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Linear logics have been shown to be able to embed both rewriting-based approaches and
process calculi in a single, declarative framework. In this paper we are exploring the
embedding of double-pushout graph transformations into quantified linear logic, leading
to a Curry-Howard style isomorphism between graphs / transformations and formulas /
proof terms. With linear implication representing rules and reachability of graphs, and the
tensor modelling parallel composition of graphs / transformations, we obtain a language
able to encode graph transformation systems and their computations as well as reason about
their properties.

1 Introduction

Graphs are among the simplest and most universal models for a variety of systems, not just
in computer science, but throughout engineering and life sciences. When systems evolve, we
are generally interested in the way they change, to predict, support, or react to evolution.
Graph transformations combine the idea of graphs, as a universal modelling paradigm, with
a rule-based approach to specify the evolution of systems. But while graph transformations
are specified at the level of visual rules, these specifications are still operational rather than
declarative. To reason about their properties at a realisation-independent level, a logics-based
representation is desirable.

Intuitionistic linear logic (ILL) allows us to reason on concurrent processes at a level of
abstraction which can vary from statements about individual steps to the overall effect of
a longer computation. Unlike operational formalisms, linear logics are not bound to any
particular programming or modelling paradigm and thus have a potential for integrating and
comparing different such paradigms through embeddings [Gir87, Abr93].

In this paper we propose an embedding of graph transformation systems (GTS) based on
the double-pushout approach (DPO) [EEPT06] in a variant of quantified intuitionistic linear
logic (QILL). The DPO approach is arguably the most mature of the mathematically-founded
approaches to graph transformation, with a rich theory of concurrency comparable to (and
inspired by) those of place-transition Petri nets and term rewriting systems.

What makes ILL well applicable to GTS is the handling of resources and the way this allows
for expressing creation/deletion of graph components. However, meeting the DPO conditions
(identification condition and dangling edge condition) is not straightforward, and complicates
the quantification aspect. Our logic translation of DPO GTS uses a non-standard quantifier,
operationally defined, that allows us to associate names to variables, and therefore to represent
graph morphisms in terms of substitution, compatibly with the DPO application conditions.
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Types for restriction have been investigated in [Pit01, CC04] in the wider context of nominal
logic, where names can be treated as bindable atoms. This approach involves a quite sophisti-
cated set-theoretical foundation. We will rather use non-quantifiable constants, treated as linear
resources, to which individual variables may explicitly refer.

QILL is based on linear λ-calculus [BBPH93, CP02, Pfe02], and can be obtained by adding
to ILL the typed quantifiers ∃̂,∀. The resource-bound existential ∃̂ has a separating character
(quite different from that of intensional quantifiers in [Pym02]) — a resource is associated to each
variable. It also has a freshness character, as implied by one of the introduction rule hypothesis.
We use it to type the λ-calculus translation of restriction as we have it in our algebraic account
of DPO. Standard universal quantification ∀ is used to represent DPO rule interfaces, translated
by λ-abstraction.

Summarising, the QILL encoding of graph expressions is based on predicates for edges and
variables for node names, the neutral element type 1 for the empty graph, the tensor product ⊗
for parallel composition and ∃̂ for node name restriction. Transformation rules can be encoded
by using linear implication( to express transformation, and ∀ to represent interfaces. Linear
implication can be further associated to reachability. The unlimitedness constructor ! can be
used to express the potentially unbounded applicability of transformation rules.

Our translation relies on a preliminary algebraic presentation of DPO-GTS in terms of
an SHR-style formalism [FHL+06], which gives us syntactic notions of graph expression and
transformation rule. We use a constructive approach — translating algebraic expressions to
linear λ-calculus, so that component identity is represented in the proof-terms, whereas typing
information and connectivity is represented in the logic formula. We can obtain a Curry-Howard
style isomorphism between graph expressions and a subset of typing derivations, and between
graphs and a subset of logic formulas (graph formulas) modulo linear equivalence. This can be
extended to a mapping from GTS runs into typing derivations, and from reachable graphs into
logic formulas. This approach offers the possibility of applying goal-directed proof-methods to
the verification of well-formedness and reachability properties in GTS. Goal-directed methods
can be useful insofar as they allow to focus proof attempts on the property to be verified, rather
than exploring systematically the problem state space [MS07, DSB06].

2 Basic concepts and intuition

We introduce the main ideas behind the approach we are working on, before getting further
into technical details.

2.1 Hypergraphs and their Transformations

Graph transformations can be defined on a variety of graph structures, including simple edge
or node labelled graphs, attributed or typed graphs, etc. In this paper we prefer typed hyper-
graphs, their n-ary hyperedges to be presented as predicates in the logic.

A hypergraph (V,E,s) consists of a set V of vertices, a set E of hyperedges and a function
s : E→ V∗ assigning each edge a sequence of vertices in V. A morphism of hypergraphs is a
pair of functions φV : V1→ V2 and φE : E1→ E2 that preserve the assignments of nodes, that is,
φ∗V ◦s1 = s2 ◦φE.
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Typed hypergraphs are defined in analogy to typed graphs. Fixing a type hypergraph
TG = (V,E,ar) we establish sets of node types V and edge types E as well as defining the
arity ar(a) of each edge type a ∈ E as a sequence of node types. A TG-typed hypergraph is a
pair (HG, type) of a hypergraph HG and a morphism type : HG→ TG. A TG-typed hypergraph
morphism f : (HG1, type1)→ (HG2, type2) is a hypergraph morphism f : HG1→ HG2 such that
type2 ◦ f = type1.

A graph transformation rule is a span of injective hypergraph morphisms s = (L l
←− K r

−→ R),
called a rule span. A hypergraph transformation system (GTS) G = 〈TG,P,π,G0〉 consists of a
type hypergraph TG, a set P of rule names, a function mapping each rule name p to a rule span
π(p), and an initial TG-typed hypergraph G0.

A direct transformation G
p,m
=⇒H is given by a double-pushout (DPO) diagram as shown below,

where (1), (2) are pushouts and top and bottom are rule spans. If we are not interested in the

match and/or rule of the transformation we will write G
p

=⇒H or just G =⇒H.
For a GTS G = 〈TG,P,π,G0〉, a derivation G0 =⇒ Gn in G is a sequence of direct transforma-

tions G0
r1

=⇒G1
r2

=⇒ ·· ·
rn

=⇒Gn using the rules in G. The set of all hypergraphs reachable from G0
via derivations in G is denoted by RG.
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Intuitively, the left-hand side L contains the structures that must be present for an application
of the rule, the right-hand side R those that are present afterwards, and the gluing graph K
specifies the “gluing items”, i.e., the objects which are read during application, but are not
consumed.

Operationally speaking, the transformation is performed in two steps. First, we delete all
the elements in G that are in the image of L \ l(K) leading to the left-hand side pushout (1) and
the intermediate graph D. Then, a copy of L \ l(K) is added to D, leading to the derived graph
H via the pushout (2).

It is important to point out that the first step (deletion) is only defined if a built-in application
condition, the so-called gluing condition, is satisfied by the match m. This condition, which
characterises the existence of pushout (1) above, is usually presented in two parts.

Identification condition: Elements of L that are meant to be deleted are not shared with any
other elements, i.e., for all x ∈ L\ l(K), m(x) = m(y) implies x = y.

Dangling condition: Nodes that are to be deleted must not be connected to edges in G, unless
they already occur in L, i.e., for all v ∈ VG such that v ∈mV(LV), if there exists e ∈ EG such
that s(e) = v1 . . .v . . .vn, then e ∈mE(LE).

The first condition guarantees two intuitively separate properties of the approach: First,
nodes and edges that are deleted by the rule are treated as resources, i.e., m is injective on
L \ l(K). Second, there must not be conflicts between deletion and preservation, i.e., m(L \ l(K))
and m(l(K) are disjoint.

The second condition ensures that after the deletion of nodes, the remaining structure is
still a graph and does not contain edges short of a node. It is the first condition which makes
linear logic so attractive for graph transformation. Crucially, it is also reflected in the notion of
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concurrency of the approach, where items that are deleted cannot be shared between concurrent
transformations.

There is a second, more declarative interpretation of the DPO diagram as defining a rewrite

relation over graphs. Two graphs G,H are in this relation G
p

=⇒ H iff there exists a morphism
d : K→ D from the interface graph of the rule such that G is the pushout object of square (1)
and H that of square (2) in the diagram above. In our algebraic presentation we will adopt this
more declarative view.

As terms are often considered up to renaming of variables, it is common to abstract from
the identity of nodes and hyperedges considering hypergraphs up to isomorphism. However,
in order to be able to compose graphs by gluing them along common nodes, these have to be
identifiable. Such potential gluing points are therefore kept as the interface of a hypergraph, a
set of nodes I embedded into HG by a morphism i : I→HG.

An abstract hypergraph i : I→ [HG] is then given by the isomorphism class {i′ : I→ HG′ |
∃ isomorphism j : HG→HG′ such that j◦ i = i′}.

If we restrict ourselves to rules with interfaces that are discrete (i.e., containing only nodes,
but no edges.), a rule can be represented as a pair of hypergraphs with a shared interface I,
i.e., ΛI.L =⇒ R, such that the set of nodes I is a subgraph of both L,R. This restriction does not
affect expressivity in describing individual transformations because edges can be deleted and
recreated, but it reduces the level concurrency. In particular, concurrent transformation steps
can no longer share edges because only items that are preserved by both rules can be accessed
concurrently.

2.2 Linear logic

In terms of sequent calculus, ILL can be obtained from intuitionistic logic by restricting the
application of standard structural rules weakening and contraction, thus making it possible to
interpret premises as limited resources. Standard logic reasoning about unlimited resources can
be recovered via the unlimitedness operator !. It is possible to interpret ILL formulas as partial
states and express transitions in terms of consequence relation [CS06]. Tensor product (⊗) can
be used to represent parallel composition, as an assembling operation, additive conjunction (&)
to represent non-deterministic choice as a composition of alternatives, and linear implication
(() to express reachability.

ILL has an algebraic interpretation based on quantales and a categorical one based on
symmetric monoidal closed categories [BBPH93], it has interpretations into Petri-nets, and for
its ∨-free fragment, it has a comparatively natural Kripke-style semantics based on a ternary
relation [IH01] — in common with relevant logics. ILL can be extended with quantifiers and
enriched by adding proof terms, thus obtaining linear λ-calculus [BBPH93, Pfe02], where linear
λ-abstraction and linear application require that the abstraction/application term is used only
once. We are going to rely on an operational semantics in terms of natural deduction rules,
following [Pfe02].

Derivation, represented as a sequent, can be formalised in terms of natural deduction,
based on introduction/elimination rules closely related to the constructor/destructor duality in
recursive datatypes [TS00]. Natural deduction rules fit well with forward application — from
premises to conclusions. Proof normalisation guarantees modularity, meaning that detours in
proofs can be avoided, i.e. one does not need to introduce a constructor thereafter to eliminate
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it. Proof normalisation shows that introducing a constructor brings nothing more than what it
is taken away by eliminating it.

In order to check whether a sequent represents a derivation, or in our case, to check whether
a graph expression is derivable from its context — either in the sense of well-formedness or in
that of reachability — it can be useful to build proofs backward from the goal sequents. This is
the idea behind sequent calculus. Sequent calculus rules fit in well with backward application
and thus with goal-directed proof-search. Cut elimination is proof normalisation for sequent
calculus, and it has essentially the same meaning [TS00]. Backward reasoning can also be used
to synthesise proof-terms from their specified types. The possibility to integrate the constructive
aspect (correctness by construction) with the synthesis one (correctness by design) is indeed
one of the aspects that has made Curry-Howard style formalisms an important research topic
in system verification [MS07].

2.3 GTS in QILL

We can represent GTS by relying on a constructive presentation of QILL, interpreting the
application of derived rules as steps in constructing graph expressions and in transforming
them. We look at the relationship between the structural congruence defined over the algebraic
expressions (≡) and linear equivalence defined in the logic (≡̂). We are also interested in
defining a bisimulation relation between the derivation of graph transformations in the logic
and well-formed transformations in the algebraic formalism.

Graphs can be represented by formulas of form ∃̂x : A.L1 (x1)⊗ . . .⊗Lk (xk) where x : A is a
sequence x1 : A1, . . . ,x j : A j of typed variables and x1, . . . ,xk ⊆ x. A DPO rule (we consider rules
with interfaces made only of nodes) can be represented as ∀x : A.α( β where α,β are graph
expressions.

A sequent G0,P1, . . . ,Pk G1 can express that graph G1 is reachable from the initial graph G0
by applying rules

P1 = ∀x1.α1( β1, . . . , Pk = ∀xk.αk( βk

abstracting away from the application order, each occurrence resulting into a transformation
step. A sequent G0, !P1, . . . , !Pk  G1 can express that G1 is reachable from G0 by the same rules,
regardless of whether or how many times they must be applied.

The parallel applicability of rules∀x1.α1( β1,∀x2.α2( β2 can be represented as applicability
of ∀x1,x2.α1⊗α2( β1⊗β2.

Logic formulas can also be used also to represent abstractly graphs that have specific prop-
erties — such as matching certain patterns. Additive conjunction (&) can then be used to
express choice, and additive disjunction (∨) to express non-deterministic outcome — as from
quantale-based interpretations of ILL [Abr93]. The formula G1&G2 can represent a graph that
can match two alternative patterns — hence representing a potential situation of conflict in
rule application. The formula G1∨G2 represents a graph that may have been obtained in two
different ways — hence a situation of non-determinism.
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Negative constraints can be expressed using the intuitionistic-style negation¬. The formula
¬α expresses the fact that α must never be reached — in the sense that reaching it implies the
system contains an error. Whereas, in a weaker sense, the system satisfies the constraint if α
does not follow from the specification. To make an example (see figure below), given

α =d f ∃̂xyz : A.(b(x, y)⊗b(x,z))∨ (b(x, y)⊗b(z,x))∨ (b(y,x)⊗b(z,x))

the formula ¬α can be used to express a negative constraint stating that in the system there
must be no element of type A which is bound with two distinct ones (graphically represented in
the upper part of the picture). The transformation rule (in the same picture) can be represented
with ∀xy : A.1( b(x, y), and the initial graph with ∃̂xyz : A.b(z,x). These two formulas specify
our system. The graph transformation determined by the application of the rule to the initial
graph (single possibility) can be expressed in terms of logic consequence as follows

p =d f ∃̂xyz : A. b(z,x),∀x1x2 : A. 1( b(x1,x2)  ∃̂xyz : A. b(z,x)⊗b(x, y)

If we add the constraint ¬α to the premises, a contradiction follows, since α already follows
from the specification. In general, a system including a negative constraint is consistent only if
there is no reachable state which violates it.

3 An algebraic presentation of DPO transformation of hypergraphs

Let V be an infinite set of typed node names n1,n2, . . . typed inV, and E an infinite set of typed
edge names e1,e2, . . . typed in E, as before. In the following, we assume typing to be implicit
— each element associated to its type as aforementioned. When making type explicit, we use
indexed A and B for node types, and indexed L for edge types. We introduce a notion of ground
constituent

G = e(n1, . . . ,nk) | Nil | G1 ‖ G2

where e(n1, . . . ,nk) is an edge component (with type(e) = Le(A1, . . . ,Ak)), Nil for the empty
graph and G1 ‖G2 for the parallel composition of components G1 and G2. A ground expression is
a pair X�G where G is a ground constituent and X ⊆ V contains all the nodes in G. We say that
a ground constituent is normal when either it is Nil or it does not contain Nil.
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3.1 Graph expressions

We introduce a notion of constituent

C = e(n1, . . . ,nk) | Nil | C1 ‖ C2 | νn.C

that extend ground constituents by including restriction (ν), used to preserve distinction
between nodes while allowing for renaming. We say that a constituent is normal whenever it
has form νn.G, where νn. = νn1. . . .νn j. is the the prefix, and G is a normal ground constituent.

Given a constituent C, the ground components of C are the nodes and the edge components
that occur in C. fn(C) are the free nodes (unrestricted), bn(C) are the bound nodes (restricted),
and the set of all nodes is n(C) =d f fn(C)∪ bn(C). We denote by cn(C) the connected nodes of
C, i.e. those which occur in ground components of C. ibn(C) =d f bn(C)/cn(C) are the isolated
bound nodes of C. C is a closed constituent when it has no free nodes.

A graph expression is a pair E = X�C where X ⊆ V and C a constituent such that fn(C) ⊆ X.
We call X the interface of E, or the free nodes of E. The nodes of E are n(E) =d f X∪ bn(C). The
isolated free nodes are ifn(E) =d f X/fn(C). The isolated nodes of E are i(E) =d f ifn(E)∪ ibn(C). In
general, X = fn(E) =d f ifn(E)∪ fn(C), and n(E) = i(E)∪ cn(C). We say that the graph expression is
ground (normal) whenever C is ground (normal), i.e. with bn(C) = ∅, weakly closed whenever C
is closed, i.e. whenever fn(C) = ∅. We say that E is closed whenever X = ∅. For simplicity, we are
going to identify closed graph expressions with their constituents.

Structural congruence between two graph expressions, written X�C ≡ Y�C′, holds iff X = Y
and C ≡ C′, where ≡ is defined over constituents according to the following axioms.

• The parallel operator ‖ is associative and commutative, with Nil as neutral element.

• νn. C ≡ νm. C[m/n], if m does not occur free in C.
νn.νm.C ≡ νm.νn.C
νn.(C1 ‖ C2) ≡ C1 ‖ (νn.C2) if n does not occur free in C1

We do not require νn.C ≡ C for n not occurring free in C — we will also say that we do not
require ν to satisfy η-equivalence. We are going to use this feature in order to keep isolated
nodes into account.

For E = X � C, we denote by ec(E) the edge components of C, and by gc(E) = n(E)∪ ec(E) the
set of the ground components of E. It is not difficult to see the following.

Obs. 1 Two graph expressions E1,E2 are congruent if and only if fn(E1) = fn(E2) and there is a
renaming σ of bn(E1) such that gc(E1)σ = gc(E2).

One can also see quite easily that every graph expression is congruent to a normal one, and
that normal expressions that are congruent are the same up to reordering of prefix elements
and ground components.

An abstract hypergraph in the sense of section 2.1 is represented by an equivalence class of
graph expressions up to structural congruence. Intuitively, the free names correspond to nodes
in the interface while bound names represent internal nodes.

We will often refer to these equivalence classes as graphs, while reserving the term hyper-
graph for the real thing. We say that a graph expression represents a graph (is a representative
of the graph) when it belongs to the equivalence class. A graph is (weakly) closed whenever it
is represented by a (weakly) closed graph expression. Clearly, every closed graph has a closed
normal representative.



8 Graph Transformation in ILL

3.2 Graphs and transformation rules

For C1,C2 closed graph expression, C1 =⇒ C2 denotes the transformation that goes from C1 to
C2. In order to represent transformation rules we need to handle the matching of free nodes.
We then introduce variables x, y, . . . ranging over nodes, substitution of nodes for free variables
C[m/x] (where m does not become bound), variable binding (by Λ) and application.

Given two graph expressions E1 = K�L and E2 = K�R, sharing the same interface and

no free isolated nodes, we represent the transformation rule π(p) = L l
←− K r

−→ R by the rule
expression Λx.L

p
=⇒ R where x = x1, . . . ,xk is a sequence of variables bijectively associated to the

node names in K (rule interface). Essentially, we represent rules by replacing free node sets
with sets of bound variables — therefore rule expressions contain neither free variables nor free
nodes.

Given a closed graph representative G, a match for π(p) in G is determined by a graph
homomorphism d : K→ n(G) which determines the morphisms ml : bn(L)→ n(G) and me : ec(L)→
ec(G) (d being the defining components of m : L→G), as well as m∗r : bn(R)→ n(H) and m∗e : ec(R)→
ec(H) (d being the defining components of m∗ : R→H).

The dangling edge condition requires that whenever n is in the domain of ml and edge
component c depends on n, then c is in the domain of me. The identification condition requires
that ml and me are injective, and that the images of d and ml are disjoint. The injectivity of m∗r
and m∗e follows, as well as the disjointness of the images of d and m∗r.

Here the injective components can be represented in terms of inclusion, whereas the in-
terface morphism d can be represented in terms of substitution, i.e. we represent d by

[n d
←− x] = [x1/n1, . . .xk/nk], where n = {n1, . . . ,nk} ⊆ n(G). The following operational rule (appli-

cation schema) represents the application of the transformation rule p at match m (i.e. interface
match d)

π(p) = Λx.L
p

=⇒ R G ≡ νn.L[n d
←− x] ‖ C H ≡ νn.R[n d

←− x] ‖ C

G
p,d

=⇒H

〈p,m〉
=⇒

where G is a closed graph expression — and therefore H is, too.

Obs. 2 The application schema satisfies the DPO conditions.

Let L′ = L[n d
←− x], R′ = R[n d

←− x]. The definition and the injectivity of component
morphisms ml,me,m∗r,m∗e follows from the inclusion of L′ and R′ as subexpressions in
refactorings of G and H, respectively. The disjointness condition is guaranteed by the fact
that the variables in x are substituted with nodes that are free in L′ and R′, and therefore
cannot be identified with bound nodes in either constituent. The dangling edge condition
is guaranteed by the fact that, for each node n ∈ bn(L′), edge components depending on n
can only be in ec(L′).

4 Linear λ-calculus

A typing expression has form N :: αwhere N is the proof-term and α is the type (a logic formula).
A typing derivation can be represented as a sequent with a context of typed variables on the left



P. Torrini & R. Heckel 9

and a typing expression on the right of the turnstile. A sequent represents a typing derivation
when it can be derived by means of typing rules.

We use two-entry sequents of form Γ;∆ `N :: α, where ∆ is a multiset of linear ones (linear
context), denoted u,v, . . ., Γ = (Σ,Ω) is a pair of multisets, Σ is an environment of individual
variables, denoted x, y, . . ., Ω is a multiset of unbounded resources (linear context), denoted
p,q, . . ., and ` represents derivability. We use sequence notation — modulo permutation and
associativity, and · for the empty multiset. When we “forget” about proof terms we are left with
logic formulas and the consequence relation — then we use  instead of `. We say that Φ ⊆ ∆ is
a multiset of constituents, denoted c,d, . . ., and that Θ ⊆ is a multiset of primitive node names,
denoted m,n, . . ..

The typing expression for a node n name has form n :: α�N, where N is a term of type α. α�N
lifts α to a type of propositional sort, and denotes a naming reference of n to N. It should be
possible to define this type in terms of freshness quantification, but here it is not really needed,
since names are taken as primitive — hence introduced by axiom (with the condition that the
naming term is well typed). Essentially, the rules for ∃̂ allow us to hide names, and replace
them with variables. We use a notion of syntactic equality = over types, stronger than linear
equivalence ≡̂, to express a weak freshness constraint on ∃̂ (in the right introduction rule).

We use λ̂ to denote linear abstraction, in order to distinguish it from the ordinary one
(λ), though the difference between the two is actually determined by whether the abstraction
variable is linear or unbounded. Similarly, whether λ is typed by ∀ depends on whether the
abstraction is over an individual variable. We assume standard β-reduction rules [BBPH93,
Pfe02].

Each type constructor is associated to a term constructor by right introduction. The natural
deduction system is given by the axioms (Eq, Id, UId, NId, FId) together with the I (introduction)
and E (elimination) rules. The sequent calculus system is given by the same axioms, rules Copy,
Cut and Cut’, together with the R (right introduction, same as I) and L (left introduction) rules.
We use let expressions in order to allow for abstraction with patterns (as needed for some of the
rules).

Normalisation should be provable for natural deduction, and cut elimination for sequent
calculus (for both Cut and Cut’). The main difference with the system in [Pfe02] is the quantifiers
∃̂, and it does not look like its rules are particularly problematic from the point of view of proving
cut elimination (given [Pfe02] is an unpublished report, we cannot make any stronger claim at
the moment).

4.1 Proof systems

α = A | L(N1, . . . ,Nn) | 1 | α1⊗α2 | α1( α2 |!α1 | > | ⊥ | α1&α2 | α→ β | α∨β | ∀x : β.α | ∃̂x : β.α | α�N |
α = α

M = x | p | u | c | n | nil | N1 ⊗N2 | ε̂(N1|N2).N3 | λx.N | λp.N | λ̂u.N | N1ˆN2 | N1N2 | errorα M |
〈N1,N2〉 | 〈〉 | fst N | snd N | case N of P1.N1;P2.N2 | inrα N | inlα N | idα

let P = N1 in N2 =d f (λP.N2)N1 where P is a variable pattern

α≡̂β =d f (α( β)&(β( α) ¬α =d f α(⊥ α#(x,N) =d f (α[N/x])[x/N] = α



10 Graph Transformation in ILL

Γ;u :: α ` u :: α Id
Γ,x :: α; · ` x :: α UId

Γ,p :: α; · ` p :: α FId
Γ; · ` idα :: α = α

Eq

Γ,p :: α;u :: α,∆ `N :: γ
Γ,p :: α;∆ ` let u = copy(p) in N :: γ

Copy

Γ;∆ `N :: α Γ;u :: α,∆′ `M :: β
Γ;∆,∆′ ` let N = u in M :: β Cut

Γ; · `N :: α Γ,p :: α;∆ `M :: β
Γ;∆ ` let N = p in M :: β Cut′

Γ;∆1 `M :: α Γ;∆2 `N :: β
Γ;∆1,∆2 `M⊗N :: α⊗β

⊗I/R
Γ;∆1 `M :: α⊗β Γ;∆2,u :: α,v :: β `N :: γ

Γ;∆1,∆2 ` let u ⊗v = M in N :: γ ⊗E

Γ;∆,u :: α,v :: β `N :: γ
Γ;∆,w :: α⊗β ` let u⊗v = w in N :: γ ⊗L

Γ;∆1 `M :: α Γ;∆2,u :: β `N :: γ
Γ;∆1,∆2,v :: α( β ` let u = vˆN in N :: γ ( L

Γ;∆,u :: α `M :: β

Γ;∆ ` λ̂u : α. M :: α( β
( I/R Γ;∆1 `M :: α( β Γ;∆2 `N :: α

Γ;∆1,∆2 `MˆN :: β ( E

Γ; · ` nil :: 1
1I/R

Γ;∆ `M :: 1 Γ;∆′ `N :: α
Γ;∆,∆′ ` let nil = M in N :: α 1E

Γ;∆ `M :: α Γ;∆ `N :: β
Γ;∆ ` 〈M,N〉 :: α&β

&I/R
Γ;∆ `N :: α

Γ;∆,u :: 1 ` let nil = u in N :: α 1L

Γ;∆ `M :: α&β
Γ;∆ ` fst M :: α &E1

Γ;∆ `M :: α&β
Γ;∆ ` snd M :: β &E2

Γ;∆,v :: α `N :: γ
Γ;∆,u :: α&β ` let v = fst u in N :: γ &L1

Γ;∆,v :: β `N :: γ
Γ;∆,u :: α&β ` let v = fst u in N :: γ &L2

Γ;∆ ` inlβM :: α∨β
Γ;∆ `M :: α

∨I1/R1
Γ;∆ ` inrαM :: α∨β

Γ;∆ `M :: β
∨I2/R2

Γ;∆ `M :: α∨β Γ;∆′,u :: α `N1 :: γ ∆′,v :: β `N2 :: γ
Γ;∆,∆′ ` case M of inl u. N1; inr v. N2 :: γ ∨E

Γ;∆,u1 :: α `N1 :: γ Γ;∆,u2 :: β `N2 :: γ
Γ;∆,v :: α∨β ` case v of inl u1. N1; inr u2. N2 :: γ ∨L
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Γ;∆ ` 〈〉 ::>
>I/R

Γ;∆ `M ::⊥
Γ;∆,∆′ ` errorα M :: α ⊥E

Γ;∆,u ::⊥ ` errorα M :: α ⊥L
Γ,p :: α;∆ `N :: β

Γ;∆,u ::!α ` let p = !u in N :: β !L

Γ; · `M :: α
Γ; · ` !M :: !α

!I/R
Γ;∆1 `M :: !α Γ,p :: α;∆2 `N :: β

Γ;∆1,∆2 ` let p = M in N :: β !E

Γ,p :: α;∆ `M :: β
Γ;∆ ` λp. M :: α→ β

→ I/R
Γ;∆ `M :: α→ β Γ; · `N :: α

Γ;∆ `MN :: β → E

Γ; · `M :: α Γ;v :: β,∆ `N :: γ
Γ;∆,u :: α→ β ` let v = uM in N :: γ → L

Γ; · `M :: β Γ;∆,v :: α[M/x] `N :: γ
Γ;∆,u :: ∀x : β.α ` let v = uM in N :: γ ∀L

Γ,x :: β;∆ `M :: α
Γ;∆ ` λx. M :: ∀x : β. α

∀I/R
Γ;∆ `M :: ∀x : β. α Γ; · `N :: β

Γ;∆ `MN :: α[N/x] ∀E

Resource-bound quantifier

Γ;∆ `M :: α[N/x] Γ; · `N :: β Γ;∆′ ` n :: β�N Γ,x :: β; · ` idα :: α#(x,N)

Γ;∆,∆′ ` ε̂(n|N).M :: ∃̂x : β.α
∃̂I/R

Γ;∆1 `M :: ∃̂x : β. α Γ,x :: β;∆2,n :: β�x,v :: α `N :: γ
Γ;∆1,∆2 ` let ε̂(n|x).v = M in N :: γ ∃̂E

Γ,x :: β;∆,n :: β�x,v :: α `N :: γ

Γ;∆,w :: ∃̂x : β.α ` let ε̂(n|x).v = w in N :: γ
∃̂L

4.2 DPO quantification

We have to deal with names and restriction, and we do this by treating names as individual
variables (bindable by a quantifier) that refer to special linear resources — the nodes. We need
an existential-like quantifier (i.e. distributing over the tensor) that, in contrast with standard
ones, ensures that distinct bound variables in a formula never get instantiated with the same
node — we will also say that the binder behaves injectively, i.e. that instantiations of sequences
of bound variables are always injective mappings.

The rules for ∃̂ ensure that the instantiation of two variables, requiring two constants,
can never be derived from the instantiation of one — hence multiple instantiations behave
injectively. The standard existential elimination rule is fine, since the instantiating term is
required to be a fresh variable. The ∃̂ introduction rule adds two constraints to the standard
one. First — the instantiating term has an implicit reference to a node of corresponding type,
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which is used as a resource. Second — looking at ∃̂I, we can see that the bound variable can
only be instantiated with a term that does not occur free in the quantified formula. In fact,
(α[N/x])[x/N] = α whenever N does not occur free in ∃̂x.α. This also means that the quantified
formula ∃̂x.α is determined by the instance α[N/x] modulo renaming of bound variables. It is
not difficult to see the following.

Obs. 3 (1) 1 (∃̂x : β. α(x,x)) ( ∃̂xy : β. α(x, y)
the resource associated to x cannot suffice for x and y.
(2) 1 ∀x : β. β�x⊗α(x,x) ( ∃̂y : β.α(y,x)
y and x should be instantiated with the same term — but this is prevented by the freshness
condition in ∃̂ introduction
(3) 1 (∃̂yx : β. α1(x)⊗α2(x)) ( (∃̂x : β.α1(x))⊗∃̂x : β.α2(x)
the two bound variables in the consequence require distinct resources and refer to distinct
occurrences

Obs. 4 ∃̂ satisfies properties of renaming, exchange and distribution over ⊗, i.e.

 (∃̂x : α.β(x)) ≡̂ (∃̂y : α.β(y))
 (∃̂xy : α.γ) ≡̂ (∃̂yx.γ)
 (∃̂x : α.β⊗γ(x)) ≡̂ (β⊗∃̂x : α.γ(x)) (x not in α)

In general ∃̂ does not satisfy η-equivalence, i.e. it cannot be proved that α is equivalent to
∃̂x. α when x does not occur free in α (neither sense of linear implication holds).

We use ε̂ as syntactic sugar for a restriction-like operator based on the linear interpretation
of the existential quantifier [Pfe02], closely associated to the standard intuitionistic one [TS00],
i.e.

ε̂(n|N).M :: ∃̂x : α.β =d f !N⊗M⊗n

where neither N nor x occur in α. N depends on the non-linear context only, hence it can be
replaced with !N. The linearity of n :: α ensures injectivity.

5 Linear encoding of GTS

We define a translation of graph expressions to typing derivations. Intuitively, the translation
is based on a quite straightforward mapping of graph expressions into proof terms, with Nil
mapped to nil, ‖ to ⊗, and ν to ε̂. However, we need to cope with two issues.

Formally, we need to distinguish nodes as ground components (node names) from node
occurrences in constituents (node variables). Given E = X � C, we can translate a node n ∈ X
with type(n) = A as n :: A�x (typed node), and the occurrences of n in C as xn :: A, where A is an
unbounded resource type (therefore equivalent to !A). We use indexed letters for free variables,
informally assuming either xn refers to name n, or xi refers to ni. For bound variables, the
reference is implicit in the term (ε̂(n|x).N).

Semantically, it is more convenient to take edge components as primitive, rather than
edges. In principle, we can introduce a notion of edge interface as linear resource, e :: ∀x1 :
A1, . . . ,xk : Ak.Le(x1, . . .xk), translate an edge type Le(A1, . . . ,Ak) as ∀x1 : A1, . . . ,xk : Ak.Le(x1, . . .xk),
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and a component e(n1, . . . ,nk) as ce = e x1 . . .xk. For all its functional clarity, however, the notion
of edge interface is hard to place semantically in graphs. Therefore, we prefer to introduce
the notion ce :: L(x1, . . .xn) of typed edge component as primitive, which can be translation of
the original component under the assumptions x1 :: A1, . . .xk :: Ak. Following this approach,
component connectivity does not result from the term, rather from the type.

We call graph formulas those in the 1,⊗, ∃̂,� fragment of the logic containing only primitive
graph types (node and edge types). We say that a graph formula γ is in normal form whenever
γ = ∃̂(x : A). α, where either α = 1 or α = L1(x1)⊗ . . .⊗Lk(xk), with x :: A a sequence of typed
variables. The formula is closed if xi ⊆ x for each 1 ≤ i ≤ k. A graph context is a multiset of typed
nodes and typed edge components.

A graph derivation is a valid sequent Γ;∆ ` N :: γ, where γ is a graph formula, ∆ is a graph
context, Γ coincides with the environment Σ, and N represents a normal derivation. A graph
derivation uses only axioms and the introduction rules 1I, ⊗I, ∃̂I.

In the following we define ~� from graph expressions to typing derivations. Only right in-
troduction rules are involved, so the difference between natural deduction and sequent calculus
here does not matter. We use the notation AxiomName [Γ; ; Principal Formula] to abbreviate axiom
instances and deduction rules with empty premises, and RuleName [Premise; ; list o f Premises]
to abbreviate the application of deduction rules to the given premises. We also define
MainType(Γ;∆ ` N :: α) = α, MainTerm(Γ;∆ ` N :: α) = N, and LinearContext(Γ;∆ ` N :: α) = ∆.
We assume Γ to coincide with the environment Σ.

Constituents

~ei(m, . . . ,n) : Li(Am, . . . ,An)� =d f Id [Γ; ; ci :: Li(xm, . . . ,xn)]
~Nil� =d f 1I [Γ]
~M ‖N� =d f ⊗ I [~M�; ; ~N�]
~νn : A.N� =d f ∃̂I [~N�; ;

UId [Γ; ; xn :: A]; ;
Id [Γ; ; n :: A�xn]; ;
Γ, y :: A; · ` id : MainType(~N�)[y/xn]#(y,xn)]

Graph interfaces

~n : A� =d f Id [Γ,x :: A; ; n :: A�x]
~{n : A}� =d f ~n : A�
~{n1 : A1}∪X� =d f ⊗ I [~{n1 : A1}�; ; ~X�]

Graph expressions

~X � C� =d f ⊗ I [~X�I; ; ~C�]

5.1 Properties of the translation

In order to understand the relationship between the domain and the image of ~�, it is useful to
consider the following induced mapping, taking graph expressions into QILL formulas (~�T),
and into multisets of typing expressions corresponding to ground components (~�C).
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Obs. 5 Let ~E�T = MainType~E� and ~E�C = LinearContext~E�.
1) ~�T results in an extension of the original typing of nodes and edges, based, essentially,
on the association of ⊗ with ‖, 1 with Nil, and ∃̂ with ν, where the free connected nodes
are represented as free variables.
2) ~E�C = ∆ determines a bijection between ∆ and gc(E) — dependant types contain
the information about basic graph types and component dependencies, whereas terms
preserve component identity.

Prop. 1 There is an isomorphism between graph expressions and graph derivations.
It is not difficult to see that, for each E graph expression, ~E� = Γ;∆ `N : γ defines a graph
derivation. N is normal, Γ as required, ~E�T gives a graph formula, ~E�C a graph context.
Vice-versa, for each graph derivation δ = Γ;∆ `N : γ, one can define a graph expression E
that has the structure of N, such that ~E� = δ, relying on Obs. 5.

Prop. 2 There is an isomorphism between graphs and graph formulas modulo linear equiva-
lence.
First we can see that, given graph expressions M,N, if M ≡ N then  ~M�T

≡̂~N�T. This
follows from the well-known monoidal characterisation of ⊗ and from Obs. 4.
On the other hand, whenever γ1,γ2 are graph formulas and  γ1≡̂γ2, then for each graph
expressions E1,E2 such that γ1 = ~E1�

T, γ2 = ~E2�T, it holds E1 ≡ E2. Every graph formula
has a derivation. From the hypothesis, it follows that there is a derivation δ1 = Γ;∆ `
N1 :: γ1 iff there is a graph derivation δ2 = Γ;∆ ` N2 :: γ2, and both can be chosen to be
graph derivations. Therefore, from Prop. 1, there are graph expressions E1,E2 such that
~E1� = δ1,~E2� = δ2. From Obs. 5(2), gc(E1) = gc(E2). Since γ1 and γ2 are equivalent they
share the same free variables, and so E1 and E2, by Obs. 5(1). Hence E1 ≡ E2, by Obs. 1.

The above propositions can be understood as stating that there is a Curry-Howard isomor-
phism between graph expressions and graph derivations on one side, and between graphs and
QILL formulas modulo equivalence on the other. They can also be read as stating that our
translation of graph expressions is adequate with respect to their congruence.

5.2 DPO transformation rules

We can now shift from congruence of graph expressions to reachability in a GTS, extending the
translation to deal with graph transformation. We consider transformation up to isomorphism,
and therefore we start from the type level, relying on Prop. 2 (i.e. we define directly the map ~�T

from graph expressions to QILL formulas). We associate transformation to linear implication,
and the binding of node variables in rule interfaces to universal quantification.

~M =⇒N�T =d f ~M�T( ~N�T

~Λx : A.N�T =d f ∀x : A.~N�T

Transformation rules are meant to be primitive in a GTS, therefore they can be introduced
axiomatically (as we have done with nodes and edge components). They have to be intro-
duced as unbounded resources, in order to account for their potentially unlimited applicability.
Moreover, consistently with the extension of ~�T, transformation rules are associated to closed
formulas. For π(p) = Λx.L =⇒ R
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~π(p)� =d f FId [Γ; ; p :: ∀x : Ax.~L�T( ~R�T]

Reasoning up to isomorphism, it is appropriate to abstract from the derivations associated
with the graph expressions in the algebraic definition of the rule, except for their types. A more
concrete definition, in an extended language, would be

p =d f !λx.λ̂u.let MainTerm(~L�) = u in MainTerm(~R�)

At an intuitive level, in terms of natural deduction, the application of rule p to a graph G
involves deriving the matching subgraph L′ from gc(L′) ⊆ gc(E). The application of p to L′ can
be expressed in terms of instantiation of the rule interface, corresponding to applications of
the ∀ elimination rule, and to an application of the instantiated rule to L′, corresponding to an
application of the ( elimination rule, resulting into R′. Finally, the resulting graph H can be
derived from gc(R′)∪ (gc(E)/gc(L′)).

The application of p to a closed graph formula αG = ∃̂y : Ay.βG determined by morphism m
relies on the fact that the following rule is derivable, along the lines of the intuitive explanation
just given (proof terms omitted)

Γ;∆  ∀x : Ax.αL ( αR

Γ; ·  αG≡̂αG′ αG′ = ∃̂z : Az.αL[z : Az
d
←− x : Ax]⊗αC

Γ; ·  αH≡̂αH′ αH′ = ∃̂z : Az.αR[z : Az
d
←− x : Ax]⊗αC

Γ;∆  αG( αH
〈p,m〉
=⇒

where the interface morphism d associated with m is represented by the multiple substitution

[z : Az
d
←− x : Ax], with z : Az ⊆ y : Ay Clearly, this rule corresponds quite immediately to the

algebraic one.

Obs. 6 The QILL application schema satisfies the DPO conditions.
The proof follows that of Obs. 2 and uses Obs. 4(1,2,3). Injectivity rests on 1 for nodes
and on linearity of the consequence relation for edge components, the dangling condition
rests on 2, and the identification condition on 3.

It is not difficult to see, along these lines, that an hypergraph transformation system G =
〈TG,P,π,G0〉 can be translated to QILL, and that it is possible to prove the completeness side of
an adequacy result for QILL with respect to reachability. The following may give an idea of the
level of expressiveness.

Obs. 7 Given a linear logic context ∆0 = [α|α = ~s�T,s ∈ gc(G0)], as types of the ground com-
ponents of G0, and an unbounded context ΓP = Σ∪ [ρ|ρ = ~π(p)�T,p ∈ P], as types of
the transformation rules, for every graph G reachable in the system, the following logic
sequent is provable

ΓP;∆0  ~G�T

Given a multiset R of transformations inG, let ∆R = [τ|τ= ~t�T, t ∈R]. Then, for each graph
G which is reachable from G0 by executing the transformations in R, in some order, the
following logic sequent is provable
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Σ;∆0,∆R  ~G�T

If G is reachable by executing at least the transformations in R, in some order, the following
is provable

ΓP;∆0,∆R  ~G�T

Soundness of linear implication with respect to reachability is less straightforward — we
are still working on it.

6 Conclusion and further work

We have defined a translation of DPO GTS, formulated in algebraic terms with inessential
restrictions, into a quantified extension of ILL based on linear λ-calculus. We have introduced
a resource-bound existential quantifier with weak freshness features, in order to type restricted
node names. On the semantical side, we consider transformation rules with node-only inter-
faces, taking isolated nodes into consideration.

We have given informal proof sketches of the fact that our translation is sound and complete
with respect to well-formedness of graph expressions and their congruence, and it is complete
with respect to reachability (both local and global). Related work on the translation of multiset
rewriting into ILL has been discussed in [CS06]. We would like to mechanise the logic on a
theorem prover, and we are considering Isabelle, for which there is already a theory of ILL
[DSB06].
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