
Submitted to:
LINEARITY 2009

c© P. Torrini & R. Heckel
This work is licensed under the
Creative Commons Attribution License.

Resource-bound quantification for graph transformation

Paolo Torrini
University of Leicester

pt95@mcs.le.ac.uk

Reiko Heckel
University of Leicester

reiko@mcs.le.ac.uk

Graph transformation has been used to model concurrent systems in software engineering,
as well as in biochemistry and life sciences. The application of a transformation rule can
be characterised algebraically as a construction of a double-pushout (DPO) diagram in the
category of graphs. We show how Intuionistic Linear Logic (ILL) can be extended with
resource-bound quantification, allowing for an implicit handling of the DPO conditions,
and how resource logic can be used to reason about graph transformation systems.

1 Introduction

Graphs can be used to model a variety of systems, not just in computer science, but throughout
engineering and life sciences. When systems evolve, we are generally interested in the way they
change, to predict, support, or react to evolution. Graph transformations combine the idea of
graphs, as a universal modelling paradigm, with a rule-based approach to specify the evolution
of systems, which can be regarded as a generalisation of term rewriting. There are several
formalisations of graph transformation based on algebraic methods — the double-pushout
approach (DPO) is one of the most influential [EEPT06] — and several analysis tools based
(mainly) on rewriting systems. Logic-based representation and proof-theoretic methods can be
worth investigating though, when we are interested in mechanising the verification of abstract
properties, and in the formal development of model-based systems.

Intuitionistic linear logic (ILL) has been applied to the modelling of linear resources in
programming languages as well as of concurrent systems [CS06, Abr93, Mil92], the latter
through semantics based on Petri nets, transition systems, multiset rewriting and process
calculi. In this paper we propose a new approach to the representation of graph transformation
systems (GTS) based on DPO in a variant of quantified intuitionistic linear logic (QILL). The
DPO approach is arguably the most mature of the mathematically-founded approaches to
graph transformation, with a rich theory of concurrency comparable to (and inspired by) those
of place-transition Petri nets and term rewriting systems.

ILL can provide a formally neat way to handle the creation/deletion of graph components
associated with the application of transformation rules in GTS, once we have fixed a textual
encoding for graphs and their transformations. Syntactical presentation of DPO-GTS in terms
of graph expressions tend to focus on hypergraphs — a generalisation of graphs allowing for
edges that connect more than two nodes [CMR94]. Hyperedges can be intuitively associated to
predicates defined on nodes. However, a predicate calculus account of graph transformation
can be misleading, insofar as the actual content of the theory is less a static relational structure,
than a dynamic system of connected components — those that can be either created, deleted or
preserved by each transformation. Graph components include the nodes as much as the edge
components, each made of an edge with its attached nodes — something that points indeed
toward a second-order account.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Resource-bound quantification

Intuitively, each graph component can be regarded as linear resource. However, there is a
clear distinction between components which are used linearly in a graph expression, i.e. the
edge components, and those that represent connections between them, and therefore may have
multiple occurrences in the expression, i.e. the nodes. This distinction is reflected in one of the
conditions that characterise the definition of valid transformation rule in DPO — the dangling
condition, which essentially prohibits deleting a node unless the attached edges are deleted,
too. The difference between nodes and edges can be taken into account in at least two different
ways, using linear logic. One possibility is to consider a node n as resource shared between
distinct edge components, say c1(n) and c2(n) for example. The logic expression of this idea
would be to represent the sharing as n(c1(n)&c2(n). This approach, bearing similarities to
the work in [DP08] based on separation logic, has the possible drawback of complicating the
representation of parallel edge components.

An alternative approach, that we are pursuing here, is to express parallel composition in
a straightforward way — i.e. in terms of tensor product, on one hand, and on the other
hand, to distinguish between a node as graph component that can be transformed, i.e. as
linear resource, and the node name that may occur any times in a graph expression — hence
clearly a non-linear term. This distinction appears to rely on the possibility to express the
referential relation between nodes and their names. When we reason about graphs up to
isomorphism, assuming node names are hidden (i.e. restricted, in process calculus parlance)
makes it necessary to express this relation modulo α-renaming. Moreover, it is important to
make sure that hidden node names match quantitatively and qualitatively (by type) the node
components. This correspondence is at the basis of the other constraint to the validity of DPO
rules — the identification condition. We present an extension of linear logic that allows keeping
track of these relations, in order to represent GTS. In the first-order formulation that we have
given in [TH], we define a translation of GTS assuming a restriction to transformation rules that
allow only for preservation of nodes. Here we introduce a higher-order version of the logic,
needed in order to lift that restriction.

We express the referential relation by annotating the type of a node with the name that
refers to the node (using the symbol �). We express name hiding by associating the intro-
duction/elimination of hidden non-linear names with the consumption/deallocation of linear
resources. This is essentially achieved by ∃̂, operationally defined as a resource-bound existen-
tial quantifier. ∃̂ has a separating character (though in a different sense from the intensional
quantifiers in [Pym02]), by implicitly associating each bound variable to a linear resource in the
sense of a tensor product. The representation of hiding, in connection to the availability of fresh
names, is usually associated with the freshness quantifier of nominal logic [Pit01, CC04]. How-
ever, in our case linearity and the assumption that the environment does not contain duplicated
labels suffice for the freshness of linear resources. We need to introduce a freshness condition on
the instantiating non-linear term when we introduce the binding — which amounts, essentially,
to making the introduction rule invertible, in contrast with standard existential quantification.

2 Hypergraphs and their transformations

Graph transformations can be defined on a variety of graph structures. In this paper we
prefer typed hypergraphs, their n-ary hyperedges to be presented as predicates in the logic.
A hypergraph (V,E,s) consists of a set V of vertices, a set E of hyperedges and a function

P. Torrini & R. Heckel 3

s : E→ V∗ assigning each edge a sequence of vertices in V. A morphism of hypergraphs is a
pair of functions φV : V1→ V2 and φE : E1→ E2 that preserve the assignments of nodes, that
is, φ∗V ◦ s1 = s2 ◦φE. By fixing a type hypergraph TG = (V,E,ar), we are establishing sets of
node types V and edge types E as well as defining the arity ar(a) of each edge type a ∈ E as a
sequence of node types. A TG-typed hypergraph is a pair (HG, type) of a hypergraph HG and a
morphism type : HG→ TG. A TG-typed hypergraph morphism f : (HG1, type1)→ (HG2, type2)
is a hypergraph morphism f : HG1→HG2 such that type2 ◦ f = type1.

A graph transformation rule is a span of injective hypergraph morphisms L l
←−K r

−→R, called
a rule span. A hypergraph transformation system (GTS) G = 〈TG,P,π,G0〉 consists of a type
hypergraph TG, a set P of rule names, a function mapping each rule name p to a rule span

π(p), and an initial TG-typed hypergraph G0. A direct transformation G
p,m
=⇒ H is given by a

double-pushout (DPO) diagram as shown below, where (1), (2) are pushouts and top and bottom
are rule spans. For a GTS G = 〈TG,P,π,G0〉, a derivation G0 =⇒ Gn in G is a sequence of direct
transformations G0

r1
=⇒ G1

r2
=⇒ ·· ·

rn
=⇒ Gn using the rules in G. An hypergraph G is reachable in

G iff there is a a derivation of G from G0.

L

(1)m
��

K

(2)

loo r //

d
��

R

m∗
��

G Dg
oo

h
// H

Intuitively, the left-hand side L contains the structures that must be present for an application
of the rule, the right-hand side R those that are present afterwards, and the gluing graph K (the
rule interface) specifies the “gluing items”, i.e., the objects which are read during application,
but are not consumed. Operationally speaking, the transformation is performed in two steps.
First, we delete all the elements in G that are in the image of L \ l(K) leading to the left-hand
side pushout (1) and the intermediate graph D. Then, a copy of L \ l(K) is added to D, leading
to the derived graph H via the pushout (2). The first step (deletion) is only defined if the a
built-in application condition, the so-called gluing condition, is satisfied by the match m. This
condition, which characterises the existence of pushout (1) above, is usually presented in two
parts.

Identification condition: Elements of L that are meant to be deleted are not shared with any
other elements, i.e., for all x ∈ L\ l(K), m(x) = m(y) implies x = y.

Dangling condition: Nodes that are to be deleted must not be connected to edges in G, unless
they already occur in L, i.e., for all v ∈GV, if there exists e ∈GE such that s(e) = v1 . . .v . . .vn,
then e ∈mE(LE).

The first condition guarantees two intuitively separate properties of the approach: First,
nodes and edges that are deleted by the rule are treated as resources, i.e., m is injective on
L \ l(K). Second, there must not be conflicts between deletion and preservation, i.e., m(L \ l(K))
and m(l(K) are disjoint. The second condition ensures that after the deletion of nodes, the
remaining structure is still a graph and does not contain edges short of a node. It is particularly
the first condition which makes linear logic so attractive for graph transformation. Crucially,
it is also reflected in the notion of concurrency of the approach, where items that are deleted
cannot be shared between concurrent transformations.

4 Resource-bound quantification

3 Linear λ-calculus for GTS

We extend ILL with typed quantification, building on a notion of linear λ-calculus that comes
to us from an unpublished [Pfe02]. In contrast with [TH], here we do not restrict quantification
to be first-order. Our primitive logic formulas are α = A | L(N1, . . . ,Nn) | 1 | α1⊗α2 | α1(α2 |!α1 |

> | α1&α2 | ∀x : β.α | ∃̂x : β.α | α | α�N | α = α, where we assume A to represent a primitive node
type, and L(N1, . . . ,Nn) to represent the type of an edge component. We also define

α≡̂β =d f (α(β)&(β(α) α#(x,N) =d f (α[N/x])[x/N] = α

Primitive expressions are M = x | u | nil | N1 ⊗N2 | ε̂(N1|N2).N3 | λx.N | λ̂u.N | N1ˆN2 | N1N2 |

〈N1,N2〉 | 〈〉 | fst N | snd N. We define (let P = N1 in N2) =d f (λP.N2)N1, where P = x | u |
nil |N1⊗N2 | ε̂(N1|N2).N3 | 〈N1,N2〉 | 〈〉 | fst N | snd N is a pattern.

We use two-entry sequents of form Γ;∆ `N ::α, where ∆ is a multiset of typed linear variables,
denoted u :: α,v :: α, . . ., Γ is a multiset of typed non-linear variables, denoted x :: α, y :: α, . . ., `
represents derivability, and N :: α is a typed expression. We assume that variables can occur
at most once in a context. For multisets, we use sequence notation — modulo permutation
and associativity, and · for the empty multiset. We consider a subset of linear variables as
node names (m,n, . . .) and another subset as edge components (c,d, . . .). We consider a subset
of non-linear variables as transformation rule names (p,q, . . .). When we “forget” about proof
terms we are left with logic formulas and a consequence relation, which we denote by
. We
use a notion of syntactic equality = over types, stronger than linear equivalence ≡̂, to express a
freshness constraint in ∃̂I. We use λ̂ to denote linear abstraction (and ˆ for linear application),
in order to distinguish it from the non-linear abstraction (λ) — though this distinction is only
meant to improve readability, since the difference between the two is determined by whether
the abstraction variable is linear or not. The sequent calculus system is given by the axioms,
the structural rules Copy (in the form of [Pfe94]), Cut and Cut’, and the operational rules rules.
Cut elimination should be provable, along the lines of [Pfe94] — the only difference being the
∃̂ rules — however it might not be straightforward.

3.1 Graphs in QILL

According the main lines of the formalisation we have presented in [TH], graphs can be generally
associated to expressions in a sublanguage G = n | c | nil |G1⊗G2 | ε̂(n|x).G, and can be represented
as derivations of form Γ;∆ ` G :: γ, where Γ may contain all the typed non-linear variables that
are not bound in the sequent, ∆ = gc(G) contains all and only the typed linear variables that occur
in G, and γ (the graph formula) is a formula in the 1,⊗, ∃̂ fragment of the logic. The elements of
∆ can represent the ground constituents — i.e. the nodes and the edge components of the graph.
Untyped expressions (i.e. labels) represent component identity, whereas graph formulas contain
the typing and connectivity information. The notion of graph up to isomorphism turns out to
be captured by that of graph formula modulo linear equivalence, corresponding semantically
to the set of graph formulas that can be derived from the ground constituent of the graph.
Graphs can be represented schematically as ∃̂x : A.L1 (x1)⊗ . . .⊗Lk (xk) where x : A is a sequence
x1 : A1, . . . ,x j : A j of typed variables — this counts as normal form, and it is closed, i.e. x1, . . . ,xk ⊆ x,
whenever all nodes are hidden. As an example, a hypergraph with nodes n1 : A1, . . . ,n4 : A4
and edge components c1 : L1(n1,n2),c2 : L2(n1,n3,n4),c3 : L3(n2), can be represented with hidden
nodes, in normal form, by a formula ∃̂x1 : A1, . . . ,x4 : A4. L1(x1,x2)⊗L2(x1,x3,x4)⊗L3(x2).

P. Torrini & R. Heckel 5

3.2 Resource-bound existential quantifier

In order to type hiding, we need an existential-like quantifier (i.e. distributing over the tensor)
that, in contrast with standard ones, ensures distinct bound variables in a formula cannot be
instantiated with the same node — we will also say that the binder behaves injectively, i.e.
that instantiations of multiple bound variables are always injective mappings. With ∃̂, the
instantiation of two distinct variables requires two linear resources, therefore cannot be derived
from the instantiation of one — hence multiple instantiations behave injectively (Obs. 1(1)).

Γ;∆ `M :: α[N∆/x] Γ; · `N∆ :: β Γ;∆′ ` n :: β�N∆ Γ,x :: β; · ` nil :: α#(x,N∆)

Γ;∆,∆′ ` ε̂(n|N∆).M :: ∃̂x : β.α
∃̂R

Γ,x :: β;∆,n :: β�x,v :: α `N :: γ

Γ;∆,w :: ∃̂x : β.α ` let ε̂(n|x).v = w in N :: γ
∃̂L

∃̂ left introduction is similar to the standard rule, except for the linear premise n :: β�x. ∃̂
right introduction satisfies two non-standard constraints. The first one — Γ;∆′ ` n :: β�N∆ —
means that N∆ is the unique name (non-linear resource) for linear resource n. We need to force
a dependence of the non-linear term on the linear context ∆ — and here we do this by an index
— lacking this, we might run into trouble with rule Cut. � represents an injective mapping
from linear resources to non-linear ones, ensuring that the node n cannot be associated to two
different names, and hence used twice. The mapping is not generally invertible — since N is
arbitrary, it can be associated to different linear resources, however this should not be a problem,
as long as we do not allow for the same term to be used in different spatial contexts (that is why
we need to force dependence on the linear context ∆). We do not give any proper introduction
rule for � (no associated constructor), and therefore n :: β�N can only be introduced by axiom,
under the assumption N is well-typed, i.e.

Γ; · `N :: β
Γ;n :: β�N ` n :: β�N �I

Given the definition of #, the second constraint is Γ,x :: β; · ` nil :: (α[N/x])[x/N] = α, which
means that N does not occur in α[N/x] other than in place of x, i.e. we use type equality and
substitution to formalise the requirement that N does not occur free in ∃̂x.α. We do not give
rules for type equality here, but they are standard ones. With this constraint, the formula ∃̂x.α
is determined by the instance α[N/x] modulo renaming of bound variables — since all the
occurrences of N must be replaced by x. Therefore applications of ∃̂R force a bijection between
unbounded resources (node names) and variables that actually occur in α. Moreover, the rule
consumes resources associated to n :: β�N, and therefore forces a linear dependence of variables
on resources (nodes).

The hiding operator ε̂ can be defined along the lines of the linear interpretation of the
existential quantifier [CP02], closely associated to the standard intuitionistic one, i.e.

ε̂(n|N).M :: ∃̂x : α.β =d f n⊗!N⊗M

with the proviso of the non-occurrence of either N or x in α. N depends only on the global
context, hence it can be replaced with !N. The linearity of n :: α ensures injectivity.

It is not difficult to see that the following properties hold.

6 Resource-bound quantification

Prop. 1 (1) 1 (∃̂x : β. α(x,x)) (∃̂xy : β. α(x, y)
the resource associated to x cannot suffice for x and y.
(2) 1 ∀x : β. β�x⊗α(x,x) (∃̂y : β.α(y,x)
y and x should be instantiated with the same term — but this is prevented by the freshness
condition in ∃̂ introduction
(3) 1 (∃̂yx : β. α1(x)⊗α2(x)) ((∃̂x : β.α1(x))⊗∃̂x : β.α2(x)
the two bound variables in the consequence require distinct resources and refer to distinct
occurrences

Prop. 2 ∃̂ satisfies properties of α-renaming, exchange and distribution over ⊗, i.e.

 (∃̂x : α.β(x)) ≡̂ (∃̂y : α.β(y))

 (∃̂xy : α.γ) ≡̂ (∃̂yx.γ)

 (∃̂x : α.β⊗γ(x)) ≡̂ (β⊗∃̂x : α.γ(x)) (x not in α)

In general ∃̂does not satisfy logical η-equivalence, i.e. it cannot be proved thatα is equivalent
to ∃̂x. α when x does not occur free in α (neither sense of linear implication holds). This may
come handy though, to represent graphs with isolated nodes.

We do not introduce term congruence explicitly, but we assume α-renaming, β- and η-
congruence for λ and λ̂ (with linearity check for the latter), as well as α-renaming, exchange,
and distribution over ⊗ for ε̂ (to match the type properties in Obs. 2).

3.3 Transformation rules

A DPO transformation rule (we consider rules with interfaces made only of nodes) can be
represented as ∀x : A.α(β where α,β are graph expressions. Transformation rules can be
encoded as typed non-linear variables p :: ∀x : A.γ1 (γ2 where γ1,γ2 are graph formulas.
The implicit ! closure guarantees unrestricted applicability, universally quantified variables
represent the rule interface, and linear implication represents transformation. The application
of p to a closed graph formula αG = ∃̂y : Ay.βG determined by morphism m (as shown in the
diagram) relies on the fact that the following rule is derivable

Γ; ·
 αG≡̂αG′ αG′ = ∃̂z : Az.αL[z : Az
d
←− x : Ax]⊗αC

Γ; ·
 αH≡̂αH′ αH′ = ∃̂z : Az.αR[z : Az
d
←− x : Ax]⊗αC

Γ;∀x : Ax.αL (αR
 αG(αH

p,m
=⇒

where the interface morphism d associated with m is represented by the multiple substitution

[z : Az
d
←− x : Ax], with z : Az ⊆ y : Ay

Prop. 3 The QILL application schema satisfies the DPO conditions.
An informal proof can be built on top of Obs. 2(1,2,3). Injectivity rests on 1 for nodes and
on linearity of the consequence relation for edge components, the identification condition
rests on 2, the morphism characterisation of instantiations rests on 3, and this, together
with the propositional structure of graph expressions, should suffice to ensure that also
the dangling edge condition is satisfied.

P. Torrini & R. Heckel 7

A sequent ·;G0,P1, . . . ,Pk
G1 can express that graph G1 is reachable from the initial graph G0
by applying rules P1 = ∀x1.α1(β1, . . . , Pk = ∀xk.αk(βk once each, abstracting from the appli-
cation order, each application resulting into a transformation step. A sequent P1, . . . ,Pk;G0
G1
can express that G1 is reachable from G0 by the same rules, regardless of whether or how many
times they need to be applied. The parallel applicability of rules ∀x1.α1 (β1, ∀x2.α2 (β2
can be represented as applicability of ∀x1,x2.α1 ⊗ α2 (β1 ⊗ β2 (true parallellism) or else of
∀x1,x2.(α1(β1)⊗ (α2(β2).

3.4 Extending the logic

In order to deal with transformation rules that preserve edge components, we need higher-order
universal quantification. This should ensure though, that while abstracted variables range over
non-linear terms, in order to allow for multiple variables to be instantiated with the same term,
instantiation takes place only when at least a linear resource of compatible type is available.
Here we introduce � in order to extend non-linear contexts with premises that can be dropped
when linear ones are available, and a notion of quantification that depends upon it, with the
following rules

Γ,x :: β �;∆ `N :: α

Γ;∆ ` λx.N :: ∀̂x : β.α
∀̂R

Γ; · `M :: β � Γ;∆,v :: α[M/x] `N :: γ

Γ;∆,u :: ∀̂x : β.α ` let v = uM in N :: γ
∀̂L

Γ;u :: β,∆ `N :: α
Γ,x :: β �;u :: β,∆ `N :: α

� I

We need to assume that � premises cannot be introduced arbitrarily — in fact, restricting
weakening. A general DPO transformation rule can be represented as ∀x : A.∀̂y : γ.α(βwhere
α,β,γ are graph expressions. The application of a rule requires that, after the instantiation of the
interface nodes, interface edges can be instantiated, only if matching components are available
as linear resources in the graph — though this does not involve consuming them.

3.5 Conclusion and further work

We have discussed how to represent DPO-GTS in a higher-order quantified extension of ILL.
We have extended the encoding in [TH] by considering edge abstraction. We are interested
in a logic that allows us to reason about concurrency and reachability at the abstract level, as
well as for the synthesis of proof terms that can represent system runs — hence our interest
in constructive logic. While we feel that the representation of contextual dependencies in the
operational rules needs more investigation, especially with respect to cut elimination, we are
also interested in extending the encoding to stochastic GTS.

References

[Abr93] S. Abramsky. Computational interpretation of linear logic. Theoretical Computer Science 111,
1993.

[CC04] L. Caires, L. Cardelli. A Spatial Logic for Concurrency II. Theoretical Computer Science
322(3):517–565, 2004.

8 Resource-bound quantification

[CMR94] A. Corradini, U. Montanari, F. Rossi. An abstract machine for concurrent modular systems:
CHARM. Theoretical Computer Science 122:165–200, 1994.

[CP02] I. Cervesato, F. Pfenning. A linear logical framework. Information and Computation 179(1):19–75,
2002.

[CS06] I. Cervesato, A. Scedrov. Relating State-Based and Process-Based Concurrency through Linear
Logic. Electron. Notes Theor. Comput. Sci. 165:145–176, 2006.

[DP08] M. Dodds, D. Plump. From hyperedge relpacement to separation logic and back. In ICGT 2008
— Doctoral Symposium. 2008.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of algebraic graph transformation.
Springer, 2006.

[Mil92] D. Miller. The pi-calculus as a theory in linear logic: preliminary resutls. In Workshop on
Extensions of Logic Programming. LNCS 660, pp. 242–264. Springer, 1992.

[Pfe94] F. Pfenning. Structural Cut Elimination in Linear Logic. Technical report, Carnagie Mellon
University, 1994.

[Pfe02] F. Pfenning. Linear Logic — 2002 Draft. Technical report, Carnagie Mellon University, 2002.
[Pit01] A. M. Pitts. Nominal Logic: A First Order Theory of Names and Binding. In TACS ’01:

Proceedings of the 4th International Symposium on Theoretical Aspects of Computer Software. Pp. 219–
242. Springer-Verlag, 2001.

[Pym02] D. J. Pym. The semantics and proof-theory of the logics of bunched implications. Applied Logic
Series. Kluwer, 2002.

[TH] P. Torrini, R. Heckel. Towards an embedding of graph transformation systems in intuitionistic
linear logic. ICE’09 Workshop.
www.cs.le.ac.uk/people/pt95/sll69.pdf

Appendix — other proof rules

Γ;u :: α ` u :: α Id
Γ,x :: α; · ` x :: α UId

Γ,x :: α;u :: α,∆ `N :: γ
Γ,x :: α;∆ ` let u = copy(x) in N :: γ

Copy

Γ;∆ `N :: α Γ;u :: α,∆′ `M :: β
Γ;∆,∆′ ` let N = u in M :: β Cut

Γ; · `N :: α Γ,x :: α;∆ `M :: β
Γ;∆ ` let N = x in M :: β Cut′

Γ;∆1 `M :: α Γ;∆2 `N :: β
Γ;∆1,∆2 `M⊗N :: α⊗β ⊗R

Γ;∆,u :: α,v :: β `N :: γ
Γ;∆,w :: α⊗β ` let u⊗v = w in N :: γ ⊗L

Γ;∆,u :: α `M :: β

Γ;∆ ` λ̂u : α. M :: α(β
(R

Γ;∆1 `M :: α Γ;∆2,u :: β `N :: γ
Γ;∆1,∆2,v :: α(β ` let u = vˆN in N :: γ (L

Γ; · ` nil :: 1 1R
Γ;∆ `N :: α

Γ;∆,u :: 1 ` let nil = u in N :: α 1L

Γ;∆ `M :: α Γ;∆ `N :: β
Γ;∆ ` 〈M,N〉 :: α&β &R

Γ;∆ ` 〈〉 ::> >R

Γ;∆,v :: α `N :: γ
Γ;∆,u :: α&β ` let v = fst u in N :: γ &L1

Γ;∆,v :: β `N :: γ
Γ;∆,u :: α&β ` let v = fst u in N :: γ &L2

Γ; · `M :: α
Γ; · ` !M :: !α !R

Γ,p :: α;∆ `N :: β
Γ;∆,u ::!α ` let p = !u in N :: β !L

Γ,x :: β;∆ `M :: α
Γ;∆ ` λx. M :: ∀x : β. α ∀R

Γ; · `M :: β Γ;∆,v :: α[M/x] `N :: γ
Γ;∆,u :: ∀x : β.α ` let v = uM in N :: γ ∀L

www.cs.le.ac.uk/people/pt95/sll69.pdf

	Introduction
	Hypergraphs and their transformations
	Linear -calculus for GTS
	Graphs in QILL
	Resource-bound existential quantifier
	Transformation rules
	Extending the logic
	Conclusion and further work

