Graphical reasoning in symmetric monoidal categories

Lucas Dixon, University of Edinburgh

Joint work with: Ross Duncan and Aleks Kissinger, University of Oxford

5 Nov 2009
Outline

- Motivation: characterise processes (quantum computation)
- Symmetric Monoidal Categories and Graphs
- Example with boolean circuits
- Extended graphs, Matching and Plugging
- Inductive patterns of graphs with !-boxes
Symmetric Monoidal Categories (SMC)

- \(C\) is a monoidal category: it has associative and unital bifunctor \(\otimes:\)
 - \(\otimes\) operation on objects: \(X \otimes Y\); and specific identity object \(I\)
 (\(\otimes\) is associative and has \(I\) as identity)
 - \(\otimes\) operation on morphisms: if \(f : X \to Y\) and \(g : X' \to Y'\)
 then \((f \otimes g) : (X \otimes X') \to (Y \otimes Y')\)
 (associative and has identity \(id\))

- **Braided**: has ‘braiding’ isomorphisms: \(\sigma_{X,Y} : X \otimes Y \to Y \otimes X\).

- **Symmetric**: \(\sigma_{X,Y} \circ \sigma_{Y,X} = id\).
Typed Graphs = SMC

\[
\begin{align*}
X \otimes X' & \\
Y \otimes Y' & \\
\end{align*}
\]

\[
\begin{align*}
X \otimes X' & \\
f \otimes g \downarrow & \\
Y \otimes Y' & \\
\end{align*}
\]

\[
\begin{align*}
X \otimes X' & \\
f \otimes g & \\
Y \otimes Y' & \\
\end{align*}
\]

\[
\begin{align*}
X & \\
x & \\
Y & \\
Y' & \\
\end{align*}
\]

Category Theory \Rightarrow swap edges and vertices \Rightarrow tensor is spacial

• already the generic way to draw processes, e.g. circuits:
 Vertices are operations and Edges are objects,

• Coherence conditions provide correctness for graphical notation:
 equality for graph = equality for SMC
Graphical Representation

\[f \otimes g := \begin{array}{c}
\circ \\
\downarrow f \\
\circ \\
\downarrow g \\
\circ \\
\end{array} \quad \text{and} \quad g \circ f := \begin{array}{c}
\circ \\
\downarrow g \\
\circ \\
\downarrow f \\
\circ \\
\end{array} \]

- We can express the bifunctoriality of \(\otimes \) and the symmetric braiding of \(\sigma \) as:

\[
\begin{array}{c}
\circ \\
\downarrow f \\
\circ \\
\downarrow g \\
\circ \\
\end{array} = \begin{array}{c}
\circ \\
\downarrow g \\
\circ \\
\downarrow f \\
\circ \\
\end{array} \quad \text{and} \quad \begin{array}{c}
\circ \\
\downarrow f \\
\circ \\
\downarrow g \\
\circ \\
\end{array} = \begin{array}{c}
\circ \\
\downarrow g \\
\circ \\
\downarrow f \\
\circ \\
\end{array}
\]

Lucas Dixon

Graphical reasoning in symmetric monoidal categories

5 Nov 2009
Example: Boolean Circuits

Values: $B = \{0, 1\}$; Operations: $N : B \otimes B \to B$, $C : B \to B \otimes B$, $\bot : B \to 1$

Symmetric monoidal categories composition of diagrams; need additional equational structure to describe equivalences between circuits...
Example: Boolean Circuit Graphical Equations

\[
\begin{align*}
0 & \quad X \\
\downarrow & \quad N \\
N & = 1 \\
\downarrow & \quad \perp \\
\downarrow & \quad Y \\
Y & = 0 \\
\downarrow & \quad Y
\end{align*}
\]

\[
\begin{align*}
X & \quad X_1 \\
\downarrow & \quad X_2 \\
N & = \perp \\
\downarrow & \quad \perp \\
\downarrow & \quad \perp
\end{align*}
\]

\[
\begin{align*}
1 & \quad 1 \\
\downarrow & \quad N \\
N & = 0 \\
\downarrow & \quad Y \\
\downarrow & \quad Y
\end{align*}
\]

\[
\begin{align*}
0 & \quad 0 \\
\downarrow & \quad C \\
C & = 0 \\
\downarrow & \quad Y_1 \\
\downarrow & \quad Y_1
\end{align*}
\]

Lucas Dixon
Graphical reasoning in symmetric monoidal categories
5 Nov 2009
Graphical Reasoning:

- Goal:

 to develop suitable formalism for reasoning about equational structure in symmetric monoidal categories.

- Based on *SMC as graphs.*

- Incident edges to a vertex define its *type*

- ‘subject reduction’: *rewriting preserves types*

- *rewriting and plugging commute* (plugging doesn’t break matching)

- reason with common *inductive structures*
Graphs

- **Directed graph**: $E \xrightarrow{s} V \xleftarrow{t}$

 Any number of edges are allowed between vertices (not a binary relation)

- $G = (G_E, G_V, s, t); E = G_E; V = G_V; \text{in}(v) := t^{-1}(v); \text{out}(v) := s^{-1}(v)$

- **graph morphism** (graphs: G, H) $f_E : E_G \rightarrow E_H$ and $f_V : V_G \rightarrow V_H$ where:

 $s_H \circ f_E = f_V \circ s_G$

 $t_H \circ f_E = f_V \circ t_G$
Extended Open Graphs

- **Extended open graph**: \((G, X)\)
 \(X \subseteq V\) (exterior); \(\text{Int } G = V \setminus X\) (interior)

- **Exterior vertices define an interface** (hierarchical)
 a subgraph has the same character as a vertex

- **Morphism of open graphs**: \(f : (G, G_X) \rightarrow (H, H_X)\) (only map to \(H_X\) from \(G_X\))
 \(\forall v \in V_G. f_V(v) \in \partial H \Rightarrow v \in \partial G\)

- **Strict Morphism**: \(f : (G, G_X) \rightarrow (H, H_X)\) (no extra interior edges)
 \(\forall e \in E_H. s_H(e) \in f_V(\text{Int } G) \vee t_H(e) \in f_V(\text{Int } G) \Rightarrow \exists e' \in E_G. f_E(e') = e.\)

- **There is also a topological interpretation**: morphisms as continuous maps
Matching for Extended Graphs

- **Relaxed subgraph**: cut and relaxed
 - *cut an edge*: introduce two-clique new exterior vertices
 - *cut a vertex*: throw away data, make exterior
 - *relax a vertex*: makes incidence 1 ‘loving’ vertex-cliques of exterior vertex
 - *love*: relation between cliques of exterior vertices

- \(G \leq H \) \((G \text{ matches } H) = \exists f \) which is an open graph morphism from a relaxed \(G \) to a relaxed subgraph of \(H \), such that (it is an *exact embedding*):
 1. \(f \) is a strict love morphism; (locally preserves type)
 2. \(f_E \) and \(f_V \) are injective; (mapped 1-1 in subgraph)
 3. \(\forall v \in V_G. \ f_V(v) \in \partial H \iff v \in \partial G \) (exact \(X \) map)
Matching Example 1

cut vertex ⇒ relax vertex ⇒ cut edge
Matching Example 2

- Efficient algorithm by graph traversal:
 - relaxation built in
 - cuts implicit by left-over graph.
Composing Graphs: a picture

Plugging of G and H via the two-sided e-graph π with embeddings p_1 and p_2.
Composing Graphs: Plugging

- \(((\pi, \pi_X), (F, B))\) a graph, \(\pi\), with \(\pi_V = \pi_X\) and partition of \(\pi_V\) into \(F\) and \(B\)

- Pair of embeddings: \(p_1 : (\pi, \pi_X) \rightarrow (G, G_X)\) and \(p_2 : (\pi, \pi_X) \rightarrow (H, H_X)\) such that \(p_1(F) \subseteq X\) and \(p_2(B) \subseteq Y\)

- plugging, \(\pi^{p_1}_{p_2}(G, H)\), defined by pushout:

\[
\begin{array}{ccc}
\pi & \xleftarrow{p_1} & G \\
\downarrow{p_2} & & \downarrow{p_2} \\
H & \rightarrow & \pi^{p_1}_{p_2}(G, H)
\end{array}
\]

(minimal graph matched by both \(G\) and \(H\) where the two \(\pi\)'s are identified)

- Properties: \(\pi(G, H) \cong \pi(H, G)\); \(G \leq_e \pi(G, H)\) and \(H \leq_e \pi(G, H)\); \(K \leq_e G\) implies \(K \leq_e \pi(G, H)\);
Representing Inductive Families of Graphs

- Want a higher level language to capture such repeated structure; allow rewriting etc
!-Box Graphs

\(-\text{Box Graphs} = (G, B)\) where \(B\) is a disjoint set of subsets of \(G_V\)
(draw a box around elements of each member of \(B\))

\(-\text{Box Matching} : \) \(G\) matches \(H\): \((H \in G\) closed under:

- **copy**: copy subgraph including incident edges some number of times
- **drop**: removes the !-box, keep the contents.
- **merge**: combines two !-boxes: \(\{B_1, B_2, \ldots\} \rightarrow \{(B_1 \cup B_2), \ldots\}\).

Semantics: \([G]\): subset of matches that have no !-boxes.
!-Box Graphs: Example

A : i_0 :: a_0 :: b \leq copy B : i_0 :: a_0 :: i_1 :: a_1 :: b :: i_2 :: a_2

\leq merge C : i_0 :: a_0 :: a_1 :: b :: i_2 :: a_2 \leq drop D : i_0 :: a_0 :: a_1 :: b :: a_2

Example showing how A matches D
Conclusions

• Symmetric monoidal categories have a natural graphical presentation

• Many processes form SMCs with extra equational structure

• High level language for processes motivates !-boxes to capture inductive structure (ellipsis notation)

• Initial goal was to reason about quantum information; also has applications to traditional circuits

• Developed a formalism for equational reasoning over graph-based representations of symmetric monoidal categories

• Implementation: http://dream.inf.ed.ac.uk/projects/quantomatic