1(x) ® ax(x)) —o (x : B.a1(x)) ® Jx B.az(x)

the two bound variables in the consequence require
distinct resources and refer to distinct occurrences

GTLL -p. 17

Incorrect matches
—
—

O
e

.

RBQ introduction

CAFM::alN/x] T;-- N p

A" Fn BN I,x B Fidy i (@ N/x])[x/N] =a
]

TAAN F(IN®n) @M :: Jx B.a

#® (1) a[N/x] graph with N in place of free x
(2) N well-typed — enough to restrict N by x? No!

to restrict (3) there has to be a node (linear resource)
named by N — | denotes lifting of type from term to
formula with naming reference to term

moreover (4) N does not occur in « (unless N = x)
— a freshness condition, here formalised using type

equality and substitution

GTLL-p. 19

RBQ elimination

A M élx:[%. a I,xupB,Ayn:fBlx,viarNuy |
A, ApFlet(Ix®@n)®@o=MInN vy AL

® Standard elimination rule

#® since we restrict only introduction, normalisation
applies at least as with 4

I and 3E can be used to simulate
restriction/unrestriction operationally in the logic as
steps in the construction/destruction of graph
expressions

I"-FN o
nealNvkn::alN

LA

GTLL - p. 20

© o o o o o 0

Conclusion and further work

Proof theory-driven approach to GT
uses resource logic

new quantifier to deal with restriction
two-level embedding approach

Interest in mechanised theorem proving
Extension to generalised interfaces
Stochastic GTS

GTLL - p. 21

rules |

Id
Fid

Uld
Eq

Nuszaru:a I''x2a-Fx i«

Ipea,-Fpa I-rid, =«
AMMeEMaa I;AEN:PB I
F;Al,Azl-M@NIIO(@,B ©
LAMEMaa®pB IAucta,v:BrENy
A, ApFletu v =MInN ::y

®L

;AuzarM:p
TAFAu:a. M:a—of
IbAiEMea—op TIAEN:

I;A1,Ap - M'N :: 8

—o |

— E

GTLL - p. 22

rules I

ICAFM::1 IAFN:a

1“;+ni|::111 I‘;A,A’HetniI:MinN::oclE
LLARM:aa IDARNP

GAF(MN) = a&f &
I;AEM:: a&p IARM :: a&p
TAFfStMza SF1 ;A Fsnd M g &8
1",-.|_M;:a' AT M F,P a; N> F N :: :B

T riM:lal — T,A,Arletp=MinN:=pg
Ix:BARM CARMaVx:p.a 1;,-FN:p

VI YE

AFAX. M i Vx: B. « IAFMN :: a[N/x]

GTLL - p. 23

Translation — |

Constituents

::ei(m, e ,n) : Li(Am, “o ,An)]] =df Id [F;; C; - Li(xm, “on ,xn)]
[Nil] =47 1 [IT]
IMIINT =4s @ IT[IMI;; [N
[vn: AANN] =47 AL[[IN];;
Uld [T';; x, :: Al;;
d|l;; n:Alx,];;
I,y A;-+id: MainType(IN)y/x,1#(y, x,)]

GTLL - p. 24

Translation — I

Graph interfaces

[n:A]l =4 Id[I,x::A;; n:Alx]
[{n: Al =45 [n:A]
[{n1: A} UX] =4 QI[[[{n:: Ar}l;; [X1]

Graph expressions

[XEC] =i I[[X]s;; [CI]

GTLL - p. 25

Graph derivations

graph formulas — 1, ®, q, | fragment of the logic
containing only primitive graph types (node and edge

types)

graph context — multiset of typed nodes and typed
edge components.

graph derivation — derivable sequent I'; A+ N :: y,
where y Is a graph formula, A is a graph context, I' the
environment, N a normal derivation.

Uses only axioms and the introduction rules 11, ®I, 3I.

GTLL - p. 26

Quantifier and congruence

3 satisfies properties of renaming, exchange and
distribution over ®

o +(Ax: a.B(x)) = (fly :a.6(y))
® +(Jxy:ay) 2 Ayx:ay)
® + (dx: af®y(x) =P dx a.y(x)) (x not In)

Equivalence between a and Jx. a generally fails in both
directions, even when x does not occur free in «a

GTLL - p. 27

Graphs and types — adequacy

Isomorphism between graph expressions and graph
derivations

Isomorphism between graphs (congruence classes of
graph expressions) and graph formulas modulo linear
equivalence

Curry-Howard style correspondence

Possibility to implement hypergraphs and to reason
about them

GTLL - p. 28

o o

Graph transformation

Less interested in component identity, higher-level
translation, based on logic formulas

Linear implication as transformation
Standard quantifier for interface nodes

Rule names as non-linear resources (unlimited
application)

[M = NJ' =4 [M]" — [N]"
[Ax : ANTT =4 ¥ : A[N]"

[n() =45 FIA[T;; pVx:A[L]" — [R]]

GTLL - p. 29

°

Completeness and soundness

Let Tpr = Z U [plp = [n(p)],p € P], then for each
reachable h-graph G

Tp; [Gol" + [GT"

Let R be a multiset of transformations,
Ar = [7|T = [t]',t € R], then for each h-graph G
reachable from Gy by executing R

G, Ax - IGT

This is for completeness

Soundness requires more work on the interpretation of
linear implication

GTLL - p. 30

	Graph Transformation
	Linear Logic
	 Encoding GT in LL --- why?
	Typed hypergraphs
	DPO diagram
	Graph expressions
	Structural congruence
	Transformation
	Overall plan
	Normal forms
	Reachability
	QILL
	Proof system --- language
	Application schema
	Embedding h-graphs
	Quantifier and DPO conditions
	Incorrect matches
	RBQ introduction
	RBQ elimination
	Conclusion and further work
	rules I
	rules II
	Translation --- I
	Translation --- II
	Graph derivations
	Quantifier and congruence
	Graphs and types --- adequacy
	Graph transformation
	Completeness and soundness

