
 1

Survey of Aspect-Oriented Analysis
and Design Approaches

ABSTRACT

A number of Aspect-Oriented (AO) Requirements, Architecture, and Design approaches
have emerged recently. In this report we survey the most significant of these
approaches, considering their origins, aims, and contributions. Alongside the AO
approaches, we also analyse some of the contemporary non-AO work in order to bring
out the differences between two sets of techniques, and to understand the potential
contributions of aspect-oriented analysis and design.

We also provide some initial insights into processes for AO requirements engineering,
analysis and design which may serve as basis for integration of the work of the AOSD-
EUROPE project partners. We also outline some issues relevant to such integration.

Document ID: AOSD-Europe-ULANC-9
Deliverable
/Milestone No: D11
Work-package No: WP 6
Type: Survey
Status: FINAL
Version: 1.0
Date: 18 May 2005

 Author(s): Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro
Garcia (ULANC)
Mónica Pinto Alarcon (UMA)
Jethro Bakker, Bedir Tekinerdogan (UT)
Siobhán Clarke, Andrew Jackson (TCD)

 2

Table of Authors

Overall Document Editors: Ruzanna Chitchyan, Awais Rashid

Authors: Ruzanna Chitchyan, Awais Rashid, Pete Sawyer

Sections:
1. Introduction
2. General comparison criteria
3. AO Requirements Engineering
3.1 Introduction: Requirements Engineering
3.2 Specific Comparison Criteria
3.3 Non-AO approaches
3.4 AO approaches
3.5 Component-Based AO
3.6 Comparison
6. Main Contributions of AO Analysis and Design
6.1 Contributions of Aspect-Oriented Requirements Engineering
7. Emerging AO Analysis & Design Processes
7.1 Emerging Requirements Engineering Process:
8. Research Agenda to Be Addressed via Integration of Techniques
8.1 Outline of the Road to Integration – Requirements Engineering:
9. Conclusion

Authors: Jethro Bakker, Mónica Pinto Alarcon, Awais Rashid, Alessandro Garcia, Bedir

Tekinerdogan
 Sections:

4. AO Architecture
4.1 Introduction: Architecture
4.2 Non-AO Approaches
4.3 Aspect-Oriented Approaches
4.4 Comparison
6.2 Contributions of Aspect-Oriented Architecture Design
7.2 Emerging Architecture Design Process:
8.2 Outline of the Road to Integration – Architecture Design:

Authors: Siobhán Clarke, Andrew Jackson
 Sections:

5. AO Design
5.1 Introduction
5.2 Specific criteria
5.3 Non-AO Approaches
5.4 AO Approaches
5.5 Comparison
6.3 Contributions of Aspect-Oriented Design
7.3 Emerging Design Process:
8.3 Outline of the Road to Integration – Design

 3

Table of Contents

1. Introduction .. 15
2. General comparison criteria.. 17
3. AO Requirements Engineering... 19

3.1 Introduction: Requirements Engineering ... 19
3.2 Specific Comparison Criteria ... 21

3.2.1 Life cycle of Requirements... 21
3.2.2 Criteria for Requirements Engineering... 22

3.3 Non-AO approaches ... 23
3.3.1 Viewpoint-Oriented Approaches.. 24

3.3.1.1 PREview ... 24
3.3.1.1.1 PREview Method.. 24
3.3.1.1.2 PREview Artefacts ... 25
3.3.1.1.3 PREview Process.. 26
3.3.1.1.4 Identification and Treatment of Crosscutting Concerns with
PREview 28

3.3.1.2 Viewpoints and Inconsistency Management (VIM)........................... 28
3.3.1.2.1 Viewpoints and Inconsistency Management Method................... 28
3.3.1.2.2 Viewpoints and Inconsistency Management Artefacts 28
3.3.1.2.3 Viewpoints and Inconsistency Management Process................... 30
3.3.1.2.4 Identification and Treatment of Crosscutting Concerns with
Viewpoints and Inconsistency Management .. 31

3.3.1.3 Summary of Viewpoint-Based Approaches 31
3.3.2 Goal-Oriented Approaches ... 31

3.3.2.1 Non-Functional Requirements Framework (NFRF)........................... 31
3.3.2.1.1 NFRF Method... 32
3.3.2.1.2 NFRF Artefacts .. 33
3.3.2.1.3 NFRF Process ... 35
3.3.2.1.4 Identification and Treatment of Crosscutting Concerns with NFRF
 35

3.3.2.2 Knowledge Acquisition in Automated Specification (KAOS)........... 35
3.3.2.2.1 KAOS Method.. 36
3.3.2.2.2 KAOS Artefacts... 37
3.3.2.2.3 KAOS Process .. 39
3.3.2.2.4 Identification and Treatment of Crosscutting Concerns with KAOS
 39

3.3.2.3 I*... 40
3.3.2.3.1 I* Method: .. 40
3.3.2.3.2 I*Artefacts .. 41
3.3.2.3.3 I*Process: ... 43
3.3.2.3.4 Identification and Treatment of Crosscutting Concerns with I* .. 43

3.3.2.4 Summary of Goal-Based Approaches .. 44
3.3.3 Problem Frames.. 44

3.3.3.1.1 Problem Frames Method: ... 44
3.3.3.1.2 Problem Frames Artefacts .. 45
3.3.3.1.3 Problem Frames Process... 46
3.3.3.1.4 Identification and Treatment of Crosscutting Concerns with
Problem Frames.. 47

3.3.3.2 Summary of Problem Frames ... 47

 4

3.3.4 Use Cases and Scenario Based Approaches ... 47
3.3.4.1 Use Cases.. 48

3.3.4.1.1 Use Case Method.. 48
3.3.4.1.2 Use Cases Artefacts .. 48
3.3.4.1.3 Use Case Process .. 49
3.3.4.1.4 Identification and Treatment of Crosscutting Concerns with Use
Cases 50

3.3.4.2 Negative Scenarios and Misuse Cases ... 50
3.3.4.2.1 Negative Scenarios and Misuse Cases Method 50
3.3.4.2.2 Negative Scenarios and Misuse Cases Artefacts.......................... 51
3.3.4.2.3 Negative Scenarios and Misuse Cases Process 51
3.3.4.2.4 Identification and Treatment of Crosscutting Concerns with
Negative Scenarios and Misuse Cases ... 52

3.3.4.3 Summary of Use Case and Scenario-Based Approaches 52
3.3.5 Summary of Non - AO Approaches ... 52

3.4 AO approaches ... 53
3.4.1 Viewpoint-Based Aspect-Oriented Approaches..................................... 54

3.4.1.1 AORE with Arcade... 54
3.4.1.1.1 AORE with Arcade Method ... 54
3.4.1.1.2 AORE with Arcade Artefacts ... 55
3.4.1.1.3 AORE with Arcade Process ... 57
3.4.1.1.4 Identification and Treatment of Crosscutting Concerns with AORE
 58

3.4.2 Goal Based Aspect Oriented Approaches .. 58
3.4.2.1 Aspects in Requirements Goal Models (ARGM)............................... 58

3.4.2.1.1 ARGM Model... 58
3.4.2.1.2 ARGM Artefacts .. 59
3.4.2.1.3 ARGM Process ... 60
3.4.2.1.4 Identification and Treatment of Crosscutting Concerns with
ARGM 61

3.4.3 Use Cases and Scenario Based Aspect Oriented Approaches................ 61
3.4.3.1 Aspect-Oriented Software Development with Use Cases 62

3.4.3.1.1 AOSD/UC Method ... 62
3.4.3.1.2 AOSD/UC Artefacts ... 62
3.4.3.1.3 AOSD/UC Process ... 64
3.4.3.1.4 Identification and Treatment of Crosscutting Concerns with
AOSD/UC 65

3.4.3.2 Scenario Modelling with Aspects... 65
3.4.3.2.1 Scenario Modelling with Aspects Model 65
3.4.3.2.2 Scenario Modelling with Aspects Artefacts 65
3.4.3.2.3 Scenario Modelling with Aspects Process 67
3.4.3.2.4 Identification and Treatment of Crosscutting Concerns with the
Scenario Modelling with Aspects Process ... 68

3.4.3.3 Aspectual Use Case Driven Approach ... 68
3.4.3.3.1 Aspectual Use Case Driven Approach Method............................ 68
3.4.3.3.2 Aspectual Use Case Driven Approach Artefacts.......................... 69
3.4.3.3.3 Aspectual Use Case Driven Approach Process 71
3.4.3.3.4 Identification and Treatment of Crosscutting Concerns with
Aspectual Use Case Driven Approach ... 72

3.4.4 Multidimensional Separation of Concerns Approaches 72

 5

3.4.4.1 Concern Modelling with Cosmos ... 73
3.4.4.1.1 Concern Modelling with Cosmos Method 73
3.4.4.1.2 Concern Modelling with Cosmos Artefacts 74
3.4.4.1.3 Concern Modelling with Cosmos Process.................................... 75
3.4.4.1.4 Identification and Treatment of Crosscutting Concerns with
Concern Modelling with Cosmos ... 75

3.4.4.2 Concern-Oriented Requirements Engineering.................................... 75
3.4.4.2.1 Concern-Oriented Requirements Engineering Method 76
3.4.4.2.2 Concern-Oriented Requirements Engineering Artefacts.............. 77
3.4.4.2.3 Concern-Oriented Requirements Engineering Process 78
3.4.4.2.4 Identification and Treatment of Crosscutting Concerns with
Concern-Oriented Requirements Engineering.. 80

3.5 Component-Based AO.. 80
3.5.1.1 Aspect-Oriented Requirements Engineering for Component-Based
Software Systems (AOREC) .. 80

3.5.1.1.1 AOREC Method ... 80
3.5.1.1.2 AOREC Artefacts ... 81
3.5.1.1.3 AOREC Process ... 82
3.5.1.1.4 Identification and Treatment of Crosscutting Concerns with
AOREC 83

3.5.2 Other AO Approaches .. 84
3.5.2.1 Theme/Doc ... 84

3.5.2.1.1 Theme/Doc Method.. 84
3.5.2.1.2 Theme/Doc Artefacts.. 84
3.5.2.1.3 Theme/Doc Process .. 86
3.5.2.1.4 Identification and Treatment of Crosscutting Concerns with
Theme/Doc ... 87

3.6 Comparison... 87
3.6.1 Traceability through software lifecycle.. 87

3.6.1.1 Traceability of Requirements and Change to Their Sources of Origin
 87
3.6.1.2 Traceability between Lifecycle Artefacts... 89

3.6.2 Composability... 92
3.6.3 Evolvability .. 95
3.6.4 Scalability ... 99
3.6.5 Trade-off Analysis and Decisions Support... 102
3.6.6 Support for Mapping .. 104
3.6.7 Homogeneity of Concern Treatment .. 107
3.6.8 Verification and Validation .. 110

4. AO Architecture ... 114
4.1 Introduction: Architecture .. 114
4.2 Non-AO Approaches .. 115

4.2.1 Architectural Modelling Approaches ... 115
4.2.1.1 Architecture Description Languages .. 115

4.2.1.1.1 ACME... 116
4.2.1.1.2 C2 ... 117
4.2.1.1.3 Aesop.. 118
4.2.1.1.4 Darwin .. 118
4.2.1.1.5 Rapide... 119
4.2.1.1.6 Wright... 119

 6

4.2.1.2 Unified Modelling Language ... 120
4.2.2 Architectural Design Process Approaches ... 121

4.2.2.1 Requirements-driven Architecture Design 123
4.2.2.2 Domain-driven Architecture Design .. 125

4.2.2.2.1 Product-line Architecture Design ... 125
4.2.2.2.2 Pattern-driven Architecture Design.. 127

4.2.3 Architecture Evaluation Methods... 128
4.2.3.1 Software Architecture Analysis Method (SAAM) 129
4.2.3.2 The Architecture Trade-Off Analysis Method (ATAM).................. 130
4.2.3.3 SAAM Founded on Complex Scenarios (SAAMCS) 131
4.2.3.4 Extending SAAM by Integration in the Domain (ESAAMI)........... 131
4.2.3.5 SAAM Evolution and Reusability (SAAMER) 132
4.2.3.6 Architecture Level Prediction of Software Maintenance (ALPSM) 133

4.3 Aspect-Oriented Approaches.. 133
4.3.1 Architectural Modelling Approaches ... 133

4.3.1.1 The Perspectival Concern-Space (PCS) Framework........................ 134
4.3.1.2 DAOP-ADL.. 135

4.3.2 Architectural Process Approaches.. 138
4.3.2.1 Aspect-Oriented Generative Approaches (AOGA).......................... 138
4.3.2.2 TranSAT ... 141

4.3.3 Architectural Evaluation Approaches... 143
4.3.3.1 Aspectual Software Architecture Analysis Method (ASAAM) 143

4.4 Comparison... 145
4.4.1 Traceability... 145
4.4.2 Composability... 148
4.4.3 Evolvability .. 150
4.4.4 Scalability ... 152

5. AO Design .. 154
5.1 Introduction .. 154
5.2 Specific criteria... 154

5.2.1 Level of abstraction supported: .. 155
5.2.2 Level of concern separation: .. 155

5.2.2.1 AOD Process .. 156
5.2.2.2 AOD Language... 157

5.3 Non-AO Approaches .. 157
5.3.1 UML ... 157

5.3.1.1 UML Artefacts.. 157
5.3.1.1.1 UML architecture ... 157
5.3.1.1.2 Standard UML .. 158

5.3.2 UML and AOD... 160
5.3.2.1.1 OCL and AOD.. 161
5.3.2.1.2 Parameterised templates ... 161
5.3.2.1.3 AOD and UML Diagrams .. 162

5.4 AO Approaches .. 163
5.4.1 Aspect-Oriented Design Modelling (AODM)...................................... 163

5.4.1.1 AODM Method .. 163
5.4.1.2 AODM Artefacts .. 164

5.4.1.2.1 AOD Language... 164
5.4.1.2.2 Specification of Aspects ... 164
5.4.1.2.3 Specifications of crosscutting... 164

 7

5.4.1.2.4 Integration specification ... 166
5.4.1.2.5 Composition Semantics .. 169

5.4.2 Theme/UML ... 172
5.4.2.1 Theme/UML Method.. 172
5.4.2.2 Theme Artefacts ... 172

5.4.2.2.1 AOD Language... 172
5.4.2.2.2 Specification of Aspects ... 173
5.4.2.2.3 Specification of Crosscutting ... 173
5.4.2.2.4 Integration specification ... 174
5.4.2.2.5 Composition semantics... 175

5.4.2.3 AOD Process .. 175
5.4.3 State charts and UML Profile (SUP) .. 177

5.4.3.1 SUP Method: .. 177
5.4.3.2 SUP AOD Artefacts ... 177

5.4.3.2.1 Language .. 177
5.4.3.2.2 Specification of Aspects ... 177
5.4.3.2.3 Specification of Crosscutting ... 177
5.4.3.2.4 Integration specification ... 177
5.4.3.2.5 Composition semantics... 178

5.4.4 SUP AOD Process .. 178
5.4.5 Aspect-Oriented Architecture Modelling (AAM) 178

5.4.5.1 Aspect-Oriented Architecture Modelling Method............................ 178
5.4.5.2 Aspect-Oriented Architecture Modelling Artefacts 179

5.4.5.2.1 AOD Language... 179
5.4.5.2.2 Specification of Aspects ... 179
5.4.5.2.3 Specification of Crosscutting ... 179
5.4.5.2.4 Integration specification ... 180
5.4.5.2.5 Composition semantics... 180

5.4.5.3 AOD Process .. 180
5.4.6 CoCompose .. 181

5.4.6.1 CoCompose Method... 181
5.4.6.1.1 AOD language .. 181
5.4.6.1.2 Specification of aspects .. 181
5.4.6.1.3 Specification of crosscutting .. 181
5.4.6.1.4 Integration specification ... 182
5.4.6.1.5 Specification of Composition ... 182
5.4.6.1.6 Composition semantics... 182

5.4.6.2 CoCompose Process ... 182
5.4.7 UML For Aspects (UFA) ... 182

5.4.7.1 UML For Aspects Method.. 182
5.4.7.2 UML For Aspects Artefacts ... 182

5.4.7.2.1 AOD Language... 182
5.4.7.2.2 Specification of aspects .. 182
5.4.7.2.3 Specification of crosscutting .. 183
5.4.7.2.4 Integration specification ... 183
5.4.7.2.5 Composition semantics... 184

5.4.8 Uml eXchange Format (UXF).. 184
5.4.8.1.1 Uml eXchange Format Method: ... 184

5.4.8.2 Uml eXchange Format Artefacts.. 184
5.4.8.2.1 UXF AOD Language.. 184

 8

5.4.8.2.2 Specification of aspects .. 185
5.4.8.2.3 Integration specification ... 185
5.4.8.2.4 Composition semantics... 185

5.4.8.3 Uml eXchange Format AOD Process... 185
5.4.9 Architectural Views of Aspects.. 186

5.4.9.1 Architectural Views of Aspects Method .. 186
5.4.9.2 Architectural Views of Aspects Artefacts .. 186

5.4.9.2.1 AVA AOD Language ... 186
5.4.9.2.2 Specification of aspects .. 186
5.4.9.2.3 Specification of crosscutting .. 187
5.4.9.2.4 Integration specification ... 187
5.4.9.2.5 Composition semantics... 189

5.4.10 Aspect Modelling Language (AML) .. 190
5.4.10.1 Aspect Modelling Language Method ... 190
5.4.10.2 Aspect Modelling Language Artefacts ... 190

5.4.10.2.1 Aspect Modelling Language AOD Language 190
5.4.10.2.2 Specification of aspects .. 190
5.4.10.2.3 Specification of crosscutting .. 190
5.4.10.2.4 Integration specification ... 190
5.4.10.2.5 Composition semantics... 191

5.4.11 Aspects At Design Time (ADT)... 191
5.4.11.1 Aspects At Design Time Method ... 191
5.4.11.2 Aspects At Design Time Artefacts ... 191

5.4.11.2.1 ADT AOD Language.. 191
5.4.11.2.2 Specification of aspects .. 191
5.4.11.2.3 Specification of crosscutting .. 191
5.4.11.2.4 Integration specification ... 191
5.4.11.2.5 Composition semantics... 191

5.4.12 Aspect Oriented Component Engineering (AOCE) 192
5.4.12.1 Aspect Oriented Component Engineering Method 192
5.4.12.2 Aspect Oriented Component Engineering Artefacts 192

5.4.12.2.1 AOCE AOD Language... 192
5.4.12.2.2 Specification of aspects .. 192
5.4.12.2.3 Specification of crosscutting .. 192
5.4.12.2.4 Integration specification ... 192
5.4.12.2.5 Composition semantics... 193

5.4.12.3 AOCE Process .. 193
5.4.12.4 UML for AOSD Method .. 193

5.4.12.4.1 UML for AOSD AOD Language ... 193
5.4.12.4.2 Specification of aspects .. 194
5.4.12.4.3 Specification of crosscutting .. 194
5.4.12.4.4 Integration specification ... 194
5.4.12.4.5 Composition semantics... 194

5.4.12.5 TranSAT Process.. 194
5.4.13 Component Views .. 195
5.4.14 Component Views Method... 195

5.4.14.1 Component Views Artefacts... 196
5.4.14.1.1 Specification of aspects .. 196
5.4.14.1.2 Specification of crosscutting .. 196
5.4.14.1.3 Integration specification ... 196

 9

5.4.14.1.4 Composition semantics... 197
5.4.15 Activity Diagrams .. 197

5.4.15.1 Activity Diagrams Method ... 197
5.4.15.2 Activity Diagrams Artefacts... 199

5.4.15.2.1 Activity Diagrams AOD Language .. 199
5.4.15.2.2 Specification of aspects .. 199
5.4.15.2.3 Specification of crosscutting .. 199
5.4.15.2.4 Integration specification ... 199
5.4.15.2.5 Composition Semantics .. 199

5.4.16 CAM/DAOP ... 199
5.4.16.1 CAM/DAOP Method.. 199
5.4.16.2 CAM/DAOP Artefacts ... 199

5.4.16.2.1 CAM/DAOP AOD Language... 199
5.4.16.2.2 Specification of aspects, integration and crosscutting.............. 200
5.4.16.2.3 Specification of crosscutting .. 201
5.4.16.2.4 Integration Specification... 202
5.4.16.2.5 Composition Semantics .. 202
5.4.16.2.6 CAM/DAOP & MDA Process ... 203

5.4.17 Implementation Driven Aspect Modelling (IDAM) Approach and AOP-
to-UML Approach .. 204

5.4.17.1 Implementation Driven Aspect Modelling and AOP-to-UML
Approach Methods ... 204
5.4.17.2 Implementation Driven Aspect Modelling Artefacts 205

5.4.17.2.1 Implementation Driven Aspect Modelling AOD Language..... 205
5.4.17.2.2 Specification of crosscutting .. 205
5.4.17.2.3 Specification of aspects .. 205
5.4.17.2.4 Integration specification ... 205
5.4.17.2.5 Composition semantics... 206

5.4.17.3 AOP-to-UML Artefacts... 206
5.4.17.3.1 AOP-to-UML AOD Language ... 206
5.4.17.3.2 Specification of crosscutting .. 207
5.4.17.3.3 Integration specification ... 207
5.4.17.3.4 Specification of aspects .. 207
5.4.17.3.5 Composition semantics... 208

5.4.18 Meta-models ... 208
5.4.18.1 Meta-models Method.. 208
5.4.18.2 Meta-models Artefacts ... 208

5.4.18.2.1 Meta-models AOD Language... 208
5.4.18.2.2 Specification of aspects .. 208
5.4.18.2.3 Specification of crosscutting .. 208
5.4.18.2.4 Integration specification ... 209
5.4.18.2.5 Composition semantics... 209

5.4.19 Aspect Oriented Software Development with Use Cases (AOSD\UC) 209
5.4.19.1 Aspect Oriented Software Development with Use Cases Method209
5.4.19.2 AOSD\UC Artefacts ... 209

5.4.19.2.1 AOSD\UC AOD Language .. 209
5.4.19.2.2 Specification of aspects .. 209
5.4.19.2.3 Specification of crosscutting .. 210
5.4.19.2.4 Integration specification ... 210
5.4.19.2.5 Composition semantics... 210

 10

5.4.19.3 AOSDUC Process .. 210
5.4.20 UMLAUT ... 212

5.4.20.1 UMLAUT Method.. 212
5.4.20.2 UMLAUT Artefacts: .. 213

5.4.20.2.1 AOD language .. 213
5.4.20.3 AOD process .. 214

5.5 Comparison... 214
5.5.1 Level of abstraction .. 214
5.5.2 Level of crosscutting .. 217
5.5.3 Traceability... 218
5.5.4 Composability... 223
5.5.5 Evolvability .. 227
5.5.6 Scalability ... 232

6. Main Contributions of AO Analysis and Design.. 236
6.1 Contributions of Aspect-Oriented Requirements Engineering..................... 236
6.2 Contributions of Aspect-Oriented Architecture Design 237
6.3 Contributions of Aspect-Oriented Design .. 237

7. Emerging AO Analysis & Design Processes.. 239
7.1 Emerging Requirements Engineering Process: .. 239
7.2 Emerging Architecture Design Process.. 240
7.3 Emerging Design Process... 241

8. Research Agenda to Be Addressed via Integration of Techniques 244
8.1 Outline of the Road to Integration – Requirements Engineering 244
8.2 Outline of the Road to Integration – Architecture Design............................ 245
8.3 Outline of the Road to Integration – Design .. 245

9. Conclusion.. 247
10. References .. 248

 11

List of Figures

Figure 3-1: Requirements, Constraints, Problems and Solutions in RE......................... 19
Figure 3-2 : Levels of System Requirements for a Rail-Travel Security System. 20
Figure 3-3 : Safety Concern in PREview. .. 25
Figure 3-4 : PREview Viewpoint ... 26
Figure 3-5 : Crosschecking Viewpoint 1 (VP1) against External Requirements 26
Figure 3-6 : The PREveiw Process Model ... 27
Figure 3-7 : The Five Slots of a Viewpoint. ... 29
Figure 3-8 : (a) A Viewpoint Template; (b) An Instantiation of a Viewpoint Template

for a Library World Domain... 29
Figure 3-9 : A Framework for Managing Inconsistency With Viewpoints.................... 30
Figure 3-10 : Information Security Type Catalogue in the NFR Framework 33
Figure 3-11 : Refinement of Security Softgoal by Subtype ... 33
Figure 3-12 : Partial Software Interdependency Graph for Internal Consistency of an

Account... 34
Figure 3-13 : The Levels of KAOS Conceptual Model.. 36
Figure 3-14: Representing Time in KAOS... 37
Figure 3-15 : Portion of Goals Structure for Borrower Goals.. 38
Figure 3-16 : Requirement Fragment structure for KAOS knowledge reuse................. 38
Figure 3-17 : Strategic Dependency model for meeting scheduling without computer-

based scheduler... 41
Figure 3-18 : A Strategic Rationale model for meeting scheduler: manual scheduler... 42
Figure 3-19 : Strategic Rationale model for a computer-supported meeting scheduling.

.. 43
Figure 3-20 : The Required Behaviour Problem Frame. .. 45
Figure 3-21 : A Required Behaviour Frame for Simple One-Way Traffic Light Control.

.. 45
Figure 3-22 : Frame Concern for Required Behaviour Frame. 46
Figure 3-23 : (a) Use Case Description; (b) Use Case Model; (c) Extension Use Case

Description. .. 49
Figure 3-24 : Misuse cases documented on the use case diagram.................................. 51
Figure 3-25: Viewpoint and Concern Artefacts in AORE ... 55
Figure 3-26 : An example Composition and composition Actions, Operators, and

Outcomes for AORE. ... 56
Figure 3-27 : The Process Model for AORE.. 57
Figure 3-28 : (a) V-Graph Used to Link a Task of the Goal Hierarchy to a Softgoal as Its

Operationalisation; Goals is an Octagon, Task – a Hexagon, a Softgoal – a Cloud.
(b) Consistent Decomposition of Goals and Softgoals... 59

Figure 3-29 : Goal, Softgoal, and Task Graph ... 60
Figure 3-30: A worst case scenario for Decompose procedure 61
Figure 3-31 : Use of UML Extended Classifier with Extension Points and Pointcuts for

AOSD/UC, Using an On-Line Hotel Room Booking Example. 63
Figure 3-32: Some Elements Contained in a Requirements Level Use Case Slice........ 63
Figure 3-33 : The Use Case Module... 63
Figure 3-34 : An Example Infrastructure Use Case in AOSD/UC................................. 64
Figure 3-35 : Artefacts of the Scenario Modelling with Aspects approach: (a) An

Example Use Case; (b) Interaction Pattern Specification Example. 66
Figure 3-36 : (a) UML Sequence Diagram; (b) State Machine Patter Specification. ... 66

 12

Figure 3-37 : (a) Finite State Machine Produced form Interaction Diagram from Figure
3-35(a); (b) Composed FSM, Combined from State Machines on Figure 3-35(b)
and Figure 3-36(a). ... 67

Figure 3-38 : The process of Scenario Modelling with Aspects Approach.................... 67
Figure 3-39 : Template for Quality Attributes.. 69
Figure 3-40 : Response Time Quality Attribute Wraps the Functional Requirements. 70
Figure 3-41 : Security Overlaps Use Cases. ... 70
Figure 3-42 : Projecting Response Time quality attribute on the use case diagram, using

<<constrain>> relationship... 71
Figure 3-43 : Composition of Use Case A and Use Case B with Instantiation of

|<modelElement> A Role. .. 71
Figure 3-44 : The process model for the Aspectual Use Case Driven Approach........... 72
Figure 3-45 : Cosmos Concern Model Elements: Outline. .. 74
Figure 3-46 : Selected Concerns from GPS Cache modelled in Cosmos....................... 74
Figure 3-47 : Concern space represented as a hypercube in CORE. The block arrows

represent concern projections. .. 76
Figure 3-48 : Meta Concern Space... 77
Figure 3-49 : (a) Table of concern relations; (b) Table of concern contributions 78
Figure 3-50 : The concern contribution table folder along its diagonal. 78
Figure 3-51 : The process model for CORE... 79
Figure 3-52: Architectural pull of various concerns... 80
Figure 3-53 : Example components and some of their aspects. 81
Figure 3-54 : Detailed aspect-oriented component requirement specifications. 82
Figure 3-55: Basic AOREC process... 83
Figure 3-56 : Action View in Theme/Doc for a Course Registration System................ 85
Figure 3-57 : Clipped Action View (a) and Theme View (b) From Theme/Doc Tool for

a Course Registration System... 85
Figure 3-58: Theme/Doc Process ... 86
Figure 4-1 : Entities of ACME ... 116
Figure 4-2 : Example specification... 117
Figure 4-3 : Example C2 application.. 117
Figure 4-4 : ADL of C2 .. 118
Figure 4-5 : Structure of Wright component .. 120
Figure 4-6 : Structure of connector... 120
Figure 4-7 : Example architecture .. 121
Figure 4-8 : Meta-model for architecture design process approaches.......................... 121
Figure 4-9 : Different specializations of the concept Domain Knowledge 123
Figure 4-10 : Conceptual model of use case driven architectural design..................... 124
Figure 4-11 : Conceptual model for Domain-Driven Architecture Design.................. 125
Figure 4-12 : A conceptual model for a Product-Line Architecture Design 126
Figure 4-13 : Conceptual model for Domain Specific Software Architecture (DSSA)

approach ... 127
Figure 4-14 : Conceptual Model for a Pattern-Driven Architecture Design 128
Figure 4-15 : SAAM inputs and activities [120] .. 129
Figure 4-16 : Concepts interaction in ATAM .. 130
Figure 4-17 : Inputs and activities of SAAMCS [91]... 131
Figure 4-18 : Inputs of ESAAMI [91] .. 132
Figure 4-19 : A Perspectival Concern-Space in Overview .. 134
Figure 4-20 : High-Level Package View of the UML Space for AOM 135
Figure 4-21 : The UML Space for AOM — A Low-Level View of AOM Core......... 135

 13

Figure 4-22 : The structure of the DAOP-ADL language.. 136
Figure 4-23 : Component and aspect XML description ... 137
Figure 4-24 : The development phases covered by the AOGA approach.................... 139
Figure 4-25 : Crosscutting feature models ... 140
Figure 4-26 : Architectural aspects and crosscutting interfaces 140
Figure 4-27 : The activities for ASAAM ... 144
Figure 4-28 : Heuristic rules for scenario evaluation ... 145
Figure 5-1 UML Architecture [142]... 158
Figure 5-2 Aspect Oriented Design Issues [153] ... 164
Figure 5-3 Structural Crosscutting [152]... 165
Figure 5-4 Advice AODM [152] .. 165
Figure 5-5 AODM Join points [152] ... 166
Figure 5-6 Pointcut AODM [152] ... 168
Figure 5-7 Join point designation diagram [154] ... 168
Figure 5-8 UML –classifier selection [151] ... 169
Figure 5-9 Join Point Indication Diagram [154] .. 170
Figure 5-10 Join point Composition [155] ... 170
Figure 5-11 Weaving Advice [152].. 171
Figure 5-12 Weave Order [152] ... 171
Figure 5-13: AODM TP 2002 Weaving intros [152] ... 172
Figure 5-14 Themes and Theme Integration [157].. 172
Figure 5-15 Aspect Theme [157] ... 173
Figure 5-16 Theme process [160]... 176
Figure 5-17 Components of the AOM Approach [167] ... 181
Figure 5-18 Package level Composition... 183
Figure 5-19 Aspect as a classifier [171] ... 184
Figure 5-20 Composition [171] .. 185
Figure 5-21 A typical process of aspect-oriented development [171].......................... 185
Figure 5-22 Superimposition Binding Mechanisms [173] ... 189
Figure 5-23 Concern architecture [173] ... 189
Figure 5-24 AML Aspect, connector, base [176].. 190
Figure 5-25 View Components Meta-Model [179].. 196
Figure 5-26 Activity Diagram Composition [146] ... 198
Figure 5-27 The Component and Aspect Model ... 200
Figure 5-28 An example of CAM Component and Aspect Integration 201
Figure 5-29 Activity Diagram showing Aspect Relationship in CAM 203
Figure 5-30 The MDA Stack of Models for CAM/DAOP... 204
Figure 5-31 Dynamic aspect diagram [183] ... 206
Figure 5-32 Logging Aspect [184] .. 207
Figure 7-1 : The Emerging Aspect-Oriented Requirements Engineering Process....... 239
Figure 7-2: The Emerging Aspect-oriented Architecture Process................................ 241
Figure 7-3: The Emerging Design Process... 242
Figure 7-4: The Emerging Design Process... 243

 14

List of Tables

Table 3-1: Summary of Features that Support Traceability of Requirements and Change

to their Sources of Origin Criterion.. 88
Table 3-2: Summary of Features that Support Traceability between Lifecycle Artefacts

Criterion.. 90
Table 3-3: Summary of Features that Support Composability. 93
Table 3-4: Summary of Features that Support Evolvability... 96
Table 3-5: Summary of Features that Support Scalability. .. 99
Table 3-6: Summary of Features that Support Trade-Off Analysis and Decisions...... 102
Table 3-7: Summary of Features that Support Mapping. ... 105
Table 3-8: Summary of Features that Support Homogeneity of Concern Treatment .. 108
Table 3-9: Summary of Features that Support Verification and Validation................. 111
Table 4-1: Summary of traceability criterion ... 147
Table 4-2 : Summary of composability criterion.. 150
Table 4-3 : Summary of evolvability criterion ... 151
Table 4-4 : Summary of scalability criterion.. 153
Table 5-1 Concern Development Processes ... 156
Table 5-2 UML Diagrams .. 159
Table 5-3: UML 2.0 Diagrams ... 160
Table 5-4: UML & AOD.. 161
Table 5-5 (a) Aspect Structure in UML Diagrams ... 162
Table 5-6 (b) Aspect Behaviour in UML Diagrams... 163
Table 5-7: level of abstraction.. 214
Table 5-8: level of concern separation ... 217
Table 5-9 Traceability .. 220
Table 5-10: Composability ... 225
Table 5-11: Evolvability... 229
Table 5-12: Level of Scalability ... 233

 15

1. Introduction

With information technology increasingly merging with our everyday environment, the
demands on software systems development become more and more challenging. These
systems are expected to not only be larger, perform more and more complex
functionality, but also to be progressively more reliable, quick and easy to use. Such
additional characteristics (often referred to as quality factors) relate to the software
systems as a whole hence crosscutting their modular structure. Similarly, some
functionality (e.g., distribution, synchronisation, etc.) may crosscut several modules in a
system. All these make system development ever more complex.

In response to the increasing demands for software development, the Software
Engineering discipline has emerged, proposing structured processes and activities to
facilitate the development of software. The initial phases of Software Engineering
(present in most processes) are Requirements Engineering, Architecture Design, and
Design. These phases are the subject of this document. More specifically, we are
looking at these phases in the light of a specific Software Engineering methodology:
Aspect-Oriented Software Development (AOSD). AOSD techniques provide a
systematic means for identification, modularisation, representation, and composition of
crosscutting concerns [1]. The term crosscutting concerns (e.g., reliability,
synchronisation) refers to such quality factors or functionalities of software that cannot
be effectively modularised using existing software development techniques, e.g., object-
oriented (OO) approaches.

Although a significant work has been done in Software Engineering to address
complexity of software development, the issue of systematically addressing crosscutting
concerns has been overlooked to a large extent. AOSD techniques build on existing
work in software development techniques and methodologies in order to tackle such
concerns in a systematic fashion. Though most of the initial work in AOSD has focused
on developing of aspect-oriented programming (AOP) languages, frameworks and
platforms, a number of methods and techniques have also focused on addressing
crosscutting concerns at the analysis and design level. Consequently, a significant body
of research exists in the area of Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design [2] as well as in modelling and design of systems
derived from such aspectual requirements and architectures. The goal of this report is to
undertake a survey of the state-of-the-art in handling crosscutting concerns, both in
contemporary analysis and design approaches as well as those based on AOSD
principles and practice. By this survey we aim to synthesise the relationship between
AOSD and relevant non-AOSD techniques at the requirements, architecture and design
levels. Furthermore, we aim to elicit initial insights into the roadmap for integrated
aspect-oriented requirements engineering, architecture design and detailed design
approaches to be developed by the Analysis and Design Lab within AOSD-Europe.

The remainder of this document is structured as follows. In sections 4, 5 and 6 we
(respectively) briefly discuss what Requirements Engineering, Architecture, and Design
phases are, and what problems they address. We then review a representative set of
most prominent contemporary non-AOSD and AOSD approaches within each phase.
The discussion on the non-Aspect-Oriented (AO) approaches is not intended as an
exhaustive survey: the presented approaches are often selected representatives for
groups of approaches relevant to the treatment of crosscutting concerns during analysis
and design. Furthermore, in many cases AOSD approaches are extensions of the non-

 16

AO ones. Hence, inclusion of the latter helps to see the contributions of the AOSD
methodology more clearly. These contributions are summarised in section 6.

All presented approaches are also discussed with reference to a set of common
evaluation criteria: traceability, composability, evolvability, and scalability. The
selection criteria are discussed in more detail in section 2 of this document.

In addition to providing the state-of-the-art survey for the AOSD approaches and their
contributions, this document is also intended as the basis for development of an
integrated Aspect-Oriented Analysis and Design approach, synthesising the work of
AOSD-EUROPE project partners. The initial outline of such a candidate process,
informed by the earlier discussion of strength, weaknesses, and contributions of non-AO
and AO approaches, is presented in section 7. The open issues that need to be addressed
in order to realise such an integrated approach are briefly outlined in section 8, pointing
to the directions in which further work of the Analysis and Design Lab is likely to
progress. Finally, our conclusions for this document are presented in section 9.

 17

2. General comparison criteria

Since AOSD techniques are fairly new, more so at the requirements, architecture and
design levels, there are no established metrics or characteristics to compare AOSD
approaches and the support they should provide to software engineers. However, a
number of such desirable characteristics can be derived from existing best practice in
software engineering. Our general comparison criteria is, therefore, based on four
qualities that should be facilitated by any analysis and design approach: traceability,
composability, evolvability and scalability. These criteria can be further refined for
requirements, architecture and design approaches as well as augmented with additional
criteria. The refinements and additional criteria, if any, for each level are discussed
within sections 4, 5 and 6. Here we provide definitions of our four general comparison
criteria:

Traceability through software lifecycle: preservation of traceability between the
artefacts of the software lifecycle is one of the crucial qualities required for
understandable and maintainable software. Traceability facilitates understanding by
relating an artefact to its previous and next representation in an unbroken chain of
requirement to code production process, complimented with information for reasons of
decisions taken. Thus, once an artefact is conceived (e.g., a requirement is identified),
traceability helps to follow it through different representations (e.g., design, coding) and
understand the factors/decisions affecting it throughout the development process. This
criterion could be broken into two counterparts: (a) traceability of artefacts to their
source of origin and change and (b) traceability between lifecycle artefacts. The first
sub-criterion helps to understand where an artefact or a change to it comes from. The
second sub-criterion assists with tracking the artefact conversion from one
representation and lifecycle stage to another.

Composability: is the ability to compose artefacts and, consequently, to view and
understand the complete set of artefacts and their interrelationships, as well as perceive
the system as a whole from the integrated artefacts. Composition specifications describe
how different analysis and design models are to be composed. In fact, composability is
the reverse side of modularity, as only modules that can be composed to work as a
united system are of any practical value. While developers might be able to break a
system into arbitrary kinds of modules, these will be truly valuable in software
development only if composition of such modules can be achieved. Composability
criterion in this report implies availability of adequate semantics (e.g., what does it
mean to compose manager’s and secretary’s viewpoints, etc.) as well as syntactic
support (e.g., which composition operators to use, how to represent the composed
output, etc.). Since AO approaches put forward a new modularisation construct – an
aspect – they should also provide new composition mechanisms for it, or show the
adequacy of existing mechanisms in dealing with aspectual module.

Evolvability: pertains to the ease of changing the artefacts for an existing
requirement/architecture/design, or removal/addition of new ones. An evolvable artefact
composition (i.e., the set of system requirement, architecture, or design) will maintain
its original conceptual and structural intent in the face of change, without excessive
effort on the developers’ behalf. This criterion is important because change is an ever
present factor in development, and if not supported, will erode the structure of the
artefacts, making them difficult to use and maintain, and eventually rendering the
software system unusable.

 18

Scalability: is a desirable characteristic because a viable approach should be equally
well suited for small and large projects, in particular because projects that start as small
ones may grow with time. In some cases the scalability issue can be reduced to tool
support. But there are cases where tool support is not sufficient.

 19

3. AO Requirements Engineering

3.1 Introduction: Requirements Engineering
Requirements are always derived from some business problem whether it is, for
example, processing passport applications, improving automotive safety systems or
adding features to cell phones [3]. Projects may develop new products or they may be
concerned with evolving existing or legacy systems. In all cases, the software system
will be embedded in an operational context so it will have interfaces to human users,
business process elements or other software or hardware systems (Figure 3.1).

Figure 3-1: Requirements, Constraints, Problems and Solutions in RE

A requirement defines a property or capability that must be exhibited by a system in
order for it to solve the business problem for which it was conceived.

The classic way to categorise requirements is according to whether they are functional
or non-functional. Functional requirements describe features that the software must
provide (for example, “activate the siren when a sensor is tripped”). Non-functional
requirements, on the other hand, describe qualities of a system. The most important
class of non-functional requirements addresses how well the system operates within its
environment. Essentially, they specify the quality of delivery of the functional
requirements.

Requirements are usually specified at several points on a spectrum that ranges from
those with a business focus to those with a technical focus. The technically-focused
requirements exist only to make it possible to satisfy the business-focused requirements.
For convenience, we will treat these as levels where the highest level requirements are
those with a business focus. Such high-level requirements are the goals of the system
that set out in very broad strategic terms what is needed to solve some business
problem. For instance, in Figure 3-2 the high level goal for some train company is to
improve the security of its train travel.

The next level of requirements defines the properties required by the people who will
use the system or imposed by other people, organisations or systems within the
environment. These are often called the user requirements. In the example in Figure 3-2,
the train controller would like to be notified by the system when a train exceeds the set
speed for the track section and employ emergency breaks.

 20

One of the main tasks of requirements analysis is to elaborate the user requirements to
discover more about the implications of satisfying them. This involves deriving new,
lower-level, requirements (derived requirements) that focus more on detailed technical
issues.

Improve Security of
trail travel

Detect excess
speed of trains

Employ emergency
breaks in case of
speed overshoot

…

…

Calculate overshoot
using Formula (A)

Figure 3-2 1: Levels of System Requirements for a Rail-Travel Security System.

Constraints act to limit the set of possible solutions to the business problem. Some
constraints are technical (available bandwidth, for example) while others are related to
the problem domain (legislation and standards, for example).

Transforming a requirement into software is a complex process. The deeper into the
process, the more design and implementation strategies become committed to satisfying
the requirement. Consequently, the costs of rectifying errors in the requirements
increase dramatically as development proceeds. An effective RE process which
minimises the occurrence of requirements errors and mitigates the impact of
requirements change is therefore critical to the success of any development project.

Requirements engineers and developers feel most comfortable when a requirement for a
system property can confidently be allocated to a particular software component that
assumes responsibility for satisfying the requirement. When such allocation is possible,
the resulting software is well modularised, the modules have clear interfaces with each
other, and all requirements are cleanly separated.

However, there are many classes of requirements for which clear allocation into
modules is not possible using ‘traditional’ software paradigms. Many non-functional
requirements come into this category. For example, performance is a factor of the
system architecture and its operational environment; one cannot develop a performance
module independent of other parts of a software system. Similarly, it could be hard to
allocate responsibility for providing certain kinds of functionality in a cohesive, loosely
coupled fashion.

If some requirements are not effectively modularised, it is not possible to reason about
their effect on the system or on each other. Furthermore, the lack of modularisation of
such properties can result in a large ripple effect on other requirements and their
corresponding components upon evolution. The provision of effective means for
handling such requirements makes it possible to establish critical trade-offs early on in
the software life cycle [5]. Such requirements are termed crosscutting (or aspectual)
requirements. Examples of such properties include security, mobility, availability and
real-time constraints. These properties have a broadly-scoped effect on other
requirements or architectural components [5].

1 Example adapted from [4].

 21

The fact that there is a class of requirements that is hard to isolate within individual
modules motivates the work on Aspect-Oriented Requirements Engineering (AORE).
The identification and handling of crosscutting requirements is, therefore, the focus of
this section of the report. The discussion considers both the body of work on
requirements engineering developed prior to emergence of aspect oriented
methodologies and that emergent from Aspect Orientation (AO). While contemporary
requirements engineering models, e.g., viewpoints [6, 7], use cases [8], and goals [9-11]
provide good support for identification and treatment of most kinds of requirements,
they do not explicitly focus on crosscutting requirements. The work on aspect-oriented
requirements engineering, therefore, complements these approaches by providing
systematic means for handling such crosscutting concerns.

Aspect oriented requirements engineering not only aims to provide improved support
for separation of crosscutting functional and non-functional properties during
requirements engineering, but also to provide a better means to identify and manage
conflicts arising due to tangled representations of crosscutting requirements. Such
means of early conflict resolution help to establish critical trade-offs even before the
architecture is derived [1].

3.2 Specific Comparison Criteria
In order to derive criteria for assessment of Requirements Engineering approaches (in
addition to the general comparison criteria for analysis and design approaches we
highlighted in Section 2), we turn to the life cycle of requirements and analyse how they
arise and progress along the software development lifecycle and the life of the software
product. From analysis of the qualities needed for supporting the development and
product life cycles, we select the assessment criteria.

3.2.1 Life cycle of Requirements
In section 3.1 we have discussed that during requirements engineering, in broad terms,
the properties that the software must exhibit have to be elicited. The analysis of the
elicited information and the associated organisational and operational context results in
the synthesis of a set of requirements. These requirements need to be, as far as is
possible, correct, complete and feasible. Achieving these qualities typically requires
negotiation and trade-off with and between the users and other stakeholders. The set of
requirements that emerges from the analysis activity needs to be recorded in a
specification document that communicates the requirements to the people who will use
them to develop the software. The documented requirements need to be validated to
ensure that the software that they specify will meet the needs of the people from whom
the requirements were elicited [3]. As development proceeds, the requirements need to
be managed so that changes are controlled.

The orthodox view of RE demands that the requirements specification reaches an
advanced state of correctness and completeness before subsequent development
commences. The rationale for this is to try to anticipate and negate the risk posed by
changing, missing or erroneous requirements [3]. In some domains, however, it is
impossible to identify all the requirements that will serve to define a product for its
expected service life. Even if the initial requirements were complete and correct, it is
almost certain that these will change and new requirements will arise during the course
of the system use. If the product’s environment is volatile, the product’s requirements

 22

will also be volatile. Thus, coping with change is an essential need for a requirements
methodology.

Even where the process is optimised to minimise requirements change, some reworking
of requirements is inevitable after design and coding has commenced. The RE process
normally consumes most effort early in a project, but effort needs to be allocated to
requirements management and coping with change following sign-off of the
requirements specification. Irrespective of the strategy adopted by an RE process the
fundamentals remain the same; requirements have to be discovered, understood,
recorded, checked, communicated and managed [3].

3.2.2 Criteria for Requirements Engineering
The issue of functional requirements discovery has been thoroughly addressed by
traditional requirements engineering. As mentioned before, it is the issue of discovery of
crosscutting requirements that has not been adequately addressed in the past. However,
any new approach should be at least as good as the traditional ones. Thus, we define the
first assessment criterion as identification and handling of both functional and non-
functional crosscutting and non-crosscutting requirements. This criterion addresses
three issues:

• It requires that the approaches support non-crosscutting concerns, and in this
sense are at least as good as traditional requirements engineering approaches;

• It requires that both functional and non-functional types of crosscutting concerns
are supported, as aspects could be of both types;

• It requires that both identification and handling are addressed, i.e. it cannot be
expected that the requirements will be readily available for us, neither can we
expect that the identified concerns can be left without treatment.

The issue of understanding the requirements has several nuances:

• The requirements engineer needs to understand what the system stakeholders
want, but this can hardly be assessed in any other way than checking the
requirements produced by the engineer with the stakeholders. On the other hand,
the architects and designers too need to understand what the requirements
engineer has identified. Thus, understanding is closely related to the checking
issue, and both of these can be assessed through the verification and validation
[12] criterion.

• While working to understand the requirements, the engineer will deal with such
matters as requirements origin, their mutual influences and conflicting needs,
their importance to the stakeholders, and how they contribute to the final system.
All this cannot be reflected by one criterion. The matters of requirements origin
can be addressed by the previously discussed traceability criterion, and the
familiar composability criterion will help in conflict identification. We
additionally select the Trade-off resolution and Decision support criterion for
assessing the support provided by a requirements engineering approach to the
engineer for resolving the identified conflicts.

Hence, the Verification and Validation criterion is related to both understanding and
checking. It covers two areas: (a) the requirements specification should be verifiable by
the system stakeholders (e.g., to ensure absence of side effects due to requirements
composition); (b) the architecture and design artefacts and decisions should be capable

 23

of being validated against requirements to ensure that the requirements are understood
by other system developers.

The trade-off resolution and decision support criterion is related to conflict
resolution. Conflicts are inevitable between requirements and can arise both from
crosscutting and non-crosscutting requirements. This criterion helps to assess how a
requirements engineering approach supports conflict resolution. This criterion is also
related to the issues of recording and communicating requirements, as the trade-off
decisions will need to be recorded and communicated to the other system developers.

The issues of recording and communicating are also partially covered by the
traceability criterion which records and communicates where the requirements come
from and if they can be found again in the architecture and design artefacts. But
traceability does not help in communicating the decisions as to how and why a specific
requirement must lead to a specific architectural or design decision. This issue is
addressed by the Mapping criterion.

The support for mapping RE concerns to following stages of development is
particularly relevant for crosscutting requirements because not all crosscutting
requirements identified at the requirements stage will progress into formal design
artefacts; some will result in decisions, tradeoffs, or alike [1, 13]. Thus, we need to
assess how well the RE approaches support this decision-making. For instance, do they
provide clear guidelines for facilitating such mapping?

The issues of understanding, recording, and communicating are also affected by the way
that different types of requirements are treated in a requirements engineering approach.
If there is a single general treatment process for all types of concerns all three above
issues are facilitated, as opposed to having different handling procedures for each kind
of requirements (e.g., functional, crosscutting, non-functional, etc.). Thus, the criterion
of homogeneity of requirement treatment assesses if all types of concerns are treated
in a similar way. Of course, this does not imply that all concerns should be treated
exactly in the same way; this will not allow for accommodating the differences. What
this criteria does suggest, is to have sufficient similarity in the concern treatment to
avoid several disjointed sets of representational notations, mapping guidelines, etc.

The issue of managing the requirements and coping with change is similar to that of
managing other software artefacts and is addressed by the already discussed criteria of
evolvability, composability, traceability, and scalability.

Thus, the criteria that will be used for assessment of the requirement engineering
approaches (in addition to the general evolvability, composability, traceability, and
scalability criteria) are support for:

• identification and handling of both functional and non-functional crosscutting
and non-crosscutting requirements;

• trade-off resolution and decision support;
• mapping requirements to following stages of development;
• verification and validation;
• homogeneity of requirement treatment.

3.3 Non-AO approaches
In this section we look at representative work from several classes of Requirements
Engineering approaches. These classes have been selected because they are both

 24

indicative of the contemporary RE work, and have served as a basis for the emerging
AORE techniques (discussed in section 3.4 of this document).

For each selected class of RE work we discuss a few representative approaches, looking
at their general method, artefacts, and the process. The discussed classes of approaches
are:

• viewpoint-based approaches [4, 14] represented by PREview [4, 7, 15] and
Viewpoints and Inconsistency Management [16, 17] work,

• gaol-oriented approaches [9] represented by Non-Functional Requirements
Framework [10], I* [18-21] , and KAOS [22],

• problem frames represented by the Problem Frames approach [23-26], and last
but not least,

• use case- and scenario-based approaches [27] represented by the Use Cases [8]
and the Misuse Cases [28-30] approaches.

3.3.1 Viewpoint-Oriented Approaches
When establishing what is required for solving a given problem, Viewpoint-Oriented
Requirement Engineering Approaches consider the problem-related information from
different agents (e.g., users of the software system) which can have different, often
equally valid, and incomplete perspectives on the problem [4]. These partial
perspectives arise due to different responsibilities, roles, goals, or interpretations of the
information sources. The combination of the agent and the view that the agent holds is
termed a viewpoint [14].

When working with large systems that have complex structure and many interlocking
constraints on system construction and behaviour, viewpoints assist in understanding
and controlling the complexity by separating interests of various actors. Viewpoint-
oriented approaches [14] formalise this multi-perspective view into analysis methods. It
is because of these multi-perspective views, that viewpoints have been used as a basis
for AORE work (presented in section 3.4.1).

3.3.1.1 PREview
PREview [4, 7, 15] is a viewpoint-oriented approach which complements the standard
notion of viewpoints with that of organisational concerns. A PREview concern is a
generalisation of the notion of goal; it includes both organisational goals and constraints
that restrict the system or process to be analysed. PREview approach was developed to
capture such broad requirements as response time, safety, and security.

3.3.1.1.1 PREview Method
A distinctive characteristic of PREview concerns is that they “cut across ALL
viewpoints and the questions associated with concerns must be linked to all viewpoints
and posed to viewpoint sources as part of the analysis process” [4]. Here functionality of
the system is another concern among these organisational concerns and PREview
suggests that functionality is often negotiable, as opposed to other concerns (e.g., safety
in a safety-critical system).

PREview uses concerns as drivers in requirement discovery. While using viewpoints for
actual requirements discovery, the concerns (that are identified at the very start of the
RE process and are decomposed into questions, constraints, or requirements) should be

 25

addressed by all viewpoints. The decomposed concerns are used to make decisions on
concern mapping to functional modules, early architectural or other decisions, etc.

It should be noted that PREview concerns are handled differently from goals in the
goal-oriented approaches: concerns are not necessarily refined through goals to
requirements, but are used as means to identify critical information for requirements
elicitation [31] (for instance, by generating questions and constraints that must be
addressed by all viewpoints).

Having a firm grounding in ‘most crucial concerns’ for each project, PREview analysis
helps in producing not only a good requirements specification document, but also
provides a number of ‘side products’ that are extremely useful for later stages of
software development. For instance, having identified reliability as a concern, it could
then be decomposed into a set of functional modules for redundancy (early architectural
decisions) and a specification of a verification and validation procedure [4], etc. The
process is facilitated by a small set of templates.

3.3.1.1.2 PREview Artefacts
PREview provides templates for concerns and viewpoints.

A concern template is illustrated by means of the Safety concern in Figure 3-3, where an
on-board train protection and speed control system is used as an example:

Name: Safety
Description: Although designated as “critical non-safety software” the

on-board train protection system is nevertheless concerned
with safety insofar as it must “...contribute to the safety of
trains...controlling, in real time, the respect, by the driver,
for the operational rules in force on the line.”

External
Requirements:

ER1, ER2, ER3

Questions: N/A
Figure 3-3 2: Safety Concern in PREview.

Here the name and description sections are self explanatory. The External Requirements
section contains references to requirements that represent the concern elaborations that
exert a direct influence on the requirements process. In case of conflicts, these
constraints from concerns generally override viewpoint requirements [31]. For instance,
the safety concern from the above example could be represented as:

ER1: The system shall detect the occurrence of excess speed.

ER2: The system shall detect the occurrence of overshoot.

ER3: The system shall apply emergency braking when either excess speed or
overshoot are detected.

All external requirements above are now straightforward functional requirements.
However, in some cases it could be necessary to complement these requirements with
questions and/or constraints. For instance, if our train protection system has to link-up
with the station safety system we could have needed to consider a question:

Q1: Are the requirements compatible with that of the station safety system?

2 Source of Figure: [4] section 9.2.

 26

Figure 3-4 provides an example of a PREview viewpoint. Here viewpoint name is
complemented by Focus. Focus is a statement of perspective adopted by a viewpoint
showing how the viewpoint relates to a part or the whole of the system.

The organisational goals and constraints applicable to the system under analysis are
listed in the Concerns section of the viewpoint template, while the suppliers of
information associated with the viewpoint are provided in the Source section. Records
of change history to the viewpoint as well as sources are kept for information
traceability. Finally, the requirements section states the requirements of the given
stakeholder (i.e. driver in our example) with respect to the train protection system.

Name Driver
Focus Usability and ergonomic requirements of driver's interaction with

the system
Concerns Safety
Source Existing drivers of trains (reference to the drivers names): P. Swift

SNCF driver safety regulations (reference to the document): No 123
Driver ergonomics recommendations (reference to the document): No 4

Requirements • D1 (Driver interaction)
Change history

Figure 3-43 : PREview Viewpoint

Each requirement in turn is represented through a template consisting of a requirement
identifier, description, rationale, source, and change history.

Having identified viewpoints and requirements, PREview suggests to use decision
tables, based on Quality Function Deployment, to cross-check requirements against
overlapping, conflicting, or being independent of external requirements. Such a table is
depicted in Figure 3-5. Conflicts between requirements are marked with “-”,
overlapping among requirements with “+”, and independence with “0”. Similar tables
can be used for detecting dependencies between two viewpoints’ requirements.

000req1c

+-+req1b
00+req1aVP1

er3er2er1

reqs.External

Figure 3-5 4: Crosschecking Viewpoint 1 (VP1) against External Requirements

3.3.1.1.3 PREview Process
The general outline of the PREview process is presented in Figure 3-6. It starts with
establishing high level concerns, for instance, from discussion with senior management.
These concerns are then elaborated to a more specific form (e.g., Safety will be
decomposed to specific hazards through hazard analysis) and presented as specific
requirements (e.g., external requirements [7]), constraints or questions. The questions
help to collect essential information from each viewpoint’s perspective.

3 Source of Figure: [4] section 9.2.
4 Source of Figure: [4] section 6.2.3

 27

After concerns have been elaborated, the viewpoints have to be identified from analysis
of the applications. PREview provides a standard viewpoint hierarchy of interactors,
stakeholders, and domain phenomena which can be used as a starting point for
viewpoint identification.

This is followed by requirement discovery for each identified viewpoint. At this stage it
is essential to apply the questions and requirements derived from the concerns to each
viewpoint. After requirement discovery viewpoint interactions have to be analysed
using decision tables. This analysis process is somewhat assisted by viewpoint focus.

Once identified, viewpoint inconsistencies need to be resolved through requirement
negotiation and some trade-off mechanism, however this stage is not directly supported
by the PREview process.

The process completes by producing the requirements definition document.

Identify
concerns

Elaborate
concerns

Identify
VPs

Analyse VP
Interactions

Resolve
Inconsistencies

Requirements
negotiation

Requirements discovery

Requirements
analysis

Concerns,
Viewpoints,
External
requirements,
Requirements

Inconsistencies
Incompleteness

Requirement
promotions,
VP changes

Discover
requirements

Requirements
definition

Integrate and
format

Viewpoints
Concerns

Discovery
Analysis
Negotiation
cycle

Figure 3-6 5: The PREveiw Process Model

Some of the outstanding problems in PREview are:
• Only a small number of concerns (no more then 5) can be effectively addressed

in each project. Larger number of concerns makes the amount of generated
information unmanageable;

• Similarly only a small number of viewpoints (under 6) should be used;
• Absence of clear guidelines for concern decomposition;
• Absence of a mechanism for inconsistency management, trade-off analysis and

decision support.
• Though Functionality may be a concern, no examples of functional concerns are

provided, raising the questions: can this approach really identify functional
crosscutting concerns?

5 Source of Figure: [4] Figure 6.1.

 28

3.3.1.1.4 Identification and Treatment of Crosscutting Concerns with PREview
The PREview approach is structured around recognition of the importance of the impact
of non-functional crosscutting concerns. These concerns are identified using interviews
with the stakeholders at the very offset of the development and are modularised in
concern templates. The concern impact on other concerns, however, is not modularised:
answers to concern-related questions and external requirements are spread across each
affected viewpoint.

The PREview concern identification and treatment for non-functional concerns is
appropriate only when a small stable set of well defined non-functional requirements are
involved. This indeed is the type of development that PREview was intended for. The
approach will not be suited to volatile domains.

Also, though PREview suggests that Functionality may be a concern, in the same way
as the non-functional concerns, there is no demonstration of how such concerns are
identified and treated. Consequently, we conclude that the method does not support
identification and treatment of crosscutting characteristics for functional concerns.

3.3.1.2 Viewpoints and Inconsistency Management (VIM)
This approach suggests use of viewpoints as a mechanism to handle the inconsistencies
between partial requirement specifications.

3.3.1.2.1 Viewpoints and Inconsistency Management Method
In [16] a framework for expressing relationships between multiple viewpoints in
requirement specification is defined. Here a viewpoint is a “loosely coupled, locally
managed, distributable object which encapsulates partial knowledge about a system and
its domain, specified in a particular, suitable representation scheme, and partial
knowledge of the process of development” [16]. Thus, the framework allows
specification of a system from multiple viewpoints without having to pre-define a
prescribed notation to be used for all specifications. Instead, different (heterogeneous)
viewpoints can define their own “templates” for notation and processing method. A
template can then be instantiated for many viewpoints.

The viewpoints that describe a system should be integratable to allow for that system’s
representation to be complete. For this, the framework provides meta-integration
support: a set of viewpoint consistency rules for viewpoint templates should be defined.

However, the inconsistencies cannot always be immediately resolved. Thus, the system
provides support for inconsistency management [32], i.e. support for dealing with inter-
viewpoint rules and situations when the rules between viewpoints do not hold [17].
Moreover, in some cases the inconsistencies do not have to be resolved if the cost of
their resolution is greater then the risk of tolerating them [33].

3.3.1.2.2 Viewpoints and Inconsistency Management Artefacts
The artefacts of primary importance in this approach are the viewpoints. They are
structured as encapsulations of five information items, as depicted in Figure 3-7.

 29

Figure 3-7 6: The Five Slots of a Viewpoint.

The top two slots (style and work plan) of a viewpoint are general for each viewpoint
template. The Style slot describes the notation chosen for viewpoint representation;
work plan details the development process for the local viewpoint; and a viewpoint
template is “a reusable description of a development technique (notation and process)”
[16]. A template can then be instantiated with a domain, specification and work record,
creating as many instances of a viewpoint template as required. Domain identifies the
area of the viewpoint focus with respect to the system. Specification and work record
respectively describe the viewpoint domain using the notation and work plan defined in
previous sections, and the development history record.

An example of a template and an instance for viewpoints is provided in Figure 3-8 (a)
and (b) respectively.

(a) (b)
Figure 3-8 7: (a) A Viewpoint Template; (b) An Instantiation of a Viewpoint Template for a Library
World Domain.

The viewpoint templates can be configured into a structured collection which together
create structured steps and notations for system specification, i.e. a configurable (per
project) development method.

6 Source of Figure: [16] Figure 1.
7 Source of Figure: [16], (a) Figure 2; (b) Figure 5.

 30

Another central artefact to this approach is the set of consistency rules necessary for
viewpoint integration and inconsistency management. Examples of such rules are
definition of mapping of notations between viewpoints, or rules defined under the work
plan section in Figure 3-8 (a), etc.

3.3.1.2.3 Viewpoints and Inconsistency Management Process
The development process in this approach starts with creating the viewpoint templates
(i.e. defining the notations and the work plans desired for building a given system).
There are no prescriptions as to what notations and work plan should be chosen, the
developer is free to choose whatever is best suited to the problem in hand.

Once the templates are developed, they need to be configured into a methodology. In
fact, the methodology will emerge from the “local” work plans and notations of defined
viewpoints and the consistency rules defined between them while configuring them
together.

After this, the produced method can be applied to a specific problem, i.e. the templates
can be instantiated using the local notations and work plans, and the consistency rules
checked, and inconsistency between viewpoints managed.

The framework for managing inconsistency is presented in Figure 3-9. Its central
component is the set of already specified consistency rules. These rules are refined and
the set is extended as the development progresses, or new viewpoints are defined.

As the viewpoints evolve, the consistency rules are monitored for each changed/added
viewpoint. When a consistency rule is broken, an inconsistency is detected and
diagnosed: it is located (where was the rule broken?); identified (reviewing the sequence
of actions that led to inconsistency, finding its cause); and classified (in terms of type of
broken rule, type of action that caused it, the scale of impact of the inconsistency, etc.).

Figure 3-98 : A Framework for Managing Inconsistency With Viewpoints.

8 Source of Figure: [33] Figure 1.

 31

The inconsistency, characterised at diagnostics, is then handled, using one of the
available strategies (i.e., ignored, tolerated, or resolved). The chosen handling strategy
depends on risk and cost assessment. Whichever cost is lower (e.g., handling vs.
ameliorating vs. ignoring), that strategy is recommended.

3.3.1.2.4 Identification and Treatment of Crosscutting Concerns with
Viewpoints and Inconsistency Management

This approach does not identify any crosscutting concerns separately: all concerns are
treated as part of a viewpoint. Though viewpoints can overlap and crosscut each other,
this is treated as an inconsistency resolution issue, rather than concern separation
problem.

3.3.1.3 Summary of Viewpoint-Based Approaches
The PREview and VIM approaches discussed above demonstrate how viewpoints are
used to focus on the early requirement elicitation stage and later consistency
management stages respectively. In fact, these approaches can be used
complementarily, with PREview applied to identify the viewpoints and VIM used to
manage potential inconsistencies.

Both VIM and PREview fall sort of effectively handling crosscutting concerns, in that
PREview limits to a small number of pre-defined non-functional concerns with no
support for further concerns, while VIM treats all concerns as part of viewpoints,
disregarding their individual modularisation issues. In both cases crosscutting concerns
end up scattered and tangled with viewpoints.

3.3.2 Goal-Oriented Approaches
A goal is an objective the system under construction should achieve [9]. Goals represent
intended properties and can cover both functional concerns that the new system should
provide, and non-functional concerns related to its quality of service, such as security,
safety, etc. Unlike a requirement, achievement of a goal might require cooperation
among multiple agents.

Goals can be used for providing rationale for requirements, assessing requirement
completeness and relevance, as well as requirement identification. For instance, a
requirement is justifiable and relevant if it leads to satisfaction of a goal, and
requirements are complete if all goals are satisfied with the set of defined requirements.

3.3.2.1 Non-Functional Requirements Framework (NFRF)
The NFR Framework [10] is intended for representing and analysing non-functional
goals. Central to the framework is the concept of softgoal which represents a goal that
has neither a clear-cut definition nor precise criteria for determining whether it has been
satisfied. Softgoals are used to represent the non-functional requirements. In this respect
the definition of softgoal fits quite well, as reliability, for instance, can have different
meaning for different people, and even for the same person working on different
projects, and so will affect the criteria for defining the level of system’s reliability.

 32

The softgoals are interdependent on each other. These dependency relationships are
used to see how a softgoal is satisfied, given that some other softgoals are satisfied or
denied.

3.3.2.1.1 NFRF Method
The NFR framework consists of 5 major components [10]: softgoals, interdependencies,
evaluation procedure, methods, and correlations.

Softgoals are used for representing non-functional requirements. There are 3 types of
softgoals: NFR softgoals, operationalising softgoals, and claim softgoals. The NFR
softgoals act as overall constraints on the system. They are satisfied via operationalising
softgoals that represent more concrete design or implementation solutions (e.g.,
operations, processes, data representations, etc.) obtained as a result of decisions made
for the NFR softgoal. Operationalisations provide the design alternatives available for
the given NFR solution. Claim softgoals provide rationale for design and development
decisions. Through claims domain characteristics can be reflected in the decision
making process, particular choices explained, support for prioritising certain softgoals
over others provided, etc.

When softgoals are refined offspring softgoals are created which relate to their parents
through an IsA relationship. The offsprings also contribute to their parents either
positively, or negatively. In the case of positive contribution, satisfying the offspring
leads to satisfaction of the parent too, while in the case of negative contribution it leads
to dissatisfying the parent. The framework provides a set of refinement methods for
different types of softgoals: decomposition methods contain the knowledge of how to
break softgoals into more detailed ones; operationalisation methods assist in
operationalising a softgoal, and augmentation methods help to represent additional
information about a softgoal.

The NFR softgoals, their refinement, and their operationalisations, complemented with
claims, together build the Softgoal Interdependency Graph (SIG). The evaluation
procedure is applied to the SIG to determine the degree to which the initial NFR
softgoal is satisfied with the given set of decisions. After NFR requirements have been
decomposed, operationalised and evaluated, the NFR SIG is related to the appropriate
functional requirement via design decision links and the operationalisations are related
to the specifications (design decisions) via operationalisation links. Thus, when turning
to the design stage, the functional requirements have clear links to their related non-
functional ones.

The refinement methods component of the NFRF provides a set of generic procedures
for refining a softgoal or an interdependency into one of more offsprings. These
methods are simply patterns (or templates) and guidelines for decomposing softgoals
and interdependencies into sub-softgoals and sub-dependencies, based on requirements
engineers’ past experience and domain knowledge9.

The non-functional requirements can conflict (e.g., cost and quality) or support (e.g.,
availability and dependability) each other. These relationships between non-functional
requirements (as well as the requirements and operationalisations, and between two
operationalisations) are called correlations. Correlations are used to examine the cross-
impact of the softgoals during trade-off analysis.

9 One can perceive these as loosely similar in role to that of “design patterns” for design derivation.

 33

3.3.2.1.2 NFRF Artefacts
In the NFR framework, the identified softgoals need to be catalogued and arranged into
types, and hierarchies of IsA relationships that refine the initial softgoal. These
catalogues are intended for future reuse and to guard against omitting important
concerns. Such a catalogue for an information security softgoal [34] is depicted in
Figure 3-10. The type catalogue focuses on different type of security (on the right) and
their characteristics (on the left). While types are softgoals on their own, characteristics
only modify and specialise the meaning of these types.

NFR Type

Security

Availability
Integrity

Confidentiality
Operational Security

Completeness Accuracy
Internal
Confidentiality

Operational Internal
Confidentiality

External
Confidentiality

Internal Consistency

External Consistency

NFR Characteristics

Life Cycle

Internal-External

Operational

Developmental

Internal

External

Figure 3-10 10: Information Security Type Catalogue in the NFR Framework

The type catalogue and the decomposition methods are used to decompose a specific
softgoal. For instance, in Figure 3-11, the account security softgoal is decomposed using
the subtype method.

Security
[Account]

Integrity
[Account]

Confidentiality
[Account]

Availability
[Account]

Accuracy
[Account]

Completeness
[Account]

InternalConfidentiality
[Account]

ExternalConfidentiality
[Account]

Figure 3-11 11: Refinement of Security Softgoal by Subtype

The decomposed softgoals can now be operationalised and augmented to produce an
even more elaborate SIG. As illustrated in Figure 3-12, the goal of Internal Consistency
is operationalised via access authorisation which is decomposed into authentication,
access rule validation and identification sub-goals all of which should be satisfied in
order to satisfy access authorisation, as they are defined with an AND operator (the
single curve between sub-goal edges). At the lowest level of decomposition the use of
single password and card key for authentication has been selected (ticked clouds),
leaving out biometrics. We can evaluate that use of single password positively

10 Source of Figure: [10] Figure 7.1
11 Source of Figure: [10] Figure 7.3

 34

contributes to password protection of the account. Also password, identification and
access rule validation all positively contribute to the access authorisation which in turn
positively contributes to internal consistency (the plus signs at the edges).

AccessAuthorisation
[Account]

Authentication
Identification

AccessRuleValidation

Biometircs
CardKey

Password
[Account]

InternalConcistency [Account]

Claim [Business
Rule: access
control is highly
important]

!

SinglePassword
[Account]

!

+

+

+

Identification,
Password &
AccessRule
Validation

+
+

Transaction
Generate
Cheque

Figure 3-12 12: Partial Software Interdependency Graph for Internal Consistency of an Account

The softgoal satisfaction varies in degree between satisfied to denied. The degree is
determined by evaluating the decisions about offsprings’ satisfaction and contributions
to the parents. The offspring satisfactions are propagated to parents through their
contributions and their interrelationships, but also designer’s involvement is required to
make judgement in uncertain cases. During decomposition the offsprings can be given
different priorities and these priorities can be used while making decisions about trade-
offs and resolving conflicts between softgoals.

The selected operationalisations are related to the target system which originates from
functional requirements (e.g., the Transaction target originates from Generate Cheque in
Figure 3-12).

Although only the operationalising softgoals are reflected in the design and
implementation (in the form of operations, data representation, assignments of tasks to
an external agent, etc.), all softgoals participate in the construction of the SIG and can
appear in supporting documentation for later development stages (e.g., the claim
softgoal in Figure 3-12).

The level of offsprings’ contribution can vary, depending on the type of contribution. If
there is only one offspring, it can fully satisfy or deny the parent (in terms of NFR
framework: make or break it); but if more than one offspring contributes to the parent,
then their interrelationship counts (e.g., in case of AND relationship all offsprings need
to be satisfied to satisfy the parent, while in case of OR – satisfaction of one is
sufficient), as does each offspring’s contribution level. This level can vary from break
(strong negative), through hurt (weak negative) and unknown to help (weak positive)
and make (strong positive).

NFRF suggests that developed refinement methods and correlations between softgoals
both should be catalogued for future reuse.

12 Source of Figure: adapted from [10] Figure 7.4

 35

3.3.2.1.3 NFRF Process
The process of NFR Framework application (as presented in [10]) starts with acquiring
knowledge about the domain and the system to be constructed, its functional
requirements, and particular types of NFR and associated development techniques.
From this the developer can identify particular NFRs for the domain relevant to the
particular system.

Once identified, the high-level non-functional requirements become the top level
softgoals which are then decomposed using the NFRF softgoal type and refinement
catalogues. Through this process abstract softgoals, such as security, get refined into
more specific non-functional requirements, such as confidentiality, availability, etc. For
each sub-softgoal suitable operationalisations are then identified, providing solution
alternatives for the sub-goals.

The softgoals as well as their operationalisations often have to strive for conflicting
aims. While decomposing and identifying operationalisations, the developer has to
consider ambiguities, trade-offs, priorities and interdependencies among NFRs and
operationalisations. At this stage use of correlation catalogues is beneficial. The
developer then selects some operationalisations, recoding and justifying the design
decisions. After completing the initial SIG, s/he should evaluate the impact of the
decisions and the whole process or parts of it could be repeated until a satisfactory result
is produced.

3.3.2.1.4 Identification and Treatment of Crosscutting Concerns with NFRF
NFRF underlines the importance of non-functional requirements, which are, by their
nature, crosscutting. The approach does not clarify how exactly the non-functional
requirements are identified, only suggesting that they should be obtained by gathering
knowledge about the domain for which a system will be built. NFRF focuses on
clarifying the meaning of non-functional requirements and providing alternatives for
satisfying them to the highest possible level, considering the conflicts between them,
their interrelationships (assisted by correlation catalogues), as well as the developer’s
preferences.

The NFR SIG encapsulates the treatment of each crosscutting non-functional
requirement, containing details of its decomposition, mapping to decisions and choices
for realisation at the design stage.

On the other hand, the approach considers neither identification, nor handling of
crosscutting functional requirements.

3.3.2.2 Knowledge Acquisition in Automated Specification (KAOS)
The KAOS approach has emerged from application of ideas from the machine learning
domain to requirements engineering [35]. KAOS views requirements analysis as two
coordinated tasks: requirements acquisition and formal specification [22]. The
requirements acquisition task is focused on structuring requirements into a preliminary
system model (requirements model), using a rich modelling language. The formal
specification task is focused on refinement of (part of) the requirements model into
more precise formalism suitable for formal proofs and prototype generation. In the
flowing section we mainly consider the first task, and only briefly address the second as
it is more relevant for the formal specification work within the AOSD-Europe Formal
Methods Lab.

 36

3.3.2.2.1 KAOS Method
The overall KAOS approach has three main components:

1. Conceptual model for acquiring requirements models and its supporting
language. The conceptual model in turn has three levels: meta, domain, and
instance;

2. A set of requirement elaboration strategies;
3. An automated assistant for guidance through the strategies.

The meta-model level in the conceptual model provides a set of constructs for
representing general domain-independent abstractions and their relationships necessary
for modelling a system. Examples of such constructs are Agent, Action, Entity,
Relationship, etc., as represented in the meta-classes level in Figure 3-13.

The meta-level abstractions are concretised into sets of domain-specific concepts when
a given domain modelling is undertaken. For instance, in Figure 3-13, a library domain
is modelled with Agent being specialised as Borrower, Entity as BookCopy, etc. The
domain-level concepts are linked through instances of the Relationship abstraction, such
as Borrower performs checkout, etc.

Finally, at the instance level (called Token level in Figure 3-13) individual instantiations
of the domain model can be produced.

Figure 3-13 13: The Levels of KAOS Conceptual Model.

The conceptual meta-model in KAOS plays several central roles for requirements
acquisition [22], to mention only a few, it suffices to point out that the structure of the
requirements acquisition language is based on the meta-model abstractions and their
relationships; each concept of the lower level inherits all properties of the corresponding
concepts of the higher level; the meta-model drives the knowledge acquisition process.
For instance, with a goal-directed acquisition strategy (explained below) the goal meta-
concept is considered first, instances for it are acquired, for example, through IsA links,
objects concerned with the goal are identified and so on, but all concepts of goals, links
and objects are defined at meta-level initially.

The requirement elaboration strategies define specific ways of traversing the above
described meta-model graph in order to acquire specific instances of various nodes and
links. Strategies can differ by the meta-concepts around which they are centred: e.g.,
goal-directed, view-directed, and scenario-directed (i.e. centred around goals, views,

13 Source of Figure [22] Figure 1.

 37

and scenarios respectively) etc. The strategy is made up of finer steps such as answering
questions, input validation against higher-level constraints, etc.

The acquisition assistant is used to guide the acquisition according to a strategy. It uses
the requirements database and the requirements knowledge base. The Requirements
database includes the requirements model built throughout the acquisition, and can be
queried and analysed. The knowledge base includes the domain-level knowledge, such
as concepts, hierarchies and fragments of requirements for a domain that can be reused
and meta-level knowledge. The later relates to the properties of abstractions used in
meta-model and can be represented as tactics for a strategy (e.g.,: the conflict between
the goals can be temporarily tolerated, but will be resolved by some appropriate action
[22]), etc.

φ - φ is true in the next state
φ - φ is true in the previous state
=xφ - φ will be true sometime (within x)
=xφ - φ was true sometime (within x)
=xφ - φ will be always true (after some time)
=xφ - φ was always true (until some time)
φ U ψ - φ is true until ψ becomes true
φ S ψ - φ has been true since ψ became true

φ - φ is true in the next state
φ - φ is true in the previous state
=xφ - φ will be true sometime (within x)
=xφ - φ was true sometime (within x)
=xφ - φ will be always true (after some time)
=xφ - φ was always true (until some time)
φ U ψ - φ is true until ψ becomes true
φ S ψ - φ has been true since ψ became true

Legend: circle – previous/next state; star – some time in the
past/future state; square: always in the past/future

Figure 3-14: Representing Time in KAOS

For the formalisation of the acquired knowledge KAOS provides a formal language
representation for all its abstract concepts as well as operators. For instance, Figure 3-14
demonstrates the time operators used in KAOS.

3.3.2.2.2 KAOS Artefacts
With KAOS multiple types of artefacts can be produced. For instance, one type is the
knowledge structures (as demonstrated in Figure 3-13) produced for the domain.
Instances of such structures are easily mapped to scenarios, thus resulting in scenario
artefacts. They can also be formally specified using the KAOS formalisation language,
and result in formal specification artefacts.

 38

Figure 3-1514 : Portion of Goals Structure for Borrower Goals

On the other hand, the strategies and tactics derived for knowledge structure traversals
are also artefacts which can also be represented formally or expressed as guidelines.

Yet, the most popular use of KAOS is for goal-directed strategy, which results in goal
decomposition trees. An example of such a decomposition tree is presented in Figure
3-15 where the goal of satisfying a borrowing request from a library is decomposed into
a set of related goals. Such decompositions can be facilitated via reuse of generic goals
and their reductions structures collected in the knowledge base. For example, the
decomposition of goal BookRequestSatisfied (part of Figure 3-15) can be specialised
from the generic structure presented in Figure 3-16.

Figure 3-16 15: Requirement Fragment structure for KAOS knowledge reuse.

The selection of structures for relevant decomposition is assisted through indexing
schemes for retrieval based on goal category (e.g., satisfaction goal), pattern (e.g.,
achieve pattern), links between objects and goals (e.g., IsA).

14Source of Figure: [22] Figure 3.
15 Source of Figure: [22]. Created from text on page 23.

 39

3.3.2.2.3 KAOS Process
The KAOS acquisition process is largely defined by the selected acquisition strategy.
For the case of Goal-Directed Strategy it can be reduced to the following steps [22]
(which may overlap and iterate):

1. Identify Goals and their Concerned Objects: At this step main system goals are
identified and categorised. The objects related to the goal are identified with their
domain specific attributes and invariants, etc. Goals are decomposed and possible
conflicts between them are identified. This is performed by analysts in cooperation
with clients. The knowledge base structures are also identified and reused (as
discussed earlier). Alternative goal decompositions are considered in order to
minimise costs and resolve conflicts. By the end of this step a decomposition is
selected with as few conflicts as possible and goals are decomposed to the level
where they can be operationalised.

2. Identify potential Agents and their Capabilities: This step overlaps with step 1, it is
concerned with identifying human agents, physical devices and programs which are
capable of performing actions (i.e. causing stage change) on objects from step 1.
Agent actions and corresponding pre/post conditions for them are defined.

3. Operationalise Goals (here goal operationalisations are called Constrains): The
leaf goals from step 1 are converted into system objectives formulated in terms of
objects and actions available to some agents. Several possible alternatives can be
considered out of which the best one is selected. Generic operationalisations could
be available from the knowledge base which may assist in this step.

4. Refine Objects and Actions: During steps 2 and 3 new goals, actions, objects and
agents may be identified. In such cases it is necessary to iterate the above steps in
order to complete the missing details about the newly identified items.

5. Derive strengthened Objects and Actions to Ensure Constraints: At this step the
operationalisations defined in step 3 are “strengthened”, i.e. additional pre/post
conditions may be defined for some actions, trigger conditions may be provided, etc.
This is carried out by reviewing the formal expressions for the operationalisations,
checking actions and expected and occurring stage transitions against each other,
and so on.

6. Identify alternative Responsibilities: Here the agents identified in step 2 are assigned
to operationalisations in accordance with the capabilities of agents (also derived in
step 2). The assignments state which agent will be responsible for each
operationalisation. Alterative assignments will normally be considered.

7. Assign Actions to responsible Agents: At this step the actions are finally allocated to
specific agents, the assignments are chosen from among the alternatives developed
in step 6. This allocation implies that a given agent is contractually responsible for a
given task. This allocation aims to maximise reliability of task fulfilment, minimise
agent overloading, etc.

3.3.2.2.4 Identification and Treatment of Crosscutting Concerns with KAOS
Unlike most other classical RE approaches, KAOS explicitly sets out to deal with both
functional and non-functional [22] requirements. The goal representation and
decomposition structures of the approach and the formalisation language are well suited
to address both types of requirements. KAOS also helps to study and analyse the

 40

relationships between the goals, thus allowing to single out the goals which relate to
many others (i.e. the crosscutting ones). The only respect in which KAOS falls
somewhat short is in holistic treatment of the crosscutting gaols and requirements: while
it may have tactics and heuristics for dealing with functional and non-functional
concerns, similar heuristics and tactics for dealing with crosscutting concerns have not
been explicitly defined.

3.3.2.3 I*
The I* [18-21] framework provides an agent based approach to requirements
engineering. The term agent-based reflects that the approach is centred around the
system stakeholders and their relationships. These relationships reflect how actors
depend on each other for achieving their goals, carrying out some tasks, and acquiring
resources [18]. The support for explicit modelling and analysis of multiple actor
dependencies allows to introduce some social analysis into a system analysis and design
framework. The purpose of such analysis is finding answers to the “why?” of
requirements: why are the requirements of one kind and not the other. Such studies,
grounded in social/organisational context and rationale, help not only to understand
current requirements, but also to prepare for future changes.

The approach also provides a set of simple intuitive graphical representations for actor
and dependency modelling which facilitates the dialogue with stakeholders during
requirement elicitation, encouraging stakeholder involvement and feedback.

3.3.2.3.1 I* Method:
I* approach is centred around agent and agent-relationship modelling. Agents are
characterised in terms of their relationships (dependencies) with other agents. An agent
that depends on another agent for a goal, task, or resource is called depender, that
goal/task/resource is called dependum, and the agent dependent upon is the dependee.
These dependencies allow an agent to achieve goals that he/she could not have achieved
alone. On the other hand, these dependencies make the depender vulnerable if the
dependee does not deliver the dependum agreed upon by both sides.

I* consists of 2 major parts: Strategic Dependencies (SD) part and the Strategic Rational
(SR) part. The SD part studies actors and their dependencies, thus encouraging a deeper
understanding of the business process. It helps to understand what is at stake in case of
each particular dependency, who and how will be affected if a dependency fails.

In this framework an agent is intentional, i.e. possesses the qualities of [19]:
• Intentionality: agents want to fulfil certain goals or commitments, i.e. they have

intentions. The intentionality can also be attributed to an agent (e.g., non-human
agents) externally, by the modeller, as this provides a useful way of analysing an
agent. Thus, an agent can be thought of as a locality for intentionality [19, 21].
Agents can also relate to each other at intentional level.

• Autonomy: agents are independent (i.e. have free will) and can act towards their
goals, thus, they are not completely knowable or controllable by the modeller.
Yet, the behaviour of an agent can be partially characterised using his/her known
intentions.

• Sociality: agents exist within the network of relationships with other agents and
environment. These relationships are multi-lateral, can be conflicting, and
restrict an agent’s behaviour.

 41

• Identity and Boundaries: define who the agents are and what their
responsibilities are. Not only physical entities, but also abstract ones (e.g.,
teams, roles) can be agents. The boundaries of an agent can change when a
responsibility is re-assigned from it to another agent.

• Strategic Reflectivity: agents can reflect upon their actions and operation and re-
evaluate these.

• Rational Self-interest: agents strive to achieve their goals, yet an agent may
choose to constrain its strategies (in its own interest) due to social dependencies.
However the rationality is partial and bounded due to the partial knowability of
an agent and the limited resources available to the modeller.

The SR part investigates different alternative configurations of actors and their
dependencies. This allows to systematically explore the space of possible new process
designs [36]. Each alternative may have different implications for the agents and the
system as a whole.

3.3.2.3.2 I*Artefacts
The central construct in I* is that of the intentional agent, as described in the above sub-
section. Consequently, the artefacts relate to agent and dependency representation.

In the Strategic Dependency diagram example (demonstrated in Figure 3-17) actors are
represented as cycle with their names inside.

Figure 3-17 16: Strategic Dependency model for meeting scheduling without computer-based
scheduler.

Besides the actors, the Strategic Dependency diagram includes four types of dependum:
goals, resources, softgoals, and tasks, as well as the dependency links between agents.
The goals are a kind of dependum which can be achieved in several alternative ways
(e.g., attend meeting). Softgoals too are like goals, but either represent non-functional
properties (e.g., assured to attend the meeting), or goals which are not quite clear at the
time of representation. Tasks are dependum which should be achieved in a prescribed
manner (e.g., attend meeting via video conferencing link). Resources are a dependum
for which only the delivered result matters (e.g., proposed meeting date).

16 Source of Figure: [18] Figure 1.

 42

The links between the nodes in the SD diagram go from depender though dependum to
dependee, and it is the depender who gets hurt if the dependum is not delivered upon.

The Strategic Rational Diagrams are used to further the study of agents and their
dependencies by answer such questions as why (e.g., why does a certain even occur?),
how (e.g., how does it occur?), how else (e.g., how else can the same event come
about?). For instance, a meeting can be scheduled by an individual, as presented in
Figure 3-18. This figure expands the agents presented in the Strategic Dependency
diagram and looks “inside” of them, demonstrating how they agree upon the dependum
and why each of them does so.

Figure 3-18 17: A Strategic Rationale model for meeting scheduler: manual scheduler

17 Source of Figure: [18] Figure 3.

 43

Figure 3-19 18: Strategic Rationale model for a computer-supported meeting scheduling.

Figure 3-19 demonstrates an alternative Strategic Rationale diagram for arranging a
meeting: via a meeting planner software agent. This changes the boundaries of the
Meeting Initiator agent by moving some tasks from him/her to the Meeting Scheduler
agent.

3.3.2.3.3 I*Process:
The I* process begins by identifying the agents involved in a given process or system.
The agents can be identified by considering who or what in the system has the
intentionality characteristics discussed above. It is appropriate for the analyst to assign
intentionality to non-human agents, if this assists with the analysis process.

Once agents are identified, the Strategic Dependency diagrams (Figure 3-17) are
constructed for them, representing their top level goals and dependencies on other
agents.

These SD diagrams are then elaborated into Strategic Rational diagrams by “looking
inside” each agent. Here the structures of goal decomposition developed with NFR
framework are used to analyse how an agent internally evaluates his/her goals and think
about the procedures for their achievement.

By studying the SD and SR diagrams, the analyst may devise several alternative
dependency structures and ways to achieve agents’ goals within these structures, i.e.
alternative SD and SR diagrams. Each of these alternatives must be analysed for
vulnerabilities: is a dependee motivated enough to deliver upon dependum? I* suggests
that if there is a dependency loop between the depender and dependee (i.e. the dependee
depends on the depender for another dependum either directly or via an intermediate
agent), it is likely that the dependum will be delivered. Out of the analysed alternatives,
the most suitable alternative can then be selected for realisation.

3.3.2.3.4 Identification and Treatment of Crosscutting Concerns with I*

18 Source of Figure: [18] Figure 4

 44

As discussed above, the intentions of agents are manifested as high-level goals which
can be either of a functional or non-functional nature. Often a behavioural goal may be
complemented by qualifying non-functional ones [19]. The non-functional goals are
handled similarly to NFR softgoals: through softgoal decomposition, while functional
goals are decomposed into sub-goals and tasks. In both cases I* does not distinguish
between crosscutting and non-crosscutting concerns.

3.3.2.4 Summary of Goal-Based Approaches
The representative goal-based approaches discussed in this section demonstrate the wide
spectrum of usage of goals. The NFR framework focuses on the non-functional goals
and their decomposition. I* underlines the importance of the agents, their
characteristics, dependencies, and environment in goal analysis. Finally, KAOS is
mostly looking at goal formalisation and knowledge acquisition. Thus, all three
approaches are strongly complementary: NFR provides knowledge structures about the
non-functional goals, I* provides the agent-related knowledge, and KAOS helps to
formalise and reason about such knowledge. All three approaches use similar goal
decomposition structure.

While the goal-decomposition structures of these approaches may serve as a good
starting point for identification and treatment of crosscutting concerns, such explicit
identification and treatment has not been applied in these approaches. Though there
might well be, for instance, some guidelines on composition of some crosscutting goals
in the KAOS domain knowledge base, the same guidelines may not be identifiable for
other crosscutting goals. In summary, the issue of crosscutting has not been clearly
addressed.

3.3.3 Problem Frames

3.3.3.1.1 Problem Frames Method:
The Problem Frames (PF) approach [23-26] proposes to deal with complex problems in
software development decomposing them into structured sets of simpler interacting sub-
problems with understandable interfaces. The correctly combined descriptions and
solutions for the sub-problems then serve as the description and solution to the original
problem. As stated in [23], PF addresses “... the topics that are often called functional
requirements, software specification, and the path by which you get from one to the
other”.

The key point of the PF approach is decomposition of complex problems into familiar
sub-problems, because if one has solved a similar problem in the past it will be easier
for one to deal with the present problem. Thus, the approach sets out to identify the
common simple problems which can be used as patterns onto which the complex
problems should be decomposed. These classes of common problems are identified
from the body of work on problem analysis for software development, in the same way
as design patterns are identified from software design work.

The broad characteristics of these identified problem classes, along with descriptions of
interaction of the real world problem domains with the intended computer system of the

 45

respective problem classes, are extracted and catalogued as problem frames. An
example of such a problem frame is presented in Figure 3-20. This frame addresses the
issue of building a software system that imposes certain behaviour on a part of the
physical world.

Control
machine

Controlled
domain

Required
behaviourc

CM!C1

CD!C2
C3

Figure 3-20 19: The Required Behaviour Problem Frame.

Several other problem frames, addressing specific problems are provided in [23].

3.3.3.1.2 Problem Frames Artefacts
The first artefact built in the Problem frames approach is the context diagram which
simply represents the problem and the real world domains that interact with it.

As depicted in Figure 3-20, a problem frame itself is represented by a problem diagram
consisting of the software part (generally called machine, but referred to as Control
machine is the Required Behaviour frame), one or more domains (the controlled domain
for this frame), the requirement (in this example it is required to control the physical
world through software) and the shared phenomena between them.

An instantiation of the required behaviour frame (from Figure 3-20) is demonstrated in
Figure 3-21 using the example of a one-way traffic light control. A light controller piece
of software should control one-way traffic lights by sending red (RPulse) and green
(GPulse) commands to the light unit; the requirement here is that Stop and Go signs
should be demonstrated on the light unit for the red and green pulses respectively.

Lights
controller

Light
units

Lights
regime

a b

a: LC! {RPulse[i], GPulse[i]} [C1] b: LU! {Stop[i], Go[i]} [C3]

Figure 3-21 20: A Required Behaviour Frame for Simple One-Way Traffic Light Control.

Each problem frame must have only one machine, which must address a distinct
problem. Problem frames differ due to differences in their requirements, characteristics
of problem domains21, difference in involvement of the domains (is the domain affected,
or monitored etc.) and the frame concerns. The frame concern of each problem class
describes what kind of descriptions are necessary to adequately understand the given
problem and what are the logical steps for its solution. A frame concern for the required
behaviour frame for the example in Figure 3-21 is shown in Figure 3-22.

19 Source of Figure: [23] section 4.3.1
20 Source of Figure: [23] section 4.3.1.
21 For instance, some domains have fixed casual interconnections, such as turning on/off the switch makes
motor start/stop; others are less predictable, e.g., requesting a person to turn a switch may or may not
result in switch being turned on. A classification of domains is provided in [23]

 46

Light Controller Light units
Lights
regime

We will build the
machine to behave
like this, so that …

{specification}

… knowing that the
light units work like
this …

{domain description}

… we’ll be sure the
lights sequence will be
this …

{requirement}

1

2
3

Figure 3-22 22: Frame Concern for Required Behaviour Frame.

From this figure we can see that a frame concern needs to have three complementary
descriptions, named at the bottom of the notes at each step. The descriptions are for:

• Specification, which focuses on the computer system;
• Domains, which focuses on problem understanding;
• Requirement, which describes the problem from the customer’s perspective.

Thus, the frame concern demonstrates that the specification is built to accommodate
domain phenomena so that the requirement is met.

Since each problem class can have many variations, a number of variations and flavours
(variants) are also considered for problem frames. A variant can add additional domains
or features to the core problem in order to match the real problem at hand, but sill
retains the core of the problem frame. Once the core problem frames for common
classes of problems are known to the developers, it is easier to recognise and address the
variations of these classes of problems and anticipate the difficulties as well as produce
efficient solutions for them.

It must also be noted that since problem frames address simple sub-problems, a complex
real world problem will normally be decomposed onto several problem frames which
(along with their frame concerns) will need to be integrated later on to produce a
complete problem and solution description.

3.3.3.1.3 Problem Frames Process
Development with PF starts with focusing on a problem, locating it in the real world
and clarifying its boundaries by establishing what the software problem is and which
real world domains it interacts with. This results in creation of the context diagram for
the problem.

The context diagram is used to identify sub-problems and structure the problem as a
collection of interacting sub-problems. The intention of this decomposition is to try and
map the problem onto familiar simple sub-problems. During this activity, for each sub-
problem a problem diagram is constructed. The diagram consists of relevant domains
(selected from the domains of the context diagram), the projection of the machine
(software) from the context diagram, and the sub-problem requirement.

Once sub-problems are identified, the developer should analyse each sub-problem and
decide on the problem frame suitable for it. When the problem at hand fits a problem
frame, it will satisfy, and so be solvable through, its frame concern. On the other hand,

22 Source of Figure: [23] section 5.2.1.

 47

if the problem frame for a given problem is selected inappropriately, it will be reflected
by the frame concern: either the frame concern will require some descriptions which
will not make sense for the problem, or some necessary descriptions for the problem
will be unavailable in the frame concern.

However, in most cases the problem frame selected for a sub-problem will not fit
perfectly: the problem is likely to be a variant or adaptation of the original frame. Thus,
the problem frame should be adjusted correspondingly and the frame concern will need
to be adapted to fit the sub-problem in hand.

After each sub-problem has a fitting problem frame, these should be composed to
produce the composite frame, where composition concern is another issue to be
addressed. Composition concerns between pairs of sub-problems arise mainly if they
use different projections of the same problem domain. Here composition is considered
in terms of:

• consistency between domain descriptions,
• precedence between inconsistent domain descriptions,
• interference between interactions with a domain, and
• scheduling of machines that interact with a common domain.

All these have to be addressed on a case-by-case basis for each individual problem.
Finally, the frame concern of the composite frame should be checked to ensure that the
initial problem is satisfactorily resolved.

3.3.3.1.4 Identification and Treatment of Crosscutting Concerns with Problem
Frames

Although, as quoted above, the PF approach focuses on functional concerns, it also
recognises the need to address non-functional ones. Yet, neither type of crosscutting
concerns is identified or treated explicitly in any way. In [23] such crosscutting non-
functional concerns as completeness, overrun etc. are described. These concerns,
however, are not incorporated into problem frames, nor have a consistent treatment
method. They are simply referred to as other concerns that are also important. The
notable exception to this is the reliability concern, which is separated into a new
problem frame and modelled in terms of countering the behaviour that the machine will
display when interacting with the real world domains if failures occur. However, to the
best of our knowledge, there is no sufficient work available to judge if this approach can
be applicable to other crosscutting non-functional requirements.

3.3.3.2 Summary of Problem Frames
Problem frames provide a way of decomposing problems into a set of familiar sub-
problems with known solutions. In their purpose and origin problem frames are similar
to design patterns: they are intended to ease problem recognition and solution, and are
derived from the “good practice” and experience of requirement engineers.

As discussed above, neither functional nor non-functional crosscutting concerns are
identified and treated modularly in the Problem Frames approach.

3.3.4 Use Cases and Scenario Based Approaches
Scenarios and use cases have recently emerged as the most popular means of eliciting
requirements in industry. A scenario is defined as “a sequence of actions carried out by

 48

intelligent agents” [27]. Scenarios (essentially short stories) capitalise on the innate
ability of people to reason from stories. Thus when requirements are presented as
scenarios, people find it easier to detect inconsistencies, omissions, and threats for the
system to be built.

Scenarios with multiple options, conditions, and branches can be organised into use
cases.

A comprehensive survey of the contemporary scenario-based work is presented in [27].
Most of the work described in [27] uses scenarios for requirement discovery, validation,
and deriving tests from the scenarios. Here, we present the Use Cases approach [8] and
a scenario-based approach for misuse cases (a variant of undesirable use cases) which
can be used for addressing (a subset of) non-functional requirements.

3.3.4.1 Use Cases

3.3.4.1.1 Use Case Method
Each use case [8] describes a related set of system uses by some actors (i.e. end users of
the system) to achieve some desired result. Use cases are used to systematically explore
how a system is used by the stakeholders and highlight how different usage scenarios
are handled in order to promote better understanding between users and developers and
capture high-level, user-centric requirements.

In addition to helping to understand stakeholders requirements for the system’s
behaviour in a step-by-step fashion, this approach allows decomposition of a system
onto components that “give measurable value to a particular actor” [37]. Thus, it also
helps to derive the fundamental structure of the application as well as prioritise system
functionality and facilitate incremental development, providing a use case as the
smallest unit of delivery. Use cases also serve as a basis for early development of test
cases and validation of acceptance criteria.

3.3.4.1.2 Use Cases Artefacts
The Use Cases approach distinguishes between actors (“what interacts with the system”
[8]), use case (“what should be performed by the system” [8]), use case instance or
scenario which demonstrates a particular instantiation of a use case, and use case
specification which details the use case as a sequence of interactions between actors and
the system. These artefacts are presented in Figure 3-23 .

 Figure 3-23 (a) provides a detailed description of a use case for a room reservation in a
hotel management system. An actor is represented as a matchstick figure. Each ellipse
in Figure 3-23 (b) represents a use case that describes the functionality indicated by its
name. Figure 3-23 (b) itself demonstrates the use case model which consists of the
system stakeholders, its use cases and the relationships between these use cases. The
relationships between use cases are modelled as generalisation, extension, and
inclusion. Inclusion is used to factor out common behaviour between use cases
(<<include>> stereotype in Figure 3-23 (b)). Generalisation is used to refine the
sequence of actions of the more general use case through that of more specific ones
(similar to the generalisation relationship of classes). Finally the extend relationship
(<<extend>> stereotype in Figure 3-23 (b)) allows the addition of extra behaviour23 to

23 This does not have to be optional behaviour only. Required behaviour can also be provided as an
extension use case in order to keep the base use case simple and clear.

 49

the base use case, without having to change the base, where base use case encapsulates
the core behaviour that is self-sufficient in providing “measurable value” to the users.
The extra behaviour is encapsulated in an extension use case (Figure 3-23 (c)), which is
inserted into the base use case at extension points (Figure 3-23 (a)). The extension
points need to be pre-defined in the base use cases for every extension use case.

Use-Case Specification: Reserve Room
This use case describes how customer reserves a room.
Basic Flows
B1. Reserve Room
The use case begins when a customer wants to reserve a room
1. The customer selects to reserve a room.
2. The system displays types of rooms in a hotel and their rates
3. The customer Check Room Cost.
4. The customer makes the reservation for the chosen room.
5. The system deducts from the database the number of rooms of

specified type available for reservation. …
Alternative Flows
A1. Duplicate Specification
If in step 5 of the basic flow if there is an identical reservation,
system asks the customer if he wants to proceed with new one.
1. If the customer wants to continue, system creates new reservation.
2. If the customer indicates that the reservation is a duplicate the use

case terminates
Sub-flows:
S1: Check Room Cost
1. The customer selects a room and provides period of stay.
2. The system computes the cost of stay for given period.
Extension Points:
E1. Update Room Availability
The Update Room Availability extension point is at step 5 of Basic Flow
Preconditions…. / Postconditions … / Special Requirements …

Reserve
room

Handle
waiting list

<<extend>>

Check room
cost

<<include>>

Use-Case Specification: Handle
Waiting List

Basic Flow ……
Extension Flows
EF1. Queue for Room
This extension flow occurs at the

extension point Update Room
Availability in the Reserve Room
use case when there are no rooms
of the selected type available.

1. The system crates a pending
reservation for the selected room
type.

2. The system puts the created
reservation into a waiting list

3. The system displays the unique
identified for the created pending
reservation to the customer.

4. The base use case terminates.

(a)

(b)

(c)

Figure 3-23 24: (a) Use Case Description; (b) Use Case Model; (c) Extension Use Case Description.

As depicted above, the main use case (represented by the basic flow) can encounter
several eventualities when delivering the required functionality. These eventualities are
represented by alternative flows of the use case. A use case instantiation – scenario –
can be used to illustrate each possible flow with a possible real example. A scenario can
also be illustrated with an interaction or sequence diagram.

3.3.4.1.3 Use Case Process
The Use Case process starts by identifying the actors who will be using the system. This
can be done, for instance, by talking to the stakeholders. Then, for each actor the set of
required functionality from the system is collected. This required functionality becomes
the set of use cases for that actor. All use cases together form the use case model.

Next, for each identified use case the most usual course of actor-system interaction is
defined. This normally expected flow of interaction becomes the basic flow of the use
case. The basic flow is described in the use case description (Basic flow in Figure
3.23(a)). If there is any additional functionality that complements the basic flow, it is

24 Sources of figures [38]: (a) adapted form Listing 5-1; (b) used from Listing 6-1; (c) adapted form
Figure 6-1

 50

recorded as an extension use case, with its description completed as well (Extension
flow in Figure 3-23 (a) and Figure 3-23 (c)). This should be a high-level description, not
concerned with internal workings of the system, or user interface, etc. The basic flow
description is followed by identification and description of alternate flows (Alternative
flow in Figure 3-23(a)). Identification of flows can be facilitated through use of
scenarios.

Finally the description of each use case is reviewed against the descriptions of the other
use cases. The interaction flows common to more than one use case are separated into
included use cases, and basic and alternative flows are also reviewed.

Further processing of the use case approach, related to use case realisations is
considered a matter of architecture and design stages of software development lifecycle
and is not reviewed in this section.

3.3.4.1.4 Identification and Treatment of Crosscutting Concerns with Use
Cases

Use Cases are very useful in identifying high-level user-centric functionality and
structuring that functionality into basic, extending and included categories. Thus,
crosscutting functionality that affects more than one use case is likely to be factored out
into included functionality, while secondary/complementary crosscutting functionality
may be factored out into extension use cases. Thus, the user level crosscutting
functionality is separated from base use cases. However, because use cases only address
user-level functionality, crosscutting functional concerns related to the internal system
functionality are not detected.

The non-functional requirements are not addressed by the classical use cases approach
at all. However, there is more recent work on Aspect-Oriented Software development
with use cases [38] that (among other things) attempts to address the identification and
treatment of non-functional requirements. This is discussed in section 3.4.3.1.1.

3.3.4.2 Negative Scenarios and Misuse Cases
While the main body of work on use cases looks at ways of identifying the functionality
to be provided by the system, some work has applied use cases for identifying what the
system should prevent. Such negative use cases are called misuse cases [28-30], or
failure cases [39], and a failure case is a special instance of a misuse case [29].

3.3.4.2.1 Negative Scenarios and Misuse Cases Method
“A misuse case is a negative form of a Use Case. It documents a negative scenario”
[29]. The agents of misuse cases actively pursue either a hostile intent towards the
system under development, or a goal which is damaging to the goals of the initial
system. The actors in misuse cases could be humans with hostile intent, but also
inanimate objects or phenomena which can metaphorically be “allocated hostile intent”
[28]. Since the misuse cases reveal threats to the use cases, by documenting these one
can identify means to mitigate such threats [28, 29]. Mitigation is often achieved by
producing new use cases that provide new functionality.

 51

The misuse cases method is particularly useful in security threat and safety hazard
analysis. But it is suggested [28] that other non-functional properties, such as
availability, maintainability, portability, etc. can also be documented via misuse cases.
For instance, for maintainability the “hostile agent” could be an inflexible design or a
wired-in device dependency, etc.

3.3.4.2.2 Negative Scenarios and Misuse Cases Artefacts
This method is essentially an extension of the use cases approach (section 3.3.4.1),
consequently all the artefacts previously discussed for the use cases (i.e. actors, use
cases, scenarios, use case specifications) are also applicable here.

The artefacts specific to this method are the hostile roles and the misuse cases. The
hostile roles are those that want either to harm the system, the stakeholders, or their
resources intentionally, or whose goals are incompatible with the system goals. These
roles are documented as UML actors, however, an alternative notation to the stick
figures can be used to represent the inanimate actors (e.g., weather in Figure 3-24 which
shows an example use and misuse cases for a fur farming company which is threatened
by animal rights protesters and rival companies.).

Fur farmer

Operate
fur farm

Damage the
business

Corner the
market

Protester

Rival

Make site
secure

mitigates

threatens

threatens

has exception

Establish trading
relationships

mitigates

has exception

Damage the
buildings

threatens

WeatherApply protective
coating mitigates

Figure 3-24 25: Misuse cases documented on the use case diagram.

The misuse cases need to be documented. In some simple cases the identified misuse
case can be directly represented on the use cases diagram as misuse case handling or
presenting requirement. For instance, a misuse case of an attack on one’s property can
lead to the need for the security requirement which will result in alarm subsystem to be
represented as install alarm use case on the use case diagram. However, in more
complex situations the misuse case is described as a bubble of inverted colour on the
use case diagram (Figure 3-24) and then gradually analysed to identify how it can be
handled or mitigated. A new threatens relationship is provided to illustrate which use
cases a misuse case threatens. Another new relationship called mitigates is provided to
demonstrate how the identified solutions could ease the affects of the misuse case.
Finally a has exception relationship is used to demonstrate which use cases a solution to
a misuse case helps to handle or prevent. Other stereotyped relationships, such as
conflicts with, and aggravates can be used to demonstrate conflicts between use and
misuse cases.

3.3.4.2.3 Negative Scenarios and Misuse Cases Process
The misuse cases process application is started in same way as that for the Use Cases
(section 3.3.4.1), i.e. by identifying the agents and main use cases of the system. Then

25 Source of figure: [29]. Adapted from Figure 7.5.

 52

the method aims to identify the hostile agents and the goals that they might desire to
achieve. Hostile roles can be identified in a workshop with the stakeholders.

Having identified the hostile agents (or alongside it), the misuse cases prompted by
these agents can be identified. These misuse cases are then documented and the
solutions to mitigate, or prevent them from being realised are developed.

For each identified threat at least one test case should also be developed to validate the
proposed solution for the threat handling.

3.3.4.2.4 Identification and Treatment of Crosscutting Concerns with Negative
Scenarios and Misuse Cases

As has been discussed for the Use Cases approach (section 3.3.4.1.4), use cases can be
applied for identification and modularisation of crosscutting user-level functional
concerns. This is also true for the misuse cases, as this approach is an extension of the
Use Cases approach.

In the Use Cases approach agents are the people external to the system (or other
external systems), which restricts the use cases to the user-level. The misuse cases
approach, on the contrary, accepts that “hazards arise … from the system and subsystem
functions” [29], and allows the subsystems to be specified as agents also. This, in turn,
allows for the system-specific crosscutting functionality to be identified and
modularised. It also implies that use cases can be defined for the design and
implementation stages.

With regards to identification of non-functional concerns, the approach suggests to
“think through scenarios to elicit constraints and non-functional requirements” [28].
Some non-functional requirements could surface from misuse scenarios, e.g., a hostile
agent software error could “intend” to cause failure. The failure should be countered if
the software is reliable. As a result reliability is identified as a requirement. However,
this approach is more appropriate for understanding what the non-functional
requirements imply, rather than their identification. For instance, thinking about
scenarios that make the system fall short of reliability can demonstrate what the users
expect from a reliable system.

3.3.4.3 Summary of Use Case and Scenario-Based Approaches
Today use cases and scenarios are the most widely used methodologies. We have
discussed only two representative approaches from this space: the original Use Cases
approach and its variation for misuse cases. The first one focuses on useful functionality
of the system and system–actor interaction. The second one examines improper use of
the system and its resources in order to develop solutions against such abuse.

Both the discussed approaches focus on treatment of functional concerns, largely
disregarding non-functional ones. Although the Misuse Cases approach may address
some non-functional concerns, this is more by an accident, rather than by design and
such concerns are still largely disregarded. Besides, while use cases can modularly
capture crosscutting functionality in extension and inclusion cases, there is no support
for analysing, composing and resolving conflicts for such crosscutting concerns.

3.3.5 Summary of Non - AO Approaches

This concludes our discussion of a selected set of cotemporary Requirements
Engineering approaches. While we had no ambition of presenting an exhaustive survey

 53

in this document, we have attempted to include the most influential pieces of work
which have inspired the emergent work on Aspect-Oriented Requirements Engineering
(discussed in section 3.4 below).

3.4 AO approaches
Requirements Engineering techniques that explicitly recognise the importance of clearly
addressing both functional and non-functional crosscutting concerns, in addition to non-
crosscutting ones, are called Aspect-Oriented Requirements Engineering Approaches.
The emergence of these approaches is prompted by three major factors: need for
composition, traceability, and development of new technology.

The first influencing factor is the realisation that integration of separated requirements
artefacts (e.g., viewpoints, goals and softgoals, use cases, etc.) is a bottleneck in many
requirement methodologies. For instance, it is difficult to integrate the viewpoints of
individual stakeholders when producing the complete system, or it is hard to integrate
the security and response time softgoals with the distributed data retrieval goals, etc.
This difficulty is caused by scattering of a concern in many artefacts (e.g., security
issues are present in many viewpoints in PREview) and intertwining of concerns (e.g.,
security and response time requirements may influence each other and constrain the data
retrieval). This integration bottleneck makes it difficult to modularly view and reason
about the concerns represented in several artefacts (e.g., the security concern in
PREview is present in many viewpoints, but has no modular representation for itself).
The inability to effectively reason about crosscutting concerns at the requirements leads
to a poorer understanding of the stakeholders’ requirements as well as their trade-offs.

The second factor is the need to trace crosscutting properties across the lifecycle of a
software system. It is not just sufficient to identify and reason about crosscutting
functional and non-functional concerns during requirements engineering. Once these
concerns and their associated trade-offs have been established, it is essential that the
software engineers can trace them to architecture, design, implementation and
subsequent maintenance and evolution. Modularisation of crosscutting properties at the
requirements level is the first step towards maintaining such traceability.

The third factor is the arrival of Aspect-Oriented Programming, which has put forward
new concepts for modularising scattered and tangled (i.e. crosscutting) concerns and
new composition mechanisms (such as joinpoints and pointcuts). Identifying and
treating such crosscutting properties from early on in the software lifecycle helps ensure
homogeneity in an aspect-oriented software development process and also contributes to
the aspect traceability goal mentioned above.

Thus, Aspect-Oriented Requirements Engineering approaches focus on systematically
and modularly treating, reasoning about, composing and subsequently tracing
crosscutting functional and non-functional concerns via suitable abstraction,
representation and composition mechanisms tailored to the requirements engineering
domain.

In the following sub-sections we discuss the most prominent and well developed AORE
approaches. The approaches are mainly grouped into similar broad classes, as the non-
AO approaches discussed in section 3.3, except where relevant work on AO exists in for
a class not identified earlier (e.g. a class for multi-dimensional RE work). The
discussion on each representative approach within the group is structured in the same

 54

way as for the non-AO approaches: looking at the general method, artefacts, and the
process. The selected groups and approaches are:

• viewpoint-based AO group represented by work on Aspect Oriented
Requirements Engineering with Arcade [1, 40],

• gaol-oriented AO group represented by Aspects in Requirements Goal Models
[41],

• use case- and scenario-based AO group represented by Aspect-Oriented
Software Development with Use Cases [38, 42], Scenario Modelling with
Aspects approach [43-45], and Aspectual Use Case Driven Approach [46, 47],

• multi-dimensional separation of concerns group [48] represented by Cosmos
[49, 50] and Concern-Oriented Requirements Engineering [13, 51],

• AO component-based group represented by Aspect-Oriented Requirement
Engineering for Component-Based Software Systems [52, 53],

• other approaches group represented by the Theme/Doc approach [54-56]

3.4.1 Viewpoint-Based Aspect-Oriented Approaches
Viewpoint-Based AO approaches extend the classical viewpoint work with the notions
of crosscutting concerns and composition. Presently the only known viewpoint-based
AORE approach (discussed below) is based on PRVeiw.

3.4.1.1 AORE with Arcade
The approach is called “aspect-oriented requirements engineering” as it is one of the
first approaches to introduce aspect-oriented concepts at the requirements level. In fact
[40] was the first paper to introduce the term “Early Aspects” which is now a defacto
term for work on aspect-oriented requirements engineering and architecture design. In
order to avoid confusion with the general topic of aspect-oriented requirements
engineering (AORE) we will refer to this approach as “AORE with Arcade” from this
point onwards, Arcade being the tool that supports the AORE approach in question.

3.4.1.1.1 AORE with Arcade Method
The Aspect-Oriented RE approach initially outlined in [40] and developed in [1]
proposes a technique for separating aspectual and non-aspectual requirements, as well
as their composition rules. This work has developed a general RE process model
(demonstrated in Figure 3-27) which can be instantiated with any requirements
engineering techniques.

In [1] a concrete instantiation of the model is presented, using PREview-like viewpoints
and an XML-based composition mechanism [1]. In this instantiation, the aspectual
requirements are similar to PREview concerns – broadly scoped requirements that
crosscut user requirements derived from many viewpoints. However, in PREview, the
aim is to discover requirements and produce a requirements specification document26.
AORE with Arcade, in addition, aims to modularise and compose the requirements level
concerns, not only producing a requirements specification document, but ensuring its

26 This discussion is on use of PREview viewpoints for requirements specification, rather than process
improvement.

 55

consistency. This is achieved through detecting conflicts via requirement composition
and handling the identified conflicts between viewpoints, concerns, and requirements.

The approach balances the need to formalise the concerns, viewpoints, requirements,
and composition operators and rules to ease representation and proof generation with
the need to keep the artefacts simple enough to be understandable for the end users
(who will be involved in conflict resolution with these artefacts). Consequently, the
approach uses XML for artefact representation, keeping them structured, semi-
formalised, yet simple and understandable. An additional benefit of using XML-based
composition rules and operators is the ease of their change and extension as required for
an individual project.

Composition is supported via a set of composition operators, actions, and outcomes. An
example composition rule is presented in Figure 3-26 in the section 3.4.1.1.2.

AORE with Arcade also assists in preparing the identified requirements for the next
stage of the development lifecycle by providing directions for their mapping. The
requirements document, and conflict resolution decisions produced via AORE with
Arcade method are then provided as inputs to the PROBE framework [57, 58]. PROBE
was developed to establish links between aspectual requirements and their later
lifecycle-stage artefacts. It generates proof obligations for AORE artefacts and supports
tracing these from requirements through architecture, design, and implementation
stages.

The most important contributions of this approach are its ability to separate and then
compose crosscutting and non-crosscutting requirements thorough simple yet powerful
and flexible composition support; thorough conflict identification and resolution
support, and the possibility of validating and tracing the requirements throughout the
whole software development lifecycle.

3.4.1.1.2 AORE with Arcade Artefacts
The main concepts in the PREview-style instantiation of AORE with Arcade are
viewpoints and concerns. An example of AORE viewpoint and concern is presented in
Figure 3-25 which demonstrates part of a Portuguese toll collection system where a
device (called gizmo) is credited at an ATM, installed in a car, and activated to pay tolls
as cars pass the toll gate.

<?xml version="1.0" ?>
<Viewpoint name="ATM">

<Requirement id="1">
The ATM sends the customer's card number,

account number and gizmo
identifier to the system for activation
and reactivation.
<Requirement id="1.1">

The ATM is notified if the activation or
reactivation was successful or not.
<Requirement id="1.1.1">In case of

unsuccessful activation or
reactivation the ATM is
notified of the reasons for failure.

</Requirement>
</Requirement>

</Requirement>
</Viewpoint>

<?xml version="1.0" ?>
<Concern name="Compatibility">

<Requirement id="1">
The system must be compatible
with systems used to:

<Requirement id="1.1">activate
and reactivate gizmos;

</Requirement>
<Requirement id="1.2">deal with
infraction incidents;

</Requirement>
<Requirement id="1.3">charge

for usage.
</Requirement>

</Requirement>
</Concern>

(a) (b)

Figure 3-2527: Viewpoint and Concern Artefacts in AORE

27 Source of Figure: [1] (a): Figure 2, (b): Figure 6.

 56

In AORE with Arcade, both the viewpoints (Figure 3-25 (a)) and concerns (Figure 3-25
(b)) have requirements and sub-requirements (also referred to as children of the top
level requirement) with their unique identification numbers. These identification
numbers are used to refer to the specific requirements during composition, as shown in
Figure 3-26(a).

The composition also uses a Constraint tag which defined how a viewpoint’s
requirements have to be constrained by a specific aspectual requirement. Constraint has
actions, operators and outcome elements. While AORE provides a set of such reusable
actions, operators, and outcomes, it also allows for introduction and use of new user-
defined ones, as and when needed. Figure 3-26(b) provides some examples of these
reusable elements and their semantics.

<?xml version="1.0" ?>
<Composition>

<Requirement aspect="Compatibility" id="1.1">
<Constraint action="ensure" operator="with">

<Requirement viewpoint="ATM" id="all" />
</Constraint>
<Outcome action="fullfilled" />

</Requirement>
</Composition>

Constraint Action:
Enforce: used to impose an additional condition

over a set of viewpoint requirements.
Ensure: used to assert that a condition that should

exist for a set of viewpoint
Constraint Operator:
During: describes the temporal interval during

which a set of requirements is being
satisfied.

With: Describes that a condition will hold for two
sets of requirements with respect to
each other.

Outcome Action:
Satisfied: used to assert that a set of viewpoint

requirements will be satisfied after the
constraints of an aspectual requirement
have been applied.

Fulfilled: used to assert that the constraints of an
aspectual requirement have been
successfully(a) (b)

Figure 3-26 28: An example Composition and composition Actions, Operators, and Outcomes for
AORE.

The composition rule defines the relationship between the aspectual requirements (i.e.
requirements defined for the concern) and viewpoint requirements (the requirements of
an individual viewpoint) at the granularity of an individual requirement. If one wants to
include/exclude all the requirements of a viewpoint in a composition, it can be done by
using all value for the id attribute of the Requirement element in the composition
specification (e.g., Figure 3-26(a)). The composition operators of a Constraint tag
define the type of relationship between the requirements, actions define how these
relationships should be enacted; and outcomes define what should be expected as a
result of the composition. Thus, the composition rule presented in Figure 3-26(a) states
“Compatibility Requirement 1.1 (that the system must be compatible with the systems
used to activate and reactivate a gizmo: Figure 3-25(b)) must be ensured with regards
to all Requirements of ATM with the outcome that the latter are fulfilled”.

In addition to these XML-based elements, AORE with Arcade also uses matrices to
relate concerns to each other and to viewpoints as well as to assign weights to
conflicting requirements during conflict resolution.

Another important set of artefacts are the proof obligations generated by PROBE [57,
58] expressed in standard linear temporal logic.

28 Source of Figure:
[1] Ibid. (a) adopted from Figure9; (b) adopted from Tables 4, 5, 6.

 57

3.4.1.1.3 AORE with Arcade Process
The process of AORE with Arcade usage (as described in [1]) is depicted in Figure 3-27
below.

Identify and specify
stakeholders’ requirements

Identify and
specify concerns

Identify coarse-grained
concern/stakeholders’
requirements relationships

Identify candidate
aspects

Define composition
rules

Compose aspects
and stakeholders’
requirements

Build
contribution
table

Attribute weights
to conflicting
aspects

Resolve
conflicts

Handle conflicts

Revise
requirements
specification

Specify aspect
dimensions

Compose

Identify & Specify

Figure 3-27 29: The Process Model for AORE

The process starts by identifying stakeholders’ requirements. When using the PREview-
based instantiation, this implies identification of viewpoints and collection of their
related requirements. The identified requirements then are specified through provided
XML templates.

The next step focuses on identification and specification of concerns. Unlike PREview,
where concerns are discovered first and viewpoint requirements collected with these
concerns in mind, AORE discovers concerns by analysing the initial requirements and
also allows recursive concern and requirement identification. This is followed by
identification of coarse-grained relationships between concerns and viewpoints. For this
a matrix is built to mark which concerns affect which viewpoints. If a concern affects
several viewpoints in the matrix it is considered a candidate aspect.

Next the developer defines composition rules between aspectual requirements30 and
viewpoint requirements at the level of an individual requirement [1]. At this stage the
requirements engineer should specify how the identified viewpoint requirements and
concerns should be composed and (if necessary) specify customised composition
operators. Then the concern and viewpoint requirements are composed in accordance
with the specified rules.

After composition the conflict handling is supported at two levels. First, due to the
ability to compose aspectual and non-aspectual requirements at fine granularity, the
need for analysing possible conflicts is eliminated when different concerns affect
different requirements within the same viewpoint. Secondly, a mechanism for conflict
assessment and resolution is provided when concerns do affect the same requirement. In
this case a contribution matrix is to be built, with only negative contributions presenting
a real problem. Then weight attribution based on fuzzy intervals is used to prioritise the
conflicting requirements. Only if equal weights are assigned to conflicting requirements,
there is a need for negotiation between stakeholders.

29 Source of Figure: [1] Figure 1.
30 These are called external requirements in PREview.

 58

Finally, the process concludes by specifying aspect dimensions, i.e. deciding whether
the aspect should be mapped to a function, decision or aspect at the later stages of
software lifecycle [1].

All artefacts and documents produced via the above described process then form an
input to the PROBE framework [57, 58], which gives temporal logic semantics to the
natural language of the AORE-related terms, indicating what is to be proven about the
implemented system with the given concerns, as opposed to a system without them.
Additionally all UML design elements realising the AORE requirements should also be
fed into PROBE, when available. Having treated all its inputs, PROBE produces proof
obligations in temporal logic that should hold for the implemented aspects of the
system. These proof obligations can be used both as input for formal model checkers or
for test case generation to validate that the requirements have been correctly
implemented.

3.4.1.1.4 Identification and Treatment of Crosscutting Concerns with AORE
This approach has a generic mechanism for concern handling which can easily suit both
functional and non-functional concerns. However, it is not clear how the crosscutting
functional concerns should be identified. Identification of crosscutting non-functional
concerns is also not completely satisfactory, as there is no support (e.g., guidelines,
tools, etc.) for the requirements engineer in detecting these from the requirements
collected from the stakeholders.

On the other hand, the very recent work [59] on this approach turns to application of
semantic linguistic analysis of natural language and requirements documents for aspect
identification. Although this work is at an early stage at the time of preparation of this
report, it already has a sound well structured mechanism for identifying both functional
and non-functional crosscutting concerns. An aspect identification tool built on a corpus
linguistics analysis tool WMATRIX [60] is presently under construction.

3.4.2 Goal Based Aspect Oriented Approaches

For the goal-based approaches it is common to have a goal or a softgoal contributing to
several other goals. Such relationships clearly fit into the crosscutting pattern of
scattering and tangling. However, presently there is not much work available for goal-
based aspect-oriented requirements engineering.

3.4.2.1 Aspects in Requirements Goal Models (ARGM)

3.4.2.1.1 ARGM Model
The work presented in [41] argues that aspects can be identified during goal-oriented
requirements analysis. Aspects are discovered from the relationships between functional
and non-functional goals by decomposing these into sub-goals, sub-softgoals, and their
operationalisations. When the goals and softgoals have been decomposed and
operationalised, the correlation links between softgoals and related functional goals are
established, as discussed in section 3.3.2.1. From the resulting Goal/Softgoal
Interdependency Graphs the aspects can be detected as tasks with high fan-in (i.e. links
to goals/softgoals to whose satisfaction a task in question contributes).

A specific type of graph, called V-graph, is used to represent the goal-softgoal-aspect
relations.

 59

3.4.2.1.2 ARGM Artefacts
This approach is based on goal and softgoal [10] approaches, thus all the artefacts for
goals, softgoals, tasks, decompositions and alike used in those approaches are also used
in here. In particular, in order to reason about the interdependencies between functional
and non-functional requirements, V-graphs are used.

As shown in the Figure 3-28 (a), a V-graph consists of a functional goal, a non-
functional softgoal and a task contributing to the satisfaction of both the goals.

(a)

(b)

Figure 3-28 31: (a) V-Graph Used to Link a Task of the Goal Hierarchy to a Softgoal as Its
Operationalisation; Goals is an Octagon, Task – a Hexagon, a Softgoal – a Cloud. (b) Consistent
Decomposition of Goals and Softgoals.

The use of V-graphs for decomposing goals and softgoals and generating the
interdependency graphs is shown in Figure 3-28 (b) for an on-line shopping site
example. On this interdependency graph, the contributions (S for satisfy, D for deny)
and weights (ranging from 0 to 1) of sub-goals and sub-softgoals to their parents are
also labelled.

After the goal and softgoal decomposition is complete, the goal interdependency graph
is produced that contains both functional and non-functional goal-related tasks. Figure
3-29 shows part of such a graph for an on-line shopping site’s shopping transaction
(supported through a session cookie) which includes selecting the products, adding them
to the cart, preparing to check out, and the actual checking out with its related tasks.

31 Source figure: [41] (a) Figure 3; (b) Figure 9; (c) Figure 13.

 60

[cart] is the pointcut topic
Clearing, Updating, Login/Logout, Selecting,
Addition are functional advice
Session Cookie is non-functional (aspectual)
advice
The graph is Goal Aspect

Figure 3-29 32: Goal, Softgoal, and Task Graph

Similar to the NFR framework, each goal has a topic and a type. The type reflects the
generic functional/non-functional requirement (e.g., in Figure 3-29 the goal is of
Transaction type), while the topic captures the contextual information of the goal (e.g.,
in Figure 3-29 the Transaction is within the context of cart topic). In this approach
topics are also used as pointcuts at which functional goals and tasks are related to non-
functional softgoals (e.g., [cart] topic in Figure 3-29). The tasks are advising the goal
with the given topic. Aspectual tasks are the operationalisation tasks for the non-
functional requirements.

Additionally, the approach puts forward the concept of goal-aspect: the goal which
aspectual task and functional tasks realise. This is illustrated in Figure 3-29. Also, it is
suggested that the advising tasks can be separately viewed and worked on, for
convenience, and later composed into the general SIG through their topics.

3.4.2.1.3 ARGM Process
This approach provides a set of clear processes for goal/ softgoal decomposition and, at
the end, for aspect identification. A number of procedures and sub-procedures for this
work are discussed in [41]. Below we consider the main procedures.

The decomposition begins with a procedure called AspectFinder, which takes as input a
set of goal and softgoal nodes, iteratively breaks them into sub-goals and sub-softgoals
(this is performed via user input) using the Decompose procedure, correlates these goals
and their decompositions using the Correlate procedure, and resolves conflicts between
goals/subgoals through the Resolve Conflicts procedure.

32 Source of Figure: [41]. Adopted from Figure 14.

 61

The Correlate procedure establishes an initial relationship between root functional goals
and softgoals. The relationship is represented by one or more correlation links. The sub-
goals propagate their contributions up to the parent goal satisfaction, over the
correlation links.

The Decompose procedure is used to input new sub-goal nodes, defined from the parent
goals and softgoals. If any of the sub-goals provides a negative contribution to the
parent, the Resolve Conflicts procedure is invoked, which removes the link between the
offending sub-goal and its parent goal. The refinement process must be monotonic: no
goal/softgoal must become less satisfied due to decomposition.

The aspect identification procedure is called ListAspects. It gathers a set of tasks that
contribute to a softgoal. Aspects are the operationalisations of the softgoals that
contribute to the functional goals. It is suggested that aspects are named after the
softgoals they operationalise.

3.4.2.1.4 Identification and Treatment of Crosscutting Concerns with ARGM
With ARGM the goals (functionality) and softgoals (non-functional concerns) are
recursively decomposed until they can be reduced to a specific task. The crosscutting
functional and non-functional concerns can then be identified as the tasks that contribute
to several goals and softgoals. However, due to the decomposition mechanism which
does not allow decomposition to sub-goals that negatively contribute to the parent goal,
it is not evident that the user requirements are adequately mapped to sub-goals and
tasks. For instance, a worst case scenario for such decomposition is illustrated in Figure
3-30.

A

A1 A2

A3 A4

-

Figure 3-30: A worst case scenario for Decompose procedure

Here A3 negatively contributes to A1, thus the Decompose procedure will remove A3,
which will deny A2 (since A2 requires both A3 and A4), and consequently, A itself
(which requires A1 and A2).

3.4.3 Use Cases and Scenario Based Aspect Oriented Approaches
The use cases and scenario based approaches have been somewhat ahead of other
classical approaches with regards to composition (e.g., through extend and include
relationships). However, the functionality-centred nature of these techniques has left the
issues of non-functional concerns not effectively tackled by them. Consequently the
AORE work in this area extends the available composition support and attends to
covering the non-functional properties.

 62

3.4.3.1 Aspect-Oriented Software Development with Use Cases
Aspect-Oriented Software Development with Use Cases (AOSD/UC) [38, 42] suggests
that use cases are crosscutting concerns, since the realisation of each use case affects
several classes. This approach adopts an implementation-language-like view on use
cases as aspects. This view is strongly influenced by AspectJ [61] and HyeprJ [62]
languages. AOSD/UC adopts AspectJ-style linguistic constructs (e.g., joinpoint and
pointcut) and HyperJ-type decomposition modules (e.g., slices).

3.4.3.1.1 AOSD/UC Method
AOSD with use cases [38] extends the traditional use cases approach [8] (discussed in
section 3.3.4) with two main elements: pointcuts for use cases and grouping of
development artefacts in use case slices and use case modules:

• Pointcuts here are groupings of use case joinpoints represented by extension
points [42] and such elements as classes, operations, etc. within a use case.
Whereas extension points (named points in the body of a use case specification)
were available in use case modelling before AOSD/UC, these were only used to
refer to a particular extension use case. In AOSD/UC extension points become a
part of an ‘extension point and pointcut’ pair that helps to decouple the
extending and base use cases and facilitates pointcut identification at the design
stage.

• A use case slice contains the details of a use case at a given development phase,
e.g., requirements or design. A use case module, on the other hand, contains all
the details related to a use case, across all development phases.

The approach distinguishes two types of use cases: peer and extension. Peer use cases
are distinct and independent of each other, each can be used separately with no
reference to the other; they are the base requirements. When peer use cases are
composed, their full operations are composed without intervention in their execution.
However, composition of peer use cases needs to take into consideration the
overlapping behaviour and conflicts between classes used for realisation of different use
cases.

Extensions are additional features on top of the base use cases. Though extensions can
be defined independently of the base cases, they should normally be used along with the
base. When extensions are composed with the base cases, their operations usually
interfere with the execution of the operations of the base use case.

The AOSD/UC also encourages the capture of non-functional requirements as use cases,
using a construct called infrastructure use case which refers to the activities that the
system infrastructure needs to perform to meet user requirements.

3.4.3.1.2 AOSD/UC Artefacts
All the artefacts discussed in section 4.3.4 for Use Cases are applicable in AOSD/UC,
even if some will be slightly modified.

The UML use case representation as a classifier (Figure 3-31) is preferred to the ellipse
representation because a classifier can provide more details about the use case. The
classifier is extended with /basic/, /alt/, and /sub/ tags for basic, alternative and use case
execution flows respectively. The basic tag indicates that the use case can be triggered

 63

by an actor, while the sub tag indicates that the flow can be referenced or included only
by another flow. Alternative flows can be defined as extension use cases.

Reserve Room
Flows
{basic} Reserve Room
Extension Points
Update Room Availability =
Bacis Flow step 5

Handle Waiting List
Flows
{alt} Queue for Room

{after UpdatingRoomAvailability yields
NoRoomAvailable }

Extension Pointcuts
UpdateRoomAvailability = Reserve Room. Update
Room Availability

<<extend>>

Figure 3-31 33: Use of UML Extended Classifier with Extension Points and Pointcuts for AOSD/UC,
Using an On-Line Hotel Room Booking Example.

As demonstrated in Figure 3-31, the extension use case can be referenced from the base
use cases through the names of these sub-flows (called extension points, provided in the
Extension Points section of the use case representation). These extension points are in
turn referenced from within the extension use cases themselves, via extension pointcuts.
The flow definition in the extension use cases can also be complemented with an
extension condition and before, after, around keywords, reflecting the conditions and
sequence of extension point execution in the base use case flow. The extension points
and pointcuts are later on used to develop design level pointcuts.

The newly introduced notions of use case slice and use case module in AOSD/UC are
both used to localise use case related and complementary artefacts respectively at a
specific lifecycle stage and across all stages. Some of the elements that can be contained
in a requirements level use case slice are demonstrated in Figure 3-32.

use case
specification
slice

interaction
diagrams

conceptual
model
(classes,
operations,
properties)

…

Figure 3-32: Some Elements Contained in a Requirements Level Use Case Slice.

Similar use case slices should be produced for other stages of development, containing
their corresponding elements. The design slice, for instance, should include the
collaboration diagrams, classes, extensions, etc. for a given use case. All such slices are
then packaged into a use case module, as shown in Figure 3-33.

use case
specification
slice

analysis
slice

design
slice

implementation
slice

test
implementation
slice

test
design
slice

<<trace>> <<trace>> <<trace>>

<<trace>>

<<trace>><<trace>><<trace>><<trace>>

Figure 3-33 34: The Use Case Module.

33 Source of figure: [38] Figure 6-4.

 64

The special infrastructure use case <Perform Transaction> is used to capture the non-
functional requirements. The template non-functional requirements should be
represented as extension use cases to <Perform Transaction>, as demonstrated in Figure
3-34 below.

<Perform Transaction>

<<extend>>

Track Preferences

<<extend>>

<<extend>>
<Actor> Audit Transactions

Handle Authorization

Use-Case Specification: <Perform Transaction>
Basic Flows
The use case begins when an actor instance performs a

transaction to view the values of the entity instance
1. The system prompts the actor to identify the desired

entity instance
2. The actor instance enters the values and submits this

request.
3. The system retrieves the entity instance from its data

store and displays its values.
4. The use case terminates
Alternative Flows
A1. Access Control
If in step 3 of the basic flow the request requires

authorization, the system checks the actor instance’s
access rights.

1. If the actor instance does not have access rights, the
request is rejected. The use case terminates.

2. Otherwise, the use case proceeds.
A2: User Preference
….
Special Requirements:
All retrieval of records should take no longer then 2 seconds

Handle Authorization
Flows
{basic} Define Permission
{alt} Check Authorization {around

PerformTransationRequest}
Extension Pointcuts
PerformTransationRequest = Perform Transation.

Perform Request

(a)

(b)(c)

Figure 3-34 35: An Example Infrastructure Use Case in AOSD/UC.

The suggested advantages of using the template use case are that it helps to visualise the
context of infrastructure mechanisms (such as authorisation, etc.) and serves as a base
for systematically identifying extension points.

The approach also provides a number of design level artefacts, such as design level
pointcut, parameterised use case slice, etc. These, however, are not considered relevant
for this section and are not reviewed.

3.4.3.1.3 AOSD/UC Process
AOSD/UC is a development approach that spans the whole development lifecycle: from
requirement gathering to implementation. Here, we focus on requirements engineering
part of the process only.

For the requirements engineering part, the AOSD/UC process is very similar to that of
the traditional Use Case process (discussed in section 3.3.4). The only significant
difference is the inclusion of separate use cases for non-functional requirements. These
should be identified, defined and recorded using the infrastructure use cases along with
identification and processing of functional use cases. Another minor difference is the
packaging of each use case and its related elements separately into a use case slice.

34 Source of figure: [38] Figure 10.5.
35 Source of figure: [38] (a) Figure 7.6; (b) adapted from Listing 7.3; (c) Figure 7.7.

 65

3.4.3.1.4 Identification and Treatment of Crosscutting Concerns with
AOSD/UC

Identification and treatment of crosscutting functional concerns by AOSD/UC at the
requirements engineering stage is quite similar to that of the Use Case approach
(discussed in section 3.3.4.1.4), with minor differences of using classifier representation
with an Extension Pointcut section for use case representation.

In addition, AOSD/UC advocates applicability of use cases for non-functional
requirement treatment: “so long as a requirement requires some observable response to
be programmed into the system you can apply use cases” and “as long as you can define
a test, you can define a use case for it” says [38]. As demonstrated in Figure 3-34, these
are modelled as extensions to the Perform Transaction template use case.

However, the argument for the non-functional use case definition seems to disagree
with the actual definition of a use case as what the user does and what the system does
in response. A user does not do anything for the non-functional requirements, s/he
simply requires them to be present. So there is no action involved from the user’s side in
most cases, for instance, when a user enquires about the weather over the internet, the
user does not act with an intention to get a response within 2 seconds, or to synchronise
his/her query with that of the weather update system – these are by-products of asking
about the weather. Thus, the non-functional use case identification in this case should
traverse in the following order: (a) what the user wants, (b) how it can be tested, (c)
design test, (d) convert it into a use case, (e) extend the functionality with new use case.

Another uncertain area is that of aspect definition in AOSD/UC. As mentioned earlier, it
is suggested that a use case is an aspect as it crosscuts many classes. This, however,
assigns a characteristic to the requirements level concern on the basis of its design
representation. Such a concern will certainly be crosscutting at the design level (with
OO classes), but this might not be sufficient for it to be crosscutting at the requirements
level as well.

3.4.3.2 Scenario Modelling with Aspects
Scenario Modelling with Aspects focuses on effects of aspects on behaviour modelling,
taking a UML-based view. Here, the repeated behaviours is generalised into aspects,
which are then instantiated when required.

3.4.3.2.1 Scenario Modelling with Aspects Model
In [43-45] an approach to modelling aspects as part of scenario-based modelling is
proposed. The motivation for this approach is to assist in developing a more complete
and consistent set of scenarios by removing the need to repeatedly deal with the same
‘non-nominal, crosscutting’ scenarios (e.g., failures, exceptions, etc.), which occur
along with many scenarios.

The non-crosscutting and aspectual parts of scenarios are modelled separately from each
other then merged as required, producing the complete scenarios. The composed
complete scenarios can then be executed for validation purposes.

3.4.3.2.2 Scenario Modelling with Aspects Artefacts
This approach uses use cases for identification of functional requirements.
Consequently, all artefacts discussed for the Use Cases approach (discussed in section
3.3.4) are also applicable here. An example use case diagram is presented in Figure 3-35

 66

(a) for a parking lot use and payment example. Additionally, UML sequence diagrams
are used for representing non-crosscutting scenarios (e.g., Figure 3-36(a)), from which
Finite State Machines are generated using a state machine synthesis algorithm [63].

(a) (b)

Figure 3-35 36 : Artefacts of the Scenario Modelling with Aspects approach: (a) An Example Use
Case; (b) Interaction Pattern Specification Example.

Aspectual scenarios are represented as Interaction Pattern Specifications (IPS) [64],
where the IPS describes a pattern of interaction between its participants in terms of roles
that the participants must fill in. It should be noted that this approach extends the notion
of Interaction Patterns specification, allowing non-role elements to be included in it. An
example of IPS is illustrated in Figure 3-35(b). While this might appear to be very
similar to the UML interaction diagrams, some of the messages and their parameters
have “|” prefixed to their names. This prefix indicates a role that needs to be filled by
the participants instantiating the pattern.

The aspectual scenarios are translated from IPS to State Machine Pattern Specifications
(SMPS) using a state machine synthesis algorithm [63]. An example for SMPS is
provided in Figure 3-36(b). Again, the SMPS are quite similar to the UML state
machines, but have role elements that need to be filled.

(a) (b)

Figure 3-36 37: (a) UML Sequence Diagram; (b) State Machine Patter Specification.

36 Source of Figures: [45] :(a) Figure 9, (b) Figure 10.

 67

Before SMPS for aspectual scenarios and Finite State Machine (FMS) for non-aspectual
scenarios are composed, the roles defined in SMPS need to be mapped to elements of
the FMS. For this a State Machine Binding Specification is necessary. For instance, an
example binding specification to bind the SMPS from Figure 3-36(b) to FSM of Figure
3-37(a) can be as follows:

|s1 binds to t1
|s2 binds to t2
|Action binds to insertTicket
|a binds to t
|CannotRespond binds to timeout

After this specification is provided, the state machines can be merged, producing the
complete state machine presented in Figure 3-37b).

(a) (b)

Figure 3-37 38 : (a) Finite State Machine Produced form Interaction Diagram from Figure 3-36(a);
(b) Composed FSM, Combined from State Machines on Figure 3-36(b) and Figure 3-37(a).

3.4.3.2.3 Scenario Modelling with Aspects Process
Figure 3-38 presents the process of the Scenario Modelling with Aspects approach.

Identify and define
requirements

Identify
scenarios

Specify aspectual
and non-aspectual
scenarios

Identify aspectual
scenarios

Simulate and validate
system requirements

Compose aspectual
and non-aspectual
state machines

Generate aspectual
and non-aspectual
state machines

Figure 3-38 39: The process of Scenario Modelling with Aspects Approach.

The process commences with requirements identification and definition. [44] suggests
that this is carried out using use cases to identify functional requirements and templates
as in [46] for non-functional ones. This is followed by use case refinement and scenario
identification. The non-functional requirements are likely to result in crosscutting
scenarios, and other crosscutting scenarios may be identified for some functional
requirements.

Source of Figure: [45] (a): Figure 11, (b) Figure 12.
38 Source of Figure: [45] (a): Figure 13, (b) Figure 14.
39 Source of Figure: [45] Figure 1.

 68

Thereafter, the non-crosscutting scenarios are modelled as UML sequence diagrams
(Figure 3-36(a)), then Finite State Machines are generated from them (Figure 3-37(a))
using a state machine synthesis algorithm [63].

Aspectual scenarios are modelled as Interaction Pattern Specifications (IPS; Figure
3-35(b)) [64], which are then translated into State Machine Pattern Specifications
(Figure 3-36(b)) using a state machine synthesis algorithm [63].

The aspectual state machines are then instantiated and, finally, merged with non-
aspectual ones using State Machine Binding Specification, which provides a
correspondence between relevant states of each of the state machine.

Now, the composed state machine (Figure 3-37(b)) can be simulated using existing
simulation tools. Alternatively, analysis tools for formal model checking techniques can
be applied to prove conformance of the scenarios to the requirements.

When this process (discussed in [45]) is used the instantiation and merging of aspectual
scenarios is carried out at the state machine level. An alternative process to this is
discussed in [44] where the IPS for aspectual scenarios are instantiated, producing
interaction diagrams; then the interaction diagrams for aspectual and non-aspectual
scenarios are merged, followed by the generation of a composed state machine. When
merging is carried out with interaction diagrams, the operators detailing how to
interleave messages from different scenarios also need to be provided. Yet, both the
processes lead to the same end and are both acceptable.

3.4.3.2.4 Identification and Treatment of Crosscutting Concerns with the
Scenario Modelling with Aspects Process

The approach does not address the issues of aspectual scenario identification, merely
stating that scenarios that represent use cases which affect other use cases (such as
failure handling) are aspectual. The approach also suggests that the non-functional
requirements will result in crosscutting scenarios. Such scenarios are illustrated in [44]
as behaviours constraining the main functionality (e.g., preventing client connection
while some processing is in progress). While this could indeed be a part of the non-
functional requirement representation, further discussion is necessary to clarify how
fully such scenarios can represent non-functional requirements. Nevertheless, once
identified, the treatment of functional and aspectual scenarios is well represented and
justified.

3.4.3.3 Aspectual Use Case Driven Approach
The Aspectual Use Case Driven Approach is similar to AOSD/UC in that it separates
the crosscutting functionality into inclusion and extension use cases and also suggests to
model quality attributes as use cases. However, here quality attributes do not have to be
attached to an infrastructure use case. Also this approach provides a structured way – a
template - for identification of crosscutting concerns.

3.4.3.3.1 Aspectual Use Case Driven Approach Method
The Aspectual Use Case Driven Approach [47] is concerned with extending the use
case model to integrate non-functional requirements and identify the crosscutting
functional use cases. The separated use cases for all concerns should also be integrated
into a complete model using the provided composition mechanism.

 69

This model extends the work on crosscutting quality attribute identification and
integration into requirements engineering carried out in [46] where the crosscutting
quality attributes are considered as fundamental modelling primitives; and it is further
developed in [65] with support for unanticipated requirements change handling.

3.4.3.3.2 Aspectual Use Case Driven Approach Artefacts
Since the Aspectual Use Case Driven Approach is a use case based approach, all the
artefacts discussed for the Use Cases approach (such as use case diagrams, etc.) are also
appropriate and used for this approach.

Additionally, in this approach the quality attributes are initially represented with the
template depicted in Figure 3-39. The template itself is influenced by [10, 66, 67]. In
order to identify if the quality attribute is crosscutting, one needs to consider the
information provided in the Where and Requirements rows of the template. If the quality
attribute traverses several use cases/models and requirements, it is crosscutting.

Represents how the quality attribute affects other quality attributes. This contribution can be positive (+) or
negative (-)

Contribution

Requirements describing the quality attributeRequirements

List of the actors influenced by the quality attribute and also a list of models (e.g. use cases and sequence
diagrams) requiring the quality attribute

Where

Activities of the software process affected by the quality attribute Influence

Can be optional or mandatoryObligation

Expresses the importance of the quality attribute for the stakeholders. A priority can be MAX, HIGH, LOW
and MIN

Priority

Quality attributes can be decomposed into simpler ones. When all (sub) quality attributes are needed to
achieve the quality attribute, we have an AND relationship. If not all the sub quality attributes are
necessary to achieve the quality attribute, we have an OR relationship

Decomposition

Source of information (e.g. stakeholders, documents)Source

A quality attribute can affect the system (i.e. the end product) or the development processFocus

Executive descriptionDescription

The name of the quality attributeName

Figure 3-39 40: Template for Quality Attributes.

The Aspectual Use Case Driven Approach also employs the notions of overlapping,
overriding and wrapping of functional requirements by non-functional attributes. The
overlapping of a functional requirement by an NFR implies that the NFR modifies the
functional requirement (FR) by being applied before or after it. Overriding implies that
the behaviour described by the quality attribute substitutes the behaviour of the FR.
Finally the wrapping implies encapsulation of the FR by the NFR. Examples of such
relationships are presented in Figure 3-40 and Figure 3-41 (using the Portuguese toll
collection example mentioned in section 3.4.1.1.2).

Figure 3-40 displays how Response Time attribute is wrapping certain functionality of
Gizmo, Vehicle, BankAccount and PriceTable classes. These classes will be involved in
corresponding scenarios and use cases listed in the Where clause of the Response Time

40 Source of figure: [46] Table 1.

 70

NFR template. Their corresponding requirements will also be visible in the
Requirements section of the template.

Figure 3-40 41 : Response Time Quality Attribute Wraps the Functional Requirements.

Figure 3-41 displays the overlapping of Pay Bill and Register Vehicle use cases with the
Security NFR. Here confidentiality must be used before the executions of the use cases
and integrity must be used after them. Correspondingly, the dashed line represents after
conditions while the dark line shows before conditions.

Figure 3-41 42: Security Overlaps Use Cases.

In [65] it is suggested to extend the set of relationships between use cases,
complementing the standard UML include, extend, and inherit relationships with new
ones for collaborate, damage and constrain. Collaborate reflects the positive
contribution of one use case to the other, damage the negative contribution, and
constrain reflects that a global property restricts another use case. An example of such
use of constrain in use case diagrams is presented in the Figure 3-42.

41 Source of figure: [46] Figure 5.
42 Source of Figure: [46] Figure 6.

 71

Figure 3-42 43: Projecting Response Time quality attribute on the use case diagram, using
<<constrain>> relationship.

Another new artefact used in this work is the Use Case Pattern Specification (UCPS)
[65] applied to represent the generic use cases in an abstract way which can later on be
instantiated to suit a particular situation.

The idea of UCPS is based on the idea of Interaction Pattern Specification proposed in
[68]. Use case roles represent the concerns that are more likely to change over time and
these can be instantiated differently for particular configurations of the system. To
describe these use cases in a generic way the generalised UML activity diagrams can be
used. The generalisation of these diagrams is in inclusion of role elements into their
definition, producing the Activity Pattern Specification (APS), in the same way as for
UCPS. The APS are instantiated during use case composition, with assignment of role
elements and a chosen composition operator. Such a composition example is presented
in Figure 3-43.

Compose <use case A> with <use case B>
<step #.> Replace |<modelElement A>

with
<modelElement B>

[]
<modelElement B>

Figure 3-43 44: Composition of Use Case A and Use Case B with Instantiation of |<modelElement>
A Role.

3.4.3.3.3 Aspectual Use Case Driven Approach Process
The steps of the process are depicted in Figure 3-44. The process commences with
actors and use case identification, as per the common Use Cases approach [8]. This is
followed by refinement of the identified use cases to externalise the functionalities that
are spread across several use cases; these functionalities are encapsulated in include or
extend use cases.

Having modularised the functional concerns, the process addresses the identification of
the non-functional ones by analysing the already elicited requirements as well as
obtaining additional information from the system stakeholders. These NFRs are
represented in a template (as shown in Figure 3-39).

43 Source of Figure: [47] Figure 3.
44 Source of Figure: [65].

 72

Figure 3-44 45: The process model for the Aspectual Use Case Driven Approach.

At the next step, the identified NFRs are integrated into the use case model derived in
the previous steps. The integration is achieved by extending the use case model with the
new stereotyped relationships which link the functional use cases with the new NFR use
cases for each of the identified non-functional concern. The extended set of
relationships, as discussed in section 3.4.3.3.2 (i.e. extend, include, inherit, collaborate,
damage, constrain), is used.

Finally, the process summarises the candidate aspect use cases: if a use case is related
to more than one other use case, then that use case is a good candidate for an aspect.

3.4.3.3.4 Identification and Treatment of Crosscutting Concerns with
Aspectual Use Case Driven Approach

In this approach the functional requirements are identified through use cases. The use
cases are then analysed for repeated behaviour and the crosscutting functionality is
separated from all use cases into included or extending use cases. Also, a single-
standing functionality can be identified as potentially crosscutting if it has relationships
with many other use cases. Treatment of functional requirements is supported via the
use cases approach, as well as can be assisted with the newly introduced additional
relationships (damage, collaborate, constrain).

Identification of crosscutting NFRs, on the other hand, is not supported with a clear
procedure. The NFRs are identified via analysis of other requirements and additional
information. Once identified, the NFRs receive a systematic treatment: by being
represented via templates which help to record their inter-relationships, via use case
diagrams with quality attributes and generalised use case pattern and action
specifications.

3.4.4 Multidimensional Separation of Concerns Approaches
Multidimensional Separation of Concerns [69] is based on the premise that all software
development artefacts are made up of multiple, overlapping concerns and that software

45 Source of Figure: [47] Figure 1.

 73

development will benefit if software systems can be flexibly decomposed and composed
according the alternative combinations and organisations of concerns [48].

Approaches discussed in this sub-section maintain the principle that concerns are worth
studying by themselves and that no concern is more important than the others, i.e. there
is no evident base and crosscutting distinction between concerns. Since all concerns are
treated uniformly, one can project their influences on each other and hence observe and
analyse any crosscutting behaviour amongst them.

3.4.4.1 Concern Modelling with Cosmos
Cosmos [48, 49, 70] is a general-purpose concern modelling schema which allows to
model concerns generically and independently (irrespective of any other software
artefact).

3.4.4.1.1 Concern Modelling with Cosmos Method
This work aims to promote concerns to be first-class entities in software development
[50] where concerns are defined as any matter of interest in a software system [49].

The motivations for this intent are many. To illustrate some we should consider that
concerns arise at all stages of software life cycle and are present in various forms
throughout; a single concern can span multiple phases of the life cycle, be related to
multiple instances and types of artefacts, and affect the phases and artefacts in different
ways. Concerns also change over time, causing change in their respective software
artefacts [49].

Cosmos models the software concerns space in terms of concerns, relationships,
predicates, and topics.

Concerns are divided into two main categories: logical and physical. Logical concerns
relate to conceptual entities, such as issues, problem, “itlities”46, etc. Physical concerns
refer to actual constituents of software systems, such as software units, hardware,
services, etc. Each type of concerns can further be grouped into sub-categories [71].

Relationships reflect how the concerns interact with each other; they also are subdivided
into several types. Predicates represent integrity conditions over various relationships
and can be classified accordingly too [49]. Finally, topics are groupings of all other
elements that relate to some particular topic of interest. The general concern model
elements for Cosmos, as presented in [49] are depicted in Figure 3-45.

46 i.e. such quality attributes as availability, reliability, etc.

 74

• Concerns
– Logical

• Classifications
• Classes
• Instances
• Properties
• Types

– Physical
• Collections
• Instances
• Attributes

– Predicates
– Relationships
– Groups
– Predicates

• // subtypes not elaborated

• Relationships
– Categorical
– Classification
– Generalization
– Instantiation
– Characterization
– Topicality
– Attribution
– Membership

• Interpretive
– Contribution
– Motivation
– Admission
– Logical implementation
– Logical composition
– Logical requisition

• Physical
– Physical association
– Physical requisition

• Mapping
– Mapping association
– Physical implementation

Figure 3-45 47: Cosmos Concern Model Elements: Outline.

3.4.4.1.2 Concern Modelling with Cosmos Artefacts
Cosmos intends to model the concerns independently of any type of artefact,
consequently it does not produce any specific artefacts, but only concern descriptions,
as illustrated in Figure 3-46.

The example shown in Figure 3-46 is that of a sample of concerns for a general purpose
cache [70] which supports usual caching and also has some extra functionality such as
logging, collection of statistics, and object dependency tracking. It is interesting to note,
that in this example the cache has been implemented before its concerns were modelled,
consequently, concerns collected for the cache also include its implementation related
elements.

Logical Concerns: Classes
• Object classes

– Cache
– CachedObject
– Other object classes …

• Functionality
– Cache

• Core
• Object expiration
• Operation-enabling
• Statistics logging …

– CachedObject
• Core
• Expiration
• Other functionalities …

– Other classes …
• Behavior

– Cache
• Operational

– Core
– Object expiration
– Operation logging
– Statistics logging…

• Aspectual
– Input checking
– Operation logging..

• Non-operational
– Statistics logging

• State
– Cache

• Objects
• Dependencies
• Configurable controls …

• Properties
– Static properties
– Dynamic properties

• Java code
– Programmed classes

• Classes
• Members

• Decomposed classes
– Anticipated

Logical Concerns: Other Categories

Instances
• Omitted for brevity
• Topics
• Dependencies and transitivity
• Configurable behaviors
• Other topics ...

Properties
• Generality
• Performance
• Information hiding
• Concurrency
• Configurability
• Correctness
• Other properties ...

Instances
• com.ibm.ws.abr.gps.-
• Cache.java
• com.ibm.ws.abr.gps.-
• Cache.class
• com.ibm.ws.abr.gps.-
• CachedObject.java
• com.ibm.ws.abr.gps.-
• CachedObject.class
• Other classes ...

Collections
• whimbrel.watson.ib

m.com
• C:\$Sutton\Caching\

Code\Java\Prog
• rammed
• Other collections ...
Attributes
• com.ibm.ws.abr.gps.
• Cache.java.Size
• Other attributes ...

Physical Concerns

Figure 3-46 48: Selected Concerns from GPS Cache modelled in Cosmos.

Figure 3-46 illustrates what concerns are involved, their functionality, behaviour,
properties, possible mapping to a specific development language, etc. The concern
space thus modelled is multidimensional, in that many elements in the cache can be

47 Source of Figure: [49]] Table 20.1.
48 Source of Figure: [49] Table 20.2 .

 75

assigned to concerns in multiple classifications, and any of the available classifications
can be selected as the base for viewing the rest of the concerns [49]. Once modelled,
concerns can then be used in further software development artefacts at any stages of
development.

By relating concerns to the various artefacts in which they appear, the developers can
improve traceability, foresee impact of concern change and achieve many other benefits
of modularisation and clear understanding of software artefact dependencies.

3.4.4.1.3 Concern Modelling with Cosmos Process
The concern model can be built for any type of development: new, evolutionary, COTS
[49]. For instance, the example described above showed that concerns can be modelled
for an already implemented system. In this case the development will probably be
linked to the needs of evolution, or product family development. The concerns
identified from the implemented system will be complemented with the concerns
representing additional or changed features, which will be related to additional artefacts
and their interactions with the existing system. The developed system can also be re-
modularised on the basis of concern-units.

When used with COTS development, concern models can be used to evaluate the
suitability of particular products for development from the perspective of how their
concerns will interact with the concerns of other products, and contribute to the desired
software system concerns, etc.

If concern modelling is used for a new development, a limited concern model can be
built at the start of the development which can be elaborated as the development goes
on. Concerns related to requirements, design etc. can be added and related to the
artefacts, the relationships between these concerns can be analysed and the software
products structured to reflect the semantics of concern interaction. This, in turn,
facilitates evolution and change. The changes themselves too can be validated against
the concern model.

Besides the descriptions above, presently there is no standard process defined for
concern modelling and analysis with Cosmos [48]. The basic approach is to carefully
study the available documents and artefacts of interest and identify the explicitly
expressed concerns, as well as concerns implied by the documents and artefacts. It is
necessary to select only concerns that are reasonably relevant to the software system, as
the number of concerns will be very high even for small systems. The identified
concerns then should be fitted into the Cosmos categories and used for whatever
development type is appropriate.

3.4.4.1.4 Identification and Treatment of Crosscutting Concerns with Concern
Modelling with Cosmos

Cosmos does not distinguish either between crosscutting and non-crosscutting or
functional and non-functional concerns. All concerns are identified and modelled in the
same way; they simply are classified per different categories of the schema.

3.4.4.2 Concern-Oriented Requirements Engineering
The Concern-Oriented Requirements Engineering Model (CORE) [13, 51] is an
adaptation of the Aspect-Oriented Requirements Engineering (AORE) approach [1]

 76

discussed in section 3.4.1.1. While many of the requirement treatments and
representation techniques used in AORE [1] are carried forward to CORE, the main
difference between these approaches is the adoption of a uniform view on all concerns
in CORE. Concerns in CORE imply any coherent collection of requirements.

3.4.4.2.1 Concern-Oriented Requirements Engineering Method
CORE strives to decompose requirements in a uniform fashion regardless of their
functional or non-functional nature. This makes it possible to project any particular set
of requirements on a range of other requirements, hence allowing the flexibility to
choose “base” and “crosscutting” concerns as desired, rather then having to follow
“functional base and non-functional crosscutting” tradition.

Figure 3-47 illustrates this model. It represents the CORE concern space at the
requirements level: it is presented as a hypercube each face of which stands for a
particular concern. Since all concerns are treated equally, any set of concerns can be
selected as the base to project the influence of another concern or set of concerns onto
this base. In this way CORE supports multi-dimensional separation of concerns [69].

Figure 3-47 49: Concern space represented as a hypercube in CORE. The block arrows represent
concern projections.

The concern projections are achieved through the same composition approach as in [1]:
employing informal, often concern specific, actions and operators. The CORE approach
also supports establishment of early trade-offs among crosscutting and overlapping
requirements, as well as negotiation and decision-making among stakeholders using
similar techniques to AORE [1]. Additionally, this model defines the notions of meta
concern space and compositional intersection [13].

The meta concern space (Figure 3-48) comprises all abstract concerns (both functional
and non-functional) that can manifest themselves in various systems. In this sense the
meta concern space is a catalogue of concerns that appear time and again in various
software systems. Consequently, the abstract concerns from this space can be used as a
basis to classify the requirements of a given system in order to identify the
corresponding concrete concerns in the system space. The utility of the meta concern
space is in cataloguing the abstract concerns, their likely relationships and possible
ways of utilisation.

49 Source of Figure: [51] Figure 1.

 77

Meta Concern
Space

System
Space

Requirements

Figure 3-48 50: Meta Concern Space

The analysis of concern interactions and trade-offs is fairly straight forward in
approaches which have a strong base-aspect separation. The base concerns act as a
reference point with respect to which the trade-offs and interactions of aspectual
concerns are analysed (e.g., [1], [44], etc.). However, in a multi-dimensional RE model,
such as the one employed by CORE, each concern can affect multiple other concerns
and one can choose any set of concerns as a base to observe the trade-offs amongst
other concerns. If left unchecked, this can lead to serious scalability issues due to the
potentially large number of concern combinations to be analysed. The notion of a
compositional intersection introduced by [13] is, therefore, a very powerful concept
within the model. A compositional intersection provides a restricted set of concerns that
can be used as a base for concern projection during concern interaction and trade-off
analysis. In order to understand compositional intersection let us consider that C1, C2,
C3, …, Cn are the concrete concerns in the system requirements and Sc1, Sc2, Sc3, …,
Scn are the sets of concerns that each of them cuts across respectively. If one wants to
identify the trade-offs (if any) between C1 and C2 then, in order to do this, one should
take the compositional intersection of Sc1 and Sc2. However, note that a compositional
intersection is not a simple intersection as in set theory. If Ca is a member of both Sc1
and Sc2, Ca will appear in the compositional intersection iff both C1 and C2
influence/constrain the same or overlapping set of requirements in Ca. That is, if C1 and
C2 influence disjoint sets then Ca will not be in the compositional intersection. The
compositional intersection is thus used to simplify concern interaction analysis by
reducing the number of potential combinations of concerns to be used as a base.

3.4.4.2.2 Concern-Oriented Requirements Engineering Artefacts
The concern representation in CORE is very similar to that of AORE. The concern
artefacts are represented in XML (see Figure 3-25 for AORE) the only difference being
that all concerns are encapsulated in <Concern> tag, rather than sorted into individual
types, such as <Viewpoint> or <Aspect> etc. The hierarchical structure of a concern is
same as for AROE: it can contain requirements and sub-requirements each of which has
a unique identifier.

Similarly, the composition rules, operators, actions, and composition specifications
illustrated in Figure 3-26 for AORE are also used for CORE, with only the <viewpoint>
and <aspect> tags replaced by <concern>.

50 Source of Figure: [13] Figure 2.

 78

CORE, as AORE, also uses matrices for illustrating if the concerns influence each other
(Figure 3-49 (a)) and also for depicting the types of contributions that concerns have on
each other, where negative contributions indicate conflicts that need to be resolved
(Figure 3-49(b)).

C1 C2 … Cn

C1

C2

…

Cn

+
C1 C2 … Cn

C1

C2

…

Cn

(a) (b)
Figure 3-49 51: (a) Table of concern relations; (b) Table of concern contributions

One artefact unique to CORE is the folded table of contributions which contains the
reflected contributions of concerns towards each other. This is illustrated in Figure 3-50.

Concernn

Concernn-1

Concernn

Concernn-1

Concern1 Concern2

Figure 3-50 52: The concern contribution table folder along its diagonal.

Each cell in the folded table contains the reverse projections – note that the composition
rules represent projections of the influence of one concern on other concerns –
indicating how multiple concerns cumulatively influence a single one. This provides a
powerful mechanism to observe both influencing and influenced relationships among
concerns.

The conflicting concerns are allocated weights with respect to the concern for which the
composition rule was defined and the concern with the higher weight gets priority
during conflict resolution. In case if equal weights are assigned to conflicting concerns,
stakeholder negotiations are necessary for conflict resolution.

3.4.4.2.3 Concern-Oriented Requirements Engineering Process
The CORE process is illustrated in Figure 3-51.

51 Source of Figure: [51] (a) : Table 1; (b) Table 2
52 Source of Figure: [51] Figure 3.

 79

Identify coarse-grained
concern relationships

Specify concern
projections using
composition rules

Build
contribution
table

Attribute weights
to conflicting
concerns

Resolve
conflicts

Handle conflicts

Revise
Concerns

Specify concern
dimensions

Identify & specify concerns

Identify reflected
projections
through folding

Figure 3-51 53: The process model for CORE.

The process commences with concern identification which can be carried out with any
mix of RE approaches, such as viewpoints or use case based approaches. Alternatively,
or complementarily, the meta concern space can also be employed for concern
identification. The identified concerns are related to each other through a matrix like
one depicted in Figure 3-49(a). The relationships between concerns are identified using
domain analysis, ethnographic studies, natural language processing or alike.

Having established the course-grained relations between concerns (Figure 3-49(a)), the
more specific kind of influence between them is defined through composition rules. The
composition rules apply at the requirements-level granularity of the concerns and are
similar to those of the AORE approach, discussed in section 3.4.1.1.2.

After specifying the compositions between the concerns and their requirements, conflict
identification and resolution begins with building of a contribution matrix (Figure
3-49(b)). This table is then folded to obtain the cumulative influence of concerns on
each other (note that [51] and [13] propose two different approaches to folding as the
latter employs a compositional intersection as the basis for trade-off analysis). Where a
conflict is detected, a priority is assigned to the conflicting concern with respect to the
concern that it is projected on. The decisions regarding conflict resolution can be then
discussed with the stakeholders, using the assigned weights to assist with decision
making. The conflict resolution might lead to requirement re-definition and iteration of
the above process.

Once the conflicts are satisfactorily resolved, the mapping of the concerns onto the later
stages of development is identified in the same way as for AORE. Additionally, the
influence of concerns on the development lifecycle is specified: for instance, an
availability concern may influence system architecture, while mobility may influence
all: architecture, design, and implementation. This mapping and influence is considered
in more detail in [13] which discusses the various architectural choices posed to the
developer by each concern and its associated trade-offs. The architectural choices made
by the developer for each concern then pull the architecture in various, at times
conflicting directions. The trade-off and interaction analysis conducted at the
requirements level helps to tailor these choices to ensure that the architecture has an
optimal pull in the various directions and meets the stakeholders’ requirements
effectively.

53 Source of Figure: [51] Figure 2.

 80

Mobility

Availability

C
os

t

In
fo

rm
at

io
n

R
et

rie
va

l

Architecture

Figure 3-5254: Architectural pull of various concerns

3.4.4.2.4 Identification and Treatment of Crosscutting Concerns with
Concern-Oriented Requirements Engineering

Similar to AORE, the CORE approach has a generic mechanism for concern handling
suitable for both functional and non-functional concerns. Moreover, CORE does not
make any particular distinction between these types. The approach also suggests a
number of methods that can be used for concern identification as well as concern
relationship identification. The meta concern space based concern identification
approach can be complemented by the semantic natural language processing-base
concern identification tool (discussed in section 3.4.2.1.4) which is presently under
construction [59]. Such an integrated technique can provide a powerful concern
identification mechanism well suited for both AORE approaches based on an aspect-
base separation and those employing a multi-dimensional perspective for requirements
analysis.

3.5 Component-Based AO
The AORE approaches discussed so far have not specified the granularity of the
aspectual modules. The Component-Based Aspect-Oriented techniques address the
utility of aspects within a component-based system, thus, applying the notion of aspects
specifically to modules of a large granularity.

3.5.1.1 Aspect-Oriented Requirements Engineering for Component-
Based Software Systems (AOREC)

Aspect-Oriented Requirements Engineering55 for Component-Based Software Systems
(AOREC) [52, 53] is devised to address such open issues of traditional component
requirements engineering as classification of component services per systemic areas (or
aspects) of application, sufficient detail per service, and ability to address a given
service at required detail level at run-time. An aspect in AOREC is a characteristic of a
system for which components provide or require services [52]. Aspects help to identify,
categorise, and reason about the component requirements.

3.5.1.1.1 AOREC Method
AOREC focuses on identifying and specifying the component requirements relating to
key aspects of the system. Examples of such systemic aspects are, for instance, user

54 Source of Figure: [13] Figure 11.
55 The term “aspect-oriented requirements engineering” has been for the first time mentioned in this work
in [52].

 81

interface, persistence, collaborative work, etc. Then they can be refined into sets of
aspect details. For instance, a user interface can have the affordance and view details.
Such aspects are a way to take multiple, systemic perspectives onto components and, in
so doing, to better understand and reason about the data, functionality, constraints, and
inter-relationships of components. For instance, they can be helpful in reasoning about
how different components interact via providing and requiring aspect details (e.g., see
Figure 3-53), or what will be required when reusing a specific component, or if a given
configuration of components will be valid with respect to a given aspect of the system,
etc.

3.5.1.1.2 AOREC Artefacts
The aspects can be produced for both newly developed and re-engineered components.
In Figure 3-53 an example of aspect-oriented requirements identification artefacts
obtained through re-engineering is provided. The figure demonstrates that an Event
History component provides and uses with several aspects, namely: User Interface,
Persistence, Collaborative Work and End User Configuration aspects. Each aspect
details within an aspect can be provided or required by a given component. For instance,
in Figure 3-53 extensible affordance detail in the User Interface aspect is provided by
the Event History component, but this component also requires viewer detail from the
same aspect. The viewer detail is provided to the User Interface aspect by another
component: the Event History Viewer.

Figure 3-53 56: Example components and some of their aspects.

Aspects identified and documented with diagrams, such as in Figure 3-53, are
complemented with detailed textual descriptions. These descriptions provide additional
documentation for functional and non-functional requirements. The full textual aspect-
oriented specification for the Event History component is provided in Figure 3-54.

56 Source of Figure: [52] Figure 4.

 82

Collaborative Work Aspects : COLLABORATION

1) +data fetch/store functions : DATA_MANIPULATION

-- Provides services for getting some/all of event history data and for updating some/all of event
history data. Used by components providing collaborative work infrastructure to keep

distributed data synchronised or partially synchronised.

QUERY=true; UPDATE=true

2) +event broadcasting/actions functions : EVENT_MANAGEMENT

-- Provides services allowing other components to detect event history update events and to action
(replay) events received by other components. Used by components providing collaborative

work infrastructure to keep distributed event history synchronised or support deltas of event history
version changes.

DETECT=true; ACTION=true

3) + event annotation functions : AWARENESS

-- Provides services for annotating, selecting, highlighting events. Used by components providing
collaborative work infrastructure to support basic group awareness facilities for updated

event history events. Other components should use these to annotate events with remote user name,
colour them with a colour associated with a particular user, etc.

HIGHLIGHT=colour; ANNOTATE=tex

4) - remote data/event synchronisation : LOCKING

-- Requires component(s) that supports remote data/event synchronisation. Could support fully
synchronised data or semi-synchronous update. This should be robust if network connections

fail, and should work over low or high bandwidth networks.

SYNCHRONOUS=true OR false; SEMI_SYNCHRONOUS=true OR false;
NETWORK_SPEED=any; STORE=true

5) - data/event versioning : VERSIONING

-- Requires component(s) providing data versioning. Should support both event history data and
event history update event recording/versioning. This should be a simple-to-use facility for

end users. Should extend the viewer affordances to provide at least check-in/check-out capabilities
via +extensible affordance aspect.

DATA=true; EVENT=true; INTERFACE=extensible affordances; CHECKIN=true;
CHECKOUT=true

Figure 3-54 57: Detailed aspect-oriented component requirement specifications.

AOREC also introduces the concept of aggregate aspect which is an aspect specified
for groups of interrelated components used to reason about aspect-oriented requirements
of a set of components or even the whole system.

3.5.1.1.3 AOREC Process
The AOCRE process is demonstrated in
Figure 3-55. The process starts with analysing general application requirements. The
system requirements are used to identify candidate components, as shown by step (1) in

57 Source of Figure: [52] Figure 5.

 83

Figure 3-55. The requirements for identified components are then elaborated. Aspects
for each component are identified (step 2) and refined to determine the provided and
required aspect details (step 3). Aspects are used to reason about component
composition and configuration.

The refined aspects for groups of components, or the whole system, if appropriate, are
analysed for aggregate aspects (step 4). The aggregate aspects can then be identified as
new components, thus also causing change in previously analysed components and
initiating revision cycles (step 3.b).

System Requirements Component
Requirements Revise

Identify candidate
components Identify aspects for

each component

Refine aspects
(provides/requires)

Analyse Aggregate
Aspects

Verify that system
requirements are met

(3 b)

Design

component
requirements

component
requirements

component
requirements

system
requirements

refine
component basic aspect

detailed aspect

aggregate
aspect

new/changed
component

new/changed
componentrefine requirements

(1)
(2)

(3)

(4)
(5)

Figure 3-5558: Basic AOREC process.

Once all system requirements are allocated per components; aspects for components and
component groups are identified and aggregated, the produced components and aspects
are verified against the system requirements (step 5). If the requirements are
satisfactorily met by the produced component and aspect requirement model, the design
phase commences.

3.5.1.1.4 Identification and Treatment of Crosscutting Concerns with AOREC
AOREC does not provide any general support for crosscutting concern identification.
The aspects and aspect details are identified on a case-by case basis by the requirements
engineer.

For a small subset of aspects (namely User Interface, Collaboration, Persistence,
Distribution, and Configuration) used in case studies for publications on AOREC [52,
53] an initial reusable breakdown of aspects to aspect details is suggested.

58 Source of Figure: [52] Figure 3.

 84

This approach is well suited for treating component contributions to non-functional
concerns, as many (all) components will contribute to any given non-functional
requirement. Examples of such non-functional aspects are provided in the AOREC
work. On the other hand, it is difficult to perceive how a functional requirement could
be crosscutting in a component-based system, where components are intended to
modularise functionality. Presently there are no examples of functional concerns for
AOREC. Yet, the general approach of using provided/required aspect details for an
aspect is well suited for both non-functional and functional aspects.

3.5.2 Other AO Approaches

We have discussed that most AORE approaches have emerged as extensions of some
non-AO approaches. Yet, there are also a small number of AORE approaches which are
completely new or are driven by the needs of existing AO approaches at design and
implementation level. Currently, the most prominent such approach is Theme/Doc.
Although the Theme approach has emerged from the work on Subject-Oriented
Programming [72], Theme/Doc itself has not: it is a new approach developed to provide
requirements analysis capabilities for subsequent aspect-oriented design with
Theme/UML.

3.5.2.1 Theme/Doc
Theme/Doc [54-56] is the Requirements Engineering part of the Theme [55, 56]
approach. The core of the approach is the concept of a theme which represents a
meaningful unit of cohesive functionality.

The themes are loosely similar to functionalities identified by use cases. The method is
centred around graph-based representation of the potential themes and this
representation-assisted analysis.

3.5.2.1.1 Theme/Doc Method
Them/Doc [54-56] supports “aspect identification and analysis in requirements
documentation “where aspects manifest themselves as “descriptions of behaviours that
are intertwined, and woven throughout” [55]. Thus, it is aimed at later stages of RE,
when at least an initial requirements document is available for lexical analysis. Due to
its focus on “behavioural” aspects, it aims to discover the functional crosscutting
concerns, since the non-functional ones could have no behaviour-related manifestations.

The approach is supported by the Theme/Doc tool which provides a set of views that
assist in requirements analysis, as well as direct mapping of the requirement views to
Theme/UML – the design counterpart of the Theme approach. In fact, the Theme/Doc
tool is quite central to the Theme/Doc approach because the analysis and steps of the
approach are based on the graphical visualisations from the tool.

Currently the work on Theme/Doc is focused on addressing the scalability issue of the
approach [73]. It is also looking at other possible clues for detecting crosscutting, in
addition to the current one of having several actions/concerns mentioned in the same
requirement.

3.5.2.1.2 Theme/Doc Artefacts

 85

Most artefacts produced by the Theme/Doc approach are those generated by the
Theme/Doc tool. However, the initial input to the tool is the manually compiled list of
action words and entities. Action words are the verbs from the requirements document
which indicate some activities performed, while entities are the nouns to which those
activities relate directly or indirectly.

The central generated artefact of the approach is the action view graph depicted in
Figure 3-56 for a course registration system where students are registered/unregistered
for a course and marks given to them:

Figure 3-56 59: Action View in Theme/Doc for a Course Registration System.

When the action words are assigned per requirement and the links between secondary
actions and their requirements are cut (or clipped) and replaced with a decorated link,
the clipped action view is produced (Figure 3-57 (a)). Besides identifying the base and
crosscutting themes (base ones being the themes at the lowest level of the clipped action
view hierarchy, and crosscutting ones being those at the higher levels), this view also
demonstrates the required order of composition. The themes should be composed from
the bottom up, as the higher level themes might rely on those below them.

(a) (b)

student
can
for

register

course

Entity Action

Requirement
phrase 1

Requirement
phrase 2

Legend

Figure 3-57 60: Clipped Action View (a) and Theme View (b) From Theme/Doc Tool for a Course
Registration System.

The actions and their associated entities and requirements are collected into a theme
which can be viewed in the theme view (Figure 3-57 (b)).

59 Source of Figure: [55] Figure 1.
60 Source of Figure: [55] (a) Figure 2, (b) Figure 3.

 86

3.5.2.1.3 Theme/Doc Process
The process of Theme/Doc [55, 56] is shown in Figure 3-58.

actions

clipped
view

Select aspects

rework

categorise major and minor

designtheme
view

augment

show
themes

Figure 3-5861: Theme/Doc Process

It commences with the requirements engineer identifying action words from the
requirements document and providing these, along with the requirements document
itself, as inputs to the Theme/Doc tool. It should be noted that synonyms referring to the
same action can be grouped under one action word, and so can “minor” actions which
do not have strong enough themes of their own.

Using the provided inputs the tool generates action views. This view demonstrates the
links between requirement sentences and the action words, as shown in Figure 3-58. If a
requirement is linked to many action words, tangling of behaviour is identified. This
could be caused either by a badly specified requirements (in which case the
specification should be corrected), or by presence of crosscutting behaviour.

In case of many links from a requirement to action words, where re-stating requirements
does not alleviate tangling, the predominant action for the requirement should be
defined (and thus selected as base), and the secondary action(s) should be clipped (using
the tool), which indicates that the secondary action/behaviour will crosscut the base
behaviour.

After all shared requirements are clipped from their secondary behaviours (with a faded
arrow between primary and secondary behaviours replacing the link between the
requirement and the secondary behaviour), the clipped action view is obtained (e.g.,
Figure 3-57 (a)).

The theme view is created by identifying entities, to be used at design stage, from the
requirements document and providing these as additional input along with the actions
words and the requirements document. The theme view can be used for the design stage
to produce separate themes for mapping onto Theme/UML. This view also helps to
design generic views of the crosscutting themes (by generalising the concrete project-
related specifics from the crosscutting theme).

At this stage the work of Theme/Doc part of the Theme approach is completed and
Theme/UML steps in to create the designs. However, after the design process is
complete, the final designs can be validated against the theme views of Theme/Doc. The
theme views can also be augmented by design level elements. This can help to verify
that the produced designs align with the requirements.

61 Source of figure: adopted from [56]

 87

3.5.2.1.4 Identification and Treatment of Crosscutting Concerns with
Theme/Doc

As discussed above, Theme/Doc approach has based aspect identification on using
action words, which makes it well suited to identify crosscutting functional
requirements. On the other hand, non-functional requirements often do not have any
action associated with them. The approach suggests that in such cases the requirements
can be re-written to include action words. However this assumes that such requirements
can be identified by the requirements engineer which in most cases is precisely the
problem that the identification needs to address. Besides, the issue of how a particular
non-functional requirement is related to other requirements is still unresolved (e.g., how
security affects response time of mark allocation).

3.6 Comparison
Having outlined the RE approaches earlier in this section, we now investigate how well
they perform against our comparison criteria (presented in section 2 and refined in
section 3.2).

3.6.1 Traceability through software lifecycle

3.6.1.1 Traceability of Requirements and Change to Their Sources of
Origin

Table 3-1 shows the comparison of the features that support traceability of requirements
and change to their sources of origin for all the non-AO and AO approaches considered
in section 0.
Approach Features That Support Traceability Of Requirements And Change To Their

Sources Of Origin Criterion

PREview source and change history sections in template; use of viewpoint focus

VIM viewpoint owner, work record section in a viewpoint

NFRF SIG for sub-goals from the softgoals, indirectly: softgoal topic

Problem Frames indirectly: context and problem diagrams and problem frames.

KAOS domain model, links between agents and goals; gaol decomposition graphs,
formal representations

I* SD and SR diagrams, within SR diagrams the SIGs for goal and softgoals from
the softgoals; implied intentionality

Use Cases actor in the use case diagram

Misuse Cases actor in the use case diagram, including misuse cases and solutions to mitigate
them.

AORE with
Arcade

viewpoint of requirements

ARGM SIG for sub-goals from the softgoals, indirectly: softgoal topic

AOSD/UC actors in use case diagram

SMA actors in use case diagram, source in templates for NFR

AUCDA actors in use case diagram, source in templates for NFR

 88

Cosmos not considered

CORE abstract concerns in the meta concern space

AOREC not considered

Theme/Doc not considered

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-1: Summary of Features that Support Traceability of Requirements and Change to their
Sources of Origin Criterion.

PREview records the source of a requirement origin in the source section of
requirement templates and keeps the record of change in the change history section.
Besides, through the reference of a requirement to the viewpoint that it comes from, one
can use the viewpoint focus for relating the requirement to the part of the system that its
originating viewpoint represents.

In VIM each viewpoint and its requirements are assigned to a viewpoint owner for
whom the viewpoint is elicited. Also the work record section of each viewpoint will
contain the development and change state and history.

Although NFRF records the origin of sub-goals from the softgoals in the SIG, it does
not record the sources of softgoals themselves. Using the topic of the softgoal, one can
get a general idea as to where in the system it belongs, but not where the softgoal
originated from.

PF does not explicitly attend to this issue, yet in many cases the sources of the
requirements may be identified from the context and problem diagrams and problem
frames.

The conceptual model in KAOS provides a way of detailing the relationships between
goals the agents from which they originate through the kinds of links characteristic for a
given domain. On the other hand, the origins of sub-gals are traceable back to the larger
goals through the goal decomposition graphs. Additionally, all information in KAOS is
formally represented and recorded, thus providing another traceability link.

I* identifies the agent associated with each goal, task or resource. Thus, each elicited
requirement will have an associated agent. Even the reason for the requirement or
change is identifiable from the SR diagrams. Also, since I* supports “implied”
intentionality, non-human agents (such as government bodies, law, etc.) will act as
agents when they generate requirements or cause change.

Use Cases identify the functionality per an actor, and record the actor and his/her use
cases (and their related requirements) in the use case diagram. This approach does not
record the information related to non-user level requirements and change.

Misuse Cases, also record the actors and use cases, in the same way as the Use Case
approach does. In addition, actors here can be people, external system, internal sub-
systems, and inanimate objects and phenomena. In this way the non-user level
requirements and change can also be recorded. This, however, necessitates design and
even implementation level requirement integration with the user-level requirements.

 89

AORE with Arcade keeps clear reference to the sources of requirements origin, as each
requirement is nested within the viewpoint that it originates from. It is unclear if and
how AORE with Arcade will record the sources of change, as no example or discussion
on this is available. However, we envisage that version control in the native XML
database system employed by the Arcade tool can be used for the purpose.

Aspects in Requirements Goal Models approach uses the NFR-type recoding, thus it has
the same shortcomings as the NFR framework in recording sources of origin for goals,
softgoals and change.

Similar to Use Cases, AOSD/UC records the origin of functional requirements on the
use case diagram, though when classifier representation is used instead of ellipse, these
details might be lost. Additionally, this approach records the non-functional concerns
through a parameterised <Perform Transaction> use case for a parameterised <Actor>.
The parameterised use case is instantiated for each relevant actor type, thus recording
the source of origin of specific sets of non-functional concerns per actor.

Although the Scenario Modelling with Aspects approach does not detail how source
traceability is preserved, it relies on use cases for requirement identification and
scenario generation, which provides the mechanisms of the Use Cases approach. In
addition, the templates used for non-functional requirements [46] record their source.

In the Aspectual Use Case Driven approach the functional requirements are traceable to
their sources through the use case diagram and non-functional ones through the
templates used for their representation.

In Concern Modelling with Cosmos the source of the concerns is not deemed important,
as many concerns will be implied.

Unlike AORE, CORE does not use viewpoints for concerns structuring. However, the
sources of concern origin are recorded via the classification based on the abstract
concern representations in the meta concern space.

AOREC does not address the issues of requirement or change origin.

Theme/Doc assumes that some requirements document is already produced and does
not attend to the issue of the requirements source or the source of change to the
requirements. Such issues are assumed to be handled during the initial requirements
document production.

3.6.1.2 Traceability between Lifecycle Artefacts
Table 3-2 shows the comparison of the features that support traceability of requirements
between lifecycle artefact representations for all the non-AO and AO approaches
considered in section 0.

Approach Features That Support Traceability Between Lifecycle Artefacts Criterion

PREview unique identifiers link requirements to viewpoints

VIM viewpoint work plan , templates and specifications

NFRF design decision and operationalisation and correlation links, claims and
augmentations in SIG

KAOS operationalisations, formal representation

I* design decision and operationalisation and correlation links, claims and

 90

augmentations in goal and softgoal interdependency graph

Problem Frames problem diagrams and annotations, frame concerns.

Use Cases collaboration diagrams

Misuse Cases records of misuse case solutions, collaboration diagrams,

AORE with
Arcade

records of mapping decisions; PROBE framework

ARGM design decision and operationalisation and correlation links, claims and
augmentations in SIG

AOSD/UC collaboration diagrams; use case slices and modules

SMA not considered

AUCDA collaboration diagrams

Cosmos physical concern links to conceptual counterparts

CORE records of mapping decisions and influence of concern on architectural choices

AOCRE design-level aspects

Theme/Doc direct match between its requirements engineering and design models; major
action and theme views

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-2: Summary of Features that Support Traceability between Lifecycle Artefacts Criterion.

PREview concerns end up scattered across viewpoints in the requirements elicitation
stage and across requirements specification and design artefacts later on, though the
requirements have unique identifiers that link them back to the concerns that they
represent.

For artefact traceability VIM uses the work plan section of the viewpoint which
provides such information as viewpoint actions and trigger/guide actions which
respectively detail how and when new instances of a particular template should be
created. Since the new instances may represent the later lifecycle stage specifications of
a given artefact, a traceability link between them will be established (e.g., RE stage
objects can become detailed objects at the design stage) [16, 74].

NFRF relates its softgoals to the appropriate functional requirements via design decision
links while the operationalisations relate to design decisions via operationalisation
links, thus, linking requirements and designs as well as functional requirements with the
non-functional ones which they are related to. Besides, all design decisions and choices
are recorded in the SIG via claim softgoals and augmentations which remain available
during further development.

In KAOS operationalisations define the simple tasks to which goals are reduced. These
tasks are assigned to corresponding agents and the pre and post conditions for respective
actions of agents are defined. Although this does not directly trace to design entities, it

 91

may facilitate such traceability, for instance, by facilitating identification of classes per
main agents, and grouping data and functionality for each agent in a class, etc.

While I* is mainly concerned with early requirements engineering process, some
support for lifecycle artefact traceability is inherent within the method due to the use of
NFRF-style goal and softgoal decomposition in its Strategic Rationale diagrams. From
this perspective I* provides traceability support similar to NFRF. However, since I*
encompasses goal decomposition (in addition to softgoal), functionality is more closely
related to non-functional requirements then with NFRF.

Although PF does not provide explicit means for traceability preservation the approach
is focused on understanding the links between the real world and the machine, which
become documented in the problem diagrams and annotations. In addition, the solution
patterns can be traced to the problem frames via frame concerns. However, the
approach does not consider traceability needs in justification for selected problem
decomposition, or problem frame selection, or variant extension.

The identified use cases in the Use Cases approach are mapped onto collaboration
diagrams at the architecture design stage, but are consequently dissolved into object
classes where all parts of a given class are combined from all use cases. This makes
traceability of an individual use case to its specific contribution to a class difficult to
maintain.

From the traceability between lifecycle artefacts perspective the misuse cases are the
same as ordinary use cases. The only slight difference is that, in some simple cases,
when a solution for misuse case mitigation is clearly defined on the use case diagram, it
could be traced straight to the design or implementation. For instance, if the solution to
the security requirement is identified as a training procedure for the system users, it will
be clearly traceable to the requirement.

AORE with Arcade records what type of architecture or design artefact a concern
transforms to (e.g., decision, function, etc.) and can trace it to architecture, design, and
implementation via the PROBE framework [57]. The PROBE framework helps in
tracing not only initial aspectual requirements, but also their associated trade-off.

For this criterion too the Aspects in Requirements Goal Models approach is same as the
NFR framework, as it uses exactly the same mechanisms.

Similar to Use Cases, in AOSD/UC use cases are mapped onto collaboration diagrams
at the architecture design stage, but here, thanks to use of use case slices, the partial
information on operations and states of object classes can be preserved independently
too.

Scenario Modelling with Aspects does not consider scenario tracing to the later stages,
however the approach provides valuable insight into how aspects affect the future
system behaviour.

Aspectual Use Case Driven approach does not address the traceability of its NFR use
cases to the later stages of development, while the functional use cases can be traced to
the collaborations, as in the standard Use Cases approach.

Concern Modelling with Cosmos is focused on concern modelling only. It does not
venture into any development activity. Nevertheless, when the modelled concerns are
represented as artefacts, these will be represented as physical concerns in Cosmos with
links to their conceptual counterparts, in this way promoting artefact traceability.

 92

The CORE approach records details of concern mapping to architectural decisions,
design level function, or crosscutting design elements, as well as their scope of
influence on the later development stages. Although presently the PROBE framework
[57] is not yet adapted to be used for CORE, it may be adapted with not much change
required. This will be addressed in the near future in order to help with tracing and
validation of the initial aspectual requirements as well as their related trade-off
decisions.

The requirements level aspects and aspect details identified by AOREC are directly
propagated to design level, where these are refined.

Theme/Doc keeps clear links between requirements artefacts and their design
incarnations due to direct match between its requirements engineering and design
models as well as the major action and theme views of the Theme/Doc tool which allow
to compare the requirements grouped into a theme against their designs.

3.6.2 Composability
Table 3-3 shows the comparison of the features that support composability of
requirements all the non-AO and AO approaches considered in section 0.

Approach Features That Support Composability

PREview not considered

VIM inter and intra viewpoint check rules

NFRF indirectly: SIG

KAOS indirectly: and/or groups in goal decomposition, formal representation, heuristics

I* agents, dependency relationships, indirectly: SIG

Problem Frames common domains

Use Cases extend and include relationships and use cases

Misuse Cases extend and include relationships with mitigates, threatens, aggravates, conflicts
with, has exception stereotypes and use/misuse cases

AORE with
Arcade

Flexible and extensible composition rules and operators, unique ids for
viewpoints, requirements and sub-requirements

ARGM matching topics of goals and task

AOSD/UC extension pointcut ; extend and include relationships an use cases

SMA binding definitions; operators for message interleaving; incoming and outgoing
events; states; role parameters in IPS and SMPS specifications

AUCDA new use case relationships: collaborate, damage, and constrain as well as
standard extend and include; role parameters in UCPS and APS; binding
specifications

Cosmos concern relationships and constraint specifications

CORE Flexible and extensible composition rules and operators, unique ids for
viewpoints, requirements and sub-requirements, concern projections and
compositional intersections

AOREC per-component provided/required aspect details, provides/requires links

Theme/Doc order for theme composition in clipped action view

 93

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-3: Summary of Features that Support Composability.

Problem decomposition is a natural way of reducing complexity, and it is indeed the
path taken by all the approaches discussed above. On the other hand, the need for
composing the decomposed requirements/concerns and understanding their mutual
relationships has been addressed less thoroughly.

PREview decomposes stakeholder requirements into viewpoints and concerns, but does
not consider the issue of composition. The details for each concern-viewpoint
interaction are maintained for each viewpoint separately.

VIM does not directly address composition, instead it limits to the issue of consistency
checking - a necessary, but not sufficient characteristic of composition. Moreover, while
the approach demands that consistency checking is carried out, it does not provide any
assistance with the difficult task of deciding which consistency rules need to be defined.

NFR Framework does not explicitly consider composition of softgoals or functional
requirements. However, since in most cases, softgoals will affect each other, the
complete Softgoal Interdependency Graph can provide good information about softgoal
interdependencies. Some information about relationships of operationalisation decisions
to functional requirements affected by them can also be obtained from the SIG. Yet, the
complete picture of the system requirements is not available.

KAOS does not directly address composability. However, its formal representations
maybe be reviewed with AND/OR operators and collecting the sub-goals into the super
goal. KAOS also provides sets of heuristics (e.g., “do not overload the agent”) which
provide a perspective on the composite result of individual goals/tasks.

I* does not address the issues of composition. Yet, it is reasonable to expect that in
many cases parts of agent’s requirements could be modelled separately and require
integration (e.g., due to system maintenance). In such cases it is essential to first
integrate the agents: only the requirements of agents representing the same stakeholders
can be composed, or the semantics of the analysis will be lost. This needs to be followed
by the goal and softgoal interdependency graph integration for the merged agents: a
problem that presently is not resolved.

In Problem Frames approach composite frames are built by joining simple frames
through their common domains. Since each frame has its own description of a domain
and PF does not have well defined composition semantics, except that in order to be
composable the frames need to have the same domains. Presently, composition often
requires solution-level information, thus departing from requirements to design and
implementation issues. As a result, the composition is often an ad hoc process, and
though Problem Frames have a potentially usable joinpoint model through the domains,
these joinpoints are inconsistent between different frames. This approach does not allow
quantification for composition either. Nevertheless, we should note that the most recent

 94

work on Problem Frames [25] has started to look at the issue of composition and a
solution for cases with timed machine interference is suggested.

In Use Cases approach composition is achieved via extend and include relationships.
The extension use cases are composed with the base use cases via extend; while
repeatedly used sub-flows are composed with base flows via include. The composition
of individual base use cases is not considered until design time, where still there is no
explicit composition support, but mere merging of partial class information for each
class from all use cases into a single representation of that object class in UML.

In respect with composition, Misuse Cases are quite similar to Use cases, except that
additional relationships such as mitigates, threatens, aggravates, conflicts with, has
exception allow to reflect more specific kinds of integration links.

AORE with Arcade supports requirement composability through a clear joinpoint model
(where requirements in a viewpoint are joinpoints) and well defined composition
semantics provided through its composition rules and operators. Moreover, the
composition semantics are adaptable for each problem, as the set of composition
operators is extensible.

In Aspects in Requirements Goal Models composition is carried out by matching the
topics of the decomposed functional goals and the functional goal to which the non-
functional task (so called advising task) applies (see Figure 3-29). The syntax of this
composition still requires further research, as presently it is not well defined. Moreover,
even the semantics of it are not quite clear.

AOSD/UC provides much more support for use case composition than the Use Case
approach both at requirements level and later. As demonstrated in Figure 3-31 and
Figure 3-34(c), a new construct for extension pointcut has been developed. It allows the
provision of more details of extension use case application to base use cases. Examples
of such details are condition of extension case application (e.g., as in Figure 4.19, ‘when
no room is available’), or the order of extension operation application to the use case
(e.g., before, after, or instead of it). Also, the same extension case can be applied to
many base use cases without having to clutter the use case diagram with notes, as it
would be required with traditional Use Cases. Additionally, special design level
composition semantics are provided.

The Scenario Modelling with Aspects approach has two alternative composition
avenues for bringing together aspectual and non-aspectual scenarios: (a) composing
interaction diagrams; (b) composing at state machine level. While (a) is more intuitive,
it requires application of additional operators detailing how the messages from the
aspectual and non-aspectual diagrams should interleave. This cannot be automated, as
interleaving will depend on semantics of interaction. In (b), on the other hand,
composition can be defined in terms of incoming and outgoing events, as well as states
which are not available with option (a). In any case, manual mapping of roles to events,
parameters (and states) is necessary. It should also be mentioned that the approach can
easily accommodate composing functional scenarios together, while the semantics of
composing non-functional scenarios together are not clear.

In the Aspectual Use Case Driven approach the composition of the Use Cases is
extended with new use case relationships: collaborate, damage, and constrain [65].
Along with the standard inherit, extend, and include, these relationships help to
incorporate both functional and non-functional use cases into the use case diagram.
Besides, use of Use Case and Activity Pattern Specifications allow to use role

 95

parameters in use cases and activity diagrams. The composition requires a set of
instantiation steps [65], where the Pattern Specification elements are replaced with
concrete elements or other pattern elements that perform the necessary roles. However,
this level of reuse and generality of use cases comes at the cost of one-to-one
specification of every role binding for composition.

Concern Modelling with Cosmos does not directly address requirement or concern
composition. Yet, the relationships that can be defined between concerns can be used to
reflect how concerns should be treated together, e.g.,: does concern A require the
presence of concern B, or should A be only included into the system if B is not there.
This work provides no composition rules or operators or joinpoints, but allows all these
to be specified as concerns of their own using the Cosmos schema.

The composability of CORE approach is the same as that of AORE with Arcade,
discussed above. CORE, however, extends this composition model with the notion of
concern projections and compositional intersection to facilitate extensive yet scalable
analysis of interactions and trade-offs among concerns.

Requirement composition in AOREC differs from other composition approaches
because here requirements are defined per component. Component requirements in
AOREC are composed through the aspects: a component provides some aspect details
as its requirement to an aspect and uses (requires) aspect details provides by other
components. Thus, requirements are composed from the perspective of belonging to a
component and contributing or using aspect details of an aspect. The aspect details are
also clearly linked to the providing/using components via dashed arrows (which may
turn unreadable for larger systems).

Theme/Doc in its clipped action view provides the order for theme composition, but it
does not produce a view for composed requirements. Instead, it postpones actual
composition to design level, where Theme/UML composition semantics are used.
Hence, while Theme/Doc does have a clear joinpoint model (with requirements in
themes acting as joinpoints) the composition semantics at requirements level are
missing.

3.6.3 Evolvability
Table 3-4 shows the comparison of the features that support evolvability of
requirements and change to their sources of origin for all the non-AO and AO
approaches considered in section 0.

Approach Features That Support Evolvability

PREview not considered

VIM tolerance for inconsistency, new template definitions, use of alternative
representations, support for overlapping

NFRF correlation catalogue; claims and augmentation on SIG, sub-goal decomposition;
link of softgoal to functional goal

KAOS thorough understanding of domain, detailed modelling of relations, reusable
knowledge and requirements; sub-goal decomposition

I* understanding reasons for requirements, use of NFR facilities

Problem Frames sub-problem decomposition

 96

Use Cases use case decomposition; minimalist notation for use case diagrams

Misuse Cases use case decomposition

AORE with
Arcade

separation of concerns and composition concerns ; cross-reference tables

ARGM correlation catalogue; claims and augmentation on SIG, sub-goal decomposition;
link between functional goal-goal-task

AOSD/UC use case decomposition; minimalist notation for use case diagrams; use case
slices and modules

SMA generic role elements; bindings

AUCDA nfr templates, generic role elements, bindings

Cosmos flexible schema; independence of concern representations

CORE separation of concerns and composition concerns ; cross-reference tables; absence
of base/aspect distinction

AOREC use of aspect details

Theme/Doc automation provided by the tool

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-4: Summary of Features that Support Evolvability.

With regards to evolvability, in PREview removal or addition of a concern will result in
heavy changes across all viewpoints requirements since the small number of concerns is
assumed to be stable (a legacy of PREview’s origin in the dependability domain).

From the perspective of evolvability the strongest part of VIM is its tolerance of
inconsistency. Newly added or changed requirements artefacts may contain
inconsistencies or conflicts with other artefacts, but these could be tolerated for a time
or even for the life of the system, if the assessment of their removal cost is greater than
that of risk from their retention. Besides, a new template with alternative
representations can be defined for new viewpoints, if required. On the other hand,
change to consistency rules or templates will result in a ripple effect of checks and
changes through all artefacts.

The NFR framework initially considers the non-functional requirements and their
decomposition one-by-one, before correlating them together in the SIG. Thus, the effect
of a change will depend on its type. In the best case the change will affect only a single
operationalisation or softgoal and have no influence on the rest of the SIG. This can
happen if the change does not affect any major decisions and has no negative
contributions to the existing softgoals. On the other hand, if the change requires re-
consideration of major decisions or has large negative correlations with many other
softgoals, the whole SIG could require re-evaluation. Also the correlation catalogue
helps the developer to examine the cross-impact of the softgoals.

One of the main goals of KAOS is to facilitate knowledge reuse, which facilitates
evolution. Reuse is achieved through cataloguing generalised knowledge, as well as

 97

domain-specific and instance knowledge. These can be reused by querying the KAOS
knowledge base. Another important feature of KAOS is detailed analysis of both agents
and their relationships all of which is recorded and can be easily applied to understand
how to fit in the new/changed requirements or the effects of adding/removing an agent,
etc. Also a change to a sub-goal, more often than not, can be localised to a given branch
of the goal decomposition tree. However, the formal representation of KAOS artefacts
while helpful in many cases, may result in added effort for understanding and
maintenance.

Support for evolution is one of the goals of I* method which aims to prepare for the
future change by understanding the reasons for present requirements. Having analysed
the dependencies and the vulnerabilities of the stakeholders, their environment and
volatile factors affecting it, this approach helps to make informed choices in system
design that can anticipate the change. In addition this approach uses the NFR-style
decomposition, thus benefiting from its correlation catalogues, claims and
augmentations on SIG, and the sub-goal decomposition.

In PF, in some cases, a change in requirements can result in a change as serious as
review of previously selected problem decomposition. However, most often a change
may be reduced to a change in a particular sub-problem, without affecting other sub-
problems. In any case, because there are no systematic composition means, all
composition-related decisions will need to be reviewed [24].

Use cases are used to capture high-level user-centric requirements helping to structure
required functionality and prioritise delivery of requirements. Thus, addition of new
functionality can be treated as dealing with an extra use case, without affecting other
use cases. At the same time, change of a use case functionality is also localised within
that use case. All this suggests that use cases are well suited for tackling evolving
requirements. Also, some guidelines are provided to assist in this, for instance [37]
suggests to “never extend the extension” to avoid deep hierarchies of extend
dependencies that could make use cases difficult to understand.

Though Misuse Cases are extension of the Use Cases approach, the evolvability of this
approach is poorer due to relationships established between misuse cases and the main
use cases. Any change in the main use cases will have to be also considered in terms of
change of the currently related misuse cases and potential new misuse cases brought
about by the change.

AORE with Arcade specifies each concern independently and provides a separate
module for composition specification. Thus, change of a concern will affect only the
evolving concern representation and the related composition specification for affected
requirements. The approach uses a number of cross-reference tables to identify impacts
and contributions of concerns. When a change occurs, in each of these tables the
changed line/column will have to be reviewed, without affecting the rest of the tables.
These tables also provide the necessary references to requirements whose composition
should be reviewed. Evolution is also facilitated by the Arcade tool which can re-
establish the potential trade-off points upon requirements change and evolution.

Similar to NFRF, Aspects in Requirements Goal Models could require reviews of the
whole SIG in cases of significant requirement change. However, in most cases the main
goals and softgoals of the system will be stable and changes will require reviewing only
a branch or an operationalisation in a SIG. Additionally, due to the clear link between
the functional and non-functional goals and tasks, the change in one can be clearly
related to the others, using the composition specifications, as well as the graphs.

 98

The discussion provided earlier for Use Cases, is also true for functional use cases in
AOSD/UC, as in this respect there has been no major change made by AOSD/UC to the
use cases approach. However, the addition of the infrastructure use cases for non-
functional requirements will necessitate checks as to how the newly added or changed
requirement in any use case affects these non-functional use cases. These might cause
changes to be introduced to the non-functional use case specifications. On the other
hand, use of use case slices may help in localising and locating use case related
requirement artefacts.

Because Scenario Modelling with Aspects investigates scenarios, i.e. instances of
interactions, change in a requirement will result in changes in one or more scenarios,
causing the complete review of the affected scenarios, their interaction diagrams,
binding and the composite scenario. However, due to separation of aspectual scenarios,
a change in these will require review of elements only for that scenario, even if all its
compositions with other non-aspectual scenarios will have to be reviewed. The review
of scenarios due to change in requirements cannot be avoided, as scenarios are used
precisely for understanding that behaviour. Thus, the merits of using separate aspectual
scenarios will only be revealed in comparison with updating bindings and composed
state machines with aspectual scenarios, as opposed to individually updating each full
scenario and state machine if the aspectual part is not separated.

With the Aspectual Use Case Driven approach the modularity and localisation of
change of functional concerns within a use case is preserved, as this approach is based
on the Use Cases approach. For the non-functional concerns, any change requires
review of the concern template’s Where and Requirements sections in order to verify
that the change does not invalidate the relationships and requirements of the NFR with
the rest of the use cases. If changes have occurred in the way that NFR relates to the
other use cases, the bindings of Use Case and Activity patterns to specific elements also
need to be reviewed. On the other hand, the approach distinguishes between stable
requirements and volatile ones [65]. The volatile ones – those prone to change – should
map to Use Case Pattern Specifications and Activity Pattern Specifications and their
change should result in composition review, but not review of any of the other use
cases.

Concern Modelling with Cosmos is well suited for evolution as change will result in
change of the concern and its related information (e.g., relationships, constraints if any)
in the schema only, no other concern will be affected. Addition of a new concern simply
entails recoding it along with its related information into the schema.

The evolvability of the CORE approach is similar to that of AORE, but is improved due
to absence of a pre-specified “base and crosscutting” restriction. Thus, a concern
initially identified as being non-crosscutting, can become crosscutting during the course
of evolution. Such change will be accommodated in the model without major reworking
of the requirements, except for corresponding cells in the relationship and contributions
tables and the compositions.

AOREC does not assist with actual requirement evolution, but use of aspect details in
AOREC clearly demarks the relationships between components, and so facilitates
planning for requirement evolution. For instance, when there is a change in a
component requirement, the impact can be evaluated in terms of effect on the provided
or used aspect details. Questions such as, for instance,: is the changed aspect detail
required by another component; is the newly required detail provided by others, will
help in estimating the scale and cost of change.

 99

Evolution in Theme/Doc is assisted by the automation provided by the tool. When a
requirement is added or changed, it only requires re-generation of the views (using
changed/added action words and entities) involving decision as to which theme does the
new requirement belong to, and how the change/addition of a theme affects composition
ordering. While the general composition order might be changed significantly, the
themes themselves will be unaffected, except for the one that has been changed.

3.6.4 Scalability
Table 3-5 shows the comparison of the features that support scalability of requirements
and change to their sources of origin for all the non-AO and AO approaches considered
in section 0.
Approach Features That Support Scalability

PREview not considered

VIM modularity of templates and viewpoint check rules

NFRF catalogues for correlations and decompositions; records of decisions via claims

KAOS catalogues for reusable knowledge, tactics and heuristics

I* indirectly: NFR framework support through catalogues for correlations and
decompositions; records of decisions via claims

Problem Frames modularity of frames

Use Cases use of coarse-grained use cases

Misuse Cases use of coarse-grained use and misuse cases, per use case decomposition

AORE with
Arcade

XML representation of artefacts and composition, extensibility of composition
operators/actions set

ARGM catalogues for correlations and decompositions; records of decisions via claims

AOSD/UC use of coarse-grained use cases; packaging support

SMA scalable state machine generating algorithm

AUCDA use of coarse-grained use cases; partial use case diagrams

Cosmos scalable schema; simple concern representation format

CORE XML representation of artefacts and composition, extensibility of composition
operators/actions set; use of XPath queries

AOREC aggregate aspects , aspects

Theme/Doc Coarse-grained actions, action groups

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-5: Summary of Features that Support Scalability.

In PREview scalability is affected by two factors:

1. larger problems require more viewpoints and concerns to be identified to
adequately cover the problem requirements;

 100

2. the larger the number of identified viewpoints and concerns, the more likely
that there will be conflicts between requirements, imposing need for
negotiation, trade-offs and information management.

Since the approach does not provide sufficient support for conflict resolution and
information management, the number of concerns usable per project is limited to about
6.

On one hand the modularity of VIM templates and the possibility of incremental
provision of viewpoint consistency checking rules contributes to evolvability of the
approach, but, on the other hand, it adds to the complexity of rules and to the need for
additional checks.

The scalability of NFR SIG is limited: even for small examples it becomes
cumbersome. The level of detail for each decision with supporting arguments and
decomposition (such as including the attributes) makes the graph unmanageably large.
Even with tool support this causes inconvenience. On the other hand, use of catalogues
for correlations and decompositions and records of decisions via claims may assist in
managing growing systems.

KAOS scalability may be hampered by the need to formalise each task, define pre and
post conditions for each action and check that each action is performed as expected. On
the other hand, the vast amount of knowledge and tactics and heuristics collected in the
KAOS knowledge base is invaluable in supporting scalability by providing solutions to
many potential problems.

Scalability is a bottleneck in the I* approach: even with tool support, working with large
Strategic Rationale graphs is difficult. Use of NFR catalogues and claims would only
weakly assist with some issues of scalability.

Problem Frames require a separate problem frame to be defined for each requirement
with its corresponding frame concern. The number of graphs produced will increase
linearly with the number of requirements. However, the biggest difficulty for scalability
of this approach is caused by generation of the composite problem frame, when all
individual frames and their concerns will need to be combined. Combining the graphs
on a case-by case basis, where each new addition could require design or
implementation specific knowledge, can become quite difficult. The feature that may
support in scaling the system is modularity of each frame.

With the Use Cases approach each use case specifies a unit of useful functionality that
the system provides to its actors. Thus, when new functionality is required, a new use
case is added to the use case model, and though the model is graphical, each use case
requires only a few additions, leading to a relatively good scalability for a graphical
representation. However, for larger systems the developer faces a trade-off between
dealing with too many use cases that overcrowd the use case diagram, or fewer use
cases each of which is a larger and more complex unit. If the developers fall into the
trap of ‘functional decomposition’ representing each function as a use case, the diagram
will become cluttered and cumbersome.

Though misuse cases can benefit in terms of scalability from using coarse-grained
cases, in general they give much poorer scalability than that of Use Cases. This is
caused both because of a very large number of possible misuses to a use case, and due
to the multiplication of their relationship links. These two factors together make even a
small use case diagram rather unreadable. A partial solution is to consider each use case

 101

with its misuses separately, but this results in disjoined use cases and loss of the
complete use case diagram.

The XML-based requirement representation and composition in AORE is very scalable.
The only bottleneck of the approach for scalability could arise due to the tables used for
correlation representation which can grow inconveniently large. Yet, this is simple
enough to deal with using already existing everyday software tools, such as Excel
tables, where the columns and rows irrelevant to the task in hand can be hidden, or
different (e.g., reduced) views of the same table can be created with changes in one
table reflected in all related ones.

The scalability problem of Aspects in Requirements Goal Models approach is even
more severe then that of the NFRF approach. This is due to the direct merging of two
SIGs (for functional and non-functional goal decomposition) into one. Although [41]
suggests that advising parts of the graphs can be separated for analysis, it does not
provide an adequate solution for managing oversize SIGs.

AOSD/UC faces the same scalability issue as discussed for Use Cases above.
AOSD/UC also provides packaging support, whereby in large systems use case modules
can be partitioned into use case packages. Each package can contain a set of use cases
for a group of actors or package use cases according to the entities that the use case
manipulates. Each such use case package should have a use case diagram to show use
cases contained in it from a glance. Maintenance of separate packages is possible due to
the composition support in the approach as opposed to the traditional Use Cases
approach.

In the Scenario Modelling with Aspects approach scalability is hampered by the need to
provide individual binding specifications not only for each aspect but also for each
composition of that aspect separately. On the other hand, the scalability of the state
machine generation algorithm has been shown to be satisfactory [63].

The scalability of Aspectual Use Case Driven approach is hampered with the problem
of use case explosion (as for the Use Cases approach), augmented by the need to add a
new use case and (particularly) its relationships for each NFR. The need to deal with
relationships of several NFRs with the rest of the use cases will make the use case
diagram unreadable. A possible partial solution is to build partial use case diagrams for
each NFR, reflecting only the sets of use cases affected by a given NFR [47]. However,
this solution will result in multiple use case diagrams for one system and will not depict
the relationships between non-functional use cases themselves.

Concern Modelling with Cosmos is very scalable: any increase in the size of the project
will only increase the number of modelled concerns. Nevertheless, though the Cosmos
tool is scalable, the effort required for collection of the sufficiently complete set of
concerns for a larger problem can be quite big due to the very large number of concerns
involved [48].

The scalability of CORE approach is similar to that of AORE. In addition, XPath
queries can be used to select specific concern projections and their cumulative effects.

The aggregate aspects in AOREC allow modularisation of requirements that affect
groups of components. Thus, a coarse-grained relationship between aspect and a group
is obtained, reducing repetitive specifications. Aspects too assist with supporting focus
of component contributions/requirements on one concern at a time. On the other hand,
the graphical representation of component and aspect requirements is not scalable, and
easily becomes unreadable for larger systems.

 102

Presently scalability is an unresolved issue for Theme/Doc: the graphical representation
of actions and requirements in Theme/Doc tool become unmanageably large for even a
medium size problem. Some possible solutions, such as ‘zooming out’ to a higher level
of granularity, are currently under investigation [73].

3.6.5 Trade-off Analysis and Decisions Support
Table 3-6 shows the comparison of the features that support trade-off and decision
support for all the non-AO and AO approaches considered in section 0.

Approach Features That Support Trade-Off Analysis And Decisions

PREview Rule “organisational concerns take precedence over viewpoint requirements”

VIM cost/benefit analysis, inter-viewpoint consistency rules

NFRF correlation catalogues; priority assignment to softgoals; SIG augmented with
claims about past decisions and contribution types

KAOS knowledge base, tactics, heuristics, priority assignment to goals

I* Strategic Dependency and Strategic Rationale, use of NFR features

Problem Frames partial support for assigning priorities to machines and events

Use Cases not considered

Misuse Cases not considered

AORE with
Arcade

conflict detection through composition, contribution tables, temporal logic
assertions of PROBE framework; weights assignment; stakeholder negotiations

ARGM Conflict resolution process with Rule: “remove negative contribution link“

AOSD/UC before, after, and around keywords for extension use cases

SMA not considered

AUCDA not considered

Cosmos decision recording via constraints; concern relationships

CORE conflict detection through composition, contribution tables, weights assignment;
stakeholder negotiations, use of cumulative effects through folded tables and
compositional intersection

AOREC aspect details

Theme/Doc not considered

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-6: Summary of Features that Support Trade-Off Analysis and Decisions.

In PREview the need for trade-off and conflict resolution is identified when viewpoints
and concerns display negative relations in decision tables. PREview does not provide
any particular trade-off resolution mechanism, but simply acknowledges the need for it.

 103

The only direction given by this approach is that the organisational concerns take
precedence over viewpoint requirements.

In VIM identification of trade-off points in case of inconsistency is assisted by the
consistency checking rules, but these rules may not detect conflicts where the goals of
stakeholder differ. When an inconsistency or conflict is detected, the cost-benefit
analysis of the alternative handling strategies are considered (e.g., eliminate or ignore?)
and the most suitable strategy selected. VIM does not detail how to detect conflicts or
how to carry out cost-benefit analysis: these are left open for the method used to decide.

NFRF provides good support for identification of trade-off points via correlation
catalogues which help the developer to examine the cross-impact of the softgoals and
decide between competing alternative solutions. The approach allows priority
assignment to softgoals (by stakeholders or developers). The NFR SIG helps to visually
pass over alternative choices, see their interrelationships and influences and make an
informed decision. NFR also provides good support for decision recording via claims
and augmentations as well as contribution types (e.g., weak positive, strong negative,
etc.).

KAOS allows priority values (between 0 and 1) to be assigned to goals. These are used
during conflict resolution or alternative selection for decomposition: the goals with
higher priorities are favoured. Decision support in KAOS is provided via reusable
knowledge of the knowledge base and also through sets of tactics and heuristics
designed to support the KAOS process in case of difficulties.

I* assists in resolving trade-offs from the process level to that of an individual task. The
Strategic Dependency and Rationale graphs allow to model and evaluate alternative
channels of stakeholder interest satisfaction. The principle of “reciprocal dependency”
[21] (which suggests that in order to ensure dependum delivery, there should exist a
reciprocal dependence between dependee and depender) helps in checking the viability
of alternatives. The NFR contribution types help in assessing the degree of
contributions. Weights and priorities may also be used to decide between alternatives.

The main work on Problem Frames [23] did not consider conflict resolution and trade-
off support. More recent work in [25] has begun to look at conflict resolution, and
addresses a certain set of such problems by assigning priorities to machines, events, etc.
This, however, is not a sufficiently complete solution, as it addresses only a small subset
of problems where timed machine interference can be used.

The Use Cases approach does not provide any conflict resolution because it simply
records all user requirements in separate use cases and does not attempt any
reconciliation. This is left to be addressed at the design time, when the user
requirements are mapped to object classes.

Misuse Cases provide numerous misuse possibilities per use case. The requirements
engineer does not always accept all the possible cases, but selects the ones s/he
considers relevant. Nevertheless, this approach does not provide any guidelines,
heuristics, or any other support for misuse case selection decisions. Similar to Use
Cases, this approach also does not provide any conflict resolution support.

AORE with Arcade provides good support for trade-off analysis: the need for these is
initially detected through the composition process of requirements, contribution tables,
as well as through temporal logic assertions of the PROBE framework at the later stages
of development. Once detected, the conflicting requirements are evaluated against the
weights assigned to them by the stakeholders, the requirements with lesser weights are

 104

weakened to resolve the conflict (with approval from stakeholders). However, if these
have equal weights, the stakeholders are invited for negotiations.

In the Aspects in the Requirements Goal Models approach, when conflicts are detected
between the SIG nodes (i.e., goals, softgoals, or tasks) the contribution link from the
negatively contributing node to the parent node is simply removed. While this approach
does remove the conflicts, it is in danger of losing relevant links between goals and
tasks. It also assumes that a goal can be achieved through means where conflicting
solutions can be ignored. This may not always be possible, or sometimes may result in a
sub-standard solution compared to those where conflicts are actually resolved rather
than removed at the source.

Similar to Use Cases, AOSD/UC does not attend to conflict resolution at the
requirements engineering level. The only addition of AOSD/UC at requirements level,
that could address some ordering of conflicts, is that of before, after, and around
keywords which clarify the order of operation application of the extension use cases to
the base ones.

Scenario Modelling with Aspects does not provide any support for trade-off analysis,
though this could often be required when defining bindings of aspectual scenarios to
specific elements in non-aspectual ones.

Presently the Aspectual Use Case Driven approach does not provide any trade-off
resolution support either.

Concern Modelling with Cosmos does not need to resolve trade-offs between concerns
for concern modelling. However, any trade-off decisions taken during development can
be recorded as constraints in the schema for the relevant concerns. The concern
relationships are a helpful source of information when making such decisions, as they
help to understand the implications of such decisions on the concerns involved.

The trade-off support in CORE is mainly similar to that of the AORE with Arcade.
Additionally, the use of cumulative effect of concerns on each other can help in more
informed decision making.

AOREC does not provide any explicit trade-off analysis or decision support, except for
the possibility to evaluate the impact of a selected decision on provided/required aspect
details and their effects on other components.

Theme/Doc does not provide any explicit support for conflict identification and
resolution or trade-off decision making. Though some trade-offs are required even when
applying the method (e.g., when deciding on major/minor actions, or base/secondary
role of the action for the requirement) these are made implicitly, using the developer’s
experience and intuition.

3.6.6 Support for Mapping
Table 3-7 shows the comparison of the features that support mapping of requirements to
types of artefacts (e.g., decisions, structures, procedures, etc.) of later stages of lifecycle
for all the non-AO and AO approaches considered in section 0.

Approach Features That Support Mapping

PREview templates for concern decomposition

 105

VIM work plan viewpoint trigger actions, inter viewpoint check rules

NFRF type and decomposition catalogues; operationalisations – functional requirement
links; contribution records

KAOS decomposition structures of the knowledge base; action-to-agent assignments

I* actors, use of NFR framework (type and decomposition catalogues; contribution
records) and goal and softgoal operationalisations

Problem Frames not considered

Use Cases collaboration diagrams, some guidelines

Misuse Cases collaboration diagrams, some guidelines

AORE with
Arcade

Guidelines

ARGM type and decomposition catalogues; operationalisations – functional requirement
links; contribution records

AOSD/UC collaboration diagrams, some guidelines; pointcuts and aspects

SMA not considered

AUCDA collaboration diagrams, some guidelines

Cosmos concern relationships; allows recording of mapping decisions

CORE Guidelines

AOREC use of same aspects and details at both requirements and design levels.

Theme/Doc closeness of requirements and design models; theme view of the Theme/Doc tool

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-7: Summary of Features that Support Mapping.

In PREview mapping of concerns to requirements is supported through templates for
concern decomposition. However, mapping of requirements to the artefacts of later
lifecycle stages is not supported, barring a very weak proposition to derive the high
level architecture alongside software requirements specification development.

In VIM, the inter viewpoint checking rules developed by the method users may also
include rules on how to map specific artefacts to their representations in other notations.
These rules may be required to be checked for a viewpoint template instantiation, thus
supporting artefact mapping. On the other hand such rules and related automation
support is not readily available and will have to be developed by the users of the
methodology.

The NFRF type and decomposition catalogues assist in mapping concerns to non-
functional requirements. The links between operationalisations and target system’s
functional requirements also help to implicitly envisage their mapping to the design
artefacts. Also the contribution records inform and helps to make decisions on particular
decompositions and operationalisations. Thus, the major architectural choices and
design decisions about the non-functional requirements can be taken along with the

 106

softgoal decomposition process, though no specific guidelines for mapping (other than
the SIG construction guidelines) are provided.

KAOS has decomposition structures similar to those of NFRF decomposition
catalogues. These too help in mapping non-functional, but also functional, goals onto
functionalities or tasks that can be directly implemented. Some tasks (e.g., for the non-
functional goals) may map to procedures which will not be automated by the software
system, but may become processes or procedures in the wider environment of the
system, etc. On the other hand, assignments of actions to agents can also be perceived as
mapping of the functionality onto a potential class.

I* may help in identification of major architectural modules via agent and top-level goal
identification, yet this approach does not detail how the Strategic Dependency and
Rationale graphs should map to architecture. On the other hand, by using the NFR-style
decomposition of its goals and softgoals, the approach results in specific decomposition
and operationalisation choice commitment, as discussed for NFRF above.

The Problem Frames approach does not provide any significant support for mapping
frames onto later stages of development, though in some cases it relies on knowledge of
later stage artefacts for decisions on frame composition or modelling some phenomena
[75].

Use Cases provide a good mapping support for requirements-level use cases to their
design realisations through collaboration diagrams – some guidelines are also provided
to this end. However, there is no support for mapping crosscutting functional
requirements onto separate units (the crosscutting non-functional ones are not addressed
in this approach at all). Also, it should be noted that the collaboration diagrams do not
represent the final design artefacts for the use cases: to conform to OO design, all
corresponding partial class representations from the collaborations will have to be
combined into a single design class for each OO class representation.

Unlike a traditional use case, a misuse case will not always map to a design-level use
case. Often a misuse case will result in a decision on the business process, or procedure
or alike. Yet, some misuse cases will indeed become design-level use cases. In this
respect, the misuse cases approach does not provide any mapping support or distinction
for misuse cases. Regarding the use cases part of the misuse cases approach, the
discussion is the same as that for Use Cases.

AORE with Arcade provides guidelines for mapping requirements to later stages of
software development (referred to as aspect dimension specification in the approach).
However, presently these guidelines are mainly intuitive, and need to be documented
more effectively and fully.

The Aspects in Requirements Goal Models is completely similar to NFRF in providing
mapping support.

Similarly to Use Cases approach, AOSD/UC supports mapping of functional use cases
to designs through collaboration diagrams; but this time these representations can
remain independent at the design time (due to the AOSD/UC defined design-level
composition support). At the requirements engineering stage, the concepts of pointcuts
and aspects are used to map the crosscutting relationships between base and extension
use cases.

Scenario Modelling with Aspects does not consider scenario mapping to the later stages
of software development.

 107

Aspectual Use Case Driven approach does not provide any extra mapping support on
top of that already available from the Use Cases approach for the functional use cases.

The Concern Modelling with Cosmos approach does not consider mapping the concerns
onto any artefacts. That should be done within a particular development methodology
employed for development. Nevertheless, Cosmos can help in recording the mapping to
physical concerns (artefacts) and also provide information on the implications of
mapping from the perspective of influence of other concerns.

The mapping support of CORE is same as for AORE. It also extends the mapping
guidelines to map the requirements-level concerns and trade-off analysis to potential
architectural choices.

In AOREC the same aspects and aspect details are used that were identified at the
requirements stage. During design the requirements aspects are simply further
elaborated.

The concerns grouped at the requirement engineering stage into a theme in the theme
view of the Theme/Doc tool are neatly mapped to Theme/UML themes due to closeness
of their requirements and design models.

3.6.7 Homogeneity of Concern Treatment
Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-1: Summary of Features that Support Traceability of Requirements and Change
to their Sources of Origin Criterion.Table 3-8 shows the comparison of the features that
support homogeneity of requirements treatment for all the non-AO and AO approaches
considered in section 0.

Approach Features That Support Homogeneity of Concern Treatment

PREview n/a

VIM n/a

NFRF n/a

KAOS equal importance of functional and non-functional goals, decomposition structures
for both, single formal language representation

I* equal importance of functional and non-functional goals, decomposition structure for
both

Problem Frames n/a

Use Cases support representation of crosscutting and non-crosscutting functional concerns via
extend and include relationships

Misuse Cases support of the Use Cases approach, support for some non-functional concerns by
countering possible misuses.

AORE with
Arcade

“in step” identification and treatment of functional and non-functional, crosscutting
and non-crosscutting concerns.

ARGM equal importance of functional and non-functional goals, decomposition of both

 108

alongside each other.

AOSD/UC support of the Use Cases approach, use case representation for functional and non-
functional, crosscutting and non-crosscutting concerns

SMA scenario modelling for functional and non-functional, crosscutting and non-
crosscutting concerns

AUCDA support of the Use Cases approach, use case representation for functional and non-
functional, crosscutting and non-crosscutting concerns

Cosmos single possible way of representing all concerns as concerns in general

CORE single way of concern treatment, independent of concern type, accommodating all
type of concerns

AOREC n/a

Theme/Doc single uniform treatment of all identified concerns, accommodating all types of
concerns

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).
Table 3-8: Summary of Features that Support Homogeneity of Concern Treatment

In PREview the organisational concerns (i.e. the crosscutting non-functional concerns)
are considered of prime importance. When the functional concerns are elicited, it is
ensured that the influence of the organisational concerns on the functionality is
considered. If necessary, the functionality is adjusted to maintain the requirements of
the organisational concerns. Crosscutting functional concerns have been overlooked
entirely.

VIM does not address the issue of crosscutting concern treatment either for functional
or non-functional concerns. In fact the non-functional concerns do not appear to be
considered in general.

The concern treatment in NFRF is very similar to that in PREview: non-functional
concerns are prioritised over functional ones and the crosscutting functional concerns
are overlooked. However, unlike PREview, the effect of non-functional concerns on
functionality is not analysed, though their effects on other non-functional concerns is
detailed in the SIG.

In KAOS both functional and non-functional concerns (or goals) are treated via the
same procedure: none is considered more important than the other. The mutual
influences of the gals can also be studied by looking at the relationships of the objects
and agents associated to a goal or its task, though the appropriate treatment of
crosscutting concerns is not explicitly addressed.

In I* the functional concerns are represented as goals and tasks, and non-functional ones
as softgoals. Both are decomposed to task and finally operationalisation levels, and so
are treated similarly. However, I* does not separately address the issue of crosscutting
and non-crosscutting concerns.

As already mentioned, Problem Frames do not treat non-functional concerns in any
systematic way. While functionality is dealt with through problem frames, non-

 109

functional concerns are mainly discussed as “also concerns” and treated in an ad hoc
way (except for reliability). Crosscutting concerns (either functional or non-functional)
are not explicitly acknowledged either.

In the Use Cases approach the crosscutting functional and non-crosscutting functional
concerns are treated quite evenly at the requirements engineering stage. The
crosscutting functional use cases are expressed through extend and include and are
elaborated along with functional use case identification. The non-functional concerns
are not addressed by this approach.

Misuse cases are similar to use cases with regards to homogeneity. However, through
the misuse cases some issues of non-functional concerns can also be addressed. For
instance, security concern can be explored through this method.

In AORE with Arcade all concerns are treated evenly at all steps of the approach:
viewpoints are the base decomposition, with organisational concerns crosscutting them,
but they are identified and treated in step with each other. There is a base-aspect
separation in that viewpoints act as the base for observing influences and trade-offs of
aspects.

Unlike NFRF, the Aspects in Requirements Goal Models approach considers both
functional (goals) and non-functional (softgoals) crosscutting concerns as part of goal-
aspect building. Both types of goals are decomposed alongside and their corresponding
operationalisations chosen in step with decomposition. Thus, this approach treats all
concerns quite evenly.

Both functional and non-functional concerns in AOSD/UC are treated via use cases.
However, while functional concerns are use cases on their own, non-functional concerns
are treated as extensions to a specific Perform Transaction use case, thus becoming
“lesser” use cases then the functional ones. Nevertheless, at the requirements
engineering stage, all kinds of concerns appear to be given sufficient regard.

Scenario Modelling with Aspects is well suited for representing and treating both
functional and non-functional crosscutting and non-crosscutting concerns, which can be
represented by scenarios. Yet, as has been mentioned earlier, it is not clear how fully the
non-functional concerns can be covered by scenarios.

Aspectual Use Case Driven approach provides equal attention to both functional and
non-functional crosscutting concerns. Both of these types are represented in the use case
diagram and activity diagrams. The issues related to identification and treatment of both
concern types are of equal importance in this approach.

In Concern Modelling with Cosmos all concerns are treated similarly: as concerns in
general. The only distinction between them is their mapping to different types within the
Cosmos schema. Presently in this approach concern identification is decided manually
by the requirements engineer.

CORE has a homogeneous concern treatment process: it does not make any distinctions
between functional or non-functional, crosscutting or non-crosscutting concerns.

During AOREC the functional concerns are assigned to particular components, while
non-functional ones are assigned to aspects. While there are no clear instructions for
this, it is generally expected that the functional assignment will be carried out first, then
aspects identified. There also has been no example of using aspects for functional
crosscutting concerns. Thus, we conclude that requirements allocated per component are

 110

the base decomposition elements, while aspects are an additional crosscutting
dimension for non-functional requirements.

Theme/Doc’s methodology of concern treatment through graphs could be applicable to
both functional and non-functional crosscutting concerns. The unresolved problem,
however, lies in identification of non-functional concerns in absence of actions
associated with them, and even more importantly, ensuring that this “absent action” is
identified in all affected requirements.

3.6.8 Verification and Validation
Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).

Table 3-1: Summary of Features that Support Traceability of Requirements and Change
to their Sources of Origin Criterion.Table 3-9 shows the comparison of the features that
support verification and validation of requirements with respect to their design and
implementation outputs for all the non-AO and AO approaches considered in section 0.

Approach Features That Support Verification and Validation

PREview not considered

VIM multiple representations, consistency rules

NFRF “walking through” SIG

KAOS formalism of the representation, “walk though” decomposition graph

I* participatory development of the Strategic Dependency and Rationale graphs,
walking through goal and softgoal interdependency graphs, scenario generation.

Problem Frames “walking through” frame concern

Use Cases simplicity of use case model, the text-based style of use case specifications,
scenarios and interaction diagrams are all well suited for user validation; acceptance
and black-box test descriptions can be derived from scenarios

Misuse Cases the text-based style of use case specifications, scenarios and interaction diagrams for
misuse validation; acceptance and black-box test descriptions derived from misuse
case scenarios

AORE with
Arcade

“walking through” the composed requirements; proof obligations from PROBE
framework for model checking and test cases;

ARGM “walking through” SIG

AOSD/UC simplicity of use case model, the text-based style of use case specifications,
scenarios and interaction diagrams are all well suited for user validation; acceptance
and black-box test descriptions can be derived from scenarios

SMA executable state machine specifications; simplicity of use case model, the text-based
style of use case specifications, scenarios and interaction diagrams are all well suited
for user validation; acceptance and black-box test descriptions can be derived from
scenarios

AUCDA partial projections of the functional use cases per an NFR use case; simplicity of use
case model, the text-based style of use case specifications, scenarios and interaction
diagrams are all well suited for user validation; acceptance and black-box test
descriptions can be derived from scenarios

 111

Cosmos textual representation of artefacts

CORE “walking through” the composed requirements

AOREC matching provided/required aspect details per aspects

Theme/Doc “walking through” the action view and clipped action view graphs; informal
validation of designs against the themes

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1);
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1).
Table 3-9: Summary of Features that Support Verification and Validation.

PREview collects requirements from individual viewpoints. These requirements can
often be merged or amended due to conflict resolution or influence of organisational
concerns. Nevertheless, the approach does not provide any support for verification of
the end-produced requirements against those from the individual viewpoints. Neither
does it support validation of the derived architecture and designs against requirements.

The viewpoint check rules in VIM can be used to verify the consistency of different
viewpoints, as well as their mappings to the different lifecycle stage artefacts, if such
rules are specified in each given case. Verification of individual viewpoints too can be
accomplished through participation of the agent from whom the viewpoint was elicited.
However, these cannot ensure that the viewpoints are conflict free or that each
viewpoint representation will be understood by the source stakeholder (e.g., if defined
in a formal representation, etc.).

NFRF does not provide specific verification and validation procedures either, though its
SIG can be used for “walking through” the concern decomposition and its verification
with the user (if appropriate).

The formalism of KAOS artefacts allows precise analysis to be carried out for the
system artefacts, thus supporting verification. On the other hand, the gaol
decomposition graph is quite informal and can be used for “walk through” validation
with the users.

One of the attractions of the I* approach is its intuitiveness and ease of stakeholder
integration into dependency and rationale graph development. Through the
“participatory” involvement of the stakeholders, the software developers can achieve a
verifiable and reliable model for the system development. These graphs can also be used
for verification via scenario generation (e.g., what if agent x did not deliver on
dependum y?). In addition, the NFRF-style interdependency graph can be “walked
through” to verify specific goal/task decomposition and operationalisation.

In the Problem Frames approach the composite frame concern is an excellent way of
“walking through” and verifying the problem and its solution with the users to ensure
that they agree with assumed domain properties and are satisfied with the way that the
requirements will be met by the system. The formal validation of designs and
implementation against the requirements is not discussed in this work.

With the Use Cases approach the simplicity of use case model, the text-based style of
use case specifications, scenarios and interaction diagrams are all well suited for user

 112

validation. Use cases also help to explore various ways in which a system is used and
derive acceptance and black-box test descriptions from scenarios against which the final
system can be verified. In essence, each scenario in a use case is a test case ready for
validation.

For verification and validation the Misuse cases are used in the same way as Use Cases.

Verification in AORE with Arcade can be easily accommodated by “walking through”
the composed requirements (which will appear in text due to their XML representation)
with the customers. Validation, on the other hand is thoroughly supported through the
PROBE framework which provides proof obligations for aspectual requirements and
associated trade-offs. The proof obligations generated in PROBE can be used as input to
both formal method tools (such as model checkers) or as a basis to derive test cases.

Aspects in Requirements Goal Models approach does not provide specific verification
and validation procedures, though the SIG can be “walked through” for verification
purposes and the discussion for NFR framework is also applicable here.

From the verification and validation perspective at requirements engineering level
AOSD/UC fits the same description as Use Cases approach, discussed above.

The final aim of Scenario Modelling with Aspects approach is to generate executable
state machine specifications to allow users to validate the requirements by injecting
events into the modelled system, thus making it highly suitable for validation. Besides,
the use cases and scenarios can also be verified with the users, as with the Use Cases
approach.

In the Aspectual Use Case Driven approach verification and validation of functional use
cases is same as for the Use Cases approach. Additionally, the non-functional
requirements and their effect on the functional use cases can be validated with the
partial projections of the functional use cases per NFR use case. Yet, the influences of
non-functional concerns on each other are not verifiable and their validation is not
considered either.

Concern Modelling with Cosmos could be helpful in validating the artefacts and their
relationships against original concerns and their relationships, as well as any defined
constraints. Concerns and relationships themselves can be discussed with the users, to
verify their correctness; the textual representation of artefacts can be helpful in this
respect. However, presently Cosmos does not provide any formal verification and
validation support.

Verification in CORE is same as that of AORE. The validation process may also
become quite similar once the PROBE framework is adapted to the multi dimensional
separation of concerns used in CORE. This adaptation is intended to be performed in
the near future.

AOREC has no explicit verification and validation support either for verifying
requirement assignment per component, or aspect detail assignment per aspect. On the
other hand, the aspect details can be used to verify if the details required by a
component are provided by another component, thus checking the correctness of
component composition.

Verification with the customers by “walking through” the action view and clipped
action view graphs is possible for Them/Doc. Informal validation of designs against the
themes produced at the requirements stage is also possible. Though this validation
cannot prove correctness of designs and will not provide a 1-1 mapping between

 113

requirements themes and design operations, it helps to put the design decisions in
context of their corresponding requirements and verify the decisions themselves [55].

 114

4. AO Architecture

4.1 Introduction: Architecture
Software architectures are high-level design representations that facilitate the
communication between different stakeholders, enable the effective partitioning and
parallel development of the software system, provide a means for directing design
decisions and their evaluation, and finally provide opportunities for reuse [76] [77].

Software architecture is generally considered to play a fundamental role in coping with
the inherent difficulties of the development of large-scale and complex software
systems [78]. A common assumption is that architecture design should support the
required software system qualities such as robustness, adaptability, reusability and
maintainability [79] [76].

The term architecture is not new and has been used for centuries to denote the physical
structure. A common definition that is applied to the context of software systems is the
following [76]:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them”.

Software architecture forms one of the key artefacts in the entire software development
life cycle since it embodies the earliest design decisions and includes the gross-level
components that directly impact the subsequent analysis, design and implementation.
Accordingly, it is important that the architecture design supports the software system
qualities required by the various stakeholders. For ensuring the quality factors it is
necessary to identify the fundamental concerns for architecture design and various
architecture design methods have been introduced for this purpose.

Current software architecture design methods, however, do not make an explicit
distinction between conventional architectural concerns that can be localised using
current architectural abstractions and architectural concerns that crosscut multiple
architectural components. The risk is that potential aspects might be easily overlooked
during the software architecture design and remains unsolved at the design and
programming level. This may lead to tangled code in the system and consequently the
quality factors that the architecture analysis methods attempt to verify will still be
impeded. Similar to the notion of aspect at the programming level, these concerns are
crosscutting and denote so-called architectural aspects. Since the crosscutting property
of architectural aspects is inherent, these cannot be undone simply by redefining the
software architecture using conventional architectural abstractions. In fact, like various
aspect-oriented programming abstractions, we need explicit mechanisms to identify,
specify and evaluate aspects at the architecture design level. In this sense aspectual
architecture design approaches describe steps for identifying architectural aspects and
their related tangled components. This information is used to redesign the given
architecture in which the architectural aspects are made explicit. This is different from
traditional approaches where architectural aspects are implicit information in the
specification of the architecture.

The survey of architecture approaches in this report discusses state-of-the-art in both
non-AO and AO architecture approaches from the perspective of treating crosscutting

 115

concerns at the architecture level. Each set of approaches (i.e., AO and non-AO) is
categorised as follows:

1. Approaches for modelling architecture - include all the approaches for
modelling architectures visually or textually.

2. Approaches for architecture design process - include the approaches that
provide explicit process and heuristic rules for designing architectures

3. Architecture evaluation approaches - include the approaches that mainly focus
on the analysis of architecture with respect to required quality criteria

We use the general quality criteria from section 2 as a basis to provide a qualitative
comparison between the various approaches.

This section is further organised as follows: section 4.2 describes the non-AO
approaches, section 4.3 presents the AO approaches, section 4.4 discusses the
comparison.

4.2 Non-AO Approaches
4.2.1 Architectural Modelling Approaches
This section discusses the architectural modelling approaches which are grouped into:

• Architectural Description Languages or ADLs (section 4.2.1.1), represented by
ACME [80], Chiron-2 [81, 82], Aesop [83, 84], Darwin [85, 86], Rapide [87,
88], and Wright [89] approaches;

• Approaches that use Unified Modelling Language (UML) for software
architecture modelling (section 4.2.1.2), represented by [90];

• Architecture Evaluation Methods (section 4.2.3), represented by Software
Architecture Analysis Method [91] (SAAM), Architecture Trade-Off Analysis
Method [92], SAAM Founded on Complex Scenarios [93], Extending SAAM
by Integration in the Domain [94], SAAM Evolution and Reusability [95], and
Architecture Level Prediction of Software Maintenance [96] approaches.

4.2.1.1 Architecture Description Languages
Several ADLs have been proposed as modelling representations to support
architecture-based development. In general, an ADL is used to model the components,
the connections, and the configuration of software architecture. The set of ADLs in the
literature is quite broad and several surveys have already been published by various
authors, e.g., [97, 98]. Although each ADL provides a specification language for
representing the high level structure of the system we can identify several differences.
First of all, it appears that several ADLs focus on modelling particular domains [99]
whereas other ADLs are general-purpose. Secondly, different ADLs focus on
specification of different characteristics of the architecture. Some focus on the
specification of the architectural components, some on interaction of the components
and others on the configuration. Finally, ADLs can be distinguished by their goals.
While most of them can be considered as a means for communication and
understanding, some of them can be considered as models that can be adopted to derive
the subsequent artefacts from it.
Since the set of ADLs is too broad to consider, we will not redo the work on
classifying ADLs but suffice to refer to the surveys [97, 98] and, in addition, describe

 116

the ADLs that are representative of the above distinctions. The representative ADLs
discussed below are ACME [80], Chiron-2 [81, 82], Aesop [83, 84], Darwin [85, 86],
Rapide [87, 88], and Wright [89].

4.2.1.1.1 ACME
ACME [80] builds on the experience of other ADLs and intends to serve as a common
representation for software architectures. ACME supports the definition of software
architectures from four distinct perspectives:
1. Structuring of a system into its constituent parts;
2. Properties of interest about a system or its parts that allow one to reason abstractly

about overall behaviour (both functional and non-functional);
3. Constraints on how the architecture can change over time;
4. Types and styles defining classes and families of architecture.

ACME focuses on architectural interchange, predominantly at the structural level [98].
An architecture description in ACME can comprise of seven types of entities:
components, connectors, systems, ports, roles, representations, and rep-maps. The first
five are illustrated in Figure 4-1.

Figure 4-1 : Entities of ACME

Components represent computational elements and data stores of a system. A
component may have multiple interfaces, each of which is termed a port. A port
identifies a point of interaction between the component and its environment.

Connectors also have interfaces that are defined by a set of roles. Each role of a
connector defines a participant of the interaction represented by the connector. Systems
are defined as graphs in which the nodes represent components and the arcs represent
connectors. This is done by identifying which component ports are attached to which
connector roles. A representation map (rep-map, also called attachment in Figure 4-2)
defines this correspondence. In the simplest case a rep-map provides an association (an
attachment) between internal ports and external ports (or, for connectors, between
internal roles and external roles).

Each of the seven entity types can be annotated with a property list. Properties
document details of an architecture relevant to its design and analysis. A property has a
name, an optional type, and a value. A simple example of a Client-Server system in
ACME is presented in Figure 4-2.

 117

Figure 4-2 : Example specification

Constraints determine how an architecture design is permitted to evolve over time.
ACME provides a syntax to describe such constraints. Constraints can be associated
with the seven entity types.
Styles allow one to define a domain-specific or application-specific design vocabulary,
together with constraints on how that vocabulary can be used. The basic building block
for defining styles is a type system that can be used to encapsulate recurring structures
and relationships.

4.2.1.1.2 C2
A Chiron-2 (C2) architecture [81, 82] is a hierarchical network of concurrent
components linked together by connectors in accordance with a set of style rules. C2
communication rules require that all communication between C2 components be
achieved via message passing. C2 focuses on architectures of highly-distributed,
evolvable, and dynamic systems [98].
C2 is a component- and message-based style designed to support the particular needs
of applications that have a graphical user interface aspect, with the potential for
supporting other types of applications as well. The C2 style supports a paradigm in
which user interface components, such as dialogs, structured graphics models, and
constraint managers, can more readily be reused. A sample C2 architecture is depicted
in Figure 4-3.

Figure 4-3 : Example C2 application

C2’s ADL describes the components and the topology of the architecture. A C2
architecture in ADL is modelled as depicted in Figure 4-4 [82]:

 118

Figure 4-4 : ADL of C2

The ADL can also be used to describe the topology, or configuration, of the
architecture. These features have not been discussed here but can be found in [82].

4.2.1.1.3 Aesop
Aesop [83, 84] is a system for developing style-specific architectural development [98]
environments. Each of these environments supports:
• A palette of design element types (i.e., style-specific components and connectors)

corresponding to the vocabulary of the style;
• Checks that compositions of design elements satisfy the topological constraints of

the style;
• Optional semantic specifications of the elements;
• An interface that allows external tools to analyse and manipulate architectural

descriptions;
• Multiple style specific visualisations of architectural information together with a

graphical editor for manipulating them.
Aesop combines a description of a style (or set of styles) with a shared toolkit of
common facilities to produce an environment called a Fable, specialized to that style
(or styles) [84]. The Aesop ADL is not being actively developed at present; emphasis
is shifting to ACME instead.
An Aesop architectural representation contains seven entities: components, connectors,
configurations, ports, roles, representations, and bindings. Most entities correspond to
an entity that is used by ACME. Each of the seven entities is represented as a C++
class. Pipeline, real-time and event-based styles can be represented using Aesop.

4.2.1.1.4 Darwin
Darwin [85, 86] is a language for describing component-based architectures. It
supports a hierarchical model and is accompanied by a corresponding graphical

 119

notation. The main contributions of Darwin are its simple yet elegant grammar, its
solid concept of components and the introduction of dynamism in the specification of
software architectures. Darwin focuses on architectures of highly-distributed systems
whose dynamism is guided by strict formal underpinnings [98].
In Darwin, components are strongly typed first-class language primitives, supporting
single inheritance. A component interface specifies what the component can provide to
others, and what it requires. These ‘provide and require’ statements serve as implicit
connectors; there is no explicit connector language construct. The component
abstraction is deemed powerful enough to encompass connectors, i.e. if a specific type
of connector is required, it can be specified as a component, with other components
connected to it. Darwin supports a bind statement which is used to tie together
components using their ‘provide and require’ statements. The Darwin compiler checks
that connections are only made between compatible communication objects.

4.2.1.1.5 Rapide
Rapide [87, 88] has been designed to support component-based development of large,
multi-language systems by utilising architecture definitions as the development
framework. Rapide focuses on modelling and simulation of the dynamic behaviour
described by an architecture [98].
Rapide, in fact, can be considered as a language framework consisting of four
elements:
1. A type language used to define component interfaces. The language is based on a

single general interface type construct together with inheritance derivations for
building new interfaces from existing ones.

2. An executable architecture definition language which provides features for
composing systems from component interfaces by defining their synchronisation
and communication interconnections in terms of patterns of events.

3. A constraint specification language which provides constructs for abstract
specification of the behaviour of a distributed system, including timing
requirements.

4. A concurrent reactive programming language which uses types, objects, and
expressions of the type language, and provides module and control structures. Its
principal constructs are independent (or concurrent) reactive processes that activate
when patterns of events occur during execution. These pattern-triggered processes
are used to define architecture connections between components and construct
component behaviours via rule-based, reactive programming.

4.2.1.1.6 Wright
As an ADL, Wright [89] is built around the basic architectural abstractions of
components, connectors, and configurations. It provides explicit notations for each of
these elements, formalising the general notions of component as computation and
connector as pattern of interaction. Its main focus is on modelling and analysis of the
dynamic behaviour of concurrent systems [98].
The description of a component in Wright has two important parts: the interface and
the computation. An interface consists of a number of ports. Each port represents an
interaction in which the component may participate. The structure of a Wright
component is described in Figure 4-5.

 120

Figure 4-5 : Structure of Wright component

The structure of a Wright connector is depicted in Figure 4-6. The Glue of a connector
describes how the participants work together to create an interaction.

Figure 4-6 : Structure of connector

In order to describe a complete system architecture, the components and connectors of
a description must be combined into a configuration. A configuration is a collection of
component instances combined via connectors.

4.2.1.2 Unified Modelling Language
The possibility of using the Unified Modelling Language (UML) to model the software
architecture has been investigated in [90]. The authors consider two possible ways for
the purpose: use UML “as is” or constrain the UML meta-model using UML’s built-in
extension mechanisms, like the Object Constraint Language (OCL) and stereotypes.
For using UML “as is”, an architecture that is modelled in the ADL of C2 is used. To a
large extent, the C2-style architecture can be successfully modelled with UML. Part of
the success can be attributed to the fact that, as anticipated, many architectural
concepts are found in UML. It must be noted, however, that the modelling capabilities
provided by UML “as is” do not fully satisfy the structural needs of architectural
description for two key reasons. First, UML does not provide specialised constructs for
modelling architectural artefacts. For example, connectors and components must be
modelled in UML “as is” using the same mechanism. Second, the rules of a given
architectural style can not be modelled with UML.
The second approach, i.e., constraining the UML meta-model, can also be employed to
constrain the UML to enforce the rules of the C2 style in a fairly straightforward
fashion. This is because many C2 concepts are found in UML (cf. the example
architecture depicted in Figure 4-7).

 121

Figure 4-7 : Example architecture

This architecture modelling strategy has also drawbacks. It is heavily reliant on OCL,
whose formality may hinder wide adoption of the strategy even though end users of the
constrained UML model typically will not need to write OCL constraints. OCL is a
part of the standard UML definition, and it is expected that standardised UML tools
will be able to process it. However, OCL is considered an uninterpreted part of UML,
and UML tools may not support it to the extent needed for creating, manipulating,
analysing, and evolving architectural models.

4.2.2 Architectural Design Process Approaches
In this section a meta-model that is an abstraction of various architecture design
approaches is provided. This meta-model is used to analyse and compare architecture
design process approaches. The meta-model is presented in Figure 4-8.

Requirement
Specification

Solution
Abstraction

Domain
Knowledge

Client

Artifact

Architecture
Description

Domain
Knowledge

Requirements
Capturing

Extracting Solution
Structures

Domain
Knowledge

Architecture
Specification

Figure 4-8 : Meta-model for architecture design process approaches

 122

The rounded rectangles represent the concepts and the lines represent the association
between these concepts. The diamond symbol represents an association relation
between three or four concepts. The meanings of the concepts are as follows:

• Client - the stakeholders who are interested in the development of a software
architecture design. A stakeholder may be a customer, end-user, system
developer, system maintainer, sales manager, etc.

• Domain Knowledge - the area of knowledge that is applied to solve a certain
problem. This term is used three times but has different meanings in different
approaches. The following specialisations of this concept are distinguished (cf.
Figure 4-9):

o Problem Domain Knowledge refers to the knowledge of the problem
from a client’s perspective (includes requirement specification
documents, interviews with clients, prototypes delivered by clients,
etc.).

o Business Domain Knowledge is the knowledge of the problem from a
business process perspective (includes knowledge on the business
processes and also customer surveys and market analysis reports).

o Solution Domain Knowledge is the knowledge that provides the domain
concepts for solving the problem. It is separate from specific
requirements and the knowledge on how to produce software systems
from this solution domain. This kind of domain knowledge is included
in, for example, textbooks, scientific journals and manuals.

o General Knowledge is the general background and experiences of the
software engineer and also may include general rules of thumb.

o System/Product Knowledge is the knowledge about a system, a family
of systems or a product.

• Requirement Specification - the specification that describes the requirements
for the architecture to be developed.

• Artefact - the artefact descriptions of a certain method. This is, for example, the
description of the artefact Class, Operation, Attribute, etc. In general each
artefact has a related set of heuristics for identifying the corresponding
instances.

• Solution Abstraction - the conceptual representation of a (sub)-structure of the
architecture.

• Architecture Description - a specification of the software architecture.

In Figure 4-8 there is a ternary association relation between the concepts Client,
Domain Knowledge and Requirement Specification. This association means that for
defining a requirement specification both client and the domain knowledge are utilised.
The order of processing is not defined by this association and may differ per
architecture design approach.

There is a quaternary association relation between the concepts Requirement
Specification, Domain Knowledge, Artefact and Solution Abstraction which describes
the structural relations between these concepts to derive a suitable solution abstraction.
The ternary association relation between the concepts Solution Abstraction,

 123

Architecture Description and Domain Knowledge is referred to as Architecture
Specification as it represents the specification of the architecture utilising the three
concepts.

Domain
Knowledge

Problem Domain
Knowledge

Business Domain
Knowledge

Solution Domain
Knowledge

General
Knowledge

System/Product
Knowledge

is-a

Figure 4-9 : Different specializations of the concept Domain Knowledge

Various architectural process approaches can be described as instantiations of the
meta-model in Figure 4-8. Each approach will differ in the ordering of the processes
and the particular content of the concepts.

A number of approaches have been introduced to identify the architectural design
abstractions. We classify these approaches as requirements-driven and domain-driven
architecture design approaches. The criterion for this classification is based on the
adopted basis for the identification of the key abstractions of architectures. Below each
approach is explained as a realisation of the meta-model from Figure 4-8.

4.2.2.1 Requirements-driven Architecture Design
The approaches in this category use requirements, such as use cases, as the primary
artefacts for deriving the architectural abstractions. As discussed in section 3.3.4.1, a
use case is defined as a sequence of actions that the system provides for actors [100].
Actors represent external roles with which the system must interact. The actors and the
use cases together form the use case model. The use case model is meant as a model of
the system’s intended functions and its environment, and serves as a contract between
the customer and the developers. The Unified Process [100] applies a use case driven
architecture design approach. The conceptual model for the use case driven
architecture design approach in the Unified Process is given in Figure 4-10. Hereby,
the dashed rounded rectangles represent the concepts of Figure 4-8. For example, the
concepts Informal Specification and the Use Case Model together form the concept
Requirement Specification in Figure 4-8.

The Unified Process consists of core workflows that define the static content of the
process and describe the process in terms of activities, workers and artefacts. The
organisation of the process over time is defined by phases. The Unified Process is
composed of six core workflows: Business Modelling, Requirements, Analysis, Design,
Implementation and Test. These core workflows result respectively in the following
separate models: business & domain model, use case model, analysis model, design
model, implementation model and test model.

 124

Solution Abstraction

Requirement Specification

Use-Case
Model

Analysis &
Design
Models

Artifact

Packages

General
Knowledge

Business
Model

Informal
Specification

2: Realize

3:Group

Architecture
Description

4:Compose

Client
Domain
Model

1:Describe

Figure 4-10 : Conceptual model of use case driven architectural design

In the requirements workflow, the client’s requirements are captured as use cases
which results in the use case model. This process is defined by the function 1:Describe
in Figure 4-10. Together with the informal requirement specification, the use case
model forms the requirement specification. The development of the use case model is
supported by the concepts Informal Specification, Domain Model and Business Model
that are required to set the system’s context. The Informal Specification represents the
textual requirement specification. The Business Model describes the business processes
of an organisation. The Domain Model describes the most important classes within the
context of the domain. From the use case model the architecturally significant use
cases are selected and use case realisations are created as it is described by the
function 2:Realize. Use case realisations determine how the system internally performs
the tasks in terms of collaborating objects and as such help to identify the artefacts
such as classes. The use case realisations are supported by the knowledge of the
corresponding artefacts and the general knowledge. This is represented by the arrows
directed from the concepts Artefact and General Knowledge respectively, to the
function 2:Realize. The output of this function is the concept Analysis & Design
Models, which represents the identified artefacts after use case realisations.

The analysis and design models are then grouped into packages which is represented
by the function 3:Group. The function 4:Compose represents the definition of
interfaces between these packages resulting in the concept Architecture Description.
Both functions are supported by the concept General Knowledge.

 125

4.2.2.2 Domain-driven Architecture Design
Domain-driven architecture design approaches derive the architectural design
abstractions from domain models. The conceptual model for this domain-driven
approach is presented in Figure 4-11.

Domain models are developed through a domain analysis phase represented by the
function 2:Domain Analysis. Domain analysis can be defined as the process of
identifying, capturing and organising domain knowledge about the problem domain
with the purpose of making it reusable when creating new systems [101]. The function
2:Domain Analysis takes as input the concepts Requirement Specification and Domain
Knowledge and results in the concept Domain Model. Note that both the concepts
Solution Domain Knowledge and Domain Model in Figure 4-11 represent the concept
Domain Knowledge in the meta-model of Figure 4-8.

Requirement
Specification

Client

1:Describe

Solution Domain
Knowledge

Domain Model

Architecture
Description

2:Domain Analysis

3:Domain Design

Figure 4-11 : Conceptual model for Domain-Driven Architecture Design

The domain model may be represented using different representation forms such as
classes, entity-relation diagrams, frames, semantics networks, and rules. Several
domain analysis methods have been published, e.g., [102], [103], [101], [104] and
[105]. Two surveys of various domain analysis methods can be found in [106] and
[107]. In [105] a more recent and extensive up-to-date overview of domain engineering
methods is provided.

In this section we are mainly interested in the approaches that use the domain model to
derive architectural abstractions. In Figure 4-11, this is represented by the function
3:Domain Design. In the following we consider two domain-driven approaches,
namely product-line architecture design and pattern-driven architecture design, that
derive the architectural design abstractions from domain models.

4.2.2.2.1 Product-line Architecture Design
In the product-line architecture design approach, an architecture is developed for a
software product-line that is defined as a group of software-intensive products sharing
a common, managed set of features that satisfy the needs of a selected market or
mission area [78]. A software product line architecture is an abstraction of the
architecture of a related set of products. The product-line architecture design approach

 126

focuses primarily on the reuse within an organisation and involves core asset
development and product development. The core asset base often includes the
architecture, reusable software components, requirements, documentation and
specification, performance models, schedules, budgets, and test plans and cases [108],
[109], [78]. The core asset base is used to generate or integrate products from a product
line.

The conceptual model for product-line architecture design is shown in Figure 4-12.
The function 1:Domain Engineering represents the core asset base development. The
function 2:Application Engineering represents the product development from the core
asset base.

Core Asset
Base

1:Domain Engineering

Product

2:Application Engineering

Domain
Knowledge

Figure 4-12 : A conceptual model for a Product-Line Architecture Design

Note that various software architecture design approaches can be applied to provide a
product-line architecture design. In the following section we describe the DSSA
approach that follows the conceptual model for product-line architecture design in
Figure 4-12.

4.2.2.2.1.1 Domain Specific Software Architecture Design

The domain-specific software architecture (DSSA) [110] [111] may be considered as a
multi-system scope architecture, that is, it derives an architectural description for a
family of systems rather than a single-system. The conceptual model of this approach
is presented in Figure 4-13. The basic artefacts of a DSSA approach are the domain
model, reference requirements and the reference architecture. The DSSA approach
starts with a domain analysis phase on a set of applications with common problems or
functions. The analysis is based on scenarios from which functional requirements, data
flow and control flow information is derived. The domain model includes scenarios,
domain dictionary, context (block) diagrams, ER diagrams, data flow models, state
transition diagrams and object models.

In addition to the domain model, reference requirements are defined that include
functional requirements, non-functional requirements, design requirements and
implementation requirements and focus on the solution space. The domain model and
the reference requirements are used to derive the reference architecture. The DSSA
process makes an explicit distinction between a reference architecture and an
application architecture. A reference architecture is defined as the architecture for a
family of application systems, whereas an application architecture is defined as the

 127

architecture for a single system. The application architecture is instantiated or refined
from the reference architecture. The process of instantiating/refining and/or extending
a reference architecture is called application engineering.

Architecture Description

Domain Model

ScenariosInformal
Spec.

Application
Architecture

4:Derive

Client

Reference
Requirements

Reference
Architecture

General
Knowledge

3:Map to General
Knowledge

2:Extract

Problem
Domain

Knowledge

1:Describe

Figure 4-13 : Conceptual model for Domain Specific Software Architecture (DSSA) approach

4.2.2.2.2 Pattern-driven Architecture Design
Christopher Alexander’s idea on pattern languages for systematically designing
buildings and communities in architecture [112] has been adopted by the software
community and led to the so-called software design patterns [113]. Similar to the
patterns of Alexander, software design patterns aim to codify and make reusable a set
of principles for designing quality software. The software design patterns are applied
for the design phase, though, the software community has started to define and apply
patterns for the other phases of the software development process. At the
implementation phase patterns or idioms [114] have been defined to map object-
oriented designs to object-oriented language constructs. Others have defined patterns
for the analysis phase in which patterns are applied to derive analysis models [115].
Patterns have also been applied at the architectural analysis phase of the software
development process [116, 117]. Architectural patterns are similar to the design
patterns but focus on the gross-level structure of the system and its interactions.
Sometimes architectural patterns are also called architectural styles [77, 118]. An
architectural pattern is not the architecture itself, as it is often mistaken, but rather it is
just an abstract representation at the architectural level [76, 119].

Pattern-driven architecture design approaches derive the architectural abstractions from
patterns. Figure 4-14 depicts the conceptual model for this approach.

 128

Requirement
Specification

Client
Architectural Pattern

Description
1:Describe

Architecture
Description

2:Search

Intent

Architectural
Pattern4:Compose

Problem

Solution

3:Apply

Context

General
Knowledge

Figure 4-14 : Conceptual Model for a Pattern-Driven Architecture Design

The concept Requirement Specification represents a specification of a problem that
may be solved using a pattern. The function Search represents the process for
searching a suitable pattern for the given problem description and is supported by the
concept General Knowledge.

The concept Architectural Pattern Description represents a description of an
architectural pattern. It consists mainly of four sub-concepts62: Intent, Context,
Problem, and Solution. The concept Intent represents the rationale for applying the
pattern. The concept Context represents the situation that gives rise to the problem. The
concept Problem represents the recurring problem arising in the context. The concept
Solution represents a solution to the problem in the form of an abstract description of
the elements and their relations. For the identification of the pattern the intent of the
available patterns is scanned. If the intent of a pattern is found relevant for the given
problem then the context description (Context) is analysed. If this also matches the
context of the given problem, then the process follows with the function 3:Apply.
Thereby the sub-concept Solution is utilised to provide a solution to the problem. The
concept Architectural Pattern represents the result of the function 3:Apply. Finally, the
function 4:Compose represents the incorporation of the architecture pattern into the
architecture description.

4.2.3 Architecture Evaluation Methods
As discussed earlier, software architecture forms one of the key artefacts in the entire
software development life cycle since it embodies the earliest design decisions and
includes the gross-level components that directly impact the subsequent analysis,
design and implementation. Accordingly, it is important that the architecture design
supports the software system qualities required by the various stakeholders. For
ensuring the quality factors the common assumption is that identifying the fundamental
concerns for architecture design is necessary and various architecture design methods
have been introduced for this purpose. To verify that the right concerns have been

62 There are other sub-concepts but we consider these four sub-concepts as important for the
identification of the architectural abstractions.

 129

identified generally static analysis of formal architectural models is conducted or a set
of architecture analysis methods are adopted. Next we discuss some of these
architecture evaluation methods.

4.2.3.1 Software Architecture Analysis Method (SAAM)
In [91] a comprehensive survey is given of the various software architecture design
analysis methods that have been proposed so far. Among these methods the Software
Architecture Analysis Method (SAAM) can be considered as a mature method which
has been validated in various cases studies. Other methods such as SAAMCS,
ESAAMI, SAAMER and ATAM are based on or adopt the concepts used in this
method [91]. The basic activities of SAAM are illustrated in Figure 4-15.

Scenario
Development

Architecture
Description

Individual Scenario
evaluation

Assess
Scenario

interaction

Overall
Evaluation

and

or

Single Architecture
Analysis

Comparing multiple
architectures

Figure 4-15 : SAAM inputs and activities [120]

SAAM takes as input a problem description, requirements statement and architecture
descriptions. The steps of SAAM are as follows [120] :
1. Describe candidate architecture: The candidate architecture is described which

includes the system’s computation and data components, as well as all component
relationships, sometimes called connectors.

2. Develop scenarios: Development of scenarios for various stakeholders; the
scenarios illustrate the kinds of activities the system must support and the
anticipated changes that will be made to the system over time.

3. Perform scenario evaluations: Scenarios are categorised into direct and indirect
scenarios. For each indirect task scenario the required changes to the architecture
are listed and the cost of performing these changes is estimated. A modification to
the architecture means that either a new component or connection is introduced or
an existing component or connection requires a change in its specification.

4. Reveal scenario interaction: Different indirect scenarios that require changes to the
same components or connections are said to interact with respect to the
corresponding component. Determining scenario interaction is a process of
identifying scenarios that affect a common set of components. Scenario interaction
measures the extent to which the architecture supports an appropriate separation of
concerns. Semantically close scenarios should interact at the same component.
Semantically distinct scenarios that interact indicate an improper decomposition.

5. Overall evaluation: Finally, each scenario and the scenario interactions are
weighted in terms of their relative importance and this weighting used to determine
an overall ranking. The weighting chosen reflects the relative importance of the
quality factors that the scenarios manifest.

 130

4.2.3.2 The Architecture Trade-Off Analysis Method (ATAM)
The Architecture Trade-Off Analysis Method (ATAM), as presented in [92], is based
on SAAM, with an explicit quality model. ATAM uses a utility tree and, depending on
the qualities that are important, the appropriate attribute characteristics are used. The
steps that are used in ATAM to analyse the software architecture are as follows.

Presentation:
1. Present the ATAM: The evaluation leader describes the evaluation method to the

assembled participants, tries to set their expectations, and answers questions they
may have.

2. Present business drivers: A project spokesperson (ideally the project manager or
system customer) describes what business goals are motivating the development
effort and hence what will be the primary architectural drivers (e.g., high
availability or time to market or high security).

3. Present architecture: The architect will describe the architecture, focusing on how
it addresses the business drivers.

Investigation and Analysis:
4. Identify architectural approaches: Architectural approaches are identified by the

architect, but are not analysed.

5. Generate quality attribute utility tree: The quality factors that comprise system
“utility” (performance, availability, security, modifiability, usability, etc.) are
elicited, specified down to the level of scenarios, annotated with stimuli and
responses, and prioritised.

6. Analyse architectural approaches: Based upon the high-priority factors identified
in Step 5, the architectural approaches that address those factors are elicited and
analysed (for example, an architectural approach aimed at performance). During
this step architectural risks, sensitivity points, and trade-off points are identified
(cf. Figure 4-16).

Figure 4-16 : Concepts interaction in ATAM

7. Brainstorm and Prioritise Scenarios: Once the scenarios have been collected, they

must be prioritised. This is typically done via a voting procedure where each
stakeholder is allocated a number of votes equal to 30% of the number of scenarios,
rounded up.

 131

8. Analyse Architectural Approaches: In this step, step 6 is reiterated. Mapping the
highest ranked newly generated scenarios onto the architectural artefacts thus far
uncovered. Assuming Step 7 didn’t produce any high-priority scenarios that were
not already covered by previous analysis, Step 8 is a testing activity: This step is
expected to be uncovering little new information.

9. Present Results: Finally, the collected information from the ATAM needs to be
summarised and presented back to the stakeholders.

4.2.3.3 SAAM Founded on Complex Scenarios (SAAMCS)
SAAMCS [93] is alternative method for software architecture analysis. The main
differences between this method and SAAM are in the way in which we arrive at the
scenarios and in the way in which we evaluate their impact. The process steps of
SAAMCS are depicted in Figure 4-17. The first two steps: architecture description and
scenario development are performed in parallel. The goal of the latter is to identify
complex scenarios. A measurement instrument is used to measure the complexity of
the scenarios. The goal of the measurement instrument is to provide insight into the
complexity of scenarios for administrative systems. A distinction is made between the
effect of a scenario on the system and on the environment. A couple of factors are
defined to measure the impact on the system and on the environment. The results of
this measurement instrument are used to evaluate the scenarios in the third step.

Figure 4-17 : Inputs and activities of SAAMCS [91]

4.2.3.4 Extending SAAM by Integration in the Domain (ESAAMI)
ESAAMI, the integration of SAAM in domain-centric and reuse-based development
processes, is presented in [94]. The inputs to the ESAAMI process are depicted in
Figure 4-18.

 132

Figure 4-18 : Inputs of ESAAMI [91]

The SAAM process had to be made reuse-aware for the execution of the architecture
analysis itself and overcoming the ad-hoc way of doing reuse. ESAAMI provides
proto-scenarios, generic descriptions of reuse situations or interactions with the system.
A proto-scenario may be classified as direct or indirect like a conventional SAAM
scenario. The evaluation of the scenarios can be facilitated by providing protocols of
earlier analyses in different projects as well as proto-evaluations. A proto-evaluation
describes, by example, how the scenario can be performed using a set of abstract
architecture elements. Hints are associated with each scenario indicating which
architectural structures would make the scenario convenient to handle. Similar to the
evaluation of the scenarios themselves, the analysis of scenario interactions can also
benefit from protocols of earlier analyses in the same application domain. These
elements are combined to form an analysis template.
The reuse of a SAAM analysis template in a domain-centric development process
allows exploitation of the knowledge and experience from the specific application
domain to increase the relevance of the analysis results.
Unlike domain-specific proto-scenarios, the proto-scenarios in an architecture-specific
analysis template may refer to characteristics and elements of the scrutinised
architecture. However, similar to the situation described above, they are still generic
with respect to the considered application. The deployment of an architecture-specific
analysis template supports a focused evaluation of characteristics relevant to the
considered architecture, thus increasing the expressiveness of the analysis results.

4.2.3.5 SAAM Evolution and Reusability (SAAMER)
This framework [95] contains a set of architectural views that were developed to assess
software architectures for evolution and reuse built upon SAAM. The framework is
used to model different types of information, namely, stakeholder information,
architecture information, quality information, and scenarios.
SAAMER considers the following architectural views as critical: static, map, dynamic,
and resource. The static view integrates and extends SAAM to address the
classification and generalisation of a system’s components and functions and the
connections between components. These extensions facilitate the estimation of cost or
effort required for changes to be made. The dynamic view is appropriate for the
evaluation of the behaviour aspect, to validate the control and communication to be
handled in an expected manner. The mapping between components and functions
could reveal the cohesion and coupling aspects of a system [91].
The SAAMER process consists of four steps. The first step involves gathering
information about stakeholders, software architecture quality, and scenarios; modelling

 133

usable artefacts and undertaking analysis. The second step involves evaluation of the
architecture while the later last steps are similar to those of SAAM.

4.2.3.6 Architecture Level Prediction of Software Maintenance
(ALPSM)

This approach [96] aims to estimate the required maintenance effort for a software
system during architectural design. The estimated effort can be used to compare two
architecture alternatives or to balance maintainability against other quality attributes.
The approach takes as input the requirement specification, the design of the
architecture, expertise from software engineers and historical maintenance data. The
main output of the approach is an estimation of the required maintenance effort of the
system built based on the software architecture. The maintenance profile is a second
output from the method. The profile contains a set of scenario categories and a set of
scenarios for each category with associated weighting and analysis (scripting) results.
ALPSM process consists of six steps:
1. Identify categories of maintenance tasks: The categories are defined based on the

application or domain description.
2. Synthesise scenarios: For each of the maintenance categories, a representative set

of concrete scenarios is defined.
3. Assign each scenario a weight: The prediction method requires probability

estimates, i.e. weights, for each scenario. These probabilities are used for balancing
the impact on the prediction of more occurring and less occurring maintenance
tasks.

4. Estimate the size of all elements: To estimate the maintenance effort, the size of the
architecture needs to be known and the sizes of the affected components need to be
known.

5. Script the scenarios: The maintainability of the architecture is estimated by
scripting the scenarios.

6. Calculate the predicted maintenance effort: The value is a weighted average for the
effort for each maintenance scenario. Based on that, one can calculate an average
effort per maintenance task.

4.3 Aspect-Oriented Approaches
Like the non-AO approaches, we categorise the aspect-oriented architecture design
approaches into:

• Architectural modelling approaches represented by the Perspectival Concern-
Space Framework [121] and DAOP-ADL [122];

• Architectural process approaches represented by Aspect-Oriented Generative
Approaches [123, 124] and TranSAT [125];

• Architecture Evaluation approaches represented by Aspectual Software
Architecture Analysis Method [126].

Each approach in each of the three categories is described in terms of its method for
architecture design, the artefacts and the process, if applicable.

4.3.1 Architectural Modelling Approaches

 134

4.3.1.1 The Perspectival Concern-Space (PCS) Framework
PCS Method
The Perspectival Concern-Space (PCS) [121] is a technique for depicting concerns of
multiple dimensions in an architectural view consisting of one or more models and
diagrams. A perspective is a “way of looking” at a multidimensional space of software
concerns from one specific viewpoint. Figure 4-19 gives an idea of the key concepts
used in the PCS Framework and summarises the combination of the realisations of the
conceptual frameworks for Multi Dimension Separation of Concerns (MDSOC) and
IEEE-Std-1471, and UML.

Figure 4-19 : A Perspectival Concern-Space in Overview

PCS Artefacts
The Aspect-Oriented Construction PCS is a specific type of PCS and demonstrates
how MDSOC helps deal with software complexity by supporting the composition of
independent software components along different interaction concerns.
A UML Space is used for Aspect-Oriented Modelling (AOM), see Figure 4-20 for a
high level view and Figure 4-21 for a low level view. The approach proposes two
packages as extension to UML. The AOM Core package specifies the basic AOM
constructs necessary to model aspect-oriented software. The AOM Data Types package
defines basic data types. The Aspect-Oriented Model can be mapped to an AspectJ
program, which is a manual process.

 135

Figure 4-20 : High-Level Package View of the UML Space for AOM

Figure 4-21 : The UML Space for AOM — A Low-Level View of AOM Core

With the tool ConcernBase it is possible to translate the UML models to Structural
Architecture Description Language (SADL). SADL is a particular ADL that focuses on
understanding, specifying and refining the representation of structural concerns in
complex software systems. SADL is different from other ADLs, such as Wright, in that
it supports structural decomposition at multiple levels. This is called refinement of
high-level system structures in the SADL terminology.

4.3.1.2 DAOP-ADL
DAOP-ADL Method
DAOP-ADL [122] is an XML-based architecture description language to describe the
architecture of an application in terms of a set of components, a set of aspects and the
interconnections among them. As shown in Figure 4-22, these interconnections are
structured in two different kinds of composition constraints:

 136

1. The componentCompositionRules describe the rules that drive the composition of
components

2. The aspectEvaluationRules, which are the equivalent to aspect pointcuts in aspect-
oriented programming languages, describe the weaving rules between components
and aspects.

The dependencies among non-orthogonal concerns are expressed by means of shared
properties. The language also includes all the information needed to deploy the
application (the deployment information) and the application initial context. DAOP-
ADL is part of the CAM/DAOP approach described in section 5.4.16 of this document.
The goal of this approach is specification of component and aspect based distributed
applications.

Figure 4-22 : The structure of the DAOP-ADL language

DAOP-ADL Artefacts
The artefacts in DAOP-ADL are the components and the aspects that set up an
application. These artefacts are described by means of their provided and required
interfaces.

 137

<component role = “chat”>
 <providedInterface> ChatProv.xml </providedInterface>
 <requiredInterface> ChatReq.xml </requiredInterface>
 <implementations>
 <implementation>
 <name>chat1</name>
 <language>java</language>
 <class>Chat.class</class>
 </implementation>
 </implementations>
</component>

<aspect role = “persistence”>
 <evaluatedInterface> PersistenceEval.xml </evaluatedInterface>
 <implementations>
 <implementation>
 <name>persistence1</name>
 <language>java</language>
 <class>Persistence.class</class>
 </implementation>
 </implementations>
</aspect>

<aspect role = “authentication”>
 …
 <setProperty>username</setProperty>
</aspect>

<aspect role = “userfilter”>
 …
 <getProperty>username</getProperty>
</aspect>

<property name = “ username“>
 <type>String</type>
</property>

<compositionRules>
 <compCompositionRules>…</compCompositionRules>
 <aspectCompositionRules>
 <aspectRule>
 <targetCompRole>chat</targetCompRole>
 <BEFORE_NEW> //rule to apply the authentication aspect
 <aspectList>authentication</aspectList>
 </BEFORE_NEW>
 </aspectRule>
 <aspectRule>
 <sourceCompRole>chat</targetCompRole>
 <targetCompRole>chat</targetCompRole>
 <BEFORE-SEND> //rule to apply the persistence aspect
 <messages>sendText</messages>
 <aspectList>persistence</aspectList>
 </BEFORE_SEND>
 <BEFORE_RECEIVE> //rule to apply the userfilter aspect
 <messages>sendText</messages>
 <aspectList>userfilter</aspectList>
 </BEFORE_RECEIVE>
 </aspectRule>
 </aspectCompositionRules>
</compositionRules>

<providedInterface>
 <method name = “sendText”>String</method>
 <method name = “sendColour”>Colour</method>
 …
</providedInterface>

<requiredInterface>
 <message name = “sendText”>
 <targetRole>chat</targetRole>
 <parameter>String</parameter>
 <message>
 …
</requiredInterface>

<evaluatedInterface>
 <method name = “sendText”></method>
 …
</evaluatedInterface>

Figure 4-23 : Component and aspect XML description

The output artefact of using the DAOP-ADL language is an XML-based document (cf.
Figure 4-23) that contains the description of all the components and aspects that may
be instantiated in the final application and the set of plug-compatibility rules that
determines how the entities in the application (core functionality and concerns) are to
be composed.

DAOP-ADL Process
The process for DAOP-ADL based architecture design is as follows. First, all the
components and aspects that may be instantiated in an application are described using
the component and aspect description section of the DAOP-ADL language. If COTS

 138

components and aspects are going to be used the information can be automatically
generated by inspecting the component and aspect binary code. Then, the information
about the composition among components, the relationships among aspects and the
composition between components and aspects is provided in the composition
constraints section of the language. After this, this information can be validated to
check if some mismatches exists.

The tool Component and Aspect Repository is used to register COTS components and
aspects. The tool automatically generates the description of loaded components and
aspects using the syntax of the DAOP-ADL language. Then, the tool Aspect
Specification and Validation is employed. It has the DAOP-ADL language as its back-
end and supports description and validation of the software architecture of the
application.

DAOP-ADL is used in conjunction with CAM/DAOP. CAM is a design model used to
design component and aspect based applications in UML. DAOP, on the other hand, is
a component and aspect based platform that loads the architecture description provided
via the DAOP-ADL specification to obtain the information needed to instantiate
components and aspects and to perform the dynamic composition of components and
aspects at runtime. DAOP-ADL supports traceability in the sense that all the
components and aspects identified during the design of the application with CAM are
described in XML using the DAOP-ADL language. Additionally, all the information
provided with DAOP-ADL is directly used at runtime, closing the "gap" between the
design and implementation of component and aspect-based applications.

4.3.2 Architectural Process Approaches

4.3.2.1 Aspect-Oriented Generative Approaches (AOGA)
AOGA Method
Aspect-Oriented Generative Approaches (AOGA) [123, 124] is an architecture-centric
approach that was initially outlined in [127] and further extended in [123, 124, 128]
with the purpose of supporting developers of multi-agent systems (MAS) with domain-
specific languages, modelling notations, and code generation tools. Although the
approach has been initially applied to the MAS domain, the concepts introduced are
general and not limited to the MAS domain. The basic idea of the approach is to
promote the integration of generative and aspect-oriented technologies in order to
facilitate the domain modelling, the architectural specification and the code generation
of crosscutting features starting from early development stages. Aspects can be
captured and specified in preliminary development stages, even before the architectural
stage. In this sense, AOGA has defined extensions to feature models [129] and a new
domain-specific language (DSL) in addition to a UML-based notation to express
architectural aspects.

This approach covers the following life cycle phases: Domain analysis and
specification, Architecture design, and Implementation. As illustrated in Figure 4-24,
the first phase encompasses the specification of crosscutting features as domain
aspects. The architecture design involves the use of a UML-based notation to define
the architectural aspects as part of an aspect-oriented software architecture. The

 139

implementation phase includes the use of a code generator, pre-defined frameworks,
pre-defined components, and code templates.

Extended Feature Models
Agent-DSL

AO Agent Architecture
Generated

Specification
of domain
aspects

Code GeneratorFrameworks +
Components

Code
Templates

Classes and Aspects
of the Application

Domain analysis &
specification

Implementation

Architecture
design UML Notation

Implementation

Specification
of agent

properties

A

B

A

B Aspect-Oriented
Architecture

Figure 4-24 : The development phases covered by the AOGA approach

The driving goal of the AOGA approach is to empower software developers with
means to modularise crosscutting features in a stepwise fashion. This top-level goal is,
in turn, decomposed into three subgoals:
• support the identification and specification of domain aspects;
• enable the identification and specification of architectural aspects;
• automate the code generation of the specified aspect-oriented architecture.

AOGA Artefacts

Extended feature models are the artefacts used in the domain analysis and specification
phases. The original definition of feature models was intended to explicitly support the
representation of common and variable features in a certain domain. Feature models
are also used to represent different types of relationships between features. The AOGA
approach extends feature models to emphasise the distinction between non-crosscutting
features and crosscutting ones. Figure 4-25 presents an illustrative example of the
feature models. Note that a new relation type is defined, called crosscutting, which
makes it explicit which features a given crosscutting feature is affecting. A feature A
crosscuts a feature B, when either A or one of its sub-features depends and inspects B
or one of the sub-features of B. In Figure 4-25, for example, feature A is being affected
by the crosscutting feature B. It is also possible to express which specific sub-features
are being affected; in Figure 4-25, the features A1 and A2 are the affected sub-features.
The AOGA approach also provides a domain-specific language, called Agent-DSL,
which is used to collect and model both orthogonal and crosscutting features of agent-
based applications. Although this is an XML-based language that is compliant with the
generic AO extensions of the feature models, it is specially tailored to the MAS
domain.

 140

Feature AFeature A

Concept XConcept X

A1A1 A2A2

Feature BFeature B

B2B2A3A3 B1B1 B3B3

A1A1 A3A3

crosscuts

A2A2 A3A3

Legend:

mandatory feature

optional feature

alternative features

affected feature
Figure 4-25 : Crosscutting feature models

For the architectural stage, AOGA has a UML-based language for specifying and
communicating aspect-oriented software architectures. It provides a notation and
semantics that enable architects of AO software to build models that focuses on the key
components of aspect-oriented systems. The main goal is to avoid the architect to deal
with design issues that are not relevant in the architectural stage. Figure 4-26 illustrates
the notation elements of the architectural model that makes a distinction between
normal components and aspectual components. Aspectual components (or architectural
aspects) are aspects at the architecture level. Architectural aspects are UML
components [130] represented as diamonds. Each of the aspectual components is
related to more than one architectural component, thus representing its crosscutting
nature. Note that the architectural view of an aspect suppresses all information about
its inner elements.

NI2

ComponentA

NI1

CI1

AspectA

Legend:
aspectual component

component
crosscutting interface
normal interface

crosscuts

CI2

AspectB

CI3

Figure 4-26 : Architectural aspects and crosscutting interfaces

Interfaces of the architectural components are also defined in a higher-level fashion.
Figure 4-26 illustrates some architectural components and their interfaces. Each
interface is displayed as a small circle with the interface name placed next to the circle.
Each architectural component has one or more interfaces, and different components
can realise the same interface. The interfaces are attached to the architectural
components, and are categorised into two groups: normal interfaces and crosscutting
interfaces [131]. Normal interfaces are coloured in white and crosscutting ones in grey.
A crosscutting interface is different from a normal interface. The latter only provides
services to other components. Crosscutting interfaces in the architectural model specify
which architectural components an aspectual component affects; note that the

 141

architectural model does not declare how they are affected. An aspectual component
conforms to a set of crosscutting interfaces. An aspect interface crosscuts either
internal elements of architectural components or other interfaces. The first case means
that the architectural aspect directly affects the internal structure or dynamic behaviour
of the target component. The second case means that the aspect affects the behaviour
defined by the crosscutting interface.

The output artefacts are: feature models and component models. Feature models are
represented in a domain specific language called Agent-DSL. Agent-DSL uses an
XML Schema to represent the features. In the architecture design phase, the aSide
modelling language is used to represent the software architecture.

AOGA Process
In the AOGA process first a domain-specific language (DSL), called Agent-DSL is
used to collect and model both non-crosscutting and crosscutting features of software
agents. After that, the system designers specify an AO architecture for the system at
hand. In this architectural phase, the designers concentrate on two main issues. First,
they work on the specification of the central components of the AO system, as
described above. Second, software architects define the interfaces of the architectural
components in a higher-level fashion. Thus the AO architecture is centred on the
definition of aspectual components to modularise the crosscutting agent features at the
architectural level of abstraction. In the last step a code generator, that maps
abstractions of the Agent-DSL to specific compositions of objects and aspects in the
agent architecture, is used. The tool agent architecture generator is implemented as an
Eclipse plug-in. The tool can read the agent description of the Agent-DSL. The plug-in
can generate the classes that represent the elements of the XML Schema.

There is a direct trace link between a crosscutting feature in domain analysis and an
aspectual component in domain design [123]. So, there is traceability support available
from the domain application model to the architecture application model. In addition,
an architectural aspect is mapped to a set of implementation aspects that refine that
aspectual component.

4.3.2.2 TranSAT
TranSAT Method
TranSAT [125] is a framework for the specification of software evolution. TranSAT
focuses on facilitating architecture evolution through realising AOSD principles in an
architecture context. It proposes the incremental definition of the software architecture
by weaving new architecture plan within a software architecture. Architecture
specification is transformed by integrating technical concerns within the architecture.

Three challenges are addressed by TranSAT. First, the integration of a new concern
should be performed by the framework. Second, a concern should be generic enough to
be reusable in several contexts. Third, the integration of a new concern must not break
the architecture description consistency.

TranSAT Artefacts
To solve the two first challenges, TranSAT introduces the concept of software
architecture pattern. Though associated with a concern, it is independent of the
integration context. A pattern gathers all the information needed to enable the

 142

integration of a concern and organises this information in three parts: an architecture
plan, a join point mask, and a set of transformation rules.

A new architecture plan identifies a self-sufficient component assembly, which
implements a given concern, and specifies its structural and behavioural properties. A
new plan contains only the information related to the concern. It is defined
independently from any given software architecture specification in order to enable its
reuse in several contexts.

To integrate a new plan, the pattern needs plugs on the basis plan. These plugs called
join points correspond to any locations in a component assembly to which the plan can
be hooked.

Even if the pattern is independent of the integration context, it must assume some
hypotheses on the software architecture that it can transform. These hypotheses are
captured by the join point mask. It is an architecture template that determines the
integration context constraints. It declares structural and behavioural preconditions that
a basis plan must satisfy before the integration operation is performed. It defines the
form of plug on which the new plan can be attached.

The transformation rules specify the operations to be carried out in order to integrate
the new plan into a basis plan. These operations are applied on each of the selected join
points. They specify how a concern should be integrated with a system on an
architectural, structural and behavioural level.

To enable integration of concern and architecture, a weaver describes the interactions
between specific software architectures and a technical concern (a pattern). The weaver
binds the concern to the specific architecture. It contains the pointcut which defines
where the new plan must be integrated and performs the transformation rules. It
updates relevant parts of the architecture with the concern.

A (TranSAT) pointcut specialises the join point mask of the pattern with respect to the
target basis plan. It selects, among all the join points compatible with the join point
mask, a set of join points on the basis plan based on context criteria, such as
architectural element names or relations.

Each technical concern that is integrated is considered to be an evolutionary step. For
each evolution, a specific weaver is required to translate the join point mask to the
correct set of pointcuts.

To deal with the last challenge, TranSAT introduces several levels of verification
before the transformation with the join point mask, during the transformation with the
addition of constraints on the transformation rules meta-model and after the
transformation with tools provided by the architecture description language called
SafArchie [132].

TranSAT Process

TranSAT can be viewed as a process in two distinct ways. Firstlym TranSAT supports
the entire software development lifecycle as an iterative evolution process. In this
view, concerns are merged together until a system is complete. This assumes that the
core model is a composite concern that grows at each evolution of the architecture.
Concerns are developed completely independently of the core and then integrated with
the core. During iterations the core grows and evolves. Secondly, TranSAT applies to
the maintenance phase of a software development lifecycle. In this case, development

 143

is finished and a core architecture and system exists. Evolution through expanding the
architecture with new technical concerns could be considered to be maintenance.

Taking either view, a set of steps is outlined for using TranSAT. When abstracted
away from TranSAT, these steps can be considered a high level process description for
concern integration.

The integration of a new plan into a basis architecture plan is guided by the pattern’s
join point mask and transformation rules. The TranSAT framework determines, based
on the join point mask, the set of all the possible join points, i.e., the locations on the
basis plan where the new plan can be attached. The architect may, however, want to
impact only a few join points among this set. To select specific join points, the
architect defines a pointcut expression. Similarly to AOP approaches, this expression
specifies concrete architecture element names and relations in order to restrict the set
of possible join points and to consequently keep only the ones that should be impacted
by the transformation operations. At each chosen join point, the weaver integrates the
new architecture plan according to the pattern’s transformation rules. This weaving
operation is a two-step process. At the first step, for each join point, the tagged
elements present in both the join point mask and the transformation rules are
substituted by the actual elements of the basis plan. At the second step, the weaver
executes the transformation rules at each join point to finally yield the transformed
software architecture plan.

In the TranSAT approach, several actors participate in the transformation process: a
domain expert, an integrator, and an architect. The role of the domain expert is to
define a component assembly for a given concern (a plan). The integrator is in charge
of specifying the join point mask and the transformation rules to associate with the
component assembly and form a complete software architecture pattern. The architect
builds the software architecture by successively integrating patterns.

From the architect point of view, the transformation process is decomposed into four
steps. First, (s)he chooses a pattern corresponding to his/her needed concern. Second,
for this pattern and in accordance with the pattern’s join point mask, the weaver is used
to determine a set of compatible join points on the basis plan. Third, the architect
defines a pointcut expression that selects only the join points to which the new plan
should be attached. Fourth, the transformation rules are performed on each selected
join point. The result is a new software architecture specification that contains the
given concern. The architect can consider this software architecture as a new basis
plan on which s/he can perform other transformations.

4.3.3 Architectural Evaluation Approaches

4.3.3.1 Aspectual Software Architecture Analysis Method (ASAAM)
ASAAM Method
The aim of ASAAM is to explicitly identify and specify architectural aspects early in
the software life cycle [126]. The approach builds on scenario-based architecture
analysis methods, and as such, should be considered as a complementary approach to
these methods. The benefit of ASAAM is in the systematic support for the
management of architectural aspects in an explicit manner.

 144

ASAAM Artefacts
The two key artefacts in ASAAM are scenarios and architectural components. There
are three types of scenarios: direct, indirect and aspectual. A direct scenario can be
directly performed. Indirect scenarios require a change of a component and aspectual
scenarios can either be direct or indirect and are scattered across multiple components.
There are four types of components:

• Cohesive component, which is a component that is well defined and performs
semantically close scenarios;

• Ill-defined component, a component consisting of several sub-components each of
which performs semantically close set of scenarios;

• Tangled component, a component that performs an aspectual scenario which is
either directly or indirectly performed by the component;

• Composite component, a component that includes semantically distinct scenarios
but which cannot be decomposed or does not include an aspectual scenario.

The architectural aspects are the output artefacts, these aspects can be used to refactor
the architecture.

ASAAM Process and Heuristics Rules
The process consists of five activities which are depicted in Figure 4-27 [126]:

1. Candidate architecture development: A (candidate) architecture design is provided
that will be analysed with respect to the required quality factors and potential
aspects.

2. Development of scenarios: This activity is similar to SAAM. Scenarios from
various stakeholders are collected, which represent both important uses and
anticipated uses of the software architecture.

3. Individual scenario evaluation and aspect identification: Scenarios are categorised
into direct and indirect scenarios. The scenario evaluation also searches for
potential architectural aspects. The application of the heuristic rules results in a
further classification of the scenarios into direct scenarios, indirect scenarios,
aspectual scenarios and architectural aspects. Aspectual scenarios are derived from
direct or indirect scenarios and represent potential aspects.

Figure 4-27 : The activities for ASAAM

 145

4. Scenario interaction assessment and component identification: The goal of this
activity is to assess whether the architecture supports an appropriate separation of
concerns. This includes both non-crosscutting concerns and architectural aspects.
For each component both direct and indirect components are analysed and
categorised into cohesive component, tangled component, composite component,
or ill-defined component.

5. Refactoring the architecture: A refactoring of the architecture is proposed based on
the scenario interaction assessment and component classifications. The
architectural aspects and the tangled components are explicitly described in the
architecture.

ASAAM defines a set of heuristic rules to categorise scenarios into direct scenarios,
indirect scenarios and architectural scenarios and aspects. This set of rules is depicted
in Figure 4-28. ASAAM also defines heuristic rules to categorise the architectural
components.

Figure 4-28 : Heuristic rules for scenario evaluation

ASAAM has been implemented as an Eclipse plug-in in the tool environment
ASAAM-T [133].

4.4 Comparison
This section compares the architecture design approaches presented earlier. The
comparison is performed with respect to the criteria of section 2.

4.4.1 Traceability
Preservation of traceability between the artefacts of the software lifecycle is one of the
crucial qualities required for understandable and maintainable software. This criterion

 146

could be broken into two counterparts: 1) traceability of artefacts to their source of
origin and change and 2) traceability between lifecycle artefacts .

Approach Features that Support Traceability of

artefacts to their source of origin and
change

Features that Support Traceability
between lifecycle artefacts

ACME Not considered ACME properties serve to document
details of an architecture relevant to its
design and analysis.

C2 Not considered Architecture is refined into a partial
implementation, which contains
completion guidelines for developers
derived from the architectural description.

Aesop Not considered Not considered.
Darwin Not considered Architectural description serves to ensure

proper interconnection and communication
among architectural components when
they are implemented in a specific
programming language.

Rapide Not considered Executable sublanguage that contains
many common programming language
control structures. Three kinds of
conformance criteria are checked between
system implementations and architecture:
decomposition, interface conformance and
communication integrity.

Wright Not considered Glue information in connectors is
augmented with a trace specification,
which defines a predicate that must be true
for every trace of the glue, thereby
restricting the set of traces permitted by
the connector.

UML for
Architecture

Not considered UML tools supports the automatic
generation of code and XMI-based
descriptions (that can be processed by
tools at runtime) from UML models

Requirements-
driven AD

This document describes a conceptual
model for requirements-driven AD.
Support for traceability depends on
specific requirements-driven AD
approaches

This document describes a conceptual
model for requirements-driven AD.
Support for traceability depends on
specific requirements-driven AD
approaches

Domain-
driven AD

This document describes a conceptual
model for domain-driven AD. Support for
traceability depends on specific domain-
driven AD approaches.

This document describes a conceptual
model for domain-driven AD. Support for
traceability depends on specific domain-
driven AD approaches.

DSSA
(Product-line
Driven AD)

Not considered Reference requirements include functional
requirements, non-functional
requirements, design requirements and
implementation requirements and focus on
the solution space. This information is
used to derive the reference architecture.

Pattern Driven
AD

This document describes a conceptual
model for pattern-driven AD. Support for
traceability depends on specific pattern-
driven AD approaches.

This document describes a conceptual
model for pattern-driven AD. Support for
traceability depends on specific pattern-
driven AD approaches.

SAAM First, the definition of scenarios for
various stakeholders anticipates changes
that will be made to the system over time.
Then, during the evaluation of scenarios

Requirement Specification taken into
account during the evaluation of the
architecture.

 147

the required changes to the architecture are
listed and the cost of performing these
changes is estimated.

ATAM Approach based on SAAM Requirement Specification taken into
account during the evaluation of the
architecture.

SAAMCS Approach based on SAAM Requirement Specification taken into
account during the evaluation of the
architecture.

ESAAMI Approach based on SAAM Requirement Specification taken into
account during the evaluation of the
architecture.

SAAMER Approach based on SAAM Requirement Specification taken into
account during the evaluation of the
architecture.

ALPSM Not considered It estimates the required maintenance
effort for a software system during
architectural design. The maintenance
profile is a second output from the method.

PCS
Framework

Not considered Generated Aspect-Oriented Models can be
mapped to AspectJ programs, which is a
manual process.

DAOP-ADL Not considered DAOP-ADL supports traceability in the
sense that all the components and aspects
identified during the design of the
application with CAM are described in
XML using the DAOP-ADL language.
Additionally, all the information provided
with DAOP-ADL is directly used at
runtime, closing the "gap" between the
design and implementation of component
and aspect-based applications

AOGA Not considered There is a direct trace link between a
crosscutting feature in domain analysis
and an aspectual component in domain
design. In addition, an architectural aspect
is mapped to a set of implementation
aspects that refine that aspectual
component.

TransSat Not considered TranSAT supports the entire software
development lifecycle as a iterative
evolution process. Concerns are merged
together until a system is complete. During
iterations the core grows and evolves.
TranSAT applies also to the maintenance
phase of a software development lifecycle.
In this case, development is finished and a
core architecture and system exists.
Evolution through expanding the
architecture with new technical concerns
could be considered to be maintenance.

ASAAM Not considered Requirement Specification taken into
account during the evaluation of the
architecture.

Table 4-1: Summary of traceability criterion

With respect to traceability of artefacts to their source of origin and change, as shown
in Table 4-1, neither the non AO architecture design approaches nor the AO

 148

approaches provide support to trace changes in architecture artefacts. Only in SAAM,
and the rest of architecture evaluation approaches based on it, possible changes to the
architecture are first anticipated and then listed together with an estimation of the cost
of performing these changes.

With respect to traceability between lifecycle artefacts, most approaches provide some
level of traceability to previous phases (e.g., requirements) or later phases (e.g.,
implementation) of the software lifecycle, though in general they offer only partial
information that do not allow a complete trace of artefacts through all the phases of
development. Only three of them, DAOP-ADL, AOGA and TranSat explicitly define
the architecture design as part of a more complete development process, including
other phases of the lifecycle, though not all of them.

The rest of the approaches offer limited and different support for traceability. ADLs, as
is the case for ACME, C2, Aesop, Darwin, Rapide and Wright, go from approaches
that allow the definition of properties with information related to analysis and design
(e.g., ACME), to approaches that provide support to code generation (e.g., C2,
Rapide), to approaches that allow to check that resulting implementations conform to
the constraints and properties specified during the architecture design (e.g., Darwin,
Rapide, Wright).

Traceability in conceptual models such as Model-Driven architecture, Requirement-
Driven architecture and Pattern-Driven architecture processes will depend on specific
approaches conforming to these conceptual models. In the case of DSAA, which is a
specific approach conforming to the conceptual model defined for Product-Line
architecture processes, traceability is achieved from requirements to architecture
design. This is achieved by using the reference requirements as an input to the design
of the architecture, where the reference requirements include functional requirements,
non-functional requirements, design requirements and implementation requirements.

Finally, architecture evaluation approaches, including non AO and AO ones, support
some level of traceability from requirements during the evaluation of the architecture,
considering requirements as an input to the evaluation process.

4.4.2 Composability
Composability is described in Section 2 as the ability to compose artefacts and
consequently to view and understand the complete set of artefacts and their
interrelationships, as well as to perceive the system as a whole from the associated
artefacts.

Approach Features that support Composability
ACME ACME components and connectors are composed in Systems – a graph where nodes

are components and arcs represent connectors. A representation map describes the
connections between component ports and connector roles.

Acme supports hierarchical descriptions of architecture, permitting any component or
connector to be represented by the composition of one or more detailed, lower-level
description.

C2 Components linked together by connectors in accordance with a set of style rules.
Aesop The composition of artefacts (components, connectors, ports and roles) are described

by means of configurations, representations and bindings. Hierarchical description of
components and connectors is supported.

Darwin Darwin supports a bind statement which is used to tie together components using
their ‘provide and require’ statements. The Darwin compiler checks that connections

 149

are only made between compatible communication objects.
Rapide Composition of systems from component interfaces is described by an executable

architecture definition language. The language defines components’ synchronisation
and communication interconnections in terms of patterns of events.

Wright Component and connector instances are composed by defining which component’s
ports are attached to which connector’s roles.

UML for
Architecture

- Using UML “as is”: It does not fully satisfy the structural needs of architectural
descriptions. Lack of specialised constructs for modelling architectural artefacts and
rules for architectural styles.
- Constraining the UML meta-model using UML’s built-in extension mechanisms:
Using stereotypes and OCL it is possible to enforce the rules of a particular
architectural style.

Requirements-
driven AD

The Architecture Description is the composition of the following models: business &
domain models, use-case models (representing requirements) and analysis & design
models.

Domain-driven
AD

Architectural design abstractions as a composition of requirement specifications and
domain models

DSSA
(Product-line
Driven AD)

The application architecture is an instantiation of a reference architecture for a
family of products. A reference architecture is the composition of a reference
requirements model and a domain model.

Pattern Driven
AD

Artefacts are composed according to the architectural style described by a specific
architectural pattern.

SAAM Composition of architectural artefacts not applicable in this analysis approach.

Single architecture analysis is defined in terms of the analysis of individual scenarios
and scenario interaction. Individual scenarios are composed of scenario development
and architecture description models.

ATAM Composition of architectural artefacts not applicable in this analysis approach.

Analysis of architecture designs is defined in terms of a composition of elements:
high-priority scenarios, attribute-specific questions, architectural approaches,
sensitivity points, trade-off points and risks.

SAAMCS Composition of architectural artefacts not applicable in this analysis approach.

Analysis of architecture designs is defined in terms of architecture description,
scenario development, categories of complex scenarios, macro and micro
architectural description and measurement instruments.

ESAAMI Composition of architectural artefacts not applicable in this analysis approach.

Analysis of architecture designs is defined in terms of reusable architecture &
analysis templates, domain-specific analysis templates, architecture description,
problem description and requirement statements.

SAAMER Composition of architectural artefacts not applicable in this analysis approach.

Analysis of architecture designs is defined in terms of different types of information,
namely, stakeholder information, architecture information, quality information, and
scenarios.

ALPSM Composition of architectural artefacts not applicable in this analysis approach.

The analysis approach takes as input the requirement specification, the design of the
architecture, expertise from software engineers and historical maintenance data.

PCS
Framework

It supports the composition of independent software components along different
interaction concerns by means of Aspect-Oriented Constructions. Concerns of
multiple dimensions are depicted in an architectural view.

DAOP-ADL Composition of components among them and weaving of aspects with components
(aspects’ pointcuts) are expressed in XML. Connections between components are
implicitly expressed by the correspondence between their provided and required
interfaces. Aspect pointcuts are described in terms of the description of component
and aspect interfaces.

AOGA Architectural description as a composition of aspectual components and non-

 150

aspectual components. Composition is expressed in UML by means of crosscutting
interfaces, normal interfaces and the relationships between them (crosscut
relationship)

TransSat The core architectural model is a composite concern that grows at each evolution of
the architecture. Concerns are developed completely independently of the core and
then integrated with the core.

ASAAM It refactors architecture designs to be converted into a composition of architectural
components and architectural aspectual scenarios.

Table 4-2 : Summary of composability criterion

With respect to composability, Table 4-2 shows that considered architecture design
approaches provide some level of composition between the artefacts in the
architecture. The main difference among them is in the kind of artefacts that are
composed among them.

In the case of ADLs, artefacts are components and connectors for non AO approaches
and components, concerns and explicit or implicit connectors for AO approaches. All
of them offer composition of these artefacts to describe the complete architecture of a
system. Some of them explicitly introduce the concept of system as a composition of
components and connectors (e.g., ACME, Aesop). In other ADLs composition is
expressed in terms of attachments, binding or composition constraints sections where
composition is defined in terms of the provided and required interfaces of artefacts or
their ports and roles (e.g., DAOP-ADL, Darwin, Wright).

In the case of architecture design processes, artefacts are usually a set of different kinds
of models (e.g., business model, domain model, etc.) that are composed among them or
taken into account to derive the architecture design model. Finally, in architecture
evaluation processes artefacts are different kinds of models, scenarios, existing
architecture description, etc. All of them are taken into account during the analysis of
candidate architectures.

4.4.3 Evolvability
In Section 2 evolvability is described as the ease of changing the artefacts for an
existing design or the addition or removal of a new one.

Approach Features that support evolvability
ACME It provides constraints guidelines for how the architecture can change over time. New

components, connectors and ports can be incorporated into an existing system.
C2 New components and connectors can be incorporated into an existing architectural

style. Connections can be modified/adapted when component interfaces and
connector ports match.

Aesop New components and connectors can be incorporated into an existing system.
Matching of component interfaces and connector ports needed to modify/adapt the
architecture.

Darwin It supports variation of components, allowing a component to have the potential to
define more than one configuration structure, and to be able to defer the choice until
the component is instantiated.

Rapide Architecture can be refined by defining detailed modules for existing components.
When an application is “(re)architected” the conformance of new incorporated and
existing modules is checked. Connections, features and interfaces are dynamic and
can also evolve at runtime, depending on specific runtime parameters.

Wright New components and connectors can be incorporated to an existing system by
attaching the corresponding component’s ports with connectors’ roles.

 151

UML for
Architecture

New UML elements (classes, interfaces, associations, dependencies, etc.) can be
added to the UML architectural diagrams to incorporate new architectural artefacts.

Requirements-
driven AD

This document describes a conceptual model for requirements-driven AD. Support
for evolvability depends on particular requirements-driven AD approaches

Domain-driven
AD

This document describes a conceptual model for domain-driven AD. Support for
evolvability depends on specific domain-driven AD approaches.

DSSA
(Product-line
Driven AD)

Application architectures can be extended and/or refined.

Pattern Driven
AD

This document describes a conceptual model for pattern-driven AD. Support for
evolvability depends on specific domain-driven AD approaches.

SAAM Possibility of comparing new and existing architecture designs by generating single
architecture analysis for the new incorporated architecture designs. Incorporation of
new evaluations is reflected in the overall evaluation.

ATAM Approach based on SAAM
SAAMCS Approach based on SAAM
ESAAMI Approach based on SAAM
SAAMER Approach based on SAAM
ALPSM New maintenance tasks can be categorised, synthesised and estimated to predict the

maintenance effort for such scenario. New maintenance efforts are used.
PCS
Framework

Additional perspectives of an existing architecture design can be incorporated to
provide additional concerns from one specific viewpoint.

DAOP-ADL New components, aspects and connections among them can be incorporated into an
existing architecture. Only a correspondence between interfaces of the new and
existing entities and the definition of new composition constraints is needed.

AOGA New aspectual components and non-aspectual components can be incorporated into
the architecture description by appropriately connecting them by their crosscutting
and normal interfaces.

TranSat It proposes the incremental definition of the software architecture by weaving new
architecture plans within a software architecture.

ASAAM During the analysis of the architecture design scenarios evolve and are categorised
into direct scenarios, indirect scenarios, aspectual scenarios and architectural
scenarios.

Table 4-3 : Summary of evolvability criterion

With respect to evolvability (Table 4-3) and ADLs, all the considered ones support the
incorporation of new artefacts into an architecture design, including AO approaches
such as DAOP-ADL and AOGA. The only constraint is to ensure that the connection
rules among the existing artefacts and the new ones are possible (according to existing
and new ports, roles, provided interfaces, required interfaces, etc.). Most of them are
based on the use of formalisms that allow verifying that the modifications are correct.
Additionally, some of them provide explicit support to express dynamic behaviour of
the architecture, supporting its dynamic evolution (e.g., Darwin, Rapide, Wright).

With respect to conceptual models such as Model-Driven architecture, Requirement-
Driven architecture and Pattern-Driven architecture processes evolvability will also
depend on specific approaches conforming to these conceptual models. In the case of
DSAA, which is a specific approach conforming to the conceptual model defined for
Product-Line architecture processes, evolvability is achieved by extending/refining
application architectures.

With respect to architecture evaluation approaches such as SAAM and the rest of
approaches based on it, some level of evolvability is achieved by allowing the
evaluation of single architecture designs to be incorporated into an existing overall
evaluation in an incremental way. In the case of ALPSM, an architecture evaluation

 152

approach not based on SAAM, evolvability is achieved by incorporating new
maintenance tasks to calculate the maintenance effort for the complete system.
ASAAM is an AO architecture evaluation approach where scenarios evolve during the
analysis of the architecture.

For the rest of systems not commented on yet, the PCS framework achieves
evolvability of the architecture design by incorporating new perspectives of the
architecture for one specific “concern” viewpoint. In TranSat the evolution of the
architecture is achieved by incorporating new architecture plans.

4.4.4 Scalability

Approach Features that support scalability
ACME A semantically extensible language to support complex architectural features, and a

rich toolset for architectural analysis and integration of independently developed
tools. The simple core set of concepts in ACME can be extended using properties,
constraints, types and styles that are appropriate to the context of use. Scalable by
supporting a hierarchical model.

C2 No bound on the number of components or connectors that may be attached to a
single connector.

Aesop Scalable by supporting a hierarchical model. The characterisation of architectural
styles as specialisations through subtyping can help to develop different projects with
different architectural styles. Toolkit for creating an open architectural design
environment from a description of a specific architectural style.

Darwin Scalable by supporting a hierarchical model, tractable and accompanied by a
corresponding graphical notation. Increase reusability supporting generic structures
and derived composite components (inheritance).

Rapide Rapide provides interface services and the concept of dual services as an approach to
scalability issues. Services are interfaces within interfaces. They provide a way to
structuring interfaces in sub-interfaces.

Wright Connectors are defined and analysed independent of their actual use, and then later
instantiated to describe a particular system, thereby supporting reuse. Support for
reusing helps to cope with large complex architecture definitions.

UML for
Architecture

The use of UML in this section has been described as used to express a specific
architectural design approach or architectural style. Besides the scalability that UML
may offer, scalability will depend on the mechanisms defined by the specific
architectural design approach.

Requirements-
driven AD

This document describes a conceptual model for requirements-driven AD. Support
for scalability depends on particular requirements-driven AD approaches

Domain-driven
AD

This document describes a conceptual model for domain-driven AD. Support for
scalability depends on specific domain-driven AD approaches.

DSSA
(Product-line
Driven AD)

Several application architecture can be instantiated/refined and/or extending from a
reference architecture.

Pattern Driven
AD

This document describes a conceptual model for pattern-driven AD. Support for
scalability depends on specific pattern-driven AD approaches.

SAAM Scalability is supported by adding new single architecture analysis to the overall
evaluation, modifying the weighting according to the values introduced by new
analysis.

ATAM Approach based on SAAM
SAAMCS Approach based on SAAM
ESAAMI Approach based on SAAM
SAAMER Approach based on SAAM
ALPSM Scalability is supported by adding new maintenance effort scenarios to the overall

evaluation.
PCS
Framework

Helps deal with software complexity by supporting the composition of independent
software components along different interaction concerns.

 153

DAOP-ADL It provides support to define the architecture of both small and large projects.
Supporting tools are provided to cope with the complexity of describing complex and
large architectures.

AOGA Deal with scalability problems using a code generator tool that maps abstractions of
the elements in the Agent DSL (XML Schema) to specific compositions of objects
and aspects in the agent architecture. Agent architecture generator implemented as
an Eclipse plug-in.

TransSat Scalability achieved by the definition of software architecture patterns and by
encouraging the reusability of concerns. First, integration of new concerns is
performed by the framework. Second, concerns should be generic enough to be
reusable in several contexts.

ASAAM Process supported by the tool environment ASAAM-T, implemented as an Eclipse
plug. Tool support helps to cope with the refactoring of large-scale complex
architecture designs.

Table 4-4 : Summary of scalability criterion

With respect to scalability (Table 4-4), most approaches cope with it by providing
some kind of tool support that helps software architects to use the particular approach
in large projects. In the case of ADLs, these tools allow not only to generate code from
architecture design but also to analyse and verify that the artefacts and the
interconnections among them conform to the properties and constraints explicitly
specified by the software architect. Hierarchical specification of artefacts is another
approach provided to cope with scalability issues. Support for reusability of artefacts
and the definition of patterns are other approaches to help with the complexity of large
projects.

 154

5. AO Design

5.1 Introduction
The design activity of a software development process gives a designer an opportunity
to reason about a required software system as defined by a set of requirements. This
process of reasoning about the system entails consideration of the behaviour necessary
for the system to achieve its goals, and a corresponding structure to support that
behaviour. For example, in an object-oriented software system, the designer is likely to
consider behaviour in terms of (at least) interaction and state diagrams, and structure in
terms of (at least) class and object diagrams. The designer may iterate over the
behaviour and structure, considering more and more levels of detail over time. The
resulting output of the design activity is a set of models that characterise and specify
the behaviour and structure of the required system. These models may be at different
levels of abstraction depending on the level of detail of the designer’s reasoning.
Standard software engineering quality measures of the output include the cohesiveness
and coupling of the modules described.

Aspect-oriented design (AOD) has the same objectives as any software design activity;
to characterise and specify the behaviour and structure of the software system. Its
unique contribution to software design relates to extensions to modularity capabilities.
Concerns of a software system that are necessarily scattered and tangled in non-AOD
approaches can be modularised. Corresponding module cohesiveness is enhanced, and
module coupling reduced. An AOD approach will provide design language constructs
to support concern modularisation, regardless of whether a concern has an impact on
(or crosscuts) other concerns. AOD will also support corresponding specification of
concern composition, with due consideration for conflicts or co-operations. Beyond
that, the design of each individual modularised concern is likely to mirror standard
software design.

 An AOD approach is likely to include a process and a language. An AOD process is
one that takes as input requirements (be they engineered in an AORE process or
otherwise) and produces a design model that may partially realise an architecture. The
AOD model produced during the AOD process represents separate concerns and
relationships between these concerns. This model is an abstract specification for
implementation which can occur on an AOP platform or otherwise.

An AOD language is a language that includes constructs that can describe the elements
to be represented in design and the relationships that can exist between those elements.
In particular for AOD languages, constructs are provided to support the modularisation
of concerns, and the specification of concern composition. This includes a means to
capture conflict and co-operation specifications.

5.2 Specific criteria
The unique contribution of AOD is its support for enhanced modularisation based on
concern. In this report, we therefore examine each AOD approach based on the level of
concern separation. We also examine the level of abstraction at which consideration
of “aspects” (or concern modules) is possible

 155

5.2.1 Level of abstraction supported:
A design approach can be thought of as an intermediate translation between
requirements and implementation. The level of abstraction is important for an AOD
approach as different decisions can be made as design moves from an abstract high-
level design model to a concrete low-level. As described in this report, we have
encountered various levels of abstraction for the approaches discussed in this section.

Concerns and relationships between concerns expressed at high levels of abstraction
are close to requirements and are low in the level of detail required to implement them
on specific platforms. Concerns and relationships between concerns expressed at low
levels of abstraction contain the details required to implement the concern on particular
platforms but may be less naturally mapped to requirements from which the software
was developed. Low levels of abstraction make changes to requirements difficult to
deal with.

Software engineering quality attributes such as reuse, flexibility and comprehensibility
are closely linked with our level of abstraction criterion. A design at a high level of
abstraction is reusable as it is not likely to be tied to any implementation; it is flexible
because it is relatively simple and less resistant to change; and it is easy to understand,
as it is not laden with details. As design becomes more concrete and low level,
reusability, flexibility and comprehensibility lessen. When choice of a platform
becomes constrained, some design decisions may be less feasible on different
platforms, reducing reuse and flexibility. As design becomes more concrete, the size
and detail of designs also increase, reducing comprehensibility.

There is a conflict between the advantages gained from high level of abstraction and
the practicalities of implementing design. On one hand, abstraction provides the higher
levels of reusability, flexibility and comprehensibility, but on the other developers need
to implement designs and for this they need design to be concrete and mapped directly
to a target implementation platform [134].

5.2.2 Level of concern separation:
There are two levels of concern separation supported by existing AOD approaches,
symmetric and asymmetric .63 In general, the distinction relates to whether an approach
includes a means to separate all kinds of concerns, both crosscutting and non-
crosscutting (symmetric) or includes a means to just separate crosscutting concerns
from the rest of the system (asymmetric).

Some significant benefits of concern separation across the software development
lifecycle include traceability, flexibility, comprehensibility, reusability, composability,
scalability and evolvability. Symmetric approaches offer a greater opportunity than
asymmetric approaches to separate concerns and therefore may provide greater
benefits during design. However, many design approaches have followed asymmetric
models. In many cases, the asymmetric model has been employed because the AOD
approach has emerged from a particular AOP platform. These AOD approaches target
the AOP platform for design implementation.

63 W.H.Harrison, H.L. Ossher, P.L. Tarr. “Asymmetrically vs. Symmetrically Organized Paradigms for
Software Composition” IBM Research Division, Thomas J. Watson Research Center. RC22685,
December 30, 2002.

 156

The difference between symmetric and asymmetric approaches impacts both the design
process and design language.

5.2.2.1 AOD Process
The Rational Unified Process (RUP) [135], Feature driven development (FDD) [136],
Fondue [137], Catalysis [138], Tropos [139], Kobra [140] and eXtreme Programming
(XP)[141] are example of current non-AO software development processes. Many of
these processes already separate concerns into concern development processes.
A concern development process is a separate process for developing a concern. The
overall process is a composition of separate concern development processes. Table 5-1
presents these processes and the concern development process associated with them.

Process Concern development process
Rational Unified Process Work flows

eXtreme Programming Stories

Feature Driven Development Features

Tropos Goals

Fondue Scenarios

Catalysis Actions

Kobra Products

Table 5-1 Concern Development Processes

Although these processes separate concerns in terms of a process, each process works
on a core system. The system is divided into modular units that can be worked on in
complete separation and composed during or at the end of the software development
process. During the design phase of the software development lifecycle, a design is
created during the development that necessarily scatters and tangles different concerns
of the system. Because concerns are not separate, changes in any one concern will
impact other related concerns.

Asymmetric AOD processes allow the separation of crosscutting concerns from the
core system. Non-crosscutting concerns may be designed in a similar manner to the
processes described above. Crosscutting concerns may however be separately designed
as aspects. In an asymmetric design process, there are parallel concern development
processes - one that creates and expands the core design model and another that creates
aspect designs that crosscut that core.

Symmetric AOD processes facilitate separate concern development processes. Each
process creates separate software design modules that realise a system in design. There
is no core system. There is one type of concern development process. Unlike the
existing non-AO processes these processes do not work on creating or expanding a
core system. Symmetric concern development processes allow the creation of separate
designs that realise crosscutting and non-crosscutting concerns.

 157

5.2.2.2 AOD Language
An AOD language consists of some way to specify aspects; some way to specify how
aspects are to be composed; and a set of well defined composition semantics to
describe the details of how aspects are to be integrated.

Symmetric and asymmetric AOD languages are similar in that they both provide a
means of separately specifying crosscutting concerns as aspects, specifying aspect
integration and composition semantics for aspect. Symmetric AOD languages further
provide a means of modularising non-crosscutting concerns. They enable the
specification of how these non-crosscutting concerns are integrated with other non-
crosscutting software modules as well as aspects, expanding the composition semantics
accordingly.

5.3 Non-AO Approaches
The Unified Modelling Language (UML) is the OMG standard design language for
OO design. It is the most widely used object-oriented design language, and has
effectively precluded the use of any other language except in exceptional
circumstances. The UML has also been the basis from which most AO design
languages have been developed, apparently sensible where aspect-oriented design is
primarily an enhancement to object-oriented design. We therefore limit our attention to
non-AO approaches to a discussion on the UML.

5.3.1 UML
The UML provides design models that are adequate for capturing and representing
problems in the object-oriented paradigm. The UML allows particular concerns to be
represented through different OO design models. Views of the structure and behaviour
of concerns can be separated.

5.3.1.1 UML Artefacts
In this section, we look at elements of standard UML, which will provide a basis for
the discussion of many of the AOD approaches described in this report.

5.3.1.1.1 UML architecture
UML is the graphical notation that defines the semantics of the object meta-model, and
defines a notation for specifying and communicating object structure, behaviour, state
and interaction. In its meta-model architecture, UML supports extension mechanisms
that allow tailoring it to fit the needs of a specific domain such as AOD.

The Object Management Group (OMG) defines UML as a four-layer architecture (see
Figure 5-1). The bottom level of Figure 5-1 defines the meta-meta-model layer, which
is defined by the Meta Object Facility (MOF). The UML meta-model specifies the
modelling language; it is defined and standardized on top of the MOF in the level
second from bottom. Profiles (which are further examined later) are defined at this
level, they specialize the meta-model for particular domains that are being modelled.
The level labelled model defines the model layer, and the user object layer defines
instances of the model at the top level [142].

 158

Figure 5-1 UML Architecture [142]

5.3.1.1.2 Standard UML
Standard UML has been used to support AOD. At this level standard OO diagrams are
used to represent AO base systems. This generally is semantically limiting as the
standard OO diagrams have not been designed to represent the concepts and
relationships that embody the AO paradigm. Although the use of standard UML
diagrams requires no extension of UML to support AOD it does not express the
semantics required for AOD.

5.3.1.1.2.1 UML Extension mechanisms

UML extension mechanisms allow a standardised method to augment UML elements
with new properties or semantics. Adding properties or tagging values can be used to
add information to elements. New semantics or constraints can be specified for a
model element, refining the concept the model represents. New UML elements can
also be composed of existing elements. New elements, called stereotypes, have the
same structure to the elements from which they are derived but differ semantically and
may require additional tagged values. Stereotypes can be used to indicate the
difference between elements with identical structure. Due to a certain amount of
perceived similarity between the OO and AO paradigm, many approaches have used
these extensions to create new AOD elements from OOD elements. Extensions on
their own do not provide a consistent integrated tool set for AO designers to create
large-scale designs.

5.3.1.1.2.2 UML profile

A UML Profile is a predefined set of extension mechanisms. A UML Profile allows the
specialisation of the existing UML design elements for a certain domain. A UML
Profile enables the expression of the semantics of the domain systems using a well-
defined set of extensions. A profile does not extend the UML meta-model. Profiles are
extensions of UML models and as such the principles of UML must not be broken, but
must be extended. Profiles provide that consistent integrated tool set.

5.3.1.1.2.3 Meta-model

Many have found that the extension mechanisms available are not enough to support
AOD. The extension mechanisms allow the extension of OO semantics. It may be
argued that an AOD language cannot be specified in terms of OO semantics and the
extensions thereof. The approaches that take this view extend the UML language itself

 159

and alter the UML meta-model. This allows the complete definition of AO semantics
without adhering to the constraining features of the OO paradigm.

UML is a standard language. The use of standard extension mechanisms either on their
own or grouped in profiles respects the standard. UML is a common language. By
altering the standard this makes any AOD language conceived in this way non-
standard, however semantically fitting.

5.3.1.1.2.4 UML 1.X diagrams

Diagrams Scope & Abstraction Models
Use Case Diagrams Inter system Behaviour
Component Diagrams Inter component Structure
Class Diagrams Inter class Structure
Object Diagrams Inter object Structure
Collaboration Diagrams Inter object Behaviour
Sequence Diagrams Inter class Behaviour
Activity Diagrams Inter class Behaviour
State Diagrams Intra class Behaviour

Table 5-2 UML Diagrams

UML 1.X provides several views to model the static and dynamic behaviour of a
software system. Table 5-2 identifies each of the diagrams provided by the UML. For
each we identify what the diagram models, the diagrams scope and also the level of
abstraction is provided by the diagram.

As illustrated in Table 5-2 we consider UML diagrams [143] to model dependency,
structure and behaviour. What is modelled is very much linked with the scope and
level of abstraction that a particular diagram provides.

Inter system indicates that the scope is a system level scope where a system is being
modelled at a very high level of abstraction. At this level of abstraction the overall
systems behaviour is modelled. Use case diagrams model the high level structure and
behaviour of a system.

Inter component indicates that the scope is a component level scope where a system is
being modelled in terms of the components that is contains .A component diagram
exposes the structure of a system by indicating the components in a system and the
relationship between components.

Inter class indicates that the scope is a class level scope where the system is being
modelled in terms of class. At this level of abstraction structure and behaviour can be
modelled. Classes are used to compose features. Class diagrams model class structure
and the structural relationship between classes. Sequence and activity diagrams model
behaviour across the class structure.

Intra class indicates that the scope is a class and models the states that instances of a
class can be in and the conditions in which state transitions occur. State diagrams
model the state and state transitions of a class.

Inter object indicates that the scope is an object level scope where the system is being
modelled in terms of objects. Models at this level depict runtime structure and
interactions based on behaviour and state. Object diagrams model runtime structure
and collaboration diagrams model runtime behaviour.

 160

5.3.1.1.2.5 UML 2.0

UML 2.0 has increased the scope to separate concerns in UML by providing new
opportunities to separate concerns into separate diagrams and new constructs that can
represent designation. The significant improvements in UML2.0 include ([144]):

Diagrams Improvement AOD impact
Class & Component New concepts for describing the internal

architectural structure of Classes, Components and
Collaborations by means of Part, Connector and
Port.

Better separation of
components may aid
aspect representation
[145]

State machines Introduction of inheritance of behaviour in state
machines and encapsulation of sub machines
through use of entry and exit points.

Can aid modelling
crosscutting behaviour

Activity diagrams A redefinition of Activity diagrams in which Petri
net flow semantics are used instead of state
machines and extension points are introduced.

Can aid modelling
crosscutting behaviour
[146, 147]

Table 5-3: UML 2.0 Diagrams

5.3.2 UML and AOD
Standard UML was not designed to support the kinds of concern separation that are the
focus of AOSD. Nonetheless, it provides the basis for object-oriented design from
which many AOD approaches extend. It is therefore not a surprise that many of the
AOD approaches discussed in this report have used or extended UML to facilitate
AOD in different ways. Different approaches range from extending the UML meta-
model itself, to using UML’s standard extension mechanisms. Table 5-4 gives a
summary for each of the AOD approaches in this report.

Approach Language
 UML Standard/Extensions/Profile/Meta-model
Theme Yes Meta-model
AODM Yes Extensions
AAM Yes Extensions
CoCompose No n/a
SUP Yes Profile
AML Yes Extensions
Concern Modelling No n/a
TranSAT Yes Extension
AOCE Yes Meta-model
UFA Yes Meta-model
ADT Yes Extension
UXF/a Yes Meta-model
IDAM Yes Meta-model
AVA Yes Extension
Component Views Yes Meta-model
Meta Models Yes Meta-model
AOSDUC Yes Meta-model (UML 2.0)

 161

CAM/DAOP Yes Profile
Activity Yes Profile (UML 2.0)
UMLAUT Yes Meta-model

Table 5-4: UML & AOD

In [148] it is noted that the choice between possible options is based on the level of
concerns separation and AOD language targeted. Beyond concern separation, there are
other rationales for choosing each [149]. Meta-model extension is suggested if the AO
concepts are well defined, stable and not subject to transfer or composition with other
domains. UML extensions and profiles are suggested where the aspect domain is not
subject to consensus, subject to change and evolution, subject to transfer or
composition with other domains.

Tool support has become very important to designers. UML based tools are built on the
meta-model. By changing the meta-model new corresponding extensions to UML tools
must be made. The use of profiles for extension means that no extensions for tool
support are required.

5.3.2.1.1 OCL and AOD
The Object Constraint Language (OCL) is a subset of the UML that allows software
developers to write constraints and queries over object models. OCL enables the
description of expressions and constraints on models and other modelling artefacts. An
expression is an indication or specification of a value. A constraint is a restriction on
one or more values of a model or system.

In terms of AOD, OCL has been used to constrain the selection of join points in design
models. As such OCL is mainly used in the specification of model integration. Current
AOP approaches are supporting more complex integration specifications to identify
join points. To keep up with AOP developments this complexity must be mirrored in
an AOD language.

OCL is a non-graphical language. As such it is not intuitive to the designer. In [150]
[151] a graphical language called Join point designation diagrams that represents OCL
constraints are visualised such that the integration complexity they expect from AOP
can be expressed in a natural manner at design.

OCL has also been used to define the constraints for aspect models as well as defining
the constraining composition. In terms of constraining aspect models, OCL has been
used to aid in the ensuring the well-formedness of aspect specifications and integration
specification. In terms of composition, OCL can be used to define the composition
semantics for an AOD language.

5.3.2.1.2 Parameterised templates
At the core of all AOD approaches (symmetric and asymmetric) is a requirement to
represent crosscutting relationships between models. Many UML-based approaches
achieve this through the utilisation of parameterised templates.

Parameterised templates allow the creation of abstract design models. A model is
abstract in this sense in that it reasons about abstract elements relative to the concrete
elements within the model. The abstract element is a parameter (i.e., template) that can
be replaced with a concrete element. This replacement generates a new diagram where

 162

the replacing concrete element gains the relationships, attributes and constraints
associated with the parameter being replaced.

This is one mechanism for representing crosscutting. A crosscutting relationship is one
where one model alters a number of different models. As such parameterised templates
support the specification of crosscutting.

5.3.2.1.3 AOD and UML Diagrams
As we have discussed previously, AOD has the same objectives as any software design
activity; to characterise and specify the behaviour and structure of the software system.
Its unique contribution to software design relates to extensions to modularity
capabilities. AOD must therefore provide language constructs and a process to handle
the structural and behavioural extensions required to manage the separation and
composition of the kinds of concerns supported by the paradigm. Table 5-5(a)
identifies the diagrams that have been used to express aspect structure and the
approaches that these diagrams have been used in. Table 5-6(b) identifies the diagrams
that have been used to express aspect behaviour and the approaches that these diagrams
have been used in.

 Use case Package Component Class

Theme Structure Structure

AODM Structure

AAM Structure Structure

SUP Structure

AML Structure

TranSAT Structure

AOCE Structure Structure

UFA Structure

ADT Structure

UXF/a Structure

IDAM Structure

AVA Structure Structure

Component Views Structure

Meta Models Structure Structure

AOSDUC Structure Structure Structure Structure

CAM/DAOP Structure Structure

Activity
UMLAUT Structure

Table 5-5 (a) Aspect Structure in UML Diagrams

Structure and behaviour are described under the headings of aspect specification,
crosscutting specification, integration specification and composition semantics. It is
interesting to note that the choice of diagram used in the AOD approach is based on the
level of separation and abstraction that the AOD language supports.

 163

 Use case Sequence Communication Activity State
Theme Behaviour
AODM Behaviour Behaviour
AAM Behaviour
SUP Behaviour
AML

TranSAT
AOCE Behaviour
UFA
ADT Behaviour

UXF/a
IDAM
AVA Behaviour Behaviour Behaviour

Component
Views
Meta

Models
AOSDUC Behaviour Behaviour Behaviour Behaviour Behaviour

CAM/DAOP Behaviour Behaviour
Activity Behaviour

UMLAUT Behaviour Behaviour

Table 5-6 (b) Aspect Behaviour in UML Diagrams

5.4 AO Approaches

5.4.1 Aspect-Oriented Design Modelling (AODM)

5.4.1.1 AODM Method
The Aspect-Oriented Design Modelling [152] (AODM) approach extends standard
UML with aspect-oriented concepts. The AODM UML extension was originally
defined to support the aspect-oriented concepts of the AspectJ implementation
language. However, AODM has evolved to become more generic and now supports
other asymmetric AO Programming approaches (such as composition filters and
adaptive programming) [153] [154]. Yet, symmetric AO implementation techniques
are not naturally supported by AODM.

 164

Figure 5-2 Aspect Oriented Design Issues [153]

5.4.1.2 AODM Artefacts

5.4.1.2.1 AOD Language
Since AODM was originally designed to model AspectJ-style AOP, its design
elements are still heavily related to AspectJ. We rely on AspectJ terminology when
discussing AODM even when discussing design models that target various [150] [153,
154] AOP platforms.

5.4.1.2.2 Specification of Aspects
In AODM, aspects are represented as classes with the <<aspect>> stereotype (see
Figure 5-4 and Figure 5-7). This was adopted because of the structural similarities
between aspects and classes. Like classes, aspects act as containers and namespaces for
attributes, operations, pointcuts, advice and intertype declarations. Aspects can also
engage in the same association and generalization relationships as classes .

Aspects differ from classes in their instantiation and inheritance mechanisms. In
AspectJ, aspect declarations can contain instantiation clauses that specify the way in
which the aspect should be instantiated. Child aspects inherit all features from their
parent aspects but only abstract pointcuts and java operations can be overridden. This
stereotype augments the meta-class with some additional meta-attributes to hold the
instantiation clause, and a Boolean expression to specify whether the aspect is
privileged or not.

5.4.1.2.3 Specifications of crosscutting
AODM supports the specification of behavioural and structural crosscutting.
Crosscutting structure is expressed in class diagrams within a parameterized template
collaboration diagrams.

 165

Figure 5-3 Structural Crosscutting [152]

Figure 5-3 illustrates an example of structural crosscutting. Crosscutting structure is
captured in a parameterised class and partial sequence diagrams. Parameterisation is
used to represent crosscutting. The type(s) to be crosscut are represented as
parameter(s) to the template. The crosscutting structure is applied to this parameter.
The concrete structural elements to be crosscut are applied to the template as
arguments. Class and sequence diagrams dictate the manner in which integration
occurs.

In Figure 5-3 all arguments that match the BaseType parameter are extended by the
Subject type. Any type that is extended in this way exposes a getData()signature
which can be invoked.

Figure 5-4 Advice AODM [152]

As illustrated in Figure 5-4 behavioural crosscutting is represented as an operation with
an <<advice>> stereotype. Advice operations, like standard operations, have a
signature and are semantically similar to standard UML operations. Figure 5-4 also
reveals the closeness between AODM and AspectJ notations for advice, yet there are
some semantic differences between these two.

Firstly, AspectJ advice is not uniquely identifiable. This conflicts with the UML rules
that operations of the same classifier must not have the same signature. AODM
resolves this problem by using “pseudo” identifiers. Secondly, advice in AspectJ

 166

cannot be overridden, as it has no unique identifier. Finally, AspectJ advice signatures
reference pointcuts. The operations of the <<advice>> stereotype must be implemented
by methods of a special stereotype that has an additional property named “base” to
hold the pointcut declaration.

The semantic value that the <<advice>> stereotype in AODM adds to the operation is
not immediately apparent. A designer can reason about <<advice>> only if he is aware
of the AODM-AspectJ relationship and fully understands the underlying semantics of
the AspectJ advice.

Additionally, the link between AODM and AspectJ is broken by using stereotyped
operations: use of pseudonyms to identify advice does not match the AspectJ
implementation of advice. This highlights the fact that the AOP languages constructs
do not always naturally match the UML elements extensions to capture the additional
characteristics of the construct.

5.4.1.2.4 Integration specification
AODM supports the specification of structural and behavioural integration through
integration of crosscutting design models. Structural crosscutting affects the type
structure of a given design model and can occur at some location in a target class
hierarchy. Behavioural crosscutting affects the model’s behavioural specifications and
occurs at some joinpoint in the execution specification.

UML classifiers from within a target class hierarchy may identify points to be
structurally altered.

Figure 5-5 AODM Join points [152]

A Link in UML represents communication between two instances resulting from a
particular action. As illustrated in Figure 5-5, AODM represents join points as UML
links with stereotyped “pseudo” operations. The stereotyping is required as UML links
imply a delegation of program control, but some joinpoints (e.g. field access) do not
delegate control. These joinpoints then cannot be modelled within the standard UML
and must be represented as pseudo operations. There are also cases such as object

 167

instantiation, where initialization only occurs after a constructor call. Here one link is
used to represent the join points. Interaction diagrams are used to represent the order in
which control passes between these join points. The type of join point being modelled
is indicated by special stereotypes. The <<execution>> stereotype, for example,
indicates an execution join point that occurs in the context of a method invocation.

Differing AOP implementations apply different mechanisms to separate concerns.
AspectJ supports behavioural and structural crosscutting, composition filters support
behavioural crosscutting, and adaptive programming supports structural crosscutting.
The Hyper/J-SOP model differs from AOP models in that AOP models support the
augmentation of a single model where as the Hyper/J model supports the integration of
multiple models. In the Hyper/J model, crosscutting support is identified as structural
because the primary concern is the integration of type hierarchies.

AODM provides design models that can be applied to the AOP models that separate
concerns models from a single set of base modes. However, due to the differences in
the possible integration between multiple models and the integration between a base
and crosscutting model, AODM cannot express all possible integration strategies of
Hyper/J.

In the following sections we will look at the AODM design models used to specify
structural and behavioural crosscutting.

Structural crosscutting is termed “intertype declarations” in ApectJ. Intertype
declarations are used to insert members and relationships into the base structure.
Intertype declarations are represented as templates in AODM. These templates are
parameterized model elements that are used to generate other model elements by
binding its template parameters to actual arguments.

As illustrated in Figure 5-3, a template of the <<introduction>> stereotype is used to
capture the semantics of inter-type declarations [152]. Templates are not useable
directly in the model design - arguments must be bound to them in order to be used in
design models. UML’s well-formedness rules allow at most one client model element
to participate in one binding. This does not match the AspectJ weaving model where a
class can be crosscut by many inter-type declarations. Inter-type declarations in
AspectJ are always bound to a fixed number of actual base classes. Template
parameters of an <<introduction>> stereotyped collaboration template are required to
be of a special stereotype <<containsWeavingInstruction>>. This stereotype augments
the template parameter with a meta-attribute named “base” to hold the type pattern that
specifies the actual base classes to be crosscut.

In more recent work however there are some slight variations. Although not much
detail has been provided [154] [151], the main difference seems to be in usage of the
<<join point>> stereotype to indicate structural crosscutting. It remains unresolved if
or how this changes the original AODM representation of specifying structural
crosscutting.

 168

Figure 5-6 Pointcut AODM [152]

In earlier work [152] pointcuts are represented as operations of a special stereotype
<<pointcut>>. As illustrated in Figure 5-6, the <<pointcut>> stereotype captures the
AspectJ pointcut semantics. Figure 5-6 also shows the corresponding pointcut
expressed in the AspectJ language.

There is also a graphical method to represent pointcuts in a more abstract manner
avoiding the use of AspectJ specific join point designators. Join point designation
diagrams [150, 151] [154] represent behavioural and structural crosscutting in a
language independent manner while retaining the complex semantics typically found
only in implementation languages. As illustrated in Figure 5-7 join point designation
diagrams are reusable templates that specify join points in a constrained manner.

Figure 5-7 Join point designation diagram [154]

Figure 5-7 is an example of a join point designation diagram. This diagram illustrates
the graphical specification of a pointcut. On the right side of the diagram are the
parameterised sequence diagrams that describe a set of join points. There are two
sequence diagrams joined through an “or” association. Each sequence diagram
represents a primitive pointcut. The “or” association between these two internal
diagrams represents the composition of primitive pointcuts. The left side of the
diagram is a graphical constraint language that declares the structural requirements that
must be met by arguments that are used to fulfil the right hand side of the diagram.

This graphical constraint language is based on OCL and is described in [151] [150]. As
illustrated here in Figure 5-9 a complex join point selection criteria is provided.
Constrains are expressed on instances and classes. The constraints represent static and
dynamic join point selection constraints. Class and instance based constraints are
represented in a class like structure. An example of a constraint representation is given

 169

in Figure 5-8. An example of a static constraint is on the classifier name Con* means
any type that is to match this constraint must be begin with “Con”. An example of a
dynamic constraint is where the multiplicity range of an attribute is set. An instance
will match this constraint if it has an attribute att2 that is an integer value between 2
and 100.

Figure 5-8 UML –classifier selection [151]

Relationships constraints can also be represented. These again can be static or
dynamic. There are four types of constraints: association, generalization, specialization
and flow of control. Association constraints impose statically constraint relationships
between types and dynamically constrains the multiplicity of relationships between
instances. Generalisation and specialisation constraints constrain a type in terms of
type hierarchies. Named message selection criteria constrain join point identification
based on the flow of control between types. Message selection constraints are
represented in diagrams similar to sequence diagrams.

5.4.1.2.5 Composition Semantics
Detailed composition semantics are not provided for AODM in the literature. Due to
its close ties with AspectJ we infer that the composition semantics followed by AODM
are very similar to AspectJ.

AODM supports the representation of composition semantics through two diagrams.
The first diagram, illustrated in Figure 5-9, identifies the join points that are crosscut
by an aspect and crosscutting element in that aspect that will actually affect that join
point. The second diagram represents an actual join point and specifies the composition
at that join point.

 170

Figure 5-9 Join Point Indication Diagram [154]

The points that are crosscut are captured within Class Diagrams elements for structural
crosscutting, and sequence diagrams links for behavioural crosscutting, by augmenting
these with a “crosscutBy” property. This property references a crosscutting element
within an Aspect. This indicates that an element augmented with the “crosscutBy”
property is composed with the crosscutting element named by the “crosscutBy”
property.

This diagram provides an overview of all the join points identified by a join point
designation diagram. It also shows the advice that will crosscut these join points.

The second diagram represents an actual join point and the composition at that join
point is, in fact, a number of diagrams. There are two options provided by AODM for
the representation of per-join point composition. The first option is to present
composition in a number of partial sequence diagrams. The second is to represent
composition through use cases.

An example of the first option is represented in Figure 5-13. To show how, and where,
advice affects the base classes an interaction diagram is spit. Splitting occurs at a
particular join point. The join point is indicated by a stereotyped link. The serotype
specifies the join point type. The advice types supported include before, after or around
advice. The advice is recomposed into a new sequence diagram that is made up of the
original join point sequence with the advice included.

Figure 5-10 Join point Composition [155]

Figure 5-10 shows how a join point can be split into three sequence diagrams to
represent the before, around and after points at the join point at which advice can be

 171

injected. The advice to be injected at the join point is represented in the sequence
diagram in the top right of Figure 5-10. This advice is declared as after advice. The
join point split diagram is combined with the advice diagram to create a new diagram
(see lower right side of Figure 5-10) which represents the composed join point and
advice.

An example of the second option to represent composition is seen in Figure 5-11 and
Figure 5-12. Here a use case is used to represent some behaviour. This use case can
then be split into smaller use cases via a refinement relationship. Use cases may also
include behaviour from other use cases. A use case may augment another by using
extension. As such a join point can be refined into before, around and after.
Composition of advice and base behaviour can be depicted by refining the join point
use case and using the include relationship. In the case of before and after advice or
extends in the case of around advice to form a new woven use case that represents the
join point composed with advice.

Figure 5-11 Weaving Advice [152]

Figure 5-11demonstrates the weaving at a join point and a piece of advice related to
that join point. The join point use case is used to represent a join point. This is again
split into three separate use cases. These represent the points at which this join point
can be crosscut. The crosscutting behaviour that is to be woven at this join point is also
represented as a use case. The actual composition of advice and behaviour at the join
point is represented by the wovenClick use case. The association between the elements
to be composed and the actual composition representation is an <<include>>.

Figure 5-12 Weave Order [152]

Figure 5-12 extends the example presented in Figure 5-11. In Figure 5-11 we see that
the actual composition can be visualised. There are the possibilities for advice

 172

injection, before, after and around the join point. Each possibility is represented in the
figure as a separate diagram through associated with the composition.

The weaving of inter-type declarations is represented in use case diagrams. The aspect
that contains the inter-type declarations is represented as a use case. The inter-type
declaration is firstly refined from the aspect use case, into use cases to represent the
actual features that are to be introduced into the base classes. These use cases are then
included in a use case that represents a woven entity. In Figure 5-13 we can see that
the composition is represented as use cases. These are related to the base and
crosscutting elements that are composed through the <<include>> association.

Figure 5-13: AODM TP 2002 Weaving intros [152]

5.4.2 Theme/UML

5.4.2.1 Theme/UML Method
Theme [55] is an analysis and design approach that supports the separation of concerns
for analysis and design phases of software lifecycle. The Theme approach also
provides a UML based AOD language called Theme/UML which extends the UML
meta-model.

The Theme approach expresses concerns in conceptual and design constructs called
themes. Themes are more general than aspects, and more closely encompass concerns
with relation to the symmetric separation. Any concern, whether crosscutting or not,
may be encapsulated in a theme. [156].

5.4.2.2 Theme Artefacts

5.4.2.2.1 AOD Language

Figure 5-14 Themes and Theme Integration [157]

 173

5.4.2.2.2 Specification of Aspects
Being a symmetric language, Theme/UML supports the representation of base and
aspect themes. Base and aspect themes are specified in packages. Theme packages are
identified as themes through the stereotype <<theme>>, as shown in Figure 5-14. Base
and aspect themes contain class diagrams that represent aspect structure. The class
diagram within the theme package represents the design concepts that are required to
realize the requirements related to the theme.

An aspect theme differs from a base theme in that it is a parameterized template
package. Figure 5-15 is an example an of aspect theme. The dotted box in the top right
hand side of the diagram specifies the parameters to the template. The parameters
represent the join points that the theme crosscuts. The parameter, in this example, is a
Type and method and the parameter is represented as follows <TracedClass
_tracedOp(..)>. This example shows the design of crosscutting tracing functionality.
The structural relationship between the parameter and the crosscutting elements
encapsulated within the theme described in the class diagram. The behavioural
relationship between the parameter and the crosscutting elements is encapsulated
within the theme described in the sequence diagram.

Figure 5-15 Aspect Theme [157]

5.4.2.2.3 Specification of Crosscutting
Both aspect and base themes support a degree of structural crosscutting due to the
possibility of domain concept overlap between themes. Aspect themes support
behavioural crosscutting as well as structural crosscutting.

At design, themes are partial views of requirements. Requirements express all of the
domain concepts that must be modelled to create a system. An overlap between themes
occurs when the requirements for different themes partially describe a domain concept.
At design, this overlapping is seen in classes in different themes that represent the
same domain concept. These classes have members, methods and attributes, as well as
relationships with other classes in a theme. Methods and attributes can overlap as can

 174

relationships. Overlapping of class members and inter-class relationships is less
common. During composition, those overlapping classes are converged into full
models. Due to possible overlap between themes, all themes are prone to implicit
structural crosscutting. Overlap is relative to other themes and hence, structural
crosscutting (in this sense) is too.

Aspect themes provide more scope for structural crosscutting. Returning to the
example in Figure 5-15, and in particular the class diagram, structural crosscutting can
be explicitly specified in this class diagram. As discussed in Section 4.3.1, aspects are
parameterised templates. The parameters represent all join points at which the aspect is
to crosscut other themes. A class that represents the parameter type is included in the
class diagram. This class is related to the crosscutting classes. Structural crosscutting is
specified in the relationships that are expressed between the parameter class and aspect
themes classes.

Only aspect classes support behavioural crosscutting. Behavioural crosscutting is
specified in a sequence diagram. Figure 5-15 depicts an aspect theme. This aspect
theme contains a class and sequence diagram that specifies crosscutting behaviour. The
parameter that is specified as a TracedClass type and _tracedOP(..) method. In the
class diagram, TracedClass is represented as a class with two methods tracedOp(..) and
_tracedOP(..).tracedOp(..) represents the composed method or output and _tracedOP(..)
represents the parameter method or input. Any method that replaces _tracedOP(..) is
specified in the sequence diagram to be crosscut before execution by
traceEntry(String)and after execution by traceExit(String).

5.4.2.2.4 Integration specification
Theme supports the specification of two types of integration - override and merge. Due
to the symmetric model that theme supports, integration relationships can be specified
between different theme types. Integration specification is denoted by an arc and can
be specified at two levels.

Firstly, integration can be specified at a theme level. This indicates that all elements at
the arc endpoints must be composed in accordance to any integration rules specified by
that arc. An example of a basic integration rule is match<name>. This indicates that
overlapping is recognized by name and specifies that where names match, all elements
of matching name should converge during composition.

Secondly, integration can be specified between elements within theme encapsulations.
To illustrate this case, we follow on from our previous example. Where classes in
themes overlap but do not have the same name, a lower level of specification is
required to specify that these classes should converge. Override and merge integration
can be specified at both levels.

Override integration is a specification of structural crosscutting. It is used to specify
that an overlap between theme elements is to be resolved by replacing the elements in
existing themes with the theme elements that are overriding. Override integration is
between theme elements and can specify the replacement of elements across themes.
As such, override integration can be considered to be a specification of structural
crosscutting. Override integration is denoted by a one way arc.

Merge integration is a specification of structural crosscutting. Merge integration is
used to specify that an overlap between theme elements is to be resolved by adding the
parts of overlapping elements together. The result of a merge is the sum of the parts of

 175

those elements specified to be merged. This result is an altered structure in that merged
structures are compositions of structures. A merge specification can be merge elements
between many themes. Therefore, it can be considered to be a specification for
structural crosscutting. Merge integration is denoted by a two way arc.

Merge integration between base and aspect themes are specifications for crosscutting
behaviour. As noted in section 4.3.1, aspect themes are parameterized templates.
Arguments that match the parameters are specified by bind<> expressions associated
with merge integration specification. A bind specification is illustrated in Figure 5-14.
In a bind relationship join points are specified or a criterion for join point selection is
specified. In either case the join points are the behavioural points to be crosscut by the
behaviour encapsulated in the aspect theme. In Figure 5-14, the bind specification uses
wildcards (denoted by *) to indicate that all methods in all classes encapsulated in
theme S1 are to be crosscut by the trace theme.

5.4.2.2.5 Composition semantics
Detailed composition semantics are defined for Theme/UML in [158]. These semantics
are represented more generally in [159].

5.4.2.3 AOD Process
The Theme process is described as a three phase process [160] – analysis, design and
composition. In the analysis phase, themes are identified and characterised. In the
design phase the identified and characterised themes are specified in technical design
models. Finally, in the composition phase, the composition of themes is specified. The
entire process is illustrated in Figure 5-16.

The Analysis part with Theme/DOC has been discussed earlier (section 3.5.2.1). In
short, Theme/Doc supports the characterisation of two theme types, aspect and base
themes. Base theme views present the designer with the requirements for the base
themes that are needed to produce a design model that fits the base theme
requirements. Aspect theme views present the designer with the requirements for the
aspect theme. Aspect theme views also present the themes that are crosscut by the
aspect.

The design phase, shown as the second step in the Theme process in Figure 5-16, takes
each theme and produces separate and possibly overlapping models. The requirements
related to the theme view are used to construct theme designs for each theme. Each
theme is constructed as a class diagram in a separate theme construct. A theme
construct is a specialised package. Aspect themes require an extra sequence diagram to
be produced which indicates where and how the aspect theme is to crosscut the
behaviour of another theme.

Once the themes are captured in separate and possibly overlapping design models the
composition phase begins. This is presented as the final process at the bottom of Figure
5-16. In this phase, the integration or composition of themes is specified. Classes in
Theme/UML model domain concepts. Overlapping design models are those where the
same domain concept is represented in more than one theme as a class. An overlap
occurs when the requirements for different themes partially describe a domain concept.
Here the domain concept is fully described across all themes in which the domain
concept expressed.

 176

During the composition process, overlapping domain concepts must be composed. The
composition of these domain concepts is specified during the composition phase.
Aspect themes are expressed as parameterised template packages in Theme/UML. In
order to specify the integration or composition of aspect themes with other themes, it is
necessary to specify the join point’s selection criterion. This indicates where the
aspect theme crosscuts the other themes. The specified selection criterion facilitates the
identification of the points in the related themes that are to be crosscut by the aspect
theme. These points are used as arguments to the parameterised template package.
Once the arguments are bound to the template, a composition can be realised.

Figure 5-16 Theme process [160]

The result of overlapping concept composition is a model in which all domain concepts
are fully represented in a model. The result of composing aspect themes is the

 177

generation of models where the join points identified by the specified selection criteria
are used as arguments to the parameters in the aspect theme templates.

Although not described in Figure 5-16, Theme also provides guidelines for a process
for the implementation of theme designs on the AspectJ, HyperJ, AspectWerkz and
CME implementation platforms [160-162].

The theme process and its relationship with existing design processes are discussed in
[160]. The theme process is said to usable in a waterfall, iterative or agile context.

5.4.3 State charts and UML Profile (SUP)

5.4.3.1 SUP Method:
The SUP approach supports a process for AO analysis and design based on state charts,
complemented with an AOD Language based on a UML profile.

5.4.3.2 SUP AOD Artefacts

5.4.3.2.1 Language
To support this process an AOD Language specified as a UML profile is proposed in
[142, 163]. This profile models base and aspect structure in class diagrams. Behaviour
is modelled in state chart, use case, state machine and collaboration diagrams. A set of
stereotypes that extend the semantics of existing UML elements are used across these
design diagrams.

5.4.3.2.2 Specification of Aspects
Aspects are structural specified in class diagrams. Aspects are specified as using an
<<aspect>> stereotype. Aspects can be specified as being synchronous or
asynchronous through the inclusion or exclusion of an <synchronous> tag.
Synchronous aspects alter the control flow and asynchronous aspects do not.

Aspects are also specified in state chart diagrams. In this sense the aspect is specified
as a set of states that are connected through a series of events.

5.4.3.2.3 Specification of Crosscutting
The specification of behavioural crosscutting is achieved through the use of state charts
[164]. Here crosscutting behaviour is modelled as an event that triggers a state
transition.

5.4.3.2.4 Integration specification
Specification of behavioural crosscutting is done in two ways. Firstly, in class
diagrams, integration is specified through an association type that indicates
crosscutting. This association is denoted by the <<crosscut>> stereotype. The
<<crosscut>> association supports symmetric integration specification.

Secondly, in state charts, integration is specified through linking events across state
chart diagrams. Aspects, as stated in Sections 5.3.1 and 5.3.2, can be specified in state
chart diagrams and crosscutting behaviour is modelled as linking events (by name)

 178

between state chart diagrams. Integration is specified as these linked events. Linking
indicates that when the base event is triggered, the aspect event that is linked to that
event should also execute.

5.4.3.2.5 Composition semantics
This approach provides relatively informal composition semantics. As discussed,
integration is specified through linking events across state diagrams. Composition
occurs when events are broadcast from one state diagram to other state diagrams. Any
events that are linked to the event broadcasted are activated in the state diagrams to
which the event is broadcast. These events can then cause an alteration of the states of
many modules in the overall system.

5.4.4 SUP AOD Process
The SUP process is based on the use of state charts. The process is described and
illustrated as a series of steps in [165] and [164]. The process is used to extract aspect
concerns from an OO concern description by identifying the crosscutting state
transitions that exist in the OO model. Once identified, the aspects and base concerns
can be specified separately during design.

Analysis begins with requirements for a base concern which are tangled with
descriptions of aspect concerns. These requirements are used to create a state chart
diagram. This state chart diagram represents the state transitions for the concern.
Through analysis of the state chart diagram the aspect concerns and are identified and
the relationship with the main concern is captured.

Once base and aspects concerns are identified, class diagrams are used to describe the
static structure of the base and aspect concerns. Aspects and base concerns are
specified as classes. Operations and attributes for the classes can be derived from the
state chart diagram developed during analysis.

Crosscutting relationships between base and aspect behaviours are specified in state
chart diagrams. Each state diagram is specified separately and it has its own states. The
events that trigger transitions between states are shared by aspects and base state chart
diagrams. As such the events that are shared between base and aspect classes can be
considered as join points.

When events occur the event is described as being broadcast. As such, the aspects are
notified of the event and the invocation of crosscutting behaviour is modelled as a
change in state of the aspect class.

In [166] the use of state charts is linked with Feature Driven Development [136]. State
charts in this instance are used to specify features. A process of incremental feature
development is supported though feature composition being specified in state charts.

5.4.5 Aspect-Oriented Architecture Modelling (AAM)

5.4.5.1 Aspect-Oriented Architecture Modelling Method
Aspect-oriented Architecture Modelling (AAM) is an approach that focuses on
specifying concerns at middle to high design levels. This approach is based on role
based meta-modelling and uses UML as a basis for an AOD language [167].

 179

5.4.5.2 Aspect-Oriented Architecture Modelling Artefacts

5.4.5.2.1 AOD Language
AAM as an AOD language supports two types of aspects - context-free and context
specific aspects. Context free aspects are reusable aspects that are expressed at a high
level. Context specific aspects are aspects that are instances of context free aspects that
can be specified for use (or reuse) in specific design models.

5.4.5.2.2 Specification of Aspects
High level aspects are specified as parameterized template package diagrams.
Parameters are explicitly demarked using the “|” symbol in the diagrams. Parameters
are described in this way to avoid listing the parameters in the package header. Listing
the parameters in the package header is described as unwieldy when there are many
parameters.

The diagrams encapsulated in an aspect parameterized template package describe the
aspects in terms of structure and behaviour. Structurally, aspects are modelled in class
diagrams. Within the class diagram, template classes, their template members and their
inter-template relationships are used to describe the structural properties and
constraints that a middle level aspect must contain to realise the high level aspect.

Aspect behaviour is modelled in collaboration diagrams. Within the collaboration
diagram the interactions between object templates are described. The sequenced
interactions between the object templates are described in terms of the messages sent
between object templates.

5.4.5.2.3 Specification of Crosscutting
A high level aspect can be completely modelled in terms of an abstract primary model.
Design elements external to the primary solution can be used to describe relationships
between the primary model and elements introduced through the aspect model.

A high level aspect introduces relationships and constraints to the primary design
model, by binding the context of the primary model to an abstract primary model
described in the high level aspect.

The context that realizes the context specific aspects is identified through bindings
between the context free aspects and the primary model. Only certain primary model
context can be bound to high level aspects. Before context can be bound to high level
aspects, the context must be validated.

Pre and post conditions specified in OCL defined conditions that determine the validity
of a context binding. Each template has associated with it a set of OCL context
constraints. These constraints ensure that any context bindings that are used to ensure
that middle level aspects are valid.

Structural crosscutting is specified in context specific aspects. Structural crosscutting is
specified in the class diagrams that are generated from the template class diagrams
described in the high level aspect.

Behavioural crosscutting is specified in context specific aspects. Behavioural
crosscutting is specified in the collaboration diagrams that are generated from the
template collaboration diagrams described in the high level aspect.

 180

5.4.5.2.4 Integration specification
Integration of middle level aspects and a primary model is specified through
composition directives [168]. Composition directives specify how primary and aspect
models are to be merged. Model merging is based on model overlap between aspect
and primary models and is described in Section 4.3. Composition directives specify the
addition of elements to primary models, removal of elements from primary models,
renaming elements in primary models, changing references within primary models,
overriding elements in primary models and a specification to order aspect composition
with the primary model.

Composition directives are divided into two categories - high level and low level. Low
level composition directives are used to specify the composition of a single aspect
model and a primary model. High level composition directives specify the composition
of many aspect models with the primary model. Composition directives constraints are
specified in OCL.

5.4.5.2.5 Composition semantics
Composition semantics associated with AAM are best outlined in [168]. The
composition semantics associated with AAM are similar to Theme/UML. The
semantics differ based on the levels of separation supported by each.

Composed models are both structural and behavioural in representation. Structurally,
composition is specified in a class diagram in which the aspect models and primary
model are composed. Behavioural composition is specified in a collaboration diagram.

5.4.5.3 AOD Process
AAM is not explicitly discussed in terms of an AOD process. Figure 5-17 illustrates
the overall AAM model. From this model we can infer or assume some of the primary
steps that one may follow when using the AAM approach.

In analysis the primary model is identified and the high level aspects that are needed to
realize the concerns that crosscut the primary model are identified. If there are no high
level aspects that capture a particular crosscutting concern, a middle level aspect is
required to realize that concern.

In the design phase the primary model is expressed in a middle level design. At this
point, the designer can assess the high level aspect designs available to see if context
required to realize the high level aspects in a middle level design, is available in the
primary model.

When the relevant high level aspects and context is available, then bindings for these
high level aspects to the application is specified. The composition of high level aspects
and application context are middle level (or context sensitive) aspects.

Middle level (or context sensitive) aspects are then composed with the primary model.

Composition directives specify the order and manner in which a middle level aspect
and primary models are to be composed. The result of applying the context sensitive
aspects to the primary model, as specified in the composition directives is a fully
composed OO model expressed in UML.

 181

Figure 5-17 Components of the AOM Approach [167]

5.4.6 CoCompose

5.4.6.1 CoCompose Method
CoCompose is a (non-UML) design language that supports the representation of high
level reusable aspects as features [169]. CoCompose introduces a feature construct in
the CoCompose AOD language. A feature is a high level aspect that crosscuts
application boundaries.

5.4.6.1.1 AOD language
CoCompose is a graphical design language that can be used to support AOD.
CoCompose supports executable designs by design language elements being
semantically well-defined.

Design Algebra is a technique for determining and selecting concrete language
constructs for implementing concepts. This is basis for the CoCompose design
language to programming language translation.

5.4.6.1.2 Specification of aspects
Reusable aspects are specified as features in CoCompose. Features are abstract
constructs that describe design patterns. Features are semantically well defined. A
feature is a composition of concepts and roles. A role is a template concept. Concepts
are the basic language construct in CoCompose and are used to model domain
concepts.

Concepts can have implementation strategies associated with them. Where concepts
have no implementation strategies associated with them, a suitable implementation
strategy may be provided by the feature in which the concept is expressed.

5.4.6.1.3 Specification of crosscutting
Roles are templates that must be fulfilled to realise features as concrete entities. Roles
are specifications of crosscutting. They have associated constraints that restrict and
validate the concepts that are used to realise or match the role.

 182

5.4.6.1.4 Integration specification
Solution patterns are CoCompose constructs that specify the integration of a features
roles and concepts.

5.4.6.1.5 Specification of Composition
Once a solution pattern integrates the concepts, a full concept model is the result. As
implementation strategies are linked with concepts and features, a composition can be
treated as an executable system. Once composition is complete the design model can
be translated into an implementation.

5.4.6.1.6 Composition semantics
Composition semantics are not well defined for CoCompose.

5.4.6.2 CoCompose Process
CoCompose is aimed at automating the design to implementation process. Automating
code generation is achieved through defining implementation strategies for
semantically well-defined design elements. As such, this approach is focused on
automating the transformation from high level design models to platform specific
implementations.

5.4.7 UML For Aspects (UFA)

5.4.7.1 UML For Aspects Method
UFA, or UML For Aspects, is an AOD approach based on the Aspectual
Collaborations Model (ACM) [170]. UFA is an extension of UML.

5.4.7.2 UML For Aspects Artefacts

5.4.7.2.1 AOD Language
UFA is an extension to the UML which supports symmetric AOD.

5.4.7.2.2 Specification of aspects
Reusable or high level aspects are modelled independent of the context in which they
will be applied. An aspect is specified as an abstract package. In UFA, UML packages
are used for encapsulating parts of a system that contribute to a complex behaviour. To
extend the semantics provided by UML packages defining top–level properties
(attributes and methods) of packages is allow. This encourages using a package as a
façade. Graphically, this is achieved by adding one or two compartments to the box
representing a package, one for attributes and the other for methods.

As illustrated in Figure 5-18, packages are tagged as abstract. Aspects are defined
abstractly to support reuse. The implication is that reusable packages are incomplete.
Packages are reused through specialization and parameterization. Direct
parameterization is not used because explicit parameters are only convenient when
used in a small number and with little structure. Aspect packages contain class
diagrams that represent the detailed design of the complex behaviour being modelled.
Abstract classes and methods defined with aspect packages are roles that need to be

 183

fulfilled to realize the aspect in the context of an application. Role classes need to be
specialized and adapted to a specific application.

5.4.7.2.3 Specification of crosscutting
Specialization allows the aspect be specialized to crosscut a specific application. The
adaptation relationship indicates that application context is bound to the aspect
specialization to adapt the abstract aspect to the specific application context. As
illustrated in Figure 5-18, an adaptation relationship plus a specialization relationship
specify a <<connector>>. A <<connector>> is middle level aspect design that is
specific to the application.

Figure 5-18 Package level Composition

An aspects role classes and methods are bound to application context within the
<<connector>>. This type of binding is called a “callout”. A callout is represented by
an arrow moving from the role method to a method in the core class. Fulfilling the
method can be achieved in two ways.

The first way is to delegate from the role method to an existing method in the design
module class. Delegation is used where a role and context are semantically similar but
syntactically differ The second way is to have a direct syntactic and semantic match
between aspect and application elements affected, in which role is directly specialized
by the application design elements A callout can be considered as a specification of
structural crosscutting.

Weaving methods into the core model is another way of binding application and role
classes. This type of binding is called a “callin”. A callin is represented in by an arrow
moving from the core method to a method in the role class. Callin bindings specified as
before, after, or replace. A callout can be considered as a specification of behavioural
crosscutting.

Callin and callout bindings are visual represented on the connector package. Callin and
callout bindings are specified in OCL.

5.4.7.2.4 Integration specification
At the package level the connector package represents integration specification. The
connector package is a specialisation of an abstract package that contains a
crosscutting specification and adapts a package representing core functionality. At a
class level, the binding of roles to core classes specifies an integration of classes and
roles. At method level the callin and callout relationships between methods specify
integration.

 184

5.4.7.2.5 Composition semantics
The composition semantics for UFA are not well defined.

5.4.8 Uml eXchange Format (UXF)

5.4.8.1.1 Uml eXchange Format Method:
UFX focuses on support AOD information exchange between UML case tools [171].
Specifically, the UXF approach introduces an XML based language called UXF/a.
UXF/a as an exchange language is based on an AOD extension of the UML meta-
model.

5.4.8.2 Uml eXchange Format Artefacts

5.4.8.2.1 UXF AOD Language
In Figure 5-19 a segment of the UML meta-model extension shows that an aspect is
defined as a construct derived from the classifier element. A classifier is an abstract
UML meta-class that describes structural and behavioural features. Aspects are
described as having attributes, operations and relationships. Aspects relationships
include generalisation, association, and dependency. Aspects are in effect represented
as <<aspect>> stereotyped class like constructs.

Figure 5-19 Aspect as a classifier [171]

The aspect-class relationship is defined as an extension of the dependency relationship
defined in the UML meta-model. As illustrated in Figure 5-20, the meta-model defines
structure and relationship for describing the composition of aspects and classes.

 185

Figure 5-20 Composition [171]

5.4.8.2.2 Specification of aspects
An aspect is specified by the presence of a classifier of the <<aspect>> stereotype.

5.4.8.2.3 Integration specification
Integration specification is a stereotyped relationship between classes and aspects. The
stereotype describes and is dependant on the type of integration being specified.

5.4.8.2.4 Composition semantics
Composition semantics are not well defined for UXF.

5.4.8.3 Uml eXchange Format AOD Process

Figure 5-21 A typical process of aspect-oriented development [171]

In [171] UXF support for a development process that is based on stepwise refinement
is described. In this process, illustrated in Figure 5-21, aspects are designed and
implemented separately from classes. Classes and aspects are interwoven and then

 186

executed. After weaving or execution we assume there is some verification, followed
by appropriate refactoring of the design.

5.4.9 Architectural Views of Aspects

5.4.9.1 Architectural Views of Aspects Method
Architectural Views of Aspects (AVA) builds on superposition-position based design
[172]. AVA recognises two problems with current AOD approaches. The first
problem is that there is no generic way to reason about the influence on one aspect of
some other aspect of the same system. The second is that there is not much provision
for the incremental design of aspects [173].

These problems arise because aspects are treated as being independent of each other.
Overlap between aspects exists when more than one aspect implements one concern.
This overlap means that, although aspects are separate entities, they are related and are
not completely independent.

Sub-aspects are aspects that are not completely orthogonal. Sub-aspects can be
composed to form a composite aspect, which represents a single concern. Due to a
possible dependency between sub-aspects, the order in which sub-aspects are applied
to other concerns, or are composed may be important. Identifying sub-aspects and their
interdependencies is important to ensure that sub-aspects work in unison.

This approach introduces a Concern Architecture Viewtype (CAV). A CAV is defined
to group sub-aspect designs that represent one concern. Within a CAV, dependency
relationships are specified between multiple sub-aspect designs, that when composed
represent a concern. These relationships are specifications to ensure that sub-aspect
compositions reflect the correct behaviour of the concern.

Concern architectures are one view type. It is noted that other view types that capture
other perspectives can complement the concern architecture view type.

5.4.9.2 Architectural Views of Aspects Artefacts

5.4.9.2.1 AVA AOD Language
A concern architecture is a concern model described in a software architecture view
type. A view type specifies the types of elements and relationships which can be used
to describe software architecture. A concern view type specifies the types of elements
and relationships that can be used to describe a concern. An aspect describes a
crosscutting concern. An aspect view type specifies the types of elements and
relationships that can be used to describe a crosscutting concern. An aspect view types
described in [173] is the basis for an AOD language. This AOD language addresses
both high level and middle level design modelling.

5.4.9.2.2 Specification of aspects
Crosscutting concerns are described as being modelled as one or more aspects. As
such, an aspect can be a composition of sub-aspects, which are aspects in their own
right. Aspects themselves are described as being a composition of required and
provided parts. The required part of an aspect describes the context that corresponds to
join points, at which provided parts are introduced. Provided parts are then

 187

specifications of crosscutting. Aspects are described as having an interface. A subset
of the provided parts can be designated as hidden. The provided parts of an aspect that
are not hidden are exposed through this interface and hidden parts are not. As such,
aspects can be modelled at different levels. High level aspects completely represent
one crosscutting concern. Low level aspects represent parts of potentially many
crosscutting concerns. Lower level aspects offer their non-hidden provided parts, to
satisfy the required parts of other aspects.

A high level aspect is depicted as an encircled collection of low level or sub-aspects.
The high level aspect is dependant on sub-aspects. Dependency is illustrated in Figure
5-23 as a <<concern>> stereotyped dependency relationship. Aspects are specified in
packages which are stereotyped with the <<aspect>> stereotype.

Aspects packages contain structural and behavioural diagrams. These can be used to
specify aspect behaviour. Class diagrams are used to model aspect structure. Sequence
and state diagrams are used to model aspect behaviour.

5.4.9.2.3 Specification of crosscutting
As illustrated in Figure 5-22, structural crosscutting is specified in class diagrams. The
classes in these class diagrams are tagged as required or provided. As mentioned in
Section 11.3.1, the provided parts are then specifications of crosscutting. As such, the
classes tagged as provided are specifications of structural crosscutting.

As illustrated in Figure 5-22, behavioural crosscutting can be specified in state
diagrams. The states and events in state diagrams are tagged as required or provided.
As mentioned above, the provided parts are then specifications of crosscutting. As
such, states and events tagged as provided are specifications of behavioural
crosscutting. Other behavioural diagrams, such as sequence diagrams, can be used in a
manner similar to state charts, to describe aspect behaviour.

5.4.9.2.4 Integration specification
Integration is specified at two levels in this approach. The first is at the package level,
where one aspect package is specified as an integration of sub-aspect packages. In this
case, a composite aspect is specified as ordered dependencies on sub-aspects which are
required by the composite. This composite aspect package can then crosscut the other
concerns. Another way to view an aspect, is as a group of sub-aspects that individually
crosscut other concerns. In this case, the order of that application is defined for the
application of the sub-aspects to the concerns that they collectively crosscut. In both
cases, the order in which sub-aspects are composed or applied is of importance due to
their inter-dependence. To specify an order for aspect integration an
“aspect1/aspect2/aspect3” notation is used. Figure 5-23 provides an example, where
this notation can be used to describe aspect dependency. In the example, there are three
aspects, where C is used by both O and S (so there is an arrow from each of them to
C). The integration of C into O and S is specified as a stereotyped <<crosscut>>
relationship. There are two possible composition orders of these sub-aspects O and S,
these include O/S/C and S/O/C (“O using S using C” and “S using O using C”,
respectively).

Integration is specified at two levels in this approach. The first is at the package level,
where one aspect package is specified as an integration of sub-aspect packages. In this
case, a composite aspect is specified as ordered dependencies on sub-aspects which are
required by the composite. This composite aspect package can then crosscut the other

 188

concerns. Another way to view an aspect, is as a group of sub-aspects that individually
crosscut other concerns. In this case, the order of that application is defined for the
application of the sub-aspects to the concerns that they collectively crosscut. In both
cases, the order in which sub-aspects are composed or applied is of importance due to
their inter-dependence. To specify an order for aspect integration an
“aspect1/aspect2/aspect3” notation is used. Figure 5-23 provides an example, where
this notation can be used to describe aspect dependency. In the example, there are three
aspects, O and S are sub-aspects and C is a composite aspect. The integration of O and
S into C is specified as a stereotyped <<crosscut>> relationship. There are two
possible composition orders of these sub-aspects O and S, these include O/S/C and
S/O/C.

The second level at which integration can be specified, is between the design elements
within the aspect package. As mentioned in Section 11.3.1, class and state chart
diagrams are used to specify the aspects structure and behaviour. As such, integration
is specified between the elements specified in these diagrams. Integration at this level
is specified as composition binding relationships. The types of composition binding
relationships supported by this approach include - regular binding, replacement and
unification. These relationships specify the elements to be integrated and how they are
to be integrated.

Figure 5-22 illustrates several examples of composition relationships. Binding is
characterised as the required part of one element being bound to required part of
another. On the left side of Figure 5-22, the provided part of class C, in <<aspect>> A,
is bound to the required part of class D, in <<aspect>> B, through the <<bind>>
relationship. A bind relationship is a high level specification of integration, where the
providing class augments the provided class. Returning to our example, class C
augments class D. Augmentation amounts to the merger of overlapping aspects.
(Overlapping concerns are discussed in Section 4.)

Replacement is characterised by the provided part of one element replacing the
provided part of another element. The middle diagram in Figure 5-22 illustrates an
example of a replacement integration specification. Elements of the same name appear
in <<aspect>> A and B. These elements represent the states that aspects A and B can
be in. Transition between states is triggered by the execution of the provided parts of
the aspects. Execution is depicted through events. In the example, the provided part of
<<aspect>>, named E_event, is replaced by the provided parts of <<aspect>> B,
named F_event and G_event. This replacement is legal, as E_event allows a transition
from state S_state to T_state, F_event facilitates a transition from state S_state to
U_state and G_event causes a transition from state U_state to T_state. As such, the
state transitions in <<aspect>> A are augmented through the <<replace>> relationship
imposed by <<aspect>> B.

Unification occurs when distinctly named elements are renamed such that they become
identical. This can be considered a merger of the provided parts of aspects A and B. An
example of a unification relationship is illustrated on the right side of Figure 5-22.

 189

Figure 5-22 Superimposition Binding Mechanisms [173]

Figure 5-23 Concern architecture [173]

5.4.9.2.5 Composition semantics
Composition semantics are required at two levels in this approach. As aspects can be
compositions of aspects, the semantics of sub-aspect composition to form aspects is
required at a package level. Within aspect packages, class diagrams represent structure,
state and possibly other diagrams that represent the behaviour associated with that
structure. The integration of these, more detailed diagrams, is specified through bind,
replace and unify relationships. Aspects are described as well formed “if and only if
the corresponding artefact in language L obtained by ignoring the
required/provided/hidden tags are well formed”. Composition is well formed when a
“well formed aspect B can augment another well formed aspect A with given bindings
if and only if the resulting composite aspect B/A is well formed”. Well-formedness
rules are specified in OCL.

 190

5.4.10 Aspect Modelling Language (AML)

5.4.10.1 Aspect Modelling Language Method
The Aspect Modelling Language (AML) supports middle-to-low level design [174-
176]. AML is aimed at supporting aspect reuse, by following the UFA approach, and
described Section 9. AML is a UML based notation that allows support for forward
engineered of designs into implementation.

5.4.10.2 Aspect Modelling Language Artefacts

5.4.10.2.1 Aspect Modelling Language AOD Language
AML is based on a subset of the AspectJ language constructs and the design notation
described in UFA.

5.4.10.2.2 Specification of aspects
Like UFA, AML considers aspects to be higher level constructs than classes. Aspects
are specified as packages of the <<aspect>> stereotype.

5.4.10.2.3 Specification of crosscutting
Aspect packages encapsulate crosscutting structure and behaviour. The connector
package contains the crosscutting structure and behaviour specification. The
association between the connector and aspect packages is shown by using a <<uses>>
stereotyped dependency relationship. As illustrated in Figure 5-24, the aspect uses the
connector to specify the crosscutting structural and behavioural features, encapsulated
by the aspect.

In the connector package, introductions are specified in an <<introduction>>
stereotyped classifier. This contains intertype declarations specified in the AspectJ
style. These intertype declarations reference structural elements declared in the aspect.

In the connector package, advice is specified in a classifier stereotyped as <<advice>>.
Within this classifier, advice is specified in the AspectJ style. The type of advice is
indicated through a <<before>>, <<after>> or <<around>> stereotype. Advice
declarations reference elements declared in the aspect.

5.4.10.2.4 Integration specification

Figure 5-24 AML Aspect, connector, base [176]

 191

Integration is specified in the connector package. A connector package encapsulates a
pointcut classifier, an introduction classifier and an advice classifier. These constructs
represent the AspectJ programming constructs. As illustrated in Figure 5-24, a
connector package represents a crosscutting relationship between an aspect and
potentially many base packages.

The introduction, pointcut and advice constructs are represented as stereotyped
classifiers. A <<pointcut>> class contains the pointcuts related to an aspect. Pointcuts
themselves are represented as method like signatures of the form <pointcut name [!]
execution point>. The [!] symbol indicates that the method is a pointcut. The name is a
reference to the point of execution identified. At the class level, this specifies the
execution point identified in the pointcut as a point of integration.

5.4.10.2.5 Composition semantics
Composition semantics follow the AspectJ implementation of AOP.

5.4.11 Aspects At Design Time (ADT)

5.4.11.1 Aspects At Design Time Method
ADT, or Aspects at Design Time, is an approach to AOD that proposes extensions to
UML [177]. This approach was an early proposal for AOD. ADT approach focuses on
representing synchronisation as separate concern.

5.4.11.2 Aspects At Design Time Artefacts

5.4.11.2.1 ADT AOD Language
This language is focused on enabling the separation of a synchronisation concern.

5.4.11.2.2 Specification of aspects
A class of the <<synchronised>> stereotype represents a synchronisation concern. A
<<synchronised>> class models synchronisation for an application. Synchronisation
behaviour is specified a state diagram that corresponds to the class.

5.4.11.2.3 Specification of crosscutting
Crosscutting elements are specified in the <<synchronised>> class and in a
corresponding state diagram that models that class.

5.4.11.2.4 Integration specification
This integration is specified through a <<synchronise>> association between the class,
that encapsulates the synchronisation concern, and those classes which it crosscuts.
Actions are specified for this <<synchronise>> association. These actions reference
events described in the state diagram. This reference implies that when a call that is
defined on a class is crosscut, the synchronisation concern is invoked and the
crosscutting behaviour expressed in the state diagram is executed.

5.4.11.2.5 Composition semantics
Composition semantics for ADT are not well defined.

 192

5.4.12 Aspect Oriented Component Engineering (AOCE)

5.4.12.1 Aspect Oriented Component Engineering Method
Aspect Oriented Component Engineering (AOCE) is a software development
methodology that describes aspects as services, provided to and required by
components [53] AOCE supports the identification, description and reasoning about
components and aspects. In AOCE components and aspects are composed at run-time.
AOCE as an approach to AOD facilitates modelling of dynamic AO systems.

5.4.12.2 Aspect Oriented Component Engineering Artefacts

5.4.12.2.1 AOCE AOD Language
AOCE supports a design language based on component based dynamic AOP. This
approach supports design of applications that target a component based dynamic AOP
implementation platform.

5.4.12.2.2 Specification of aspects
Aspects are specified as components in AOCE. Components are related through the
services they provide and require. Components can also be specified at a higher level,
in a detailed design model. The definition of a component as an aspect is separate to
the definition of the component. Components are defined in a component model in
AOCE. AOCE extends the component model with an aspect model. The
component/aspect design model is representation of the underlying implementation
framework. The framework is extended to create application specific designs.

The aspect model supports separate aspectual characterisation of a component.
Components are extensions of a type that links the component with an AspectManager.
The AspectManager, and associated types, are representations of the AOCE
component/aspect framework. The AspectManager has associated with it
AspectDetails. AspectDetails encapsulate the crosscutting and integration specification
for components. In AOCE there are different specialisations of AspectDetail that
capture specific features for encapsulating the crosscutting and integration
specification for components.

Aspects are also specified in component diagrams. The aspect-component runtime
interactions can be specified in collaboration diagrams.

5.4.12.2.3 Specification of crosscutting
The crosscutting part or provided part of a component is specified at runtime through
information encapsulated in instances of AspectDetails.

In collaboration diagrams, the provided part of a component is specified as a
crosscutting interaction with components.

5.4.12.2.4 Integration specification
The join point part or required part of a component is specified at runtime through
information encapsulated in instances of AspectDetails.

In collaboration diagrams, integrate is specified as interactions between the required
and provided parts of components.

 193

In detailed collaboration diagrams, specify how the aspect will integrate with the
components that the aspect crosscuts through specifying interactions.

5.4.12.2.5 Composition semantics
Composition in AOCE occurs at run-time. Composition semantics are specific to the
AOCE implementation platform.

5.4.12.3 AOCE Process
Components are first identified and characterised using conventional OO analysis. The
resulting components are analysed, in terms of the services provided by, and used by
each component. Related services are grouped, and categorised as being required
(used) by, or provided by the component.

Functional and non-functional features of the system are identified. Service
relationships are distinguished by their association with a feature. For each group of
services, the services required by the component are associated with the components
that provide those services. The services provided by the group are associated with
components that require those services.

As all components are assessed in a similar fashion, the result is a matrix in which all
services can be commonly grouped. This matrix provides views in which component
features can be categorised into conceptual groupings. Provided services can be
expressed once and related to all the places that it is required. This conceptual grouping
is considered to be an “aggregate aspect”.

Aspect details describe the aggregate aspect. Aspect details describe aspects and their
relationship with other aspects. Aspects and aspect details can be described textually in
a vocabulary skewed toward component based software development. Alternatively
they can be graphically represented as an extension to OOD diagrams (see [53]).

Once identified, aspect details are refined into software component aspects that
categorise design level component services. Refinement begins by associating aspects,
identified during analysis, with design models. Design in AOCE is not implementation
neutral. Design is focused on implementation specification.

AOCE designs can be implemented on any component framework. AOCE uses an AO
extension of component platforms to implement AOCE designs. AO platforms enable
the decoupling of components at implementation that have been decoupled at design
when following the AOCE methodology.

Where run-time composition is possible coupling only occurs at run-time. Run-time
composition can be illustrated in design by collaboration diagrams however the
relevant elements of the run-time composition environment that are used in
composition must be expressed in this diagram.

5.4.12.4 UML for AOSD Method

5.4.12.4.1 UML for AOSD AOD Language
A UML notation for AOSD [178] (UML4AO) is a proposed UML extension to support
the design of AO programs. The significant extensions are the introduction of groups,
pointcut relations and aspect classes. Groups provide means for the classification of

 194

heterogeneous and distributed entities. Pointcut relations allow the developer to define
crosscuts within the program. Aspect classes implement the extension of the program
based on the join points identified by the pointcut relations.

This approach supports design focused on the JAC framework. The primary goals of
the JAC framework are supporting dynamicity and distribution. The JAC framework is
also a general purpose AOP environment based on AspectJ concepts. The UML
extension defined provides a design view of the JAC facilities and language.

5.4.12.4.2 Specification of aspects
Aspects are specified as aspect-classes. An aspect-class is a classifier that contains
aspect-methods. These constructs are similar to regular classes and methods, but differ
semantically, due to their crosscutting nature. An aspect class is specified through an
<<aspect>> stereotype.

5.4.12.4.3 Specification of crosscutting
UML4AO supports behavioural and structural crosscutting. To specify crosscutting
several stereotypes are provided. <<before>>, <<after>> and <<around>> stereotypes
are associated with aspect-methods specify behavioural crosscutting. Structural
crosscutting is specified by the <<replace>> and <<role>> stereotypes. The <<role>>
stereotype indicates that the element it is associated with is to be introduced into the
base classes the aspect crosscuts. The <<replace>> stereotype indicates that the
element it is associated with is to replace elements in the base classes the aspect
crosscuts.

5.4.12.4.4 Integration specification
A pointcut relation allows the designer to indicate where aspect-methods crosscut base-
methods. The crosscutting association between the two is indicated at the classifier
level, where the aspect-class crosscuts the base-class. This relationship is defined by a
<<pointcut>> stereotyped association.

A group, in UML4AO, represents a group of design elements, which may be
heterogeneous, that are identified by a pointcut. The UML does not naturally support
grouping of heterogeneous objects. The group notation facilitates reasoning about
group-typed sets of objects. The group notation allows a designer to map a concern
space to a set of objects. Grouping can be done based on the location (host/container)
of an object instance. A <<group>> stereotype is used to identify groups.

5.4.12.4.5 Composition semantics
As UML4AO is based on the JAC framework, the composition semantics associated
with this language are similar to the composition semantics of JAC.

5.4.12.5 TranSAT Process
TranSAT can be viewed as a process in two distinct ways. The first view is TranSAT
supports the entire software development lifecycle as an iterative evolutionary process.
In this view, concerns are merged together until a system is complete. This assumes
that the core model is a composite concern that grows at each evolution of the
architecture. Concerns are completely developed independently of the core and then
integrated with the core. During iterations the core grows and evolves.

 195

The second view is that TranSAT applies to the maintenance phase of a software
development lifecycle. In this view, development is finished and a core architecture
and system exists. Evolution through expanding the architecture with new technical
concerns could be considered to be maintenance.

Taking either view, a set of steps is outlined for using TranSAT. When abstracted
away from TranSAT, these steps can be considered a high level process description for
concern integration.

The process assumes an existing architecture or core model. A concern is
independently specified. Once a concern is specified, the rules to integrate the concern
with a generic component framework are conceived. These integration rules are
developed a generic architecture model. As such, this provides rules that allow the
concern to be integrated with any architecture that matches the generic architecture
model. When a target architecture requires that concern, the meta-model is matched
against the target framework. The points that the integration rules identify, in the
architecture meta-model, are reified in the target architecture. Pointcuts can then be
devised to facilitate the integration.

5.4.13 Component Views

5.4.14 Component Views Method
View components are introduced in [179] to promote reuse of functional concerns
across component based systems. View components are an extension of components
models, based on views.

A concern view over components is a decomposition of the components based on the
components relationship with a concern. Each view represents a concern and each view
contains the components and component relationships that are part of a concern. A
system space is a set of systems that share common concerns.

In [180] views abstraction and reuse across concern boundaries is explained. In
abstracting views the components and inter-component relationships related to a
concern are abstracted. Component functionality can also be captured in this
abstraction. Concerns can be then be reused in other applications. An abstract view
component can be reused by mapping the abstract elements of the view component to
the application elements. The functionality preserved in the abstract components can
be reused in other application contexts.

View components define roles that have an associated reusable behaviour and a
reusable relationship between roles. Concerns can be reused by filling the roles
expressed in a view component with applications entities.

To represent these concepts in a design language, a meta-model for view components
is proposed as an extension to UML 1.4. This meta-model (Figure 5-25) introduces the
concept of a connection between an abstract view components element and a base (or
application) element.

 196

Figure 5-25 View Components Meta-Model [179]

The meta-model defines an abstracted component that represents crosscutting concerns
as ViewClasses. A ViewClass is a specialization of the Classifier UML meta-class, and
is defined as a class that can be applied to a collection of classes. A Component is a
specialization of the package meta-class and represents an abstracted concern.
Components are made up of ViewClasses and Classes. The structural and behavioural
features of ViewClasses are specified as ViewStructuralFeature and
ViewBehavioralFeature elements. A ViewAssociation is a specialization of the
Association UML meta-class. An instance of this type makes it possible to specify an
association between ViewClasses.

Constraints for the meta-model are expressed in OCL. Design constrains are used to
check the coherence at the modelling phase. Association constraints are used to check
that the system obtained by the assembly of packages is coherent.

5.4.14.1 Component Views Artefacts

5.4.14.1.1 Specification of aspects
Aspects are specified as components. Components contain ViewClasses.

5.4.14.1.2 Specification of crosscutting
View classes contain ViewBehavioralFeatures and ViewBehavioralFeature.
ViewBehavioralFeatures specify crosscutting behaviour and ViewBehavioralFeature
specify crosscutting structure.

5.4.14.1.3 Integration specification
Integration specified by mapping abstract components design to concrete application
design. As such, the abstract elements that are aggregated within the component are
realised with a concrete application structure.

 197

5.4.14.1.4 Composition semantics
Composition semantics are not well defined for the View components approach.

5.4.15 Activity Diagrams

5.4.15.1 Activity Diagrams Method
UML 2.0 introduces a new version of activity diagrams [130]. This differs from UML
1.X versions of activity diagrams as it separates activity from state diagrams and is
based on Petri net semantics.

A Petri net is an approach for modelling systems characterized as being concurrent,
asynchronous, distributed, parallel, nondeterministic, and/or stochastic. It consists of
places, transitions, and arcs that connect them. Input arcs connect places with
transitions, while output arcs start at a transition and end at a place. There are different
types of arcs, e.g. inhibitor arcs. Places can contain tokens; the current state of the
modelled system is given by the number of tokens in each place. Transitions are active
components. They model activities which can occur, thus changing the state of the
system. Transitions are only allowed to fire if they are enabled, which means that all
the preconditions for the activity must be fulfilled. When the transition fires, it removes
tokens from its input places and adds some at all of its output places. The number of
tokens removed/added depends on the cardinality of each arc. As such there are
multiple token flows for each activity.

Due to the redefinition of activity semantics with Petri nets, modelling of activities is
more natural as activities can have multiple flows at any one time. This is different to
UML 1.X where multiple tokens were used only during the behaviour occurring
between a fork and join.

Activity diagrams define activities and the relationships between activities. Activities
represent behaviour in software. The relationships between activities represent the flow
between activities.

Activities can be composed hierarchically. An activity defined with an activity diagram
can refer to another activity diagram that describes that activity in greater detail. We
refer activities that are composed into higher level activities, as sub-activities.

Activity diagrams by their nature are aimed at modelling complex systems. As such,
activity diagrams can be complex and graphically tangled. The only form of
decomposition available in this instance is the breaking of activities into hierarchies of
sub activities (or vertical decomposition). This form of decomposition does not
facilitate the modelling of crosscutting concerns. In [147] and [146] horizontal
decomposition of activity diagrams is introduced.

Three types of activity nodes are defined for activity diagrams that are to be composed
horizontally - interface nodes, activity nodes and subtraction nodes. Addition nodes are
activity nodes that are added to an activity diagram during horizontal composition.
Subtraction nodes are activity nodes that are removed from an activity diagram during
horizontal composition. An interface node represents the point at which the
horizontally decomposed activity diagram can be integrated into an orthogonal activity
diagram.

A UML profile specifies the semantics of the three activity node types. Stereotypes are
introduced for the subtraction activity node and the interface activity node. No

 198

stereotype is introduced for addition activity nodes as these are considered the default
semantic for nodes that appear in an aspect activity diagram.

In [146] a compelling, yet simple example is provided, and is seen here in Figure 5-26.
This illustrates the horizontal composition (Process Order form) of an activity diagram
(Order handling) and an initially unrelated aspect activity diagram (invoice handling).

Figure 5-26 Activity Diagram Composition [146]

If we look at the Order Handling activity diagram, we notice that the forks in the
diagram are named a and b, respectively. Notice also, that these names are referenced
in the Invoice Handling stereotyped interface nodes that identify the forks present in
the Invoice Handling diagram as points of horizontal integration for the Invoice
Handling diagram which here is an aspect activity diagram. Fork a and b can be
considered to be join points in this case. The composition of these diagrams is
presented in the Process Order Diagram. We can see that the activities that are invoked
in between the forks in the aspect activity diagram have now been added to the initial
activity diagram, at the forks identified as a and b. Further examples are available in
[146].

 199

5.4.15.2 Activity Diagrams Artefacts

5.4.15.2.1 Activity Diagrams AOD Language
The ability to capture crosscutting behaviour in activity diagrams in UML 2.0 is clearly
demonstrated here.

5.4.15.2.2 Specification of aspects
Aspects are specified as specialised activity diagrams that use the activity addition
profile.

5.4.15.2.3 Specification of crosscutting
Addition and subtraction activity nodes in the activity diagram are specifications of
crosscutting.

5.4.15.2.4 Integration specification
Integration is specified in interface activity nodes. These nodes reference nodes in
target activity diagrams at which integration is to take place.

5.4.15.2.5 Composition Semantics
Basic composition semantics for activity diagram composition are specified in [147]
and [146].

5.4.16 CAM/DAOP

5.4.16.1 CAM/DAOP Method
CAM/DAOP is a component and aspect based approach that supports the separation of
concerns through the software development lifecycle, from design to implementation.
This approach defines the CAM (Component-Aspect Model) [181] model, the DAOP-
ADL language [122] and the DAOP (Dynamic Aspect-Oriented Platform) platform.
The DAOP platform is out of the scope of this document.

CAM is a component and aspect based model that defines an extension of UML to
specify how to design the structure of an application in terms of components, aspects
and the composition among them. The information provided with CAM during the
design is then expressed in terms of an XML document using the DAOP-ADL
language. This information is directly consulted and used by the DAOP platform at
runtime. The different levels of modelling aspects in CAM/DAOP are related among
them by using MDA.

5.4.16.2 CAM/DAOP Artefacts

5.4.16.2.1 CAM/DAOP AOD Language
CAM is an AOD language based on components and aspects. CAM supports
symmetric concern decomposition where the core functionality of the system is
modelled as any number of different components and the concerns that crosscut this
core functionality are modelled as aspects.

 200

Figure 5-27 64 The Component and Aspect Model

Figure 5-27 shows an UML diagram with the basic entities of the CAM model and the
relationships that can be established among them. This diagram is considered as the
metamodel of CAM (part of the UML Profile for CAM), so the entity names are UML
stereotypes for modelling applications in terms of CAM.

5.4.16.2.2 Specification of aspects, integration and crosscutting
In CAM those concerns that are modelled as components are identified with the
stereotype <<Component>>, while those concerns that are modelled as aspects are
identified with the stereotype <<Aspect>>.

As shown in Figure 5-27, in the CAM model aspects are treated as a “special” kind of
component and therefore, both share some common features. Both have a set of
attributes stereotyped with <<StateAttributes>> that represent their public state, both
are identified by a unique role name (<<Role>>) to identify the specific functionality
played by the component or the aspect, and both make use of the concept of property
(<<Property>>). For instance, properties are used to decouple non-orthogonal aspects,
which do not need to directly interact among them to resolve their dependences.
Instead, they indirectly interact by sharing properties with the same name and type.

In CAM both components and aspects can act as units of composition with
contractually specified interfaces and explicit context dependencies. CAM describes
the provided and required interface of components to describe both the services the
component provides to the environment and also those services it requires in its

64 Source of Figure: [181] Figure 1 (extended).

 201

interaction with other components (see Figure 5-27). For aspects CAM describes the
aspect evaluated interface, which includes information about the join points an aspect
is able to intercept and evaluate (see Figure 5-27). The internal behaviour of
components and aspects can be described using standard UML models. CAM does not
constraint or gives specific guidelines about it.

Figure 5-28 shows an example of the partial design of an application in CAM. It shows
one component and an aspect and the relationship among them. As shown in Figure
5-28, the information provided with CAM is expressed in XML. This is done using the
XML-based DAOP-ADL language. This diagram describes that when a component
with role name “c1” sends the “foo” message the aspect with role name “trace” is
applied before sending the message (join point BEFORE_SEND).

<ApplicationArchitecture>
 <components>
 <component role="c1"> ... </component>
 </components>
 <aspects>
 <aspect role="trace"> ... </aspect>
 </aspects>
 <compositionConstraints>
 <componentCompositionRules>
 ...
 </componentCompositionRules>
 <aspectEvaluationRules>
 <sendMessage>
 <source-comp role="c1"/>
 <message name="foo"/>
 <BEFORE_SEND>
 <concurrent>
 <aspectList>trace</aspectList>
 </concurrent>
 </BEFORE_SEND>
 </sendMessage>
 </aspectEvaluationRules>
 </compositionConstraints>
</ApplicationArchitecture>

-joinpoint = ANY

TraceEvaluatedInterface
<<EvaluatedInterface>>

+foo()

<<ProvidedInterface>>
C1ProvidedInterface

<<Component>>
C1

-name = "trace"

<<Role>>
TraceRole

<<Message>>
foo

-name = "c1"

<<Role>>
C1Role

<<Aspect>>
Trace

<<sends>>

{join point=BEFORE_SEND}
<<applies to>>

fulfills

fulfills

<<provides>>

<<evaluates>>

Figure 5-28 An example of CAM Component and Aspect Integration

5.4.16.2.3 Specification of crosscutting
In CAM the specification of crosscutting between components and aspects is expressed
in terms of the “applies to” relationships shown in Figure 5-27. CAM was previously
classified as an approach with a low-middle concern abstraction. This is reflected in
the way in which CAM specifies crosscutting where the join point intercepted by the
aspect is specified.

CAM considers that aspects are composed with black-box components and therefore
this model intentionally avoid the definition of join points that intercept the internal
behaviour of components, and only have access to components through its public
interface. Therefore, CAM defines that aspects can crosscut the behaviour of
components before and after (incoming and outgoing) messages and events, and also
before and after the creation and destruction of component instances (see Figure 5-27).
The “applies to” relationships in Figure 5-27 can be tagged with the specific join points
in which an aspect should be applied. This can be seen in the example in Figure 5-28 in
order to indicate that the aspect with role name “trace” crosscuts the component with
role name “c1” before the component sends the “foo” message (tagged value
joinpoint=BEFORE_SEND).

 202

For non-orthogonal aspects, the crosscutting between aspects is expressed in terms of
CAM Properties. Non-orthogonal aspects indirectly interact to resolve their
dependencies by sharing properties with the same name and type. For example, let us
suppose an authentication aspect that requests the user’s name and password in order to
authenticate him or her; and a filter aspect that filters the messages received by a
component according to the user’s preferences. In order to get the user preferences the
filter aspect needs to know the user’s name and this name is previously obtained by the
authentication aspect, creating dependences among them. In order to solve this
dependency, the authentication and the filter aspects may share a property with name
“username”. The value of the property will be established by the authentication aspect
when the user is authenticated and consulted by the filter aspect when needed.

5.4.16.2.4 Integration Specification

CAM integrates the specification of all the components and aspects that set up an
application by describing the software architecture of the application using the DAOP-
ADL language [122]. This language describes all the components and the aspects that
model the application and the integration among them.

In addition to describe the components and aspects through their role names,
interfaces, etc, the DAOP-ADL language describes: (1) how to compose components
among them and, (2) how to compose aspects with components. The prior are
expressed in the componentCompositionRules section of the XML document (see right
side of Figure 5-28) and are described in terms of the role name of source and target
components. The later are expressed in the aspectEvaluationRules section of the same
document (see again right side of Figure 5-28) and are expressed in terms of the role
names of the source and the target components, the role name of aspects and the join
points in which aspects crosscuts the source and/or target components. In Figure 5-28,
the sendMessage eval rule in the XML document in the right side translates the
information expressed in UML with the CAM model.

5.4.16.2.5 Composition Semantics
The design of a CAM application provides information about the composition among
components, the relationship among aspects and the composition between components
and aspects.

The composition among components is expressed as part of the
componentCompositionRules section of the DAOP-ADL language in terms of the
source and target role names (see right side of Figure 5-28). Additionally, the
information provided during the description of their provided and required interfaces
determines how they can be composed among them.

The relationship among aspects is expressed using a UML activity diagram, where
each aspect is represented as an activity as shown in Figure 5-29. With this diagram
CAM indicates if several aspects being evaluated in the same join point are evaluated
in sequence or concurrently. Usually, this decision will depend on the orthogonality of
aspects. Orthogonal aspects may be evaluated both in sequence and concurrently, while
non-orthogonal aspects (sharing common CAM properties) should be evaluated in
sequence. This information is also expressed with the DAOP-ADL language in the
aspectEvaluationRules section (see right side of Figure 5-28).

 203

{{A1},{A2,A3,A4},{A5,A6}}

A2

A6

A1

A5

A4

A3

Figure 5-29 65 Activity Diagram showing Aspect Relationship in CAM

Finally, the composition among components and aspects is expressed in CAM by
means of the “applies to” dependency relationships shown in Figure 5-27. For each of
these relationships the CAM model has a tagged value indicating the join point that the
aspect is intercepting and another tagged value indicating the criticality of the aspect.
CAM aspects are classified as either critical aspects or non-critical aspects, depending
on how important the result of the evaluation of that aspect is for the behaviour of the
final application. Once again all this information is expressed with the DAOP-ADL
language in the aspectEvaluationRules section.

5.4.16.2.6 CAM/DAOP & MDA Process
CAM/DAOP uses MDA to enable the implementation of a methodology for creating
systems based on the CAM/DAOP approach. This process allows the refinement of the
system from an OO representation of the design to a DAOP middleware specific
implementation as is shown in Figure 5-30.

In [182] an example of this AOD process is described in MDA. MDA is used to
formalise the models and transformation between models that are created during
design. By using MDA this process begins with a computational model of an
application. A computational model is a basic model of the application entities. This
model is then marked and transformed into a CAM model based on the CAM profile.
The CAM model describes the computational model in terms of components, aspects
and the relationships among them. The CAM model (the PIM) is then marked and
transformed into a DAOP model (the PSM). The DAOP model represents an
implementation independent meta-model for the DAOP approach. It also includes the

65 Source of Figure: [182] Figure 3 (extended)

 204

description of the architecture of the application with DAOP-ADL, which is
automatically generated from the CAM model. The DAOP in turn is marked for
transformation to a specific implementation platform.

Figure 5-30 The MDA Stack of Models for CAM/DAOP

5.4.17 Implementation Driven Aspect Modelling (IDAM) Approach and AOP-to-
UML Approach

5.4.17.1 Implementation Driven Aspect Modelling and AOP-to-
UML Approach Methods

Implementation driven aspect modelling (IDAM) [183] proposes an integration of
aspect oriented programming and model driven development. To support this
integration, an approach to model aspects is required. Contemporary asymmetric
approaches to aspect modelling associate aspects with core models. This is achieved
through parameterization, and binding or directly relating aspect and core models. The
former uses bind statements which can be complex to interpret, while the latter is said
to introduce graphical tangling. A new visualization called dynamic aspect diagrams is
suggested to overcome these problems.

Dynamic aspect diagrams (DAD) are user responsive diagrams, that model AspectJ
constructs (aspects, inter-type declarations, pointcuts and advice). Associations
between aspects and core elements are visualized dynamically, that is to say, the user
controls what aspect-to-base associations are visible in a diagram. DAD’s are
generated from AspectJ code.

 205

AOP-to-UML is another code driven modelling approach described in [184]. In this
approach UML extension mechanisms are used to create models based on AspectJ
code.

5.4.17.2 Implementation Driven Aspect Modelling Artefacts

5.4.17.2.1 Implementation Driven Aspect Modelling AOD Language
DAD’s are loosely based on UML class diagrams. UML constructs are modified rather
than extended.

5.4.17.2.2 Specification of crosscutting
The DAD’s specification of crosscutting is based on AspectJ. The crosscutting
structure is integrated directly into the core model and is not specified in DAD’s.
Crosscutting behaviour is specified in an advice design element. Crosscutting
behaviour and structure is encapsulated in an aspect. These design elements are
representations of the AspectJ language constructs and share the semantic value of
these constructs.

5.4.17.2.3 Specification of aspects
An aspect classifier is introduced to represent aspects. It is similar to the class classifier
except that it encapsulates AspectJ member types and relationships. An aspect supports
two relationships not specified in the UML. The “advises” relationship (Figure 5-31)
associates an advice body with a point in the cores structure. A call relationship
indicates a method call. It is represented by a specialization of the UML association
relationship.

5.4.17.2.4 Integration specification
Integration specification is illustrated by an icon. This icon, seen in Figure 5-31, is an
arrow enclosed in a circle and indicates the presence of a crosscutting relationship. The
“advises” relationship specifies that integration of an aspect and core classes. The icons
indicate where integration will occur.

 206

Figure 5-31 Dynamic aspect diagram [183]

5.4.17.2.5 Composition semantics
Structural composition semantics are the same as AspectJ. Crosscutting behaviour is
executed after (as opposed to before) an integration point in the base program’s
execution. This is indicated with the arrow icon.

5.4.17.3 AOP-to-UML Artefacts

5.4.17.3.1 AOP-to-UML AOD Language
The AOP-to-UML design approach is based on the observation that logging behaviour,
encapsulated as advice in AspectJ, crosscuts classes based on method signatures,
expressed in the pointcuts associated with that advice. A method invocation is
represented as a message in UML collaboration diagrams. A message connects two
types, the type that invokes the method and the type that exposes the method. A
connection point is a point of association between a type and a message. A message
between two collaborating types has two connection points. An incoming connection
point is where the message originates and an outgoing connection point is where the
message is handled. An aspect can introduce extra behaviour in between incoming and

 207

outgoing connection points. This increases the number of connection points that can be
related to a message. A call pointcut identifies an incoming connection point. Advice
associated with the pointcut is introduced at the incoming connection point and
introduces second outgoing connection point related to the coming connection point.

This approach is based on extending the UML to introduce representations of
connection points as well as introducing design elements to represent AspectJ
constructs.

Figure 5-32 Logging Aspect [184]

5.4.17.3.2 Specification of crosscutting
Figure 5-32 illustrates the design of a crosscutting logging behaviour. The logging
behaviour is encapsulated in the Log class. The Log class has its own structure and
also behaviour. Crosscutting behaviour is represented in methods signatures as in
normal UML. An outgoing connection point specifies that these methods are
crosscutting. Connection points are represented as circles. The colour indicates
whether it is incoming or outgoing. Black designates an outgoing connection and white
indicates an incoming connection.

LogInterface represents an outgoing connection point and specifies two operations in
the Log class that are crosscutting. This representation is similar to the representation
of an interface. There are two significant differences between connection points and
interfaces. The first is that connection points can be instantiated. The second is that
connection points specify invocations to operations that they specified as corsscutting.

The relationhip between this specification and the Log class is represented through a
<<binding>> relationship.

5.4.17.3.3 Integration specification
Behvaioral integration is specified in AspectJ style pointcuts. This apporach represents
pointcuts in terms of connection points. The example presented in Figure 5-32 shows a
pointcut representation. A pointcut is a classifier stereotyped as a <<pointcut>>. The
classifier is represented as a compartmentalised structure. The top compartment holds
the two types to indicate the two connection end points. The connection points are
illustrated as connected white and black circles. The bottom compartment represents
the actual integration specification. Pointcuts are represented as a signature like
construct that is identical to the AspectJ pointcut language.

5.4.17.3.4 Specification of aspects
As illustrated in Figure 5-32, aspects are classifiers identified as an aspect through the
<<aspect>> stereotype. The aspect representation includes connection points
connected via dotted lines. This indicates that this is where two types are connecting

 208

and this is where advice is to be invoked. The aspect design element is
compartmentalised. In the bottom compartment the advice and pointcut are associated.
In the top compartments structurally crosscutting is represented.

5.4.17.3.5 Composition semantics
This representation is based on AspectJ. As such the composition semantics are similar
to AspectJ.

5.4.18 Meta-models

5.4.18.1 Meta-models Method
Attempts have been made to extend the UML meta-model to support an AOD meta-
model. We have categorised approaches based on the levels of abstraction that they
support and the levels of concern separation that they facilitate. Here we discuss three
approaches that alter the UML meta-model to support AOD.

5.4.18.2 Meta-models Artefacts

5.4.18.2.1 Meta-models AOD Language
Here we will describe each of the meta-models.

5.4.18.2.2 Specification of aspects
In [185, 186]a generic meta-model is described to support structural AO modelling.
This meta-model is built around a set of core abstract elements and relationships. The
core elements are crosscutting and base elements. The core relationship between these
elements is a crosscutting relationship. The abstract crosscutting element describes the
base semantics of the elements that are related to the asymmetric AOD model that this
approach supports. Aspects are specified as specialized from crosscutting elements.

In the AspectJ meta-model [187] aspects are specified as an extension of a Java class.
The meta-model is a precise model of the AspectJ language. Aspects model the same
structure and behaviour as AspectJ aspects. The elements that compose aspects
(pointcuts and advice) are represented as parts.

In the Hyper/J [188] aspects are specified as hyperslices. These hyperslices are
represented as specialised java packages. Following the Hyper/J model, these packages
contain a declaratively complete class structure.

5.4.18.2.3 Specification of crosscutting
In the generic meta-model a feature represents an operation or attribute. A crosscutting
feature is a model element that describes a feature to be composed with one or more
base elements. A crosscutting element specifies a design element in which crosscutting
can be specified.

In the AspectJ and Hyper/J meta-models the specification of crosscutting reflects the
AspectJ and HyperJ languages.

 209

5.4.18.2.4 Integration specification
The generic meta-model specification of integration is modelled as a relationship that
links crosscutting elements and base elements. This crosscutting or integration
relationship is specified by the crosscutting interface, which models join points.

In the AspectJ meta-model integration, is specified through a pointcut model. The
UML expression of a pointcut is similar to that of the pointcut construct in the AspectJ
language.

In the Hyper/J meta-model, integration is specified in a hypermodule. A hypermodule
is modelled as a specialisation of hyperslice that is related to a concern through an
integration relationship.

5.4.18.2.5 Composition semantics
The composition semantics for a generic AOD meta-model are undefined. The
composition semantics for the language specific AOD meta-models are similar to the
languages that they model.

5.4.19 Aspect Oriented Software Development with Use Cases (AOSD\UC)

5.4.19.1 Aspect Oriented Software Development with Use Cases
Method

Aspect Oriented Software Development with Use Cases (AOSDUC) is a use case
driven software development method [38]. Use case diagrams represent concerns
separately. This method provides a systematic process through which the concern
separation inherent to use case diagrams is maintained through the software
development lifecycle.

5.4.19.2 AOSD\UC Artefacts

5.4.19.2.1 AOSD\UC AOD Language
ASODUC represents a complete design method, that includes supports a transition
from requirements to high level design to low level design and finally, implementation.
To support all these phases AOSDUC provide a comprehensive design language.

5.4.19.2.2 Specification of aspects
At a high level of design, aspects are specified as use cases that extend other use cases.
In more detailed design use cases are specified as packages. Within these packages use
case design is represented.

Crosscutting use cases contain aspects. An aspect is a classifier that is identified
through an <<aspect>> stereotype. An aspect classifier is graphically represented as a
box that has two internal compartments. One of which contains pointcut declarations
and the other contains class extensions.

Reusable aspects or utility use cases are specified as parameterised template packages.
Parameters of the template are named and described within a box with a dotted edge on
the top right hand side of a template package.

 210

5.4.19.2.3 Specification of crosscutting
At a high level Use case specifications describe the extension flows that the flows
specified for other use cases.

At a lower level of design crosscutting is specified in the class extension compartment
of an aspect classifier at design.

Structural crosscutting is specified by declaring the class as in the class extensions
compartment of an aspect classifier.

Behavioural crosscutting is specified by declaring an operation within a class, declared
as a class extension. The signature of the operation is similar to that of an AspectJ
advice signature. The operation names a pointcut that identifies where the behaviour
crosscuts other use case slices. The type of advice is identified and the corresponding
behaviour to be identified is also named.

5.4.19.2.4 Integration specification
Integration is specified at a high level in use case diagrams as an extends relationship.

Use case specification diagrams also describe the set of events at which integration of
use cases can be specified and the flows that can be integrated at those points.

At lower level design, points of integration are specified through pointcuts. The
pointcuts are similar to the pointcut construct in the AspectJ language both
syntactically and semantically.

Integration is also specified in behavioural diagrams, including sequence diagrams,
collaboration (or communication) diagrams and state chart diagrams. In sequence and
collaboration diagrams the points at which the sequences should integrate is described.
In state diagrams, state based integration is modelled.

5.4.19.2.5 Composition semantics
Composition semantics are based on AspectJ composition semantics.

5.4.19.3 AOSDUC Process
The AOSDUC process is a model driven iterative process.

During analysis, use case diagrams and use case specifications are defined and refined
to provide an overview of the concerns in a system and the relationship between these
concerns. The use case diagrams provide a high level view of the entire system and the
specifications associated with each use case provide a detailed description of the
behaviours that a use case represents, and where appropriate, the crosscutting nature of
that behaviour.

The use case models contain actors, use cases and relationships between them. Actors
represent a client of a system. Actors are associated with use cases. Use cases represent
concerns. Include, generalisation and extend are the types of associations between use
cases, described in use case diagrams. Include allows factoring out of common
behaviours between use cases. Generalisation is an abstraction relationship between
use cases similar to inheritance. The extension relationship indicates that the behaviour
represented by an extending use case crosscuts a use case being extended. Use case
diagrams are used to represent and characterise concerns that are found in

 211

requirements. In use case diagrams the use cases are modelled separately and the
relationships between use cases are modelled.

The use case technique facilitates behavioural specification. The flow through a use
case can be captured in a use case scenario. Use case scenarios are specified in a use
case specification. A use case specification is a textual description of one or more
event flows that occur when a use case is instantiated by an actor. These flows can be
full or partial flows through the use case. Flows can be described as basic flows,
alternate flows and sub-flows. Basic flows are the general case. Alternate flows are
contingencies for when the general case does not apply. Sub-flows are event sequences
that appear repetitively and are described in one place and referenced there after.

Use cases can be extended or can be used to extend other use cases. Extension points
describe an event where use case behaviour is crosscut. Extension flows describe the
flow that crosscut that event. Extension points and extension flows are specified in the
use case specification.

Use case diagrams and use case behavioural specifications are defined separately. Use
case diagrams are graphical representations that provide a visualisation of concerns and
the inter-relationship between concerns. Use case scenarios are textual in nature and
are used to describe the behaviour associated with use cases. To visualise the
connection between the use case and the use case specification, use cases are depicted
as a classifier in a box, with an ellipse in the top right hand corner of the box. Within
this box the flows through the use case are named and the type for each flow is
provided. Where the use cases are part of an extends relationship, the use case being
extended can contain a description of the extension points at which it is extended. The
extending use case can contain a description of the extension flows. Extension flows
are named and described. The description of an extension flow contains the name of
the extension point that it is to crosscut, how the extension flow is to affect the
extension point and a description of the results that can occur after the execution of the
extension flow.

During analysis a use case diagram is created to represent the entire system. From
there, both the base and crosscutting behaviour is specified in use case specifications.
Both the use case diagrams and associated specifications are defined and refined in an
iterative process. Use cases represent slices of an application that can be developed
separately and incrementally. In analysis, a set of domain concepts are identified for
each use case. High level sequence and collaboration diagrams are used to model the
sequence of interaction between domain concepts. These behavioural diagrams are
based on use case specifications.

Once use cases, use case specifications, the domain concepts and high level sequence
interactions are identified in analysis, design begins. Design is based on analysis. Use
cases represent slices that can be designed separately. This approach supports a
symmetric approach to AOD. For each use case or slice, a separate design model is
constructed. The analysis phase in AOSDUC produces a high level design. In this
approach once analysis is complete a platform specific design follows. Design as a
process is specialised for the designing base use cases, crosscutting use cases and non-
functional use cases.

To design base use cases, the designer begins by identifying components and
component interfaces. Components correspond to domain concepts identified in
analysis. In design, domain concepts may be designed as a class or design may require
a number of platform specific classes to provide a design that can be implemented.

 212

Each component exposes required and provided interfaces. Through creating a
component diagram for a slice or use case, the high level design concepts can be
expressed and the relationships between these design concepts can be captured as inter-
component relationships. Once this high level view is provided, the use case can be
depicted as packages that explicitly reference the use case being realised by name. Use
case packages contain diagrams that provide detailed component specification. Class
diagrams provide a structural design of the use case slice components. Each class
represents some part of a component or a component itself. Sequence diagrams are
used to model the interaction between the classes. Sequence and communication
(formerly collaboration) diagrams are used to describe the flow of behaviour between
classes and objects. The flow, in these diagrams, is based on the flows described in the
use case specifications and high level interaction diagrams created during analysis.

Designing crosscutting use cases is similar to designing base use cases except that
aspects also need to be modelled. Aspects are represented as classifiers, demarked with
an <<aspect >> stereotype. Aspects are contained in the use case package. This
classifier describes the crosscutting behaviour and structure associated with the use
case. An aspect is a named classifier that contains pointcut declarations and class
extensions. Pointcut declarations are based on the AspectJ pointcut model and
language. Class extensions are depicted as class diagrams. The classes that are class
extensions specify crosscutting behaviour and structure. Crosscutting behaviour or
advice is depicted as an operation that is similar to the AspectJ advice model. To
design an aspect the classes that specify crosscutting behaviour and structure are
identified and crosscutting is be specified. Pointcuts that ensure the correct extension
of related use cases are identified. Sequence diagrams that illustrate how behaviour is
crosscut are created, to illustrate crosscutting behaviour.

Non-functional use cases are designed through the specialisation of utility use cases. A
utility use case represents a non-functional concern that is crosscutting. To support
reuse of non-functional crosscutting concerns, parameterised template packages can be
used to represent utility use cases. Designing non-functional or utility use cases is
similar to designing an aspect. To create a concrete aspect the template parameters are
replaced arguments that are specific to the application. To reuse utility use cases, the
designer must choose a utility use case that meets the non functional requirements and
using arguments to create a concrete aspect.

Composition is modelled or specified at a high level in the use case diagrams, through
include, generalise and extends relationships. Separate design models are specified
during the design phase. The composition of design models is relative to those models
being composed.

When design of a use case is complete, both the structural and behavioural diagrams
created during design are used to implement the concern represented by the use case.

5.4.20 UMLAUT

5.4.20.1 UMLAUT Method
The UMLAUT framework [183] is a model transformation tool. From the point of
view of Aspect Oriented Software Development, UMLAUT can be seen as a
framework for building application specific weavers to weave multi-dimensional high
level UML design models (functional, dynamic, deployment, and static aspects

 213

annotated with design pattern occurrences, stereotypes and tag values) into detailed
design models suitable for either implementation, simulation or validation.

In addition to the manipulation of UML models, UMLAUT is able to manipulate any
kind of models on any kind of repositories. A transformation can be run on any
repository that has compatible meta models. The meta models are defined using the
MOF (Meta Object Facility). UMLAUT is composed of a transformation language
compiler and a framework of transformations written in this language. It allows
complex model transformations far beyond MDA classical PIM to PSM mappings. A
major idea that drove UMLAUT evolution is that a transformation is a kind of program
so it must be possible to apply the MDA approach to itself. Experience shows that
aspect oriented techniques are also useful to design transformations themselves, which
are complex entities managing various concerns

Since 1998, UMLAUT has been used in the UML context to demonstrate several
concepts, such as weaving design patterns, supporting the design by contract approach
[185], weaving model aspects, generating code, generating test cases and interfacing
with validation tools on the model.

UMLAUT transformation operations are written in the MTL transformation language.

5.4.20.2 UMLAUT Artefacts:

5.4.20.2.1 AOD language
UMLAUT supports aspect oriented design with libraries of reusable transformation
operations. These operations include user-defined algorithms for identifying pointcuts
in models and then applying modifications to the model. Specific AOD languages can
thus be defined by building a specific framework, organized with design patterns
(which are really design patterns at a meta model level).

UMLAUT includes some prototypes of AOD languages. A first prototype was
designed within the QCCS European project (www.qccs.org). Pointcuts are defined
using an UML extended template notation. The general weaving algorithm uses
extended template parameter bindings to match model fragments. Specific state charts
bound to model items such as operations provide advices for the weaving of the
various behaviours gathered from the models fragments.

Because of its high degree of separation between model fragments and weaving advice,
this AOD technique is symmetric in nature.

A graphically oriented technique for specifying pointcuts and advices was produced
from QCCS' results [184]. UMLAUT supports another protocol oriented AOD
technique. The associated AOD notation aims at formally defining the behaviour of a
set of model fragments.

Each fragment's behaviour is defined by HMSC (hierarchical message sequence charts:
automata of partially ordered event sets). HMSC makes it possible to specify model
behaviours at any level of abstraction while retaining a clear semantics.

The weaver merges model fragments using a set of HMSC that build correspondences
between events from the fragments' HMSC [186]. This technique provides
compositions that have well-defined behaviours [187]. It is therefore suited to designs
with fairly complex protocols between items, such as distributed architectures.

 214

5.4.20.3 AOD process
Apart from the two AOD languages mentioned above, UMLAUT aims at supporting
research and experiments on AOD languages and frameworks.

Through metamodel extensions and libraries of transformation operations, specialized
designers can build domain specific aspect notations and weaving algorithms.
Therefore the underlying AOD process identifies various designer roles and activities:
users of aspects, designers of aspects, designers of weavers and aspect languages.

5.5 Comparison

5.5.1 Level of abstraction

Approach Level of abstraction
Theme Middle
AODM Low-Middle
AAM Middle-High
CoCompose Middle-High
SUP Middle
AML Low-Middle
TranSAT Low-High
AOCE Low-High
UFA Middle & High
ADT Low-Middle
UXF Middle
IDAM Low
AVA Middle-High
Component Views Middle-High
Meta Models Low
AOSDUC Low-High
CAM/DAOP Low-Middle
Activity Middle
UMLAUT Low-High

Table 5-7: level of abstraction

AODM identifies commonality between AOP approaches and use this as a basis for an
AOD language design. Figure 5-2 taken from [153], illustrates the similarities between
the AspectJ, Hyper/J and DemeterJ approaches to the separation of concerns. At Figure
5-2 A, we see the common specification of the crosscutting elements. Figure 5-2 C
depicts the modularisation of the crosscutting elements. Figure 5-2 D depicts the
common specification of integration. Figure 5-2 E shows that in all approaches the
result is a composition. Finally, from Figure 5-2 F depicts the implementation of
design. We consider AODM to be at the low-middle level of abstraction. This is
because the AODM is abstracted over implementation but is not representative of
architecture or requirements.

 215

Theme is an analysis and design approach. The analysis part of Theme, called
Theme/DOC, is based on requirements engineering and identifying requirements such
that they can be designed using Theme/UML. Theme/UML is the design part of
Theme. We have determined that Theme/UML sits at a middle level of abstraction.
This is because Theme/UML focuses on the design view, allowing its mapping to
Theme/Doc views to present the corresponding requirements view. Theme is also
abstract enough to be independent of platform specific AOP. It has been shown that
Theme/UML designs can be implemented on various AO platforms [160].

SUP supports a middle level of abstraction in that it is not based on any
implementation platform. This approach suggests a set of stereotypes and does
illustrate the use of state charts for aspect identification and aspect modelling. It does
not provide a high level view of a system. It focuses on facilitating the separation of
aspects concerns that crosscut one main base concern [165].

AAM supports high and middle levels of abstraction.

Firstly, aspects are described at a high level as “concern solutions”. A concern solution
is an abstract aspect that can be applied to a model to introduce behaviour and structure
that realize or reuse the concern in a specific application or system. These high level
aspects crosscut application or system boundaries because they are “context free”.
Context free refers to the fact that aspects, described at this level are not coupled with
any one application. They can be applied to many applications. In other words, context
free aspects don’t crosscut an application, they crosscut an application domain.

Secondly, aspects are described at a middle design level. Middle level or “context
sensitive” aspects are specializations of high level aspects. Context sensitive refers to
the fact that the context of the system, to which the high level aspect is applied, is used
to realize the high level aspect at a middle level design.

Concern modelling represents the highest level of abstraction that we have surveyed.
Concerns in this approach are viewed as conceptual entities. No structural or
behavioural specifications are offered in this approach to support AOD modelling.
Concern modelling provides a concern taxonomy with which concerns can be
described.

We classify CoCompose as a middle-to-high level design approach. CoCompose
support the description of abstract aspects that can be applied to concrete designs.

UFA allows modelling of high level aspect that crosscut application boundaries. To
reuse high level aspect models at middle level design the aspect is specialized to an
application based on the application context. Our middle-to-high level classification of
UFA is based on this.

We classify UXF as middle level design because it is independent of implementation
platforms, but does not address high level design issues.

We characterise AVA as a middle-to-high level design approach. This characterisation
is based on the fact that inter-aspect dependencies are considered a high level
relationship. This approach supports modelling inter-aspect dependencies and also
supports aspect design. The aspect design is platform independent and is supportive of
middle level design.

As AML is coupled with AspectJ we consider the level of abstraction supported by
AML to be low-middle.

 216

ADT is a middle level design approach. This approach is independent of language but
the approach allows the separation of only one type of concern.

AOCE is a low-to-high level AOD design approach. This is because the AOD
supported in AOCE is not platform independent. AOCE also supports high level
analysis.

TranSAT approach is a composition of individual approaches that are highly related,
in that they have been developed by the same group, and follow from one another. At a
high level there is the TranSAT (described in Sections 15.1 and 15.2) framework to
support software architecture evolution. At a low level there is a UML notation to
support design for the JAC AOP platform (described in Sections 15.1 & 15.3). As such
we regard this work as a high and low level approach.

Component Views approach supports a middle-high level of abstraction. We consider
this approach to be of a middle-high level of abstraction due to the focus on concern
reuse across system boundaries.

Activity diagrams can be used at various levels of abstraction. Here they are being
used to model crosscutting behaviour at a middle level of design.

The CAM/DAOP approaches use of MDA provides a potentially high level of
abstraction. In [182] a methodology that stems form a middle level design to low level
design is illustrated. MDA can be used to define concerns at high levels of abstraction.

Model Driven Architectures [189] have been proposed as a solution to this conflict
between the need to provide high level and low level design [148]. The MDA
framework has been used to separate AOD into a stepwise process in which design is
expressed at different levels of abstraction in a hierarchy of languages that capture an
abstract design and provide means for transformations to more concrete and detailed
design [182]. Transformations between AOD languages have been investigated in
[171] and in the MDA context in [190].

The level of separation supported by IDAM approaches is at the lower design levels.
The approaches that we have surveyed here are both AspectJ centric.

Meta-model The first approach is a language independent meta-model which supports
middle level design [185, 186]. The second meta-model supports, AspectJ centric, low
level design [187]. The third, and final, meta-model supports low level, Hyper/J
centric, design [188].

AOSDUC [38] recognises the problem of conflicting needs between high and low
level of design, and provides a multi-level and model-driven view of design as a
solution. Concerns and concern relations can be expressed at a high level of abstraction
mitigating detail. Concerns and concern relations can also be expressed at a low level
of abstraction with the high degree of detail required for design implementation.
AOSD\UC primarily represents concerns and concern relationships in Use Case
Diagrams. As such, we consider this approach to be a high level design method

UMLAUT [181] is based a framework for model-driven transformation, and therefore
(like the CAM/DAOP approach) provides a potentially high and low level of
abstraction.

 217

5.5.2 Level of crosscutting

Approach Level of concern separation
Theme Symmetric
Aspect-Oriented Design
Modelling (AODM) Asymmetric
Aspect-Oriented
Architecture Modelling
(AAM) Asymmetric
CoCompose Symmetric
State charts and UML
Profile (SUP) Symmetric
Aspect Modelling
Language (AML) Asymmetric
TranSAT Asymmetric
Aspect Oriented
Component Engineering
(AOCE) Symmetric
UML for Aspects (UFA) Symmetric
Aspects at Design Time
(ADT) Asymmetric
UML exchange Format
(UXF) Asymmetric
Implementation Driven
Aspects (IDAM) Asymmetric
Architectural Views of
Aspects (AVA) Symmetric
Component Views Symmetric
Meta Models Symmetric & Asymmetric
Aspect-Oriented
Software Development
with Use Cases
(AOSDUC) Symmetric
CAM/DAOP Symmetric
Activity Symmetric
UMLAUT Symmetric

Table 5-8: level of concern separation

AODM supports an asymmetric AOD approach. AODM was originally AspectJ based,
the AODM design model mimics the AspectJ programming language and composition
model.

Theme constructs are more general than aspects, and more closely encompass
concerns with relation to subject-oriented programming, a symmetric approach to
separation at the code level [156]. Originally modelled on SOP, Theme also supports
symmetric AOD. Crosscutting themes are characterized as “aspect themes”. Themes
that are not crosscutting are termed “base themes”.

SUP supports the symmetric separation of concerns. Specifications for the separation
and integration of base and aspect concerns are supported in the SUP approach.

AAM supports asymmetric separation of concerns. AAM models or concern solution
models are described as orthogonal to a primary model. Using the concepts and

 218

mechanisms embodied in the AAM approach in a symmetric model is described in
[191].

This view of concerns in Concern modelling is conceptual. We classify this approach
to be symmetric as it is describes all concerns in as separate entities.

We characterise CoCompose as supporting a symmetric approach to AOD. This is due
to the potential for the separation of both crosscutting and non-crosscutting concerns as
features.

The ACM model is a symmetric model of AOD. UFA, AOCE, Component Views
and CAM/DAOP are based on the ACM model facilitates symmetric modelling.

UXF: An aspect is considered to be a new classifier on the conceptual same level as a
class. Crosscutting relationships between an aspect and class are also defined. This
indicates that this approach is an asymmetric approach.

AVA Aspects can be crosscut by aspects on which they depend. Therefore, this
approach supports symmetric AOD modelling.

The AML, IDAM and ADT approaches are based on the AspectJ language. As such,
it supports an asymmetric model of AOD.

TrancSAT At a high level this approach supports a symmetric approach, while at the
lower design level the UML notation supports an asymmetric model.

Aspects are represented as activity diagrams that can be used to model symmetric
AOP.

Meta-models The language independent meta-model and AspectJ meta-models are
both asymmetric models. In contrast, the Hyper/J meta-model is symmetric.

Although linked with an asymmetric implementation, the AOSD\UC approach
supports symmetric modelling.

UMLAUT is a framework that enables design model transformation and composition.
The AO transformations that the UMLAUT supports are based on UML extensions
that describe the crosscutting nature of the design elements expressed in UML. Where
UML extensions describe a symmetric model then symmetric composition is possible
under UMLAUT.

5.5.3 Traceability
Some AOD processes that we have explored create and refine design models that
represent requirements models and architecture models derived earlier in the software
development lifecycle. Fully refined design models are those that include the detail
required to directly implement designs on a particular platform.

Traceability is a property of a relationship between two models where one model is a
refinement of another. Traceability is a measurement of the transparency or clarity of
the refinement process.

The measures of traceability we can take when comparing AOD approaches are
external and internal.

The external measure is one where we look at AOD models in relation to the full
software development life cycle. External traceability is a measure of the transparency

 219

or clarity of refinement that an AOD approach provides between requirements or
architecture models to design implementations.

Internal traceability is relevant where there are various phases within an AOD process.
The design process consumes the models created during the requirements engineering
and architecture development phases of the software development life cycle. These
models are abstract and lack the detail required for the confident and unambiguous
realisation of an implementation that meets requirements models and conforms to the
architecture models. The internal phases of an AOD process systematically refine more
abstract design models into design models that contain the detail required during
implementation. Internal traceability is a measure of the transparency or clarity of
refinement that an AOD approach provides between the phases of an AOD process.

Although we describe traceability as a measurable property it is difficult to measure as
a statistical value due to the large disparity between the AOD approaches that are
identified and described in this document. If all approaches were used in a common
and unbiased design focused and detailed case study then a statistical comparison
between approaches may be possible. However, in the absence of such a case study we
will describe the potential for traceability facilitated in each approach.

Table 5-9 lists the approaches and briefly describes the external and internal
traceability provided by each approach.

Approach Traceability
 External Internal

Theme

Traceability from
requirements to design and
also design to
implementation

Themes can be refined from
abstract themes level to a
class and method level
design

AODM
Traceability from design to
implementation

Traceability from system level
design to specific constructs
such as pointcuts

AAM
Traceability from
architecture to design N/A

CoCompose
Traceability from design to
implementation N/A

SUP
Traceability from
requirements to design N/A

AML
Traceability from design to
implementation N/A

TranSAT

Traceability from
architecture to design and
design to implementation N/A

AOCE

Traceability from
requirements to design and
also design to
implementation

Traceability from component
level to class and method
level

UFA

Traceability from
architecture to design and
design to implementation

Traceability from packages
level to class and method
level

ADT
Traceability scope limited to
synchronisation N/A

UXF/a
Traceability from design to
implementation N/A

IDAM
Traceability from design to
implementation

 220

AVA N/A
Traceability between sub-
aspects and aspects

Component Views
Traceability from
architecture to design

Traceability from component
level to sub-component level

Meta Models
Traceability from design to
implementation N\A

AOSDUC
Traceability requirements to
implementation

Traceability from use cases
implementation focused
design

CAM/DAOP
Traceability from design to
implementation

Traceability derived through
MDA transformations

Activity N/A Traceability of composition

UMLAUT
 Traceability from design to
implementation

Traceability derived through
model transformations

Table 5-9 Traceability

Most of the AOD approaches that we have surveyed in this document are based on the
UML. The UML provides a set of diagrams with well defined semantics. Each of these
diagrams provides a view of a design model. There is a level of traceability between
each of the system views presented in the UML diagrams. The approaches that are
UML based all have this traceability inherently. It is where the UML is extended,
either through the use of profiles or meta-model extensions, that the standard
traceability facilitated by the UML is altered.

The Theme approach supports traceability throughout the software development
lifecycle. Themes, identified during requirements engineering, can be traced across the
software development life cycle to theme implementation.

Theme/Doc provides a process through which themes are identified in requirements.
Theme/UML provides a means for separately refining theme requirements into UML
diagrams that capture both the structure and behaviour of the themes. Theme/UML
also provides semantics and mechanisms for describing how themes are to be
composed.

Themes can be composed into composite themes. Composed themes represent a woven
system. The composite can be traced back to the themes that have been used to create
the composition. This is possible due to the well defined composition semantics
defined in the Theme approach.

The Theme approach provides a series of guidelines for implementing themes on
various AO implementation platforms. It is conceivable that these guidelines provide a
certain degree of traceability from design to implementation and vice-versa.

In terms of internal traceability, the theme approach follows a process of continual
refinement. Themes are initially represented as packages. Theme packages are
decomposed into classes and that contain methods.

Themes are described in terms of their behaviour and objects in Theme/Doc. Theme
designs are based refining these high-level requirements based descriptions. This
process is a refinement process where by the high level descriptions are informally
presented in loosely defined UML diagrams. These UML diagrams are them
specialised, with additional detail until the themes come to the point that they can be
implemented by the developer. The composition rules that designate how themes are to
be composed are also refined in a similar way. As such the refinement process provides

 221

traceability from more abstract theme designs to more concrete and implementation
focused design.

AODM supports external traceability from design to implementation. AODM was
originally developed to support the representation of designs that targeted the AspectJ
platform. The UML constructs provided by AODM are similar to AspectJ language
constructs. As such, AODM supports traceability from design to an AspectJ
implementation due to the direct association between the constructs available in both
design and implementation languages.

Joinpoint designation diagrams are an extension of the original AODM approach. They
provide a degree of independence from the AspectJ language constructs, in that they
provide an AOP neutral way to represent pointcuts. These representations have been
shown to be generic and provide a degree of traceability between the AODM approach
and other AO implementation platforms beyond AspectJ.

Internal traceability is supported in AODM. AODM allows the designer to represent
aspects, classes and the crosscutting association between the two. An aspect may have
an affect on many heterogeneous classes at many different joinpoint shadows. To avoid
clutter in the UML diagrams the associations between aspects and classes is expressed
as a pointcut designator. The designer cannot easily determine from this representation,
where exactly the joinpoints shadows exist, from inspecting the aspect or classes.
AOSD provides a facility to model these joinpoint shadows. As such, there is
traceability from declarations of potential crosscutting between aspects and classes.

AAM supports external traceability from architecture to design. In AAM aspects are
defined at the architecture level. The behaviour, structure and crosscutting
characteristics of the aspect is described free of application specific details. When
designing an application the designer may decide that an aspect is required. The
designer can then specialise the aspect into a design that can be applied to the specific
application. There are a series of relationships that are used to specialise the
architectural aspect. These relationships provide a basis on which the aspects usage can
be traced from architecture to design.

CoCompose provides a design approach that automates the transformation from
design to implementation. As such, this approach provides traceability between design
and implementation. This is a non-UML based approach and does not support the
internal traceability that the UML provides.

SUP provides guidelines for modelling crosscutting behaviour in state chart diagrams.
SUP also proposes a UML profile that supports the use of specialised AO UML
diagrams to model the crosscutting behaviour within aspects. The guidelines on how
crosscutting behaviour should be modelled in design offers traceability between
requirements and design.

The focus of AML is the automated generation of aspect source code based on UML
diagrams. As such, AML supports traceability between design and implementation.

TranSAT provides traceability between architecture and design. Like the AAM
approach, TranSAT supports the use of aspects expressed at the architecture level in
design through specialising the aspect to the application context in which it is to apply.

AOCE supports both external and internal traceability. AOCE provides guidelines on
how to take requirements and engineer the requirements for AOD. AOCE provides
guidelines on how to realise these requirements in design also describes how the design

 222

is implemented. From these guidelines, a certain degree of traceability is possible from
requirements to implementation.

AOCE is a component and aspect based approach. The design of components and the
relationship between components are described. Components may be further
decomposed into classes. This decomposition is based on satisfying the component
interface and follows the standards associated with component-based design. There is
potential for traceability in this decomposition.

UFA provides support for traceability from architecture level aspects being used in
application specific design. Like TranSAT and AAM, UFA supports the expression of
application independent aspects that can be specialised in design to specific
applications. UFA targets LAC as an implementation platform and as such maintains a
traceable relationship between UFA and LAC.

UFA, like the Theme approach, uses packages to encapsulate concern representations.
These packages contain the diagrams that represent the structure and behaviour that
describe aspects. Traceability exists from the higher level expressions of the aspect at
the package level to the lower class level representations.

ADT is an early approach to representing aspects in design. The approach describes
how synchronization as a crosscutting concern is separated at design in UML. Due to
this constraint it is not possible to trace crosscutting concerns in the software
development process outside of the synchronization concern.

UXF is another early approach to AOD. UXF prescribes a process of refinement for
aspects where AO designs are implemented, executed and then tested. Based on the
outcome the design is changed and the cycle begins again. Traceability is possible
through the refinement process. The process is not well defined but does have potential
for traceability.

The IDAM approaches facilitate traceability from AOD to AO source code. The
IDAM approaches are AspectJ based and propose design approaches based on the
AspectJ language. Because of the associations between the design language and the
implementation language, potential for traceability between the two exists.

The AVA approach focuses on providing a means for describing dependencies
between aspects during design. AVA provides a means to model the trace between
dependant aspects.

Some AOD approaches are based on an implementation languages Meta Model. As
such, the traceability that exists between design and implementation is increased. This
is because there is a direct correspondence between the AOD and AOP languages.

Component Views support traceability from architecture to design. Like the AAM and
TranSAT approaches, Component Views support the use (or reuse) of aspects
expressed at the architecture level in design. This is achieved through specialising the
aspect to the application context in which it is to apply. Aspects here represent reusable
architecture. These aspects are re-used during application specific design. As such, the
aspects can be traced from architecture to design.

The AOSDUC approach is a comprehensive approach to AOD. This approach
promotes traceability in that the approach is use case driven. Use cases represent
concerns that are designed and implemented separately. All artefacts that are related to
use case can be traced back to a specific use case. Use cases are described by use case
specifications derived from requirements. This gives traceability between design and

 223

requirements. The design can be refined from high-level component diagrams to
package diagrams that express aspects as specialised classifiers. The approach provides
guidelines for moving from the higher level component diagrams to the lower level
package encapsulated diagrams. These guidelines provide a basis on which
traceability, from higher level design representations to lower level design
representations, can be derived. The design language that AOSDUC uses is AspectJ
focused, sharing many constructs. Because of the symmetry between these AOD and
AOP languages, traceability between the design representations and implementation is
improved.

CAM\DAOP is an approach where traceability is well defined and well supported
through the MDA transformations between models. The design models are refined
from abstract models to implementation focused though a series of model
transformations. A final transformation from design model to implementation is
possible. As such, traceability from design to implementation is possible.

The Activity approach allows the modelling of crosscutting behaviour. Activity
diagrams have changed in UML 2.0 to be more supportive of complex systems.
Activity diagrams allow the modelling of complex concurrent behaviour. This
approach provides a means for composing behaviours specified in activity diagrams.
The composition of activity diagrams many be traced.

UMLAUT is based on model transformations, and provides traceability through
transformations between models. Well defined transformation policies ensure that the
output from a transformation can be traced back to the designs transformation input.

5.5.4 Composability
Composability is described in Section 2 as the ability to compose artefacts and
consequently to view and understand the complete set of artefacts and their
interrelationships, as well as to perceive the system as a whole from the associated
artefacts.

The level of composability that an AOD approach supports has its basis on the level of
concern separation supported by the approach. Section 5.5.2 describes characterises
approaches as either supporting symmetric or asymmetric concern separation.

When concerns are represented in separated design modules, these designs may be
composed into a unified design. Otherwise composition is deferred until
implementation.

In most of the approaches we have looked at, UML extensions have been made to
allow the designer to specify how models are to be composed. The extent to which
models can be composed is based on the composition model supported by the AOD
approach and composition semantics described for the approach.

Table 5-10 lists the approaches and briefly describes the composition specifications
and the composition provided by each approach.

Approach Composability
 Composition Specification Composition

Theme

Supports merge and override
composition specification, together
with binding of base elements to

Themes are composed into
composite themes. A
system is a composition of

 224

aspect templates. Theme has a well
defined set of composition
semantics that describe
composition.

themes.

AODM

AODM is based on AspectJ and
supports AspectJ specific
composition specifications.
Joinpoint designation diagrams
extend AODM to support AOP
neutral composition specifications.
In both cases the composition
semantics are influenced by the
AspectJ composition semantics.

Composition is deferred until
implementation. Join point
indication diagrams and Join
point composition diagrams
for representing individual
compositions.

AAM

Supports composition specifications
that are similar to the Theme
approach. Composition semantics
are defined for the composition
specification.

Composition of the aspect
and core (or primary) model
results in standard OO UML.

CoCompose

Composition specification and
composition semantics are defined
as implementation alternatives
chosen through design algebra.

Composition is illustrated in
a solution pattern but is
deferred until
implementation.

SUP

Composition is based on matching
events that exist in independent
state chart diagrams. Composition
semantics are not well defined.

A composed system is not
visualised

AML

Composition is specified in a
connector model. The composition
semantics are based on AspectJ.

Composition is deferred until
implementation.

TranSAT

TranSAT is a framework in which
composition specifications and
composition semantics can be
defined. N/A

AOCE

Composition specification is done at
the component level, composition
semantics are not well defined.

Composition occurs at
runtime and is visualised in
collaboration diagrams.

UFA

Composition is specified in a
connector model. The composition
semantics are not well defined.

Composition results in
standard OO UML.

ADT

Limited composition specification
scope. Composition semantics are
limited.

Composition in this
approach is deferred until
implementation.

UXF/a

Primitive composition specification.
Composition semantics are not well
defined.

Composition is not well
defined.

IDAM

Composition specification and
composition semantics are AspectJ
based.

Composition in these
approaches is deferred until
implementation.

AVA
Allows composition dependency to
be specified.

Composed AVA designs can
be represented as standard
OO UML diagrams.

Component
Views

Provides a meta model which
defines design elements to specify
composition relationships.

Representation of
composition is unclear.

Meta Models

The composition semantics of
platform specific meta models are
based on the platform on which
they are based. Abstract meta-
model does not provide strong
composition specifications or

In the platform specific
meta-models composition is
deferred until
implementation. In the more
abstract meta model are not
well defined.

 225

composition semantics.

AOSDUC

Component based composition &
AspectJ base composition
specification and composition
semantics.

Composition deferred until
implementation.

CAM/DAOP

Multi design modal within an MDA
framework. As design is specialised
composition specifications become
stronger, as do composition
semantics.

Composition deferred until
implementation.

Activity

Composition specified between
behaviour expressed in activity
diagrams.

Result is a new composite
activity diagram.

UMLAUT
Multiple composition specifications
can be used within the framework.

The result of a UMLAUT
transformation is a woven
set of designs.

Table 5-10: Composability

The Theme approach supports two forms of composition specifications, merge and
override. Where an aspect theme is merged, base elements are bound to aspect
template elements. The Theme approach provides a detailed set of composition
semantics. The composition semantics describe how design artefacts are to be
composed in accordance with the composition specifications. Override composition
allows design elements in one theme to override (similar to the programmatic override)
design elements in another theme. Merge composition supports the union of themes.
Where conflicts exist in the composition of themes, resolutions of the conflicts can be
specified. Themes can be composed into composite themes. Systems can be designed
by designing themes that represent the systems concerns and composing the themes.

The composability provided by the AODM approach is based on AspectJ. As such the
expression of composition specification design is based on the AspectJ language. The
composition semantics associated with this model is also AspectJ based. AODM has
been extended with joinpoint designation diagrams, which have increased the
neutrality of the composition specification. The composition semantics for these
diagrams are not provided in literature but it seems that the composition semantics are
similar to those of AspectJ. Composition of the systems and the aspects that crosscut
the system is not visualised in the AODM approach. AODM does however provide
joinpoint indication diagrams. These diagrams allow the points designated by the
composition specification to be represented diagrammatically. AODM also provides
join point composition diagrams as a means of modelling composition of aspect advice
and core design elements at joinpoint shadows.

The AAM model requires two levels of composability. The first is aimed at the
contextualising aspects and the second is the actual composition specification. AAM
supports the description of generic aspects in design. To apply the aspects to a specific
design, the (abstract) aspect is made concrete by binding concrete application specific
elements to the abstract aspect design elements. The concrete aspect or “context-
specific aspect” can be composed with the primary or core model. The composition
specifications are similar to those of Theme. Composition semantics are also defined
for the composition specifications. In AAM, the result of composition is an OO UML
diagram.

 226

The CoCompose is a non UML approach, similar in concept to the AAM model.
CoCompose supports the description of features. Features are similar to generic aspects
that are firstly contextualised to a specific application design. The detail of how the
concepts are to be composed is specified in implementation patterns. Implementation
patterns specify how the features will be composed in an implementation.
Implementation patterns are chosen through design algebra. The composition
semantics are not well defined for CoCompose. Composition can be viewed in a
solution pattern.

Composition specification in the SUP approach is based on matching event names in
diagrams state chart diagrams. Composition is based on transmitting or broadcasting
events between state chart diagrams. The composition semantics of this approach are
not well defined.

The AML and UFA approaches support a connector model, where the composition
specifications of designs are represented within a connector package. The composition
semantics for AML are based on the AspectJ platform. The composition semantics for
UFA are not well defined. Composition is deferred in AML until implementation
(AML seeks to auto-generate AspectJ code from AML designs), while in UFA the
composed model is standard OO UML.

The TransSAT approach is a framework to support composition. TranSAT does not
provide composition specifications or composition semantics, allowing the designer to
provide these when designing a system.

The AOCE approach is an aspect and component oriented approach where
components specify the other components that they crosscut and how the component
itself is to be crosscut. The composition semantics are not well defined and are
dependant on the framework on which the components are implemented and deployed.
Composition in component based systems is done at runtime. Composition is
visualised in collaboration diagrams.

The ADT approach is limited to specifying the composition of synchronisation
concerns. The composition semantics are also limited. Composition in this approach is
deferred until implementation.

The UXF approach provides a primitive composition specification. Composition
semantics are not well defined. Composition representation is not well defined.

The IDAM approach is based on AspectJ. The composition specification and
composition semantics are based on the AspectJ platform. Composition is deferred
until implementation.

The composition specification provided by the AVA approach is similar to that of the
Theme approach. The AVA approach differs in that it provides a notation for
specifying the order for the composition of designs representing crosscutting concerns.
Basic composition semantics are provided by the AVA approach. Composed AVA
designs may be represented as standard OO UML diagrams.

The Component Views approach provides a meta-model, the elements of which
enable composition specification. The composition semantics are defined within this
meta-model. It is unclear how composition is represented.

The Meta Models approach consists of three attempts to provide meta-models for
aspect-oriented programming. Two of these meta models are platform specific -
AspectJ and Hyper/J, the other is platform independent. For the platform specific

 227

models the composition specification and composition semantics are based on the
underlying AOP platform. The platform independent meta-model provides an abstract
“crosscutting element” within the meta model. Although the meta model provides a
basis for describing the composition of design elements, composition specification is
not well defined. The composition semantics for the generic model are not well
defined.

The AOSDUC approach provides a means for specifying composition at a number of
levels; the use case level, component level and sub-component level. The use case
level is concerned with analysis. The component level design is based on the
component composition specification and composition semantics of component based
design. Sub-component level design is based on the AspectJ model. Due to the close
tie between the design language and the AspectJ language it is our intuition that they
share similar composition semantics. Composition in this approach is deferred until
implementation.

The CAM/DAOP approach is an aspect and component oriented approach. This
approach provides an MDA framework in which design models are specialised from
abstract design representations. Each model provides a means for specifying
component – aspect composition. On each model transformation a more specialised
model is created. This model is more detailed and provides a greater level of detail for
specifying composition. Abstract models contain weak composition semantics. As the
model becomes more specialised and platform specific, the composition semantics
become stronger. The models target a DAOP framework, on which designs are
implemented. Composition is deferred until runtime within the DAOP framework.

The Activity approach is based on representing behaviour in design as Activity
Diagrams. Activity diagrams are sequences of activities. Activity diagrams
composition specification allows the addition or removal of activities from activity
diagrams, as well as to join the activity sequences defined in separate activity
diagrams. Composition can be represented in a new activity diagram that is based on
the composed activity diagrams and the composition specification.

UMLAUT is a framework for model composition through model transformations. As a
framework, UMLAUT allows for many different types of model transformations. As
such, UMLAUT facilitates many different types of composition specifications to
describe composition. The transformation of design models results in a woven design
that is a composite of the designs that are integrated during transformation.

5.5.5 Evolvability
In Section 2, evolvability is described as the ease of changing artefacts in an existing
design or the ease of addition or removal of artefacts.

The phrase “ease of changing artefacts in an existing design” covers a broad number of
changes that can occur during design. Design is based on the outputs from the
requirements and architecture phases of software development. Changes in these
outputs may affect the design.

Design is also a specification for implementation. AOD approaches may be intended to
be applicable to a number of implementation platforms or may target a specific
platform. The degree to which an approach supports evolution may be significantly
affected by the level of abstraction from the implementation platform that the approach

 228

supports. We have described the level of abstraction for each approach in Section
5.5.1. It is our intuition that AOD approaches that support higher levels of abstractions
are more evolvable as they are less constrained by the restrictions that are enforced by
AOD approaches that are platform specific.

The level of concern separation may also have a significant affect on the evolvability
of an approach. AOD approaches that facilitate symmetric concern separation,
encapsulate all concerns within separate design modules. The affects of change are
localised to that particular module. In addition, the composition specification
describing how concerns are to be integrated may be affected by a change to a concern.
The composition specification is based on integrating concern designs and resolving
any conflicts that exist between these designs. Where the design of one concern is
altered, this may have an impact on the composition specifications that are dependant
on the areas of the design that are altered. Where all concerns are separated, addition or
removal of concerns is also relatively straightforward, requiring corresponding change
to the composition specification.

Those AOD approaches that facilitate asymmetric concern separation, encapsulate
crosscutting concerns within separate design modules, or aspects. Non-crosscutting
concerns are not designed separately. Instead there is one core design and aspects are
designed relative to the core. Within the core, non-crosscutting concerns are scattered
and tangled, with corresponding evolution difficulties. Composition specifications
describe how aspects are composed with the core. Significant changes to the core
design may affect the aspects’ composition specifications. Changes in aspect design
are not as likely to require changes to the core. Addition or removal of aspects is
straightforward. Addition or removal of core concerns requires invasive changes of the
existing core.

Table 5-11 lists the approaches and briefly describes how each approach deals with
changes in design and additions or removals from designs.

Approach Evolvability
 Change Addition - Removal

Theme

Change to a theme may require
composition rules and related
themes to change.

Themes may be added or
removed separately, requiring
updates to the composition
specification.

AODM

Changes in the core model may
require changes in any aspect
that are dependant on the points
of change. Change is limited by
the constraints of AspectJ.

Aspects can be added or
removed without altering the
core.

AAM

Changes in an application may
require a change in the contextual
relationship between context free
aspects and applications.

Architectural aspects can be
contextualised and added or
aspects can be removed from
the design.

CoCompose

Change in design can cause a
need for a new implementation
strategy.

Features can be added or
removed.

SUP

Changes to state charts events
may require changes to any
behaviour that was triggered by
those events.

Addition or removal of state
charts can be done without
affecting the other state charts
that represent the remainder

 229

of the system.

AML

Changes in either the core or
aspect are caught in a connector
and limited by the constraints of
AspectJ.

Addition or removal of aspects
means that the relevant
connector must also be added
or removed.

TranSAT

Changes in an application may
require a change in the contextual
relationship between context free
aspects and applications.

Architectural aspects can be
contextualised and added or
aspects can be removed from
the design.

AOCE

Aspects are represented as
components, change is localised
within component.

Components are atomic
modules that can be added or
removed from the design.

UFA
Changes in either the core or
aspect are caught in a connector.

Addition or removal of aspects
means that the relevant
connector must also be added
or removed.

ADT
Change limited to
synchronisation.

Addition and removal limited to
synchronisation concerns.

UXF/a
Changes can be made to design
in a distributed manner.

Additions to and removals
from designs can be made in a
distributed manner.

IDAM Change is platform constrained.
Addition and removal are
platform constrained.

AVA
Sub-aspect decomposition
reduces evolution restrictions.

Sub-aspects that have no
dependant aspects can be
added or removed.

Component
Views

Changes must be within the
feasible View Components Meta-
model.

Views can be added or
removed.

Meta Models

Changes must be feasible within
the (Open/AspectJ/HyperJ) Meta-
models.

Addition or removal is based
on the platform the meta
model covers.

AOSDUC
Design is use case drive and
change is isolated per use case.

Use case designs can be
added ore removed from the
design.

CAM/DAOP
Change is supported within the
MDA models and transformations.

Additions can be made within
the MDA models and
transformations.

Activity

Changes in activity diagrams
affect the activity diagrams that
crosscut the activity diagram.

Activity Diagrams can be
added and removed.

UMLAUT

 UMLAUT allows automated
design weaving. Changes in
concern designs can be made
and rewoven.

Concern designs can be
added and removed. Designs
can be rewoven to reflect the
change.

Table 5-11: Evolvability

The Theme approach supports the symmetric and AOP platform independent design of
concerns identified in requirements. A theme encapsulates the design related to a
concern. Theme composition is described through composition relationships between
themes. The affects of change to a concerns design are localised within a theme. This
change may or may not affect the composition relationships between the theme and
other themes with which it will be composed.

Themes are not dependant on one another. They are atomic representations of a
concern in design. Because themes have no interdependence, themes can be added or
removed without affecting other themes. Composition relationships are likely to
change to incorporate the additions or removals.

 230

The AODM was originally based on the AspectJ AOP language. Because of the close
link between AODM and AspectJ, evolution of AODM designs may be restricted by
the constraints imposed when mirroring the AspectJ language in design. Joinpoint
designation diagrams have significantly weakened the association between the AODM
and AspectJ, through providing a language independent way to model AspectJ
pointcuts. This however does not represent a full abstraction and, as such, means that
AODM as an approach is inherently evolutionary constrained because of its platform
focus.

AODM supports an asymmetric model of design. Aspects can be changed, added or
removed from the design with minimal affect on the core design. Aspects represent
crosscutting concerns in design. The non-crosscutting concerns are represented in the
core design. In the core concern design is scattered and tangled making change,
addition and removal of concerns difficult.

The AAM asymmetric approach to AOD supports aspects designed independently of
application context to be utilised in design. In this approach evolution is eased as pre-
existing application-independent aspects can be contextualised for a specific
application being designed. AAM does not focus on any particular platform and is not
constrained to conform to any specific platform constraints.

CoCompose is a non-UML platform neutral, symmetric and high-level approach to
AOD. CoCompose allows design to contain alternate implementation specifications at
design. The design as such can evolve without platform constraints. Design elements
that represent concerns can be added or removed with relative ease.

SUP is a symmetric, platform neutral, state chart driven approach to AOD. Separate
state charts are created to model the state and behaviour of concerns. Events that
trigger a state transition in one state chart are relevant to the state charts crosscut by
that state chart. As concern behaviour is modularised within the state chart, change is
localised within the state chart. Crosscutting events are matched by name. The
changing of equivalent event names must be uniform across the state charts that
describe a system to ensure consistency during evolution. State charts can be added or
removed from the design without affecting the other state charts.

 In AML and UFA, the core system design and aspect design are represented
separately. The rules for the integration of the core and aspect are defined in a design
module separate to that of the core and aspect design modules. As such both the core
and aspects can be changed independently of one another. The change in either must be
reflected in the connector, which acts as a level of indirection that shields both the core
and aspects from changes in one another. The drawback is that any change that occurs
in either the aspect or the core system must also be reflected in the connector. AML
specialises the UFA approach toward the AspectJ platform, with corresponding
constraints on evolution.

The TranSAT approach allows the addition and removal of crosscutting concerns in
design. Like the AAM approach, application independent aspect designs can be
integrated into core designs contextualising the concern. Aspects are removed by
excluding an aspect design from the weaving instructions.

AOCE is a component-based approach. Components encapsulate concerns and may be
crosscutting or non-crosscutting. Change is localised to a component. The addition
and removal of components from design is facilitated.

 231

The ADT approach is an early approach that is focused on representing
synchronisation as an aspect in design. In this approach change, addition or removal of
the design artefacts relating to the synchronisation concern are possible.

The UXF approach provides a model for AO UML transfer between repositories. This
transfer facility provides a means through which designs can be changed, artefacts can
be added to the design and artefacts can be removed from the design in a distributed
manner.

IDAM approaches facilitate platform specific designs. These approaches are AspectJ
centric and as such do not permit change outside of the AspectJ constraints.

The AVA approach is a symmetric, platform-neutral approach to AOD. This approach
recognises that aspects are not completely independent of one another, providing a
notation for expressing the dependencies between aspects. Evolution is supported, in
that the designer can decompose aspects into sub-aspects. Sub-aspects can be
composed into aspects that represent a crosscutting concern. Sub-aspects localise
changes beyond the aspect making change in crosscutting concerns easier to handle.
The AVA approach provides a notation to describe aspectual dependency. This
notation allows the designer to inspect aspectual dependencies. From this, the designer
can decide what course of action to take when removing an aspect from a design or
when adding an aspect to the design.

The Component Views approach brings together components and viewpoints in a
language neutral AOD approach. Like the AAM and TranSAT approaches the
Component Views approach allows the reuse of application independent components
in the design of an application. The approach facilitates application evolution through
adding behaviour and properties to application components.

In Meta models, one meta model focuses on reflecting AspectJ and another focuses on
reflecting Hyper/J . An abstract model provides a model for AOD that is not well
defined and does not constrain evolution outside the scope of an implementation
platform. In contrast, the AspectJ and Hyper/J approaches are constrained in the
evolution that they can support as they are constrained by the AspectJ and Hyper/J
platforms.

The AOSDUC approach is a use case driven approach in which each use case is
designed and implemented as a separate slice of the system. Because of this use case
driven separation, change within the specification of a use case is localised with the
design associated with that use case. Use cases can be added or removed from the
system design without affecting the system design.

The CAM/DAOP MDA driven approach provides a well-defined set of component
based models organised in a specialisation hierarchy. There are well-defined rules for
transforming the abstract models to concrete models. Evolutionary changes (including
adding and removing design artefacts) can be made in abstract models and these
models can be quickly and unambiguously transformed into more platform specific
models.

The Activity approach allows the symmetric modelling of behaviour modelled in
separate activity diagrams. In this model, changes to a concern’s behaviour is localised
within activity diagrams. New behaviour can be added to the design through the
addition of a new activity diagram. Existing behaviours can be removed by excluding
the corresponding activity diagram from an activity diagram composition.

 232

UMLAUT supports design evolution, in that it provides a means to automate design
composition or weaving. Concern designs can be altered, added or removed. The
change in the design can be addressed by re-composing the concerns designs.

5.5.6 Scalability
Scalability is an important feature of any approach to design, indicating its ability to
deal with designing large systems, as well as designing small systems.

UML is the standard language for object-oriented design. UML is also the basis for
most of the AOD approaches discussed in this report. Most of the AOD approaches
that are based on the UML describe extensions to the UML to handle aspect-oriented
design. While the UML does provide useful separation capabilities (for example, the
designer can separate various structural views from behaviour views), it was not
designed to handle the kinds of concern separation that are the focus of AOSD.
Standard UML designs therefore exhibit considerable crosscutting and tangling
properties that AOSD is designed to avoid. As designs scale, crosscutting and tangling
gets worse, negatively affecting evolution.

Component based design (CBD) helps reduce the size of a system’s design. CBD
supports the system design to be decomposed into components that isolate and
encapsulate parts of a system. Components expose interfaces, through which the
component can be used within the system. UML provides component diagrams to
model components in design. Componentisation reduces the size of the core design by
encapsulating the design within a component module usable within the core design..
Crosscutting concerns are not modularised with CBD.

In this report, we have characterised each AOD approach as being either symmetric or
asymmetric. Asymmetric approaches facilitate separation of crosscutting concerns.
Symmetric approaches facilitate separation of crosscutting concerns and non-
crosscutting concerns. Separating concerns in design allows concerns to be modelled
separately, with corresponding scalability benefits.

We have further characterised each approach in terms of the levels of abstraction the
approach supports. Although designing concerns separately avoids the problems of
scattering and tangling, it may be necessary to view the system as a whole, for
verification purposes (for example). Some design approaches provide high-level views
of the concerns separated in design and descriptions of how concerns will be
composed. Low-level design is detailed and does not facilitate the designer achieving a
holistic view of the system. Low-level design is necessary to provide a guide for
developers during design implementation. Scaleable AOD approaches provide high-
level views of system design as well as the low level views.

Table 5-12 lists the AOD approaches that we have investigated and briefly describes
the scalability of the approach and also notes the proven usage of the approach in non-
trivial cases.

Approach Scalability
 General Proven usage

Theme

Theme allows a high level view
of the system at a package level,
themes are specialised
separately.

Scalability illustrated in the
design of a decentralised,
mobile, multiplayer game.

 233

AODM

Low-level AspectJ designs
supported. Join point
designation and indication
diagrams provide higher level
views. System level views are
not provided. Scalability unproven.

AAM
Provides a high level package
view of the system. Scalability unproven.

CoCompose
Allows solution patterns be
applied to augment systems. Scalability unproven.

SUP

Provides a means of
representing aspects in relation
to objects.

Bounded buffer example
shows that scalability is
limited.

AML

AML provides an AspectJ
focused, connector model and
allows integration of concerns to
be specified within a connector. Scalability unproven.

TranSAT
Provides a framework that
promotes scalability. N/A

AOCE Component and aspect model.

Proven in the development of
Serendipity-II, a large process
management system.

UFA

Connector model that allows
integration of concerns to be
specified within a connector. Scalability unproven.

ADT
Limited separation of
synchronisation concern. Not scaleable.

UXF/a Focused on UML interchange. Unknown.

IDAM

Provides low-level design and
does not provide a high-level
design perspective. Scalability unproven.

AVA

Provides a means for modelling
crosscutting concerns as
multiple aspects in design.

Improves potential for
scalability as aspects can be
decomposed into sub-
aspects.

Component
Views

Component views provide high-
level of the system at the
package level. Scalability unproven.

Meta Models
Language neutral and language
specific meta models. Scalability unproven.

AOSDUC

Provides a holistic view of the
system with case modules. Use
case modules contain lower
level designs.

Scalability demonstrated in
the design of a hotel
management system.

CAM/DAOP
Scalability supported through a
multi layer model of abstraction.

Scalability demonstrated in a
the design of a virtual office
application.

Activity Limited to modelling behaviour. Scalability unproven.

UMLAUT
 Scalability supported through a
multi-layer model of abstraction.

UMLAUT has been used
since 1998 to perform a
variety of composition styles.

Table 5-12: Level of Scalability

The Theme approach has illustrated its scalability in the design of a large-scale
system. As described in [152], Theme was used to design a decentralised, mobile,
multiplayer game, of large size. Each concern (non-crosscutting or crosscutting) was

 234

developed separately. Designs are composable into OO designs or can be implemented
on AO platforms. Themes can be viewed at a high level as packages that are related
through composition relationships. This view allows the designer to see how each
theme contributes to the overall system.

The AODM approach is asymmetric and supports a lower level design based on the
AspectJ platform. It also provides views with a higher-level perspective, in the form of
joinpoint designation and joinpoint indication diagrams. AODM does not support high-
level views that give a view of the overall system. AODM is illustrated through
relatively trivial examples [145,147,148].

AAM, CoCompose and Component Views are design-focused approaches that allow
application independent concerns to be expressed in design, and used in application
specific scenarios. Although these approaches provide high-level views of how aspects
are contextualised and integrated into design, they remain unproven in terms of being
used in a large-scale project.

The TranSAT approaches a framework with a UML notation based on JAC. It
promotes scalability by providing a means to represent and integrated concerns a high
level.

SUP is a state chart driven approach to Aspect modelling in design, which is supported
by a UML profile. This approach focuses on extracting aspects from core objects,
illustrated with a bounded buffer example. SUP provides means to separate low-level
behaviours. There is no higher-level system view provided. There is no evidence that
this could be used in a large-scale project.

AML and UFA use a connector model where the integration between design models is
specified in a connector. These approaches support a package level view where the
concerns and their associated concerns are represented in packages. This provides a
high-level view of the system, hiding the lower level details. UFA is a symmetric
approach. The AML approach applies the UFA approach to the AspectJ platform.
AML and UFA have not been used in a large-scale project.

The AOCE approach has illustrated its scalability in the design of a non-trivial process
management tool, Serendipity-II [170]. The approach separates concerns into
components and systemic components. These components and their interrelations are
described at high component levels. Low-level component designs may be created
separately.

The ADT approach is limited to separating synchronisation concerns during design. As
such, the ADT approach is not scaleable.

The UXF approach is focused on the transfer of AO UML repositories between tools.
This approach provides an AO meta-model. Non-trivial examples of the meta-model
being used to create a design are not illustrated, and so Scalability cannot be
determined.

IDAM and the AspectJ and Hyper/J Meta-models are low-level designs. These
approaches do not provide high-level design models, and remain unproven in a large
scale project.

The AVA approach provides a high level package based view of design, where the
entire system can be viewed. This is similar to Theme but recognises that crosscutting
concerns can be decomposed during design into sub-aspects. This approach provides a
scaleable means for viewing crosscutting concerns in terms of the separate designs that

 235

represent the crosscutting concern and the composition dependencies that exist
between these.

The AOSDUC approach has illustrated its scalability in the design of a non-trivial case
study based on a hotel management system. This approach provides a means of
presenting a holistic view of a system in use case modules diagrams. These use case
module diagrams are specialised into separate designs that represent the structure and
behaviour related to that use case.

The CAM/DAOP approach supports scalability by allowing the designer to specify
design at various levels of abstraction. The CAM model is a high level view of the
design that can be transformed into lower level designs that are closer to
implementation. The approach has illustrated its scalability in the design of a large
Virtual Office application.

The Activity approach is demonstrated through relatively trivial examples, one of
which is an order processing system [143]. The activity approach supports behavioural
models, but not structural modelling. As such, it does not allow the designer to view
how changes in behaviour may alter system structure.

Like the CAM/DAOP approach, the UMLAUT approach focuses on model
transformations as a means to compose concern designs. Through defining a layered
model for transformations it is possible to support multiple levels of abstraction.
Layering promotes scalability as high-level designs can represent a holistic view of the
system to the designer hiding the more detailed designs. Where detail is required by the
designer he or she can use one of the lower level design views. UMLAUT can
potentially providing a multi-layered transformation framework for AOD.

UMLAUT has been used since 1998 and it has been proven through its usage in
weaving design patterns, supporting the design by contract approach, weaving model
aspects, generating code, generating test cases and interfacing with validation tools on
the model.

 236

6. Main Contributions of AO Analysis and Design

Having discussed and evaluated the contemporary non-AO and AO approaches to
analysis and design, we have attempted to reveal their individual comparative strengths
and weaknesses. Abstracting from the analysis of the individual approaches, we now
attempt to provide a broader picture of the contributions that the aspect-oriented
approaches provide for analysis and design.

6.1 Contributions of Aspect-Oriented Requirements Engineering
As it has been demonstrated in the discussion in section 3.3, the contemporary non-
aspect-oriented requirements engineering approaches have been developed to primarily
deal with one type of concerns. For instance, PREview (section 3.3.1.1) and NFRF
(section 3.3.2.1) have underlined the importance of non-functional concerns and
proposed means to ensure their fulfilment in a system. Problem Frames (section 3.3.3)
and Use Cases (section 3.3.4), on the other hand, have focused on ensuring the
required functionality of the system.

Aspect-Oriented approaches, such as Concern Modelling with Cosmos (section
3.4.4.1), and CORE (section 3.4.4.2), in contrast propagate the idea that all types of
concerns are equally important and should be treated consistently, and non-
discriminatively. Thus, the first contribution of AORE is recognition of the need for
equal treatment of functional and non-functional concerns.

Further on, while some contemporary non-AO approaches (e.g. NFRF, PREview) have
recognised that non-functional requirements are characterised by their broad influence
on other requirements, they do not consider the similar broad influence of some
functional requirements. Aspect-Oriented approaches (e.g., Theme/Doc, section
3.5.2.1, and CORE, section 3.4.4.2) have brought this fact to notice. The second
contribution of the AORE is the recognition that both functional and non-functional
requirements can have a broad crosscutting influence on other requirements.

Having acknowledged the importance of functional and non-functional crosscutting
and non-crosscutting concerns, the AORE work has adopted the early separation of
concerns principle: it should be possible to study each concern/requirement separately,
on its own. In AORE the separation principle is complemented by the composition
principle: it should be possible to compose each concern/requirement with the rest of
the concerns/requirements of the system under construction to understand interactions
and trade-offs among concerns.

Though most non-AO approaches have recognised that requirements have influence on
each other, the issue of Requirements-Level Composition had not been investigated
before AO. Composability – the support for combining individual requirements into
coarser-grained requirements (as provided, for instance, by AORE with Arcade,
section 3.4.1.1) – is the central notion of AORE. Using the AO terminology, this
support should include a well defined joinpoint model and composition semantics. The
joinpoint model exposes structured points through which requirements can be
composed. The composition semantics provide systematic meaning to the composition.

Composability allows not only reviewing the requirements in their entirety, but also
detection of potential conflicts very early on in order to either take corrective measures
or appropriate decisions for the next development step. The composed requirements
also become valuable sources of validation for the complete system [57]. Thus, the

 237

third contribution of AORE is that of the notion and mechanism for requirement
composability.

A contribution related to the composition support is that of trade-off resolution in cases
of conflicts and inconsistencies. This is not a new property in requirements engineering
(for instance this is addressed as risk vs. cost analysis in the Viewpoints and
Inconsistency Management approach, section 3.3.1.2). Nevertheless, AORE has
highlighted the possibility of trade-off identification though composition, the need for
trade-off resolution and decision support, and underlined the importance of its
systematic and traceable treatment; this is the fourth contribution of AORE.
Another contribution of AORE is the provision of mapping and influence detection
support of the requirement-level concerns to the concerns at later lifecycle stages. This
again, is not a new concept in requirements engineering, but AO has revealed a new
dimension here as well, by providing support for decisions as to if a requirement will
map to another crosscutting artefact at the later stages, or will be absorbed by a
decision, or turned into a local method/function, etc.

6.2 Contributions of Aspect-Oriented Architecture Design
 Although the number of aspect-oriented architecture design approaches is limited, we
can still infer several important contributions of aspect-oriented concepts at the
architecture level. First of all, DAOP-ADL has shown the feasibility of using an
aspect-oriented ADL. More importantly, the DAOP-ADL architecture descriptions can
be reified for runtime manipulation hence supporting traceability of architectural
choice to implementation aspects. The Perspectival concern space framework has
demonstrated that multidimensional separation of concerns can provide additional
support for evaluating software architectures. AOGA has shown how to identify
aspects in the domain model and map these to architecture artefacts. In particular
identifying aspects using feature diagrams might be of interest for designing aspect-
oriented product line architectures. It should be noted that the software architecture
design community has now an increasing consensus on the separation of the various
architectural views. The represented aspect-oriented architecture design approaches
could be used to enhance the different architectural design views with an aspectual
view for representing the aspects.

There is still some work to do on the process level. The approaches that have been
considered define a particular process but it is not clear yet how to generalise these
altogether. However, the process provided in AOGA integrates generative and aspect-
oriented approaches and could be of interest for product line engineering or even
model-driven architecture design approaches.

There are no aspect-oriented architecture analysis approaches except ASAAM.
ASAAM uses scenario-based approach to identify aspects during architecture design
and could be adopted for an architecture redesign or refactoring process. ASAAM
could also be applied to analyse the quality of an aspect-oriented architecture.

6.3 Contributions of Aspect-Oriented Design
As with systems in any programming paradigm, aspect-oriented systems need to be
designed with good software engineering practices in mind. The design of a system is
at least as important as the implementation itself, indeed, perhaps even more important.

 238

As described previously in this document and elsewhere, systems that are not designed
using aspect principles exhibit scattering and tangling properties that have considerable
negative impact on good software engineering practices. These properties are manifest
in many, if not all, stages of the development lifecycle. In particular for this section,
significant benefits can be derived from applying aspect-oriented techniques to design
artefacts.

In the infancy of aspect orientation, developers simply used object-oriented methods
and languages (such as standard UML) for designing their aspects. This proved
difficult, as standard UML was not designed to provide constructs to describe aspects:
Trying to design aspects using object-oriented modelling techniques proved as
problematic as trying to implement aspects using objects. Without the design
constructs to separate crosscutting functionality, similar difficulties in modularizing the
designs occur, with similar maintenance and evolution headaches. At a high level, the
main contribution of aspect-oriented design has been to provide designers with explicit
means to model aspect-oriented systems, deriving software engineering quality
properties as a result.

In particular, this breaks down into a number of sub-contributions. Aspect-oriented
design provides a means for the designer to reason about concerns (whether they are
crosscutting or not) separately, and to capture concern design specifications
modularly. In so doing, the system’s design does not exhibit scattering and tangling
properties that contradict software engineering quality principles. Where there is
modularisation, there must also be a means to specify how those modules should be
composed into the full system design. Aspect-oriented design provides a means to
specify how concern modules should be composed. This includes both a means to
specify how to compose concerns at a later stage of the development cycle, and also a
means to compose concern design artefacts. In this manner, the designers can choose
whether to move to an object-oriented or an aspect-oriented programming paradigm.
When composing concern designs, or specifying how concerns should be composed at
a later stage of the development lifecycle, it is likely that there are points of conflict or
cooperation between some concerns to be composed. Aspect-oriented design provides
a means to specify how to resolve conflicts between concerns and to specify how
concerns cooperate. Such conflict or cooperation specifications will guide the
composition process.

The design task of the development process supports and is supported by other tasks in
the development process, such as requirements analysis, architecture design and
implementation. As such, it is important that it is clear where design artefacts fit into
this support structure. A significant contribution of aspect-oriented design is the extent
to which there is traceability of concerns to lifecycle stages both preceding design, and
post design. Such traceability increases the comprehensibility and maintainability of
the system. In addition to traceability of concerns, aspect-oriented design provides a
mapping of the constructs used in design to those used by lifecycle stages both
preceding design and post design, further enhancing the traceability.

 239

7. Emerging AO Analysis & Design Processes

The main purpose of this document is to carry out a survey of the current state of the
art in the AO analysis and design (as presented in the earlier sections). However, this
document is also intended as the basis for further work on development of an
integrated AO analysis and design approach, synthesising the work of AOSD-Europe
project partners. This section outlines the initial process models, for each stage of
analysis and design, that have emerged from the discussion and comparisons earlier in
this report.

7.1 Emerging Requirements Engineering Process:
As a necessary minimum, the future emergent requirements process must provide the
most important features of Aspect-Oriented Requirements Engineering, as discussed in
section 6.1, i.e.:

• Equal treatment of functional and non-functional requirements (or, more
precisely all concerns);

• Identification and treatment of crosscutting requirements of both functional and
non-functional type;

• Good support for requirement composition and trade-off resolution;
• Support for mapping and traceability to artefacts at later development stages.

An initial outline of such a process is presented in Figure 7-1.

Concern
Elicitation

Concern
Identification

Requirement
Composition

Concern
Representation

Trade-Off
ResolutionRequirement

Mapping

Requirement
Refinement

Architecture/
Design

Step in the process

Flow of activities

Overlapping of
activities

Legend:

Figure 7-1 : The Emerging Aspect-Oriented Requirements Engineering Process.

The process commences with the Concern Elicitation step, where the requirements
engineer establishes what are the issues of interest to the stakeholders, i.e. their
concerns with respect to a given software system. This can be done through
discussions with the stakeholders, interviews, ethnographic observation, etc. and
complemented by guidelines such as the meta concern space described in section
3.4.4.2. The outcome of this stage is an initial list of broad stakeholder concerns (e.g.,
data retrieval, security, etc.).

 240

This is followed by Concern Identification where the elicited concerns are elaborated
(e.g., by using NFR catalogues we can define what does security concern imply, etc.).
Tool support, e.g., the NLP-based concern identification tool or Theme/Doc (described
in sections 3.4.1.1 and 3.5.2.1 respectively) can be very helpful in this regard. The
identified concerns are represented at the Concern Representation stage (e.g., as goal
and softgoal graphs, or viewpoints, themes, etc.).

Simultaneously the concerns are refined and further elicited, identified and represented
iteratively. When sufficient concerns are represented, the Composition stage gets
initialised. At this stage concerns are composed and the outcome of the composition
serves as the basis to identify conflicts between them. These conflicts are resolved
through the Trade-Off Resolution stage, with the iteration cycle of refinement,
elicitation, identification, and representation continuing all the while.

When a relatively stable set of requirement representations and compositions is
achieved, the Requirement Mapping stage commences, where a set of guidelines is
applied to help to turn requirements into architectural and design representations. The
mapping onto architectural decisions should begin as requirements start to become
clearer e.g., as in the TwinPeaks model [192] to ensure that the architectural choices
reflect the stakeholders’ concerns. This is essential because, as discussed in section
3.4.4.2, the concerns at the requirements level and their compositions drive the
architectural choices pulling the architecture in various directions. It is essential that
the final chosen architecture is at an optimal point with regards to the stakeholders’
concerns.

7.2 Emerging Architecture Design Process
From the discussion of architecture approaches, we can observe an outline aspect-
oriented architecture design process emerging. This process (shown in Figure 7-2)
mainly draws upon AOGA, TranSAT and ASAAM. More specifically, the process:
• takes as input the requirements specification, requirements-level aspects and

associated trade-offs as input;
• identifies additional architectural aspects (or refining existing requirements level

aspects) via domain analysis;
• model the architecture, e.g., by using an approach such as DAOP-ADL, AOGA or

TransSAT;
• utilises architecture evaluation, e.g., as in ASAAM, to identify additional aspects

and undertake refactoring if needed;
• continuous re-evaluation and composition of new architecture plans based on

previous architecture analysis and evaluation steps, e.g., as in TranSAT;
• mapping of the architectural decisions to design and implementation, e.g., as in

methods such as AOGA and DAOP-ADL.

 241

Requirements-level concerns, trade-offs and decisions

Refine RE-level concerns
(aspectual and non-aspectual)

Identify additional architectural concerns
(aspectual and non-aspectual)

Domain Analysis

Model architectural concerns

Architecture evaluation

Architectural Refactoring
Re-evaluation and composition
of Architectural Plans

Mapping to Design and Implementation

Figure 7-2: The Emerging Aspect-oriented Architecture Process.

7.3 Emerging Design Process
As discussed in the AO Approaches section, some of the AOD design processes break
design into separate tasks. For instance, the UFA and AML models separate design and
specification, etc. Other approaches break design process into a number of phases. The
best example of this is the CAM/DAOP approach. Here the high level design is
elaborated into low level designs that can be implemented. Because with CAM/DAOP
the design process is staged, there is an opportunity to specialise the design toward
different implementation platforms.

Besides, we noted that some approaches separate design from composition (e.g.,
Theme/UML) while others do not support design model composition, and instead defer
the composition until the implementation phase. We have also discussed that
separating the design and composition into two tasks promotes reuse and provides the
designer with a clearer view on the effects of composition.

With the knowledge of the above, we envisage an AOD process that separates the
design process into tasks and phases, as well as allowing the designer to test their
composition specifications through design-time composition. Our emerging design is
described in Figure 7-3.

 242

Figure 7-3: The Emerging Design Process.

Our process begins with refining the architecture into a high level design. There are
three design phases - high, middle and low. High level designs are abstract and without
detail, middle level designs are more detailed but platform independent, while low
level designs are platform specific. During each design phase there are three things a
designer needs to model – components, aspects and composition specifications.
Components model concerns that are not crosscutting, and aspects model crosscutting
concerns. Composition specifications describe how components and aspects are to be
composed.

The design process is then a process of refinement between defined models of different
levels. This process is intended as a “skeleton process” which can be specialised or
extended to support different design models. Figure 7-4 illustrates how using the
variations on the same process, different design models can be supported by our design
process.

 243

Figure 7-4: The Emerging Design Process.

 244

8. Research Agenda to Be Addressed via Integration of

Techniques

In the above section on Emerging AO Analysis & Design Process we have provided an
outline of our initial integrated process. But what are the issues of immediate
importance that we need to address in order to realise that process? It is this question
that we address in the present section.

8.1 Outline of the Road to Integration – Requirements Engineering
It is fortunate that the main AO approaches to be integrated (namely Theme/Doc,
AORE with Arcade, CORE) are complementary in a number of ways. While AORE
with Arcade mainly focuses on broadly scoped (seemingly) non-functional concern
treatment, Theme/Doc concentrates on behavioural (thus mainly functional) concern
treatment. Besides, the latter approach applies after the requirements specification
document is produced, while the former one can assist in its production. CORE, on the
other hand, is focused on developing powerful composition and trade-off analysis
mechanisms from a multi-dimensional perspective. The concern projection
mechanisms in CORE as well as the guidelines on driving architectural choices from
the projections and associated trade-off analysis can complement the treatment of non-
functional and functional concerns in AORE with Arcade and Theme/Doc respectively.

An important question to be addressed by the integrated approach is: can aspects help
in requirement discovery from the very beginning of the RE process? This question can
be addressed through integration and use of the semantic analysis-based natural
language processing work [59], which is based on AORE with Arcade, as well as the
use of the meta concern space in CORE for eliciting concerns.

Following requirements discovery, the AORE with Arcade approach can be used to
deal with requirements elaboration and non-functional crosscutting concern treatment
(including composition and tradeoffs support). Possibilities of functional concern
treatment with AORE with Arcade should also be investigated. Interesting insights can
be provided here from the work on CORE; recall that CORE treats both functional and
non-functional concerns in a uniform fashion and has powerful concern influence
projection and trade-off analysis mechanisms. Following this, the first draft
requirements specification document should emerge.

At this stage the Theme/Doc approach can be applied to identify any further
crosscutting functional requirements and to improve the structure of the specification
document. Theme/Doc also possesses visual modelling capabilities for requirements
level aspects which can form a useful mechanism within an integrated AORE
approach.

Once the requirements have been effectively represented, AORE with Arcade approach
and CORE could be used again for making decisions about mapping crosscutting
concerns to decisions, functions or aspects. Finally, the appropriate mapping to design
can be done, producing either Theme-style, or other AO style designs.

We can observe from the above discussion that there are a range of complementary
capabilities in the three main AORE approaches to be integrated. At the same time
there are significant challenges in terms of the underlying models, e.g., multi-
dimensional modelling in CORE compared to the two-dimensional base-aspect models

 245

in Theme/Doc and AORE with Arcade. Furthermore, though AORE with Arcade and
CORE have similar composition mechanisms, the composition models differ greatly.
The former is based on composing aspects with reference to a set of base viewpoints
while the latter composes concerns in a multi-dimensional concern space. Theme/Doc,
n the other hand, chooses to delay composition till the design stage. Traceability and
mapping of the concerns within a requirements engineering process is also an
interesting challenge due to the differing perspectives, foci and underlying
representations used by the three approaches.

In summary, though we can observe some complementarities amongst the approaches
to be integrated, there are also a range of interesting and challenging research issues to
be addressed for such an integration to be effective. These research challenges will be
one element of our future work (other elements being similar research challenges in
integrating the AO architecture and design approaches) in the AOSD-Europe Analysis
and Design lab.

8.2 Outline of the Road to Integration – Architecture Design
We can observe from the emerging aspect-oriented architecture design process in
Section 7.2 that the various approaches from AOSD-Europe partners to be integrated,
namely, DAOP-ADL, TranSAT, AOGA and ASAAM have a number of
complementary features. For instance, AOGA and TranSAT can be employed for
identifying architectural concerns and refining requirements-level concerns. DAOP-
ADL, TranSAT and AOGA can all be used for architectural modelling. ASAAM and
TranSAT can be used for architectural evaluation and informing refactoring decisions.
Finally, AOGA and DAOP-ADL can be used to map architectures to detailed design
and implementation and maintain traceability of architectural choices and decisions to
the final system implementation. Similarly, some approaches, e.g., ASAAM and
AOGA have Eclipse-based tool support.
At the same time, there are a number of interesting integration challenges. For
instance, DAOP-ADL, TranSAT and AOGA each offer different architecture
modelling mechanisms. Integration of these different modelling techniques is a
significant challenge. It is helped by the fact that the modelling approaches are based
on UML or its extensions. Nevertheless the different modelling abstractions employed
pose significant integration bottlenecks to be addressed in the development of the
integrated aspect-oriented architecture design approach in the AOSD-Europe Analysis
and Design Lab. Similarly, ASAAM provides architecture evaluation capabilities but
these are poorly related to the earlier architectural activities of concern identification
and architecture modelling. The architecture composition mechanisms in the various
approaches also differ considerably to pose interesting research issues during the
development of the architecture composition mechanism for the integrated approach.

8.3 Outline of the Road to Integration – Design
As described in this document, there are many emerging approaches to aspect-oriented
design, at varying stages of maturity. In general, they can be categorised as approaches
that complement each other (i.e., provide for different requirements of aspect-oriented
design), or approaches that overlap (i.e., provide for broadly similar requirements of
aspect-oriented design in a different manner). In recognition of the emerging
requirements for an overall aspect-oriented development methodology, integration of

 246

design methods must maintain a degree of flexibility as to the level of support for an
aspect designer in the use of any available design method.

The road to integration should therefore include an investigation of the points of
complement and overlap of each of the design approaches. Where there is complement,
integration involves specification of heuristics and guidelines for combined usage to
cover a maximum set of requirements for aspect-oriented design. Where there is
overlap, integration involves specification of recommendations for further research
into potential merging of approaches, together with guidelines for flexible usage of
different approaches, as required by the aspect-oriented development methodology.

 247

9. Conclusion

In this report we have surveyed a range of representative contemporary non-AO
approaches to analysis and design and a comprehensive set of the significant AO
approaches. We have discussed that, in many cases, the AO approaches have built on
the strength of the non-AO approaches, but also aimed to address the previously
overlooked issues of modularising crosscutting concerns.

We have discussed each presented approach based on a set of general criteria that
reflects desirable properties of any software engineering approach, namely:
traceability, composability, evolvability and scalability. From this we can conclude that
generally traceability is improved due to modular representation of crosscutting
concerns, and so are evolvability and scalability. The composability criterion, on the
other hand, requires additional composition operators and procedures (e.g., design
artefacts) when used with modularised crosscutting concerns, but also brings to light
previously unexplored issues e.g., composition of requirements-level and architectural
concerns and conflict detection through composition.

Further on, from the discussion of non-AO and AO approaches we have distilled the
main contributions of the AO paradigm in the areas of requirements engineering,
architecture design and detailed design.

For requirements engineering the main contributions are the equal treatment of
functional and non-functional concerns, identification and treatment of crosscutting
requirements of both functional and non-functional nature, provision of support for
requirement composition and subsequent conflict detection and trade-off resolution, as
well as support for mapping and traceability to artefacts at later development stages.

For architecture design the main contribution is the explicit treatment of crosscutting
concerns during architecture modelling and evaluation, hence resulting in architectural
choices that better reflect the stakeholders’ decisions during requirements engineering
and mapping and traceability of these choices to the detailed system design and
implementation.

For detailed design these contributions mainly relate to support for modular
representation of multiple types of concerns (e.g., non-functional, functional,
crosscutting) and their composition, thus advancing such quality factors as traceability,
understandability, maintainability, etc.

From this survey already some initial AO processes have emerged for requirements
engineering, architecture design and detailed design stages of the software lifecycle.
These are presented in section 7, yet it is clear that further research is needed into
unification and integration of these processes into a complete AO analysis and design
process. Such an integrated process will also form a valuable input into the integrated
AOSD methodology to be developed as part of the Atelier for AOSD within AOSD-
EUROPE.

We have also gained some initial insight into the challenges of integrating the work of
our project partners. Some of such key challenges are reconciliation of differences
between symmetric and asymmetric approaches, preservation of traceability within and
across development stages and integration of multi-dimensional and two-dimensional
approaches. These, along with other challenges, discussed in section 8 of this report
will form the basis of our further work within the AOSD-Europe Analysis and Design
Lab.

 248

10. References

[1] A. Rashid, A. Moreira, and J. Araujo, "Modularisation and Composition of
Aspectual Requirements," presented at 2nd International Conference on Aspect
Oriented Software Development (AOSD), Boston, USA, 2003.

[2] Web Site: Early Aspects: Aspect-Oriented Requirements Engineering and
Architecture Design, http://www.early-aspects.net/, URL: Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture Design,
maintained by A. Rashid, 2005.

[3] P. Sawyer, "Software Requirements," in Software Engineering, vol. 1, R.
Thayer and M. Dorfman, Eds., 3 ed: IEEE Computer Society Press, to appear.

[4] I. Sommerville and P. Sawyer, "PREview Viewpoints for Process and
Requirements Analysis," Lancaster University, Lancaster
REAIMS/WP5.1/LU060, 29 May 1996.

[5] A. Rashid, "Website: Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design," URL: Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design, 2005.

[6] A. Finkelstein and I. Sommerville, "The Viewpoints FAQ," BCS/IEE Software
Engineering Journal, vol. 11, 1996.

[7] I. Sommerville and P. Sawyer, "Viewpoints: Principles, Problems and a
Practical Approach to Requirements Engineering," Annals of Software
Engineering, vol. 3, pp. 101-130, 1997.

[8] I. Jacobson, M. Chirsterson, P. Jonsson, and G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach, 4 ed: Addison-Wesley,
1992.

[9] A. Lamsweerde, "Goal-Oriented Requirements Engineering: A Guided Tour,"
presented at 5th IEEE International Symposium on Requirements Engineering,
2001.

[10] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering: Kluwer Academic Publishers, 2000.

[11] A. v. Lamsweerde, "Goal-Oriented Requirements Engineering: A Roundtrip
from Research to Practice (Invited Keynote Paper)," presented at Requirements
Engineering (RE 2004), Kyoto, Japan, 2004.

[12] I. Sommerville, Software Engineering, 7 ed: Addision-Wesley, 2004.
[13] A. Moreira, J. Araujo, and A. Rashid, "Multi-Dimensional Separation of

Concerns in Requirements Engineering," presented at Requirements
Engineering Conference (RE 05), Paris, France, 2005.

[14] A. Finkelstein and I. Sommerville, "The Viewpoints FAQ."
[15] P. Sawyer, I. Sommerville, and S. Viller, "PREview: tackling the real concerns

of requirements engineering."
[16] B. Nuseibeh, J. Kramer, and A. Finkelstein, "A Framework for Expressing the

Relationships Between Multiple Views in Requirements Specification,"
Transactions on Software Engineering, IEEE CS Press, vol. 20, pp. 760-773,
1994.

[17] B. Nuseibeh, J. Kramer, and A. Finkelstein, "ViewPoints: Meaningful
Relationships Are Difficult! Invited paper, Proceedings of International
Conference on Software Engineering," presented at International Conference
on Software Engineering (ICSE'03), Postland, Oregon, USA, 2003.

 249

[18] E. Yu, "Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering," presented at Requirements Engineering,
Washington D.C., USA., 1997.

[19] E. Yu, "Agent Orientation as a Modelling Paradigm," Wirtschaftsinformatik,
vol. 43, pp. 123-132, 2001.

[20] E. Yu, "Modeling Strategic Relationships for process Reengineering." Toronto,
Canada: University of Toronto, 1995.

[21] E. Yu, "Strategic Actor Modeling for Requirements Engineering," Modelling
Your System Goals - The I* Approach. London, UK: British Computer Society
-Requirements Engineering Special Interest Group, 2005.

[22] A. Dardenne, A. v. Lamsweerde, and S. Fickas, "Goal-Directed Requirements
Acquisition.," Science of Computer Programming, vol. 20, pp. 3-50, 1993.

[23] M. Jackson, Problem Frames: Analyzing and Structuring Software
Development Problems: Addison-Wesley, 2001.

[24] L. Barroca, J. Fiadeiro, M. Jackson, R. Laney, and B. Nuseibeh, "Problem
Frames: a Case for Coordination," presented at International Conference on
Coordination Models and Languages, Pisa, Italy, 2004.

[25] R. Laney, L. Barroca, M. Jackson, and B. Nuseibeh, "Composing Requirements
Using Problem Frames," presented at Requirements Engineering Conference
(RE 2004), Kyoto, Japan, 2004.

[26] M. Jackson, "A Discipline of Description," Requirements Engineering, vol. 3,
pp. 73-78, 1998.

[27] I. Alexander and N. Maiden, Scenarios, Stories, Use Cases Through the
Systems Development Life-Cycle: John Wiley & Sons, 2004.

[28] I. Alexander, "Misuse Cases: Use Cases with Hostile Intent," IEEE Software,
vol. 20, pp. 58-66, 2003.

[29] I. Alexander, "Negative Scenarios and Misuse Cases," in Scenarios, Stories,
Use Cases Through the Systems Development Life-Cycle, I. Alexander and N.
Maiden, Eds.: John Wiley & Sons, 2004, pp. 119-139.

[30] I. Alexander and A. Farncombe, "Use and Misuse Cases in Railway Systems,"
in Scenarios, Stories, Use Cases Through the Systems Development Life-Cycle,
I. Alexander and N. Maiden, Eds.: John Wiley & Sons, 2004, pp. 347-362.

[31] I. Sommerville, P. Sawyer, and S. Viller, "Viewpoints for requirements
elicitation: a practical approach," presented at International Conference of
Software Engineering (ICRE'98), Colorado Springs, Colorado, USA, 1998.

[32] S. Easterbrook and B. Nuseibeh, "Using ViewPoints for Inconsistency
Management," Software Engineering Journal, BCS/IEE Press, vol. 11, pp. 31-
43, 1996.

[33] B. Nuseibeh, S. Easterbrook, and A. Russo, "Making Inconsistency
Respectable in Software Development," Journal of Systems and Software, vol.
58, pp. 171-180, 2001.

[34] L. Chung, "Dealing with Security Requirements During the Development of
Information Systems," presented at Conference on Advanced Information
Systems Engineering (CAiSE 93), Paris, France, 1993.

[35] A. v. Lamsweerde, A. Dardenne, B. Delcourt, and F. Dubisy, "The KAOS
Project: Knowledge Acquisition in Automated Specification of Software,"
presented at American Association for Artificial Intelligence, Spring
Symposium Series, Stanford University, 1991.

 250

[36] E. Yu, J. Mylopoulos, and Y. Lesperance, "AI Models for Business Process
Reengineering," IEEE Expert: Intelligent Systems and Their Applications, pp.
16-23, 1996.

[37] I. Jacobson, "Use Cases - Yesterday, Today, and Tomorrow," Rational
Software, 2002.

[38] I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development with Use
Cases: Addison Wesley Professional, 2005.

[39] K. Allenby and T. Kelly, "Deriving Safety Requirements Using Scenarios,"
presented at 5th International Symposium on Requirements Engineering,
Toronto, Canada, 2001.

[40] J. Araujo, A. Moreira, I. Brito, and A. Rashid, "Aspect-Oriented Requirements
with UML," presented at Workshop on Aspect-Oriented Modelling with UML
(held in conjunction with the International Conference on Unified Modelling
Language UML 2002), 2002.

[41] Y. Yu, J. C. S. d. P. Leite, and J. Mylopoulos, "From Goals to Aspects:
Discovering Aspects from Requirements Goal Models," presented at
International Conference on Requirements Engineering, Kyoto, Japan, 2004.

[42] I. Jacobson, "Use Cases and Aspects—Working Seamlessly Together," Journal
of Object Technology, vol. 2, pp. 7-28, 2003.

[43] J. Whittle, J. Araujo, and D.-K. Kim, "Modeling and Validating Interaction
Aspects in UML," presented at AOSD Modeling With UML Workshop
(located with UML 2003), San Francisco, USA, 2003.

[44] J. Whittle and J. Araujo, "Scenario Modeling with Aspects," IEE Proceedings -
Software, vol. 151, pp. 157-172, 2004.

[45] J. Whittle and J. Araujo, "Scenario Modelling with Aspects," IEE Proceedings
- Software Special Issue, vol. 151, pp. 157-172, 2004.

[46] A. Moreira, J. Araújo, and I. Brito, "Crosscutting Quality Attributes for
Requirements Engineering," presented at Software Engineering and Knowledge
Engineering Conference (SEKE), Ischia, Italy, 2002.

[47] J. Araujo and A. Moreira, "An Aspectual Use Case Driven Approach,"
presented at VIII Jornadas de Ingeniería de Software y Bases de Datos (JISBD),
Alicante, Spain, 2003.

[48] S. M. Sutton, "Concerns in a Requirements Model - A Small Case Study,"
presented at Early Aspects 2003 Workshop: Aspect-Oriented Requirements
Engineering and Architecture Design (held with AOSD 2003), Boston, USA,
2003.

[49] S. M. Sutton and I. Rouvellou, "Concern Modeling for Aspect-Oriented
Software Development," in Aspect-Oriented Software Development, R. E.
Filman, T. Elrad, S. Clarke, and M. Aksit, Eds.: Addison-Wesley, 2004, pp.
479-505.

[50] S. Sutton and I. Rouvellou, "Modeling of Software Concerns in Cosmos," in
Proc. 1st Int' Conf. on Aspect-Oriented Software Development (AOSD-2002),
G. Kiczales, Ed., 2002, pp. 127-133.

[51] A. Moreira, J. Araujo, and A. Rashid, "A Concern-Oriented Requirements
Engineering Model," presented at Conference on Advanced Information
Systems Engineering (CAiSE'05), Porto, Portugal, 2005.

[52] J. Grundy, "Aspect-Oriented Requirements Engineering for Component-based
Software Systems," presented at 4th IEEE International Symposium on RE,
1999.

 251

[53] J. Grundy, "Multi-perspective specification, design and implementation of
software components using aspects," International Journal of Software
Engineering and Knowledge Engineering, vol. 20, 2000.

[54] E. Baniassad and S. Clarke, "Finding Aspects in Requirements with
Theme/Doc," presented at Workshop on Early Aspects (held with AOSD
2004), Lancaster, UK, 2004.

[55] E. Baniassad and S. Clarke, "Theme: An Approach for Aspect-Oriented
Analysis and Design," presented at International Conference on Software
Engineering, 2004.

[56] S. Clarke and E. Baniassad, "Theme: Aspect-Oriented Analysis and Design,
URL: http://www.dsg.cs.tcd.ie/index.php?category_id=353," 2005.

[57] S. Katz and A. Rashid, "From Aspectual Requirements to Proof Obligations for
Aspect-Oriented Systems," presented at International Conference on
Requirements Engineering (RE), Kyoto, Japan, 2004.

[58] S. Katz and A. Rashid, "PROBE: From Requirements and Design to Proof
Obligations for Aspect-Oriented Systems," Computing Department, Lancaster
University, Lancaster COMP-002-2004, 2004.

[59] A. Sampaio, N. Loughran, A. Rashid, and P. Rayson, "Mining Aspects in
Requirements," presented at Early Aspects 2005: Aspect-Oriented
Requirements Engineering and Architecture Design Workshop (held with
AOSD 2005), Chicago, Illinois, USA, 2005.

[60] P. Rayson, "WMATRIX," Paul Rayson, Lancaster University, URL:
http://www.comp.lancs.ac.uk/ucrel/wmatrix/, 2005.

[61] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold,
"Getting Started with AspectJ," Comm. ACM, vol. 44, pp. 59--65, 2001.

[62] P. L. Tarr and H. Ossher, Hyper/J user and Installation Manual: IBM
Research, 2000.

[63] J. Whittle and J. Schumann, "Generating Statechart Designs from Scenarios,"
presented at International Conference on Software Engineering, Limerick,
Ireland, 2000.

[64] R. France, D. Kim, S. Ghosh, and E. Song, "A UML-Based Pattern
Specification Technique," IEEE Transactions on Software Engineering, vol.
30, pp. 193-2006, 2004.

[65] A. Moreira and J. Araújo, "Handling Unanticipated Requirements Change with
Aspects," presented at Software Engineering and Knowledge Engineering
Conference (SEKE'04), Banff, Canada, 2004.

[66] J. Mylopoulos, L. Chang, and B. Nixon, "Representing and Using Non-
Functional Requirements: A Process-Oriented Approach," IEEE Transactions
on Software Engineering, Special Issue on Knowledge Representation in
Software Development, vol. 18, pp. 482-497, 1992.

[67] R. Malan and D. Bredemeyer, "Defining Non-Functional Requirements,"
http://www.bredemeyer.com/papers.htm.

[68] G. George, I. Ray, and R. France, "Using Aspects to Design a Secure System,"
presented at International Conference on Engineering of Complex Computer
Systems, Maryland, USA, 2002.

[69] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton, "N Degrees of
Separation: Multi-Dimensional Separation of Concerns," presented at Proc.
21st International Conference on Software Engineering (ICSE 1999), 1999.

 252

[70] S. M. Sutton and I. Rouvellou, "Concerns in the Design of a Software Cache,"
presented at Workshop on Advanced Separation of Concerns (held with
OOPSLA 2000), Minneapolis, USA, 2000.

[71] S. M. Sutton and I. Rouvellou, "Applicability of Categorization Theory to
Multidimensional Separation of Concerns," presented at Workshop on
Advanced Separation of Concerns in Object-Oriented Systems (held with
OOPSLA 2001), Tampa, Florida, USA, 2001.

[72] W. Harrison and H. Ossher, "Subject-Oriented Programming - A Critique of
Pure Objects," presented at Proc. 1993 Conf. Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 93), 1993.

[73] E. Baniassad and S. Clarke, "Investigating the Use of Clues for Scaling
Document-Level Concern Graphs," presented at Workshop on Early Aspects
(held with ECOOP 2004), Vancouver, Canada, 2004.

[74] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,
"Viewpoints: A Framework for Multiple Perspectives in System Development,"
International Journal of Software Engineering and Knowledge Engineering,
Special issue on 'Trends and Future Research Directions in SEE', World
Scientific Publishing Company Ltd, vol. 2, pp. 31-57, 1992.

[75] J. Hall, M. Jackson, R. Laney, B. Nuseibeh, and L. Rapanotti, "Relating
Software Requirements and Architectures using Problem Frames," presented at
International Conference on Requirements Engineering (RE'02), Essen,
Germany, 2002.

[76] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice:
Addison-Wesley, 1998.

[77] M. Shaw and D. Garlan, Software Architectures: Perspectives on an Emerging
Discipline. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[78] P. C. Clements and L. M. Northrop, "Software Architecture: An Executive
Overview," Carnegie Mellon University, Technical Report CMU/SEI-96-TR-
003, 1996.

[79] M. Aksit, L. Bergmans, K. v. d. Berg, P. d. d. Broek, A. Rensink, A. Noutash,
and B. Tekinerdogan, "Quality-Oriented Software Engineering," Towards
Software Architectures and Component Technology: The State of the Art in
Research and Practice, 2000.

[80] D. Garlan, R. T. Monroe, and D. Wile, "Acme: Architectural Description of
Component-Based Systems," in Foundations of Component-Based Systems, M.
S. Gary T. Leavens, Ed.: Cambridge University Press, 2000, pp. 47-68.

[81] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor, "Using Object-
Oriented Typing to Support Architectural Design in the C2 Style," presented at
Symposium on the Foundations of Software Engineering, San Francisco, CA,
USA, 1996.

[82] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, "Formal Modeling of
Software Architectures at Multiple Levels of Abstraction.," presented at
California Software Symposium, Los Angeles, CA, USA, 1996.

[83] A. Kompanek, "Proposed Aesop System Architecture," http://www-
2.cs.cmu.edu/afs/cs/project/able/www/aesop/html/design_docs/aesop-new-
design.ps, 1996.

[84] D. Garlan, R. Allen, and J. Ockerbloom, "Exploiting style in architectural
design environments," presented at Symposium on Foundations of Software
Engineering, New Orleans, Louisiana, United States, 1994.

 253

[85] Web Site: The Darwin Architecture Description Language,
http://www.doc.ic.ac.uk/~igeozg/Project/Darwin/, maintained by I. Georgiadis,
visited May 2005.

[86] J. Magee, N. Dulay, and J. Kramer, "A constructive development environment
for parallel and distributed programs," presented at Workshop on Configurable
Distributed Systems, Pittsburgh, USA, 1994.

[87] Web Site: Rapide™ Project, http://pavg.stanford.edu/rapide/, Stanford
University, May 2005.

[88] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems: Addison-Wesley, 2002.

[89] R. Allen and D. Garlan, "A formal basis for architectural connection," ACM
Transactions on Software Engineering and Methodology (TOSEM), vol.
Volume 6, pp. 213 - 249, 1997.

[90] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins,
"Modeling software architectures in the Unified Modeling Language," ACM
Transactions on Software Engineering Methodologies, vol. 11, pp. 2-57, 2002.

[91] L. Dobrica and E. Niemel, "A survey on software architecture analysis
methods," IEEE Trans. Softw. Eng, vol. 28, pp. 638-653, 2002.

[92] R. Kazman, M. Klein, and P. Clements, "ATAM: Method Architecture
Evaluation," Technical Report CMU/SEI-2000-TR-004 ESC-TR-2000-004,
August 2000.

[93] N. Lassing, D. Rijsenbrij, and H. Vliet, "On software architecture analysis of
flexibility, Complexity of changes: Size isn't everything," presented at Nordic
Workshop Software Architecture (NOSA), 1999.

[94] G. Molter, "Integrating SAAM in Domain-Centric and Reuse-Based
Development Processes," presented at Nordic Workshop Software Architecture
(NOSA), 1999.

[95] C.-H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, "An approach to
software architecture analysis for evolution and reusability," presented at
Conference of the Centre for Advanced Studies on Collaborative Research,
Toronto, Ontario, Canada, 1997.

[96] O. Bengtsson and J. Bosch, "Architecture Level Prediction of Software
Maintenance," presented at Conference on Software Maintenance and
Reengineering, Washington, DC, USA, 1999.

[97] P. Clements, "A Survey of Architectural Description Languages," presented at
8th International Workshop on Software Specification and Design, Paderborn,
Germany, 1996.

[98] N. Medvidovic and R. N. Taylor, "A classification and Comparison Framework
for Software Architecture Description Languages," IEE Transactions on
Software Engineering, vol. 26, pp. 70-93, 2000.

[99] S. A. White, "Architectural Design Language Generation Project," presented at
Workshop on Nasa Focus on Software Reuse, George Mason University,
Fairfax, Virginia, USA, 1996.

[100] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development
Process: Addison-Wesley, 1999.

[101] R. Prieto-Diaz and G. Arrango, Domain Analysis and Software Systems
Modeling. Los Alamitos, California: IEEE Computer Society Press, 1991.

[102] H. Gomaa, "An Object-Oriented Domain Analysis and Modeling Method for
Software Reuse," presented at Hawaii International Conference on System
Sciences, Hawaii, USA, 1992.

 254

[103] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, "Feature-Oriented
Domain Analysis (FODA) Feasibility Study," Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-90-TR-21, 1990.

[104] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang, "Organization
Domain Modeling (ODM) Guidebook, Version 2.0," Informal Technical
Report for STARS; http://www.synquiry.com STARS-VC-A025/001/00, June
14 1996.

[105] C. Czarnecki, "Generative Programming: Principles and Techniques of
Software Engineering Based on Automated Configuration and Fragment-Based
Component Models," vol. PhD: Technical University of Ilmenau, 1999.

[106] G. Arrango, "Domain Analysis Methods," in Software Reusability, R. Schäfer,
Prieto-Díaz, and M. Matsumoto, Eds.: Ellis Horwood, New York, New York,
1994, pp. 17-49.

[107] S. Wartik and R. Prieto-Díaz, "Criteria for Comparing Domain Analysis
Approaches," In International Journal of Software Engineering and Knowledge
Engineering, vol. 3, pp. 403-431, 1992.

[108] L. Bass, P. Clements, S. Cohen, L. Northrop, and J. Withey, "Workshop
Report," presented at First Workshop on Product Line Practice, Pittsburgh, PA:
Software Engineering Institute, USA, 1997.

[109] L. Bass, P. Clements, G. Chastek, S. Cohen, L. Northrop, and J. Withey, "2nd
Product Line Practice Workshop Report," presented at Second Workshop on
Product Line Practice, Pittsburgh, PA: Software Engineering Institute, USA,
1997.

[110] F. Hayes-Roth, Architecture-Based Acquisition and Development of Software:
Guidelines and Recommendations from the ARPA Domain-Specific Software
Architecture (DSSA) Program, 1994.

[111] W. Tracz and L. Coglianese, "DSSA Engineering Process Guidelines," IBM
Federal Systems Company, Technical Report ADAGE-IBM-9202, December
1992.

[112] C. Alexander, S. Ishikawa, and M. A. Silverstein, "Pattern Language," 1979.
[113] E. Gamma, R. Helms, R. Johnson, and J. Vlissdes, Design Patterns: Elements

of Reusable Object-Oriented Software: Addison-Wesley, 1995.
[114] J. O. Coplien, Advanced C++ -Programming Styles and Idioms. Reading, MA:

Addison-Wesley, 1992.
[115] M. Fowler, Analysis Patterns: Reusable Object Models: Addison-Wesley,

1996.
[116] Proceeding of the Pattern Languages of Programs Conference (PLOP 97).

Monticello, Illinois, USA, 1997.
[117] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, "Pattern-

Oriented Software Architecture: A System of Patterns," 1996.
[118] M. Shaw, "Making Choices: A Comparison of Styles for Software

Architecture," vol. 12, pp. 27-41, 1995.
[119] G. Abowd, L. Bass, R. Kazman, and M. Webb, "SAAM: A Method for

Analyzing the Properties of Software Architectures," presented at International
Conference on Software Engineering, Sorrento, Italy, 1994.

[120] R. Kazman, G. Abowd, L. Bass, and P. Clements, "Scenario-Based Analysis of
Software Architecture," IEEE Software, vol. 13, pp. 47-55, 1996.

 255

[121] M. M. Kande, "A concern-oriented approach to software architecture," in
Computer Science, vol. PhD. Lausanne,Switzerland: Swiss Federal Institute of
Technology (EPFL), 2003.

[122] M. Pinto, L. Fuentes, and J. M. Troya, "DAOP-ADL: An Architecture
Description Language for Dynamic Component and Aspect-Based
Development," presented at International Conference on GPCE, Erfurt,
Germany, 2003.

[123] U. Kulesza, A. Garcia, and C. Lucena, "Generating aspect-oriented agent
architectures," presented at Workshop on Early Aspects (held with AOSD
2004), 2004.

[124] U. Kulesza, A. Garcia, and C. Lucena, "Towards a method for the development
of aspect-oriented generative approaches," 2004.

[125] O. Barais, E. Cariou, L. Duchien, N. Pessemier, and L. Seinturier, "TranSAT:
A Framework for the Specifcation of Software Architecture Evolution,"
presented at Workshop on Coordination and Adaptation Techniques for
Software Entities (held with ECOOP 2004), Oslo, Norway, 2004.

[126] B. Tekinerdogan, "ASAAM: Aspectual software architecture analysis method,"
presented at WICSA 4th Working IEEE/IFIP Conference on Software
Architecture, 2004.

[127] A. Garcia, "From Objects to Agents: An Aspect-Oriented Approach," vol. PhD.
Rio de Janeiro, Brazil: PUC-Rio, 2004.

[128] U. Kulesza, A. Garcia, C. Lucena, and A. v. Staa, "Integrating Generative and
Aspect-Oriented Technologies," presented at 19th ACM SIGSoft Brazilian
Symposium on Software Engineering, Brasília, Brazil, 2004.

[129] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools
and Applications: Addison-Wesley, 2000.

[130] OMG, "http://www.uml.org/," 2005.
[131] C. Chavez, A. Garcia, U. Kulesza, C. Sant'Anna, and C. Lucena, "Crosscutting

Interfaces for Aspect-Oriented Modeling," PUC-Rio, Rio de Janeiro, Brazil,
Technical Report TR-23-05, March 2005.

[132] O. Barais and L. Duchien, "SafArchie Studio: An ArgoUML extension to build
Safe Architectures," presented at Workshop on Architecture Description
Languages (WADL 2004), Toulouse, France, 2004.

[133] B. Tekinerdogan and F. Scholten, "ASAAM-T: A tool environment for
identifying architectural aspects," Chicago 2005.

[134] L. Jingyue, S. H. Houmb, and A. A. Kvale, "A Process to Combine AOM and
AOP: A Proposal Based on a Case Study," presented at Workshop on Aspect-
Oriented Modeling (held with UML 2004), Lisbon, Portugal, 2004.

[135] P. Kroll, The Rational Unified Process Made Easy, a practitioners guide to the
RUP: Addison Wesley, 2004.

[136] Nebulon, "http://www.featuredrivendevelopment.com/," 2005.
[137] S. Sendall and A. Strohmeier, "UML-based Fusion Analysis," presented at

Unified Modeling Language: Beyond (UML) - the Standard, Fort Collins, CO,
USA, 1999.

[138] D. D'Souza and A. C. Wills, Objects, Components, and Frameworks with
UML: The Catalysis(SM) Approach: Addison-Wesley, 1998.

[139] F. Giunchiglia, J. Mylopoulos, and A. Perini, "The Tropos Software
Development Methodology: Processes, Models and Diagrams," University of
Trento, Technical Report DIT-02-008, 2001.

 256

[140] C. Atkinson, J. Bayer, and D. Muthig, "Component-Based Product Line
Development: The KobrA Approach," presented at Software Product Line
Conference (SPLC), Pittsburgh, USA, 2000.

[141] K. Beck, Extreme Programming Explained: Addison Wesley, 1999.
[142] O. Aldawud, A. Bader, and T. Elrad, "UML Profile for Aspect Oriented

Software Development," presented at Workshop on Aspect-Oriented Modelling
with UML (held with AOSD 2003), Boston, Massachusetts, USA, 2003.

[143] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language: Addison Wesley Professional, 2000.

[144] G. Melby, "Using J2EE Technology for Implementation of ActorFrame Based
UML2.0 Models," vol. Masters Thesis. Norway: Agder University, 2005.

[145] E. Barra, G. Genova, and J. Llorens, "An Approach to Aspect Modeling with
UML 2.0," presented at Workshop on Aspect-oriented Modelling with UML
(held with UML 2004), Lisbon, Portugal, 2004.

[146] J.-P. Barros and L. Gomes, "Activities as Behaviour Aspects," presented at
Workshop on Aspect-oriented Modelling (held with UML 2002), Dresden,
Germany, 2002.

[147] J.-P. Barros and L. Gomes, "Toward the Support for Crosscutting Concerns in
Activity Diagrams: a Graphical Approach," presented at Workshop on Aspect-
Oriented Modelling (held with UML 2003), San Francisco, California, USA,
2003.

[148] A. M. Reina, J. Torres, and M. Toro, "Towards developing generic solutions
with aspects," presented at Workshop on Aspect-Oriented Modeling (held with
UML 2004), Lisbon, Portugal, 2004.

[149] P. Desfray, "UML Profiles Versus Metamodeling Extensions: An Ongoing
Debate," presented at Workshop on UML in the.COM Enterprise: Modeling
Corba Components, XML/XMI and Metadata, Palm Springs, CA, USA, 2000.

[150] D. Stein, S. Hanenberg, and R. Unland, "Modeling Pointcuts," presented at
Aspect-Oriented Requirements Engineering and Architecture Design workshop
(held with AOSD 2004), Lancaster, UK, 2004.

[151] D. Stein, S. Hanenberg, and R. Unland, "Query Models," presented at Unified
Modeling Language (UML) - Modeling Languages and Applications, Lisbon,
Portugal, 2004.

[152] D. Stein, S. Hanenberg, and R. Unland, "A UML-based Aspect-Oriented
Design Notation For AspectJ," presented at Aspect-Oriented Software
Development (AOSD 2002), Enschede, The Netherlands, 2002.

[153] D. Stein, S. Hanenberg, and R. Unland, "Aspect-Oriented Modeling: Issues on
Representing Crosscutting Features," presented at Workshop on Aspect-
Oriented Modelling (held with AOSD 2003), Boston, Massachusetts, USA,
2003.

[154] D. Stein, S. Hanenberg, and R. Unland, "On Representing Join Points in the
UML," presented at Workshop on Aspect-Oriented Modelling with UML (held
with UML 2002), Dresden, Germany, 2002.

[155] D. Stein, S. Hanenberg, and R. Unland, "Designing Aspect-Oriented
Crosscutting in UML," presented at Workshop on Aspect-Oriented Modeling
with UML (held with AOSD-2002), Enschede, The Netherlands, 2002.

[156] S. Clarke, W. Harrison, H. Ossher, and P. Tarr, "Subject-Oriented Design:
Towards Improved Alignment of Requirements, Design and Code," presented
at Proc. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA 1999), Denver, Colorado, USA, 1999.

 257

[157] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-Oriented Software
Development: Addison-Wesley, 2005.

[158] S. Clarke, "Composition of Object-Oriented Software Design Models," in
School of Computer Applications, vol. Ph.D.: Dublin City University, 2001.

[159] S. Clarke, "Extending standard UML with model composition semantics," in
Science of Computer Programming, vol. 44 Issue 1: Elsevier Science, 2002, pp.
71-100.

[160] S. Clarke and R. J. Walker, "Generic Aspect-Oriented Design with
Theme/UML," in Aspect-Oriented Software Development: Addison-Wesley,
2005.

[161] S. Clarke and R. J. Walker, "Separating Crosscutting Concerns across the
Lifecycle: From Composition Patterns to AspectJ and Hyper/J," Trinity
College, Dublin, Technical Report TCD-CS-2001-15, May 2001.

[162] S. Clarke and R. J. Walker, "Towards a standard design language for AOSD,"
presented at 1st International Conference on Aspect-Oriented Software
Development (AOSD 2002), 2002.

[163] O. Aldawud, T. Elrad, and A. Bader, "A UML Profile for Aspect Oriented
Modeling," in Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA 2001). Tampa Bay, Florida, USA, 2001.

[164] O. Aldawud, A. Bader, and T. Elrad, "Weaving With Statecharts," in Workshop
on Aspect-Oriented Modeling with UML (held with AOSD-2002). Ensehede,
The Netherlands, 2002.

[165] O. Aldawud, A. Bader, and T. Elrad, "Aspect-Oriented Modeling: Bridging the
Gap between Implementation and Design," presented at Generative
Programming and Component Engineering Conference (GPCE), Pittsburgh,
PA, USA, 2002.

[166] C. Prehofer, "Graphical Composition of Components with Feature
Interactions," in Workshop on Aspect-Oriented Modeling with UML (held with
AOSD-2002), 2002.

[167] R. France, I. Ray, G. Georg, and S. Ghosh, "Aspect-Oriented Approach to
Early Design Modeling," IEE Software, vol. 151, pp. 173-186, 2004.

[168] G. Straw, G. Georg, E. Song, J. M. Bieman, S. Ghosh, and R. France, "Model
Composition Directives," presented at Unified Modeling Language (UML) -
Modeling Languages and Applications, Lisbon, Portugal, 2004.

[169] D. Wagelaar and L. Bergmans, "Using a concept-based approach to aspect
oriented software design," presented at Aspect-Oriented Design workshop (held
with AOSD 2002), Twente, Enschede, The Netherlands, 2002.

[170] S. Herrmann, "Composable Designs with UFA," presented at Workshop on
Aspect-oriented Modelling (held with AOSD 2002), Enschede, The
Netherlands, 2002.

[171] J. Suzuki and Y. Yamamoto, "Extending UML with Aspects: Aspect Support in
the Design Phase," presented at Workshop on Aspect-Oriented Programming
(held with ECOOP 1999), 1999.

[172] M. Katara, "Superposing UML Class Diagram," presented at Workshop on
Aspect-Oriented Modeling with UML (held with AOSD-2002), 2002.

[173] M. Katara and S. Katz, "Architectural Views of Aspects," presented at Aspect-
Oriented Software Development (AOSD 2003), Boston, Massachusetts, USA,
2003.

 258

[174] I. Groher and T. Baumgarth, "Aspect-Orientation from Design to Code,"
presented at Workshop on Aspect-Oriented Requirements Engineering and
Architecture Design (held with AOSD 2004), Lancaster, UK, 2004.

[175] I. Groher and S. Schulze, "Generating Aspect Code from UML Models,"
presented at Workshop on Aspect-Oriented Modelling with UML (held with
AOSD 2003), Boston, Massachusetts, USA, 2003.

[176] I. Groher and S. Schulze, "Generating Aspect Code from UML Models.,"
presented at Workshop on Aspect-Oriented Modelling with UML (held with
ULM 2003), San Francisco, California, USA, 2003.

[177] J. L. Herrero, F. Sanchez, F. Lucio, and M. Toro, "Introducing Separation of
Aspects at Design Time," presented at Workshop on Aspects and Dimensions
of Concerns (held with ECOOP 2000), 2000.

[178] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier, and L.
Martelli, "A UML Notation for Aspect-Oriented Software Design," presented at
Workshop on Aspect-Oriented Modeling with UML (AOSD-2002), 2002.

[179] A. Muller, "Reusing Functional Aspects: From Composition to
Parameterization," presented at Workshop on Aspect-Oriented Modeling with
UML (held with UML 2004), Lisbon, Portugal, 2004.

[180] Z. Stojanovic and A. Dahanayak, "Components and Viewpoints as Integrated
Separations of Concerns in System Designing," presented at Workshop on
Identifying, Separating and Verifying Concerns in the Design (held with
AOSD-2002), Enschede, The Neterlands, 2002.

[181] M. Pinto, L. Fuentes, and J. M. Troya, "A Dynamic Component and Aspect
Oriented Platform," The Computer Journal, to appear.

[182] L. Fuentes, M. Pinto, and A. Vallecillo, "How MDA Can Help Designing
Component- and Aspect-based Applications," presented at Enterprise
Distributed Object Computing Conference (EDOC), Brisbane, Australia, 2003.

[183] W. Coelho and G. C. Murphy, "Modeling Aspects: An Implementation-Driven
Approach.," presented at Workshop on Best Practices for Model-Driven
Software Development (held with OOPSLA 2004), Vancouver, Canada, 2004.

[184] M. M. Kande, J. Kienzle, and A. Strohmeier, "From AOP to UML - A Bottom-
Up Approach," presented at Workshop on Aspect-Oriented Modeling with
UML (held with AOSD-2002), Enschede, The Netherlands, 2002.

[185] C. Chavez and C. Lucena, "A Metamodel for Aspect-Oriented Modeling," in
Workshop on Aspect-Oriented Modeling with UML (AOSD-2002). Enschede,
The Netherlands, 2002.

[186] C. v. F. G. Chavez and C. J. P. d. Lucena, "Design-level Support for Aspect-
Oriented Software Development," presented at Workshop on Advanced
Separation of Concerns in Object-Oriented Systems (OOPSLA 2001), Tampa
Bay, Floriday, USA, 2001.

[187] Y. Han, G. Kniesel, and A. B. Cremers, "A Meta Model and Modeling Notation
for AspectJ," presented at Workshop on Aspect-Oriented Modelling with UML
(held with UML 2004), Lisbon, Portugal, 2004.

[188] I. Philippow, M. Riebisch, and K. Boellert, "The Hyper/UML Approach for
Feature Based Software Design," presented at Workshop on Aspect-Oriented
Modelling with UML (held with UML 2003), San Francisco, California, USA,
2003.

[189] OMG, "http://www.uml.org/mda/," 2005.

 259

[190] S. J. Mellor, "A Framework for Aspect-Oriented Modeling," presented at
Workshop on Aspect-Oriented Modelling with UML (held with UML 2003),
San Francisco, California, USA, 2003.

[191] R. France, G. Georg, and I. Ray, "Supporting Multi-Dimensional Separation of
Design Concerns," presented at Workshop on Aspect-oriented Modelling with
UML (held with AOSD 2003), Boston, Massachusetts, USA, 2003.

[192] B. Nuseibeh, "Weaving Together Requirements and Architectures," EEE
Computer, vol. 34, pp. 115-117, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

