
 1

                                                    
           

     
 
 
 
 

Survey of Aspect-Oriented Analysis 
and Design Approaches 

 
 
ABSTRACT 
 

A number of Aspect-Oriented (AO) Requirements, Architecture, and Design approaches 
have emerged recently. In this report we survey the most significant of these 
approaches, considering their origins, aims, and contributions. Alongside the AO 
approaches, we also analyse some of the contemporary non-AO work in order to bring 
out the differences between two sets of techniques, and to understand the potential 
contributions of aspect-oriented analysis and design. 

We also provide some initial insights into processes for AO requirements engineering, 
analysis and design which may serve as basis for integration of the work of the AOSD-
EUROPE project partners. We also outline some issues relevant to such integration. 
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1. Introduction 

With information technology increasingly merging with our everyday environment, the 
demands on software systems development become more and more challenging. These 
systems are expected to not only be larger, perform more and more complex 
functionality, but also to be progressively more reliable, quick and easy to use. Such 
additional characteristics (often referred to as quality factors) relate to the software 
systems as a whole hence crosscutting their modular structure. Similarly, some 
functionality (e.g., distribution, synchronisation, etc.) may crosscut several modules in a 
system. All these make system development ever more complex. 

In response to the increasing demands for software development, the Software 
Engineering discipline has emerged, proposing structured processes and activities to 
facilitate the development of software. The initial phases of Software Engineering 
(present in most processes) are Requirements Engineering, Architecture Design, and 
Design. These phases are the subject of this document. More specifically, we are 
looking at these phases in the light of a specific Software Engineering methodology: 
Aspect-Oriented Software Development (AOSD). AOSD techniques provide a 
systematic means for identification, modularisation, representation, and composition of 
crosscutting concerns [1]. The term crosscutting concerns (e.g., reliability, 
synchronisation) refers to such quality factors or functionalities of software that cannot 
be effectively modularised using existing software development techniques, e.g., object-
oriented (OO) approaches. 

Although a significant work has been done in Software Engineering to address 
complexity of software development, the issue of systematically addressing crosscutting 
concerns has been overlooked to a large extent. AOSD techniques build on existing 
work in software development techniques and methodologies in order to tackle such 
concerns in a systematic fashion. Though most of the initial work in AOSD has focused 
on developing of aspect-oriented programming (AOP) languages, frameworks and 
platforms, a number of methods and techniques have also focused on addressing 
crosscutting concerns at the analysis and design level. Consequently, a significant body 
of research exists in the area of Early Aspects: Aspect-Oriented Requirements 
Engineering and Architecture Design [2] as well as in modelling and design of systems 
derived from such aspectual requirements and architectures. The goal of this report is to 
undertake a survey of the state-of-the-art in handling crosscutting concerns, both in 
contemporary analysis and design approaches as well as those based on AOSD 
principles and practice. By this survey we aim to synthesise the relationship between 
AOSD and relevant non-AOSD techniques at the requirements, architecture and design 
levels. Furthermore, we aim to elicit initial insights into the roadmap for integrated 
aspect-oriented requirements engineering, architecture design and detailed design 
approaches to be developed by the Analysis and Design Lab within AOSD-Europe. 

The remainder of this document is structured as follows. In sections 4, 5 and 6 we 
(respectively) briefly discuss what Requirements Engineering, Architecture, and Design 
phases are, and what problems they address. We then review a representative set of 
most prominent contemporary non-AOSD and AOSD approaches within each phase. 
The discussion on the non-Aspect-Oriented (AO) approaches is not intended as an 
exhaustive survey: the presented approaches are often selected representatives for 
groups of approaches relevant to the treatment of crosscutting concerns during analysis 
and design. Furthermore, in many cases AOSD approaches are extensions of the non-
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AO ones. Hence, inclusion of the latter helps to see the contributions of the AOSD 
methodology more clearly. These contributions are summarised in section 6. 

All presented approaches are also discussed with reference to a set of common 
evaluation criteria: traceability, composability, evolvability, and scalability. The 
selection criteria are discussed in more detail in section 2 of this document. 

In addition to providing the state-of-the-art survey for the AOSD approaches and their 
contributions, this document is also intended as the basis for development of an 
integrated Aspect-Oriented Analysis and Design approach, synthesising the work of 
AOSD-EUROPE project partners. The initial outline of such a candidate process, 
informed by the earlier discussion of strength, weaknesses, and contributions of non-AO 
and AO approaches, is presented in section 7. The open issues that need to be addressed 
in order to realise such an integrated approach are briefly outlined in section 8, pointing 
to the directions in which further work of the Analysis and Design Lab is likely to 
progress. Finally, our conclusions for this document are presented in section 9. 
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2. General comparison criteria  

Since AOSD techniques are fairly new, more so at the requirements, architecture and 
design levels, there are no established metrics or characteristics to compare AOSD 
approaches and the support they should provide to software engineers. However, a 
number of such desirable characteristics can be derived from existing best practice in 
software engineering. Our general comparison criteria is, therefore, based on four 
qualities that should be facilitated by any analysis and design approach: traceability, 
composability, evolvability and scalability. These criteria can be further refined for 
requirements, architecture and design approaches as well as augmented with additional 
criteria. The refinements and additional criteria, if any, for each level are discussed 
within sections 4, 5 and 6. Here we provide definitions of our four general comparison 
criteria:  

Traceability through software lifecycle: preservation of traceability between the 
artefacts of the software lifecycle is one of the crucial qualities required for 
understandable and maintainable software. Traceability facilitates understanding by 
relating an artefact to its previous and next representation in an unbroken chain of 
requirement to code production process, complimented with information for reasons of 
decisions taken. Thus, once an artefact is conceived (e.g., a requirement is identified), 
traceability helps to follow it through different representations (e.g., design, coding) and 
understand the factors/decisions affecting it throughout the development process. This 
criterion could be broken into two counterparts: (a) traceability of artefacts to their 
source of origin and change and (b) traceability between lifecycle artefacts. The first 
sub-criterion helps to understand where an artefact or a change to it comes from. The 
second sub-criterion assists with tracking the artefact conversion from one 
representation and lifecycle stage to another. 

Composability: is the ability to compose artefacts and, consequently, to view and 
understand the complete set of artefacts and their interrelationships, as well as perceive 
the system as a whole from the integrated artefacts. Composition specifications describe 
how different analysis and design models are to be composed. In fact, composability is 
the reverse side of modularity, as only modules that can be composed to work as a 
united system are of any practical value. While developers might be able to break a 
system into arbitrary kinds of modules, these will be truly valuable in software 
development only if composition of such modules can be achieved. Composability 
criterion in this report implies availability of adequate semantics (e.g., what does it 
mean to compose manager’s and secretary’s viewpoints, etc.) as well as syntactic 
support (e.g., which composition operators to use, how to represent the composed 
output, etc.). Since AO approaches put forward a new modularisation construct – an 
aspect – they should also provide new composition mechanisms for it, or show the 
adequacy of existing mechanisms in dealing with aspectual module. 

Evolvability: pertains to the ease of changing the artefacts for an existing 
requirement/architecture/design, or removal/addition of new ones. An evolvable artefact 
composition (i.e., the set of system requirement, architecture, or design) will maintain 
its original conceptual and structural intent in the face of change, without excessive 
effort on the developers’ behalf. This criterion is important because change is an ever 
present factor in development, and if not supported, will erode the structure of the 
artefacts, making them difficult to use and maintain, and eventually rendering the 
software system unusable.  
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Scalability: is a desirable characteristic because a viable approach should be equally 
well suited for small and large projects, in particular because projects that start as small 
ones may grow with time. In some cases the scalability issue can be reduced to tool 
support. But there are cases where tool support is not sufficient. 



 19

3. AO Requirements Engineering  

3.1 Introduction: Requirements Engineering  
Requirements are always derived from some business problem whether it is, for 
example, processing passport applications, improving automotive safety systems or 
adding features to cell phones [3]. Projects may develop new products or they may be 
concerned with evolving existing or legacy systems. In all cases, the software system 
will be embedded in an operational context so it will have interfaces to human users, 
business process elements or other software or hardware systems (Figure 3.1).  

 
Figure 3-1: Requirements, Constraints, Problems and Solutions in RE 

A requirement defines a property or capability that must be exhibited by a system in 
order for it to solve the business problem for which it was conceived.  

The classic way to categorise requirements is according to whether they are functional 
or non-functional. Functional requirements describe features that the software must 
provide (for example, “activate the siren when a sensor is tripped”). Non-functional 
requirements, on the other hand, describe qualities of a system. The most important 
class of non-functional requirements addresses how well the system operates within its 
environment. Essentially, they specify the quality of delivery of the functional 
requirements.  

Requirements are usually specified at several points on a spectrum that ranges from 
those with a business focus to those with a technical focus. The technically-focused 
requirements exist only to make it possible to satisfy the business-focused requirements. 
For convenience, we will treat these as levels where the highest level requirements are 
those with a business focus. Such high-level requirements are the goals of the system 
that set out in very broad strategic terms what is needed to solve some business 
problem. For instance, in Figure 3-2 the high level goal for some train company is to 
improve the security of its train travel.  

The next level of requirements defines the properties required by the people who will 
use the system or imposed by other people, organisations or systems within the 
environment. These are often called the user requirements. In the example in Figure 3-2, 
the train controller would like to be notified by the system when a train exceeds the set 
speed for the track section and employ emergency breaks.  
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One of the main tasks of requirements analysis is to elaborate the user requirements to 
discover more about the implications of satisfying them. This involves deriving new, 
lower-level, requirements (derived requirements) that focus more on detailed technical 
issues. 

Improve Security of 
trail travel

Detect excess 
speed of trains

Employ emergency 
breaks in case of 
speed overshoot

…

…

Calculate overshoot 
using Formula (A)

 
Figure 3-2 1: Levels of System Requirements for a Rail-Travel Security System. 

Constraints act to limit the set of possible solutions to the business problem. Some 
constraints are technical (available bandwidth, for example) while others are related to 
the problem domain (legislation and standards, for example).  

Transforming a requirement into software is a complex process. The deeper into the 
process, the more design and implementation strategies become committed to satisfying 
the requirement. Consequently, the costs of rectifying errors in the requirements 
increase dramatically as development proceeds. An effective RE process which 
minimises the occurrence of requirements errors and mitigates the impact of 
requirements change is therefore critical to the success of any development project.  

Requirements engineers and developers feel most comfortable when a requirement for a 
system property can confidently be allocated to a particular software component that 
assumes responsibility for satisfying the requirement. When such allocation is possible, 
the resulting software is well modularised, the modules have clear interfaces with each 
other, and all requirements are cleanly separated. 

However, there are many classes of requirements for which clear allocation into 
modules is not possible using ‘traditional’ software paradigms. Many non-functional 
requirements come into this category. For example, performance is a factor of the 
system architecture and its operational environment; one cannot develop a performance 
module independent of other parts of a software system. Similarly, it could be hard to 
allocate responsibility for providing certain kinds of functionality in a cohesive, loosely 
coupled fashion.  

If some requirements are not effectively modularised, it is not possible to reason about 
their effect on the system or on each other. Furthermore, the lack of modularisation of 
such properties can result in a large ripple effect on other requirements and their 
corresponding components upon evolution. The provision of effective means for 
handling such requirements makes it possible to establish critical trade-offs early on in 
the software life cycle [5]. Such requirements are termed crosscutting (or aspectual) 
requirements. Examples of such properties include security, mobility, availability and 
real-time constraints. These properties have a broadly-scoped effect on other 
requirements or architectural components [5].  

                                                 
1 Example adapted from [4].  
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The fact that there is a class of requirements that is hard to isolate within individual 
modules motivates the work on Aspect-Oriented Requirements Engineering (AORE). 
The identification and handling of crosscutting requirements is, therefore, the focus of 
this section of the report. The discussion considers both the body of work on 
requirements engineering developed prior to emergence of aspect oriented 
methodologies and that emergent from Aspect Orientation (AO). While contemporary 
requirements engineering models, e.g., viewpoints [6, 7], use cases [8], and goals [9-11] 
provide good support for identification and treatment of most kinds of requirements, 
they do not explicitly focus on crosscutting requirements. The work on aspect-oriented 
requirements engineering, therefore, complements these approaches by providing 
systematic means for handling such crosscutting concerns.  

Aspect oriented requirements engineering not only aims to provide improved support 
for separation of crosscutting functional and non-functional properties during 
requirements engineering, but also to provide a better means to identify and manage 
conflicts arising due to tangled representations of crosscutting requirements. Such 
means of early conflict resolution help to establish critical trade-offs even before the 
architecture is derived [1].  

 

3.2 Specific Comparison Criteria 
In order to derive criteria for assessment of Requirements Engineering approaches (in 
addition to the general comparison criteria for analysis and design approaches we 
highlighted in Section 2), we turn to the life cycle of requirements and analyse how they 
arise and progress along the software development lifecycle and the life of the software 
product. From analysis of the qualities needed for supporting the development and 
product life cycles, we select the assessment criteria. 

3.2.1 Life cycle of Requirements 
In section 3.1 we have discussed that during requirements engineering, in broad terms, 
the properties that the software must exhibit have to be elicited. The analysis of the 
elicited information and the associated organisational and operational context results in 
the synthesis of a set of requirements. These requirements need to be, as far as is 
possible, correct, complete and feasible. Achieving these qualities typically requires 
negotiation and trade-off with and between the users and other stakeholders. The set of 
requirements that emerges from the analysis activity needs to be recorded in a 
specification document that communicates the requirements to the people who will use 
them to develop the software. The documented requirements need to be validated to 
ensure that the software that they specify will meet the needs of the people from whom 
the requirements were elicited [3]. As development proceeds, the requirements need to 
be managed so that changes are controlled.  

The orthodox view of RE demands that the requirements specification reaches an 
advanced state of correctness and completeness before subsequent development 
commences. The rationale for this is to try to anticipate and negate the risk posed by 
changing, missing or erroneous requirements [3].  In some domains, however, it is 
impossible to identify all the requirements that will serve to define a product for its 
expected service life. Even if the initial requirements were complete and correct, it is 
almost certain that these will change and new requirements will arise during the course 
of the system use. If the product’s environment is volatile, the product’s requirements 
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will also be volatile. Thus, coping with change is an essential need for a requirements 
methodology. 

Even where the process is optimised to minimise requirements change, some reworking 
of requirements is inevitable after design and coding has commenced. The RE process 
normally consumes most effort early in a project, but effort needs to be allocated to 
requirements management and coping with change following sign-off of the 
requirements specification. Irrespective of the strategy adopted by an RE process the 
fundamentals remain the same; requirements have to be discovered, understood, 
recorded, checked, communicated and managed [3].  
 

3.2.2 Criteria for Requirements Engineering 
The issue of functional requirements discovery has been thoroughly addressed by 
traditional requirements engineering. As mentioned before, it is the issue of discovery of 
crosscutting requirements that has not been adequately addressed in the past. However, 
any new approach should be at least as good as the traditional ones. Thus, we define the 
first assessment criterion as identification and handling of both functional and non-
functional crosscutting and non-crosscutting requirements. This criterion addresses 
three issues: 

• It requires that the approaches support non-crosscutting concerns, and in this 
sense are at least as good as traditional requirements engineering approaches; 

• It requires that both functional and non-functional types of crosscutting concerns 
are supported, as aspects could be of both types; 

• It requires that both identification and handling are addressed, i.e. it cannot be 
expected that the requirements will be readily available for us, neither can we 
expect that the identified concerns can be left without treatment. 

The issue of understanding the requirements has several nuances:  

• The requirements engineer needs to understand what the system stakeholders 
want, but this can hardly be assessed in any other way than checking the 
requirements produced by the engineer with the stakeholders. On the other hand, 
the architects and designers too need to understand what the requirements 
engineer has identified. Thus, understanding is closely related to the checking 
issue, and both of these can be assessed through the verification and validation 
[12] criterion. 

• While working to understand the requirements, the engineer will deal with such 
matters as requirements origin, their mutual influences and conflicting needs, 
their importance to the stakeholders, and how they contribute to the final system. 
All this cannot be reflected by one criterion. The matters of requirements origin 
can be addressed by the previously discussed traceability criterion, and the 
familiar composability criterion will help in conflict identification. We 
additionally select the Trade-off resolution and Decision support criterion for 
assessing the support provided by a requirements engineering approach to the 
engineer for resolving the identified conflicts. 

Hence, the Verification and Validation criterion is related to both understanding and 
checking. It covers two areas: (a) the requirements specification should be verifiable by 
the system stakeholders (e.g., to ensure absence of side effects due to requirements 
composition); (b) the architecture and design artefacts and decisions should be capable 
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of being validated against requirements to ensure that the requirements are understood 
by other system developers. 

The trade-off resolution and decision support criterion is related to conflict 
resolution. Conflicts are inevitable between requirements and can arise both from 
crosscutting and non-crosscutting requirements. This criterion helps to assess how a 
requirements engineering approach supports conflict resolution. This criterion is also 
related to the issues of recording and communicating requirements, as the trade-off 
decisions will need to be recorded and communicated to the other system developers. 

The issues of recording and communicating are also partially covered by the 
traceability criterion which records and communicates where the requirements come 
from and if they can be found again in the architecture and design artefacts. But 
traceability does not help in communicating the decisions as to how and why a specific 
requirement must lead to a specific architectural or design decision. This issue is 
addressed by the Mapping criterion. 

The support for mapping RE concerns to following stages of development is 
particularly relevant for crosscutting requirements because not all crosscutting 
requirements identified at the requirements stage will progress into formal design 
artefacts; some will result in decisions, tradeoffs, or alike [1, 13]. Thus, we need to 
assess how well the RE approaches support this decision-making. For instance, do they 
provide clear guidelines for facilitating such mapping?  

The issues of understanding, recording, and communicating are also affected by the way 
that different types of requirements are treated in a requirements engineering approach. 
If there is a single general treatment process for all types of concerns all three above 
issues are facilitated, as opposed to having different handling procedures for each kind 
of requirements (e.g., functional, crosscutting, non-functional, etc.). Thus, the criterion 
of homogeneity of requirement treatment assesses if all types of concerns are treated 
in a similar way. Of course, this does not imply that all concerns should be treated 
exactly in the same way; this will not allow for accommodating the differences. What 
this criteria does suggest, is to have sufficient similarity in the concern treatment to 
avoid several disjointed sets of representational notations, mapping guidelines, etc.  

The issue of managing the requirements and coping with change is similar to that of 
managing other software artefacts and is addressed by the already discussed criteria of 
evolvability, composability, traceability, and scalability.  

Thus, the criteria that will be used for assessment of the requirement engineering 
approaches (in addition to the general evolvability, composability, traceability, and 
scalability criteria) are support for: 

• identification and handling of both functional and non-functional crosscutting 
and non-crosscutting requirements; 

• trade-off resolution and decision support; 
• mapping requirements to following stages of development; 
• verification and validation; 
• homogeneity of requirement treatment. 

3.3 Non-AO approaches 
In this section we look at representative work from several classes of Requirements 
Engineering approaches. These classes have been selected because they are both 
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indicative of the contemporary RE work, and have served as a basis for the emerging 
AORE techniques (discussed in section 3.4 of this document).  

For each selected class of RE work we discuss a few representative approaches, looking 
at their general method, artefacts, and the process. The discussed classes of approaches 
are: 

• viewpoint-based approaches [4, 14] represented by PREview  [4, 7, 15] and 
Viewpoints and Inconsistency Management [16, 17] work, 

• gaol-oriented approaches [9]  represented by Non-Functional Requirements 
Framework [10], I* [18-21] , and KAOS [22], 

• problem frames represented by the Problem Frames approach [23-26], and last 
but not least, 

• use case- and scenario-based approaches [27]  represented by the Use Cases [8] 
and the Misuse Cases [28-30] approaches. 

3.3.1 Viewpoint-Oriented Approaches 
When establishing what is required for solving a given problem, Viewpoint-Oriented 
Requirement Engineering Approaches consider the problem-related information from 
different agents  (e.g., users of the software system) which can have different, often 
equally valid, and incomplete perspectives on the problem [4]. These partial 
perspectives arise due to different responsibilities, roles, goals, or interpretations of the 
information sources. The combination of the agent and the view that the agent holds is 
termed a viewpoint [14]. 

When working with large systems that have complex structure and many interlocking 
constraints on system construction and behaviour, viewpoints assist in understanding 
and controlling the complexity by separating interests of various actors.  Viewpoint-
oriented approaches [14] formalise this multi-perspective view into analysis methods. It 
is because of these multi-perspective views, that viewpoints have been used as a basis 
for AORE work (presented in section 3.4.1).  

3.3.1.1 PREview 
PREview [4, 7, 15] is a viewpoint-oriented approach which complements the standard 
notion of viewpoints with that of organisational concerns. A PREview concern is a 
generalisation of the notion of goal; it includes both organisational goals and constraints 
that restrict the system or process to be analysed. PREview approach was developed to 
capture such broad requirements as response time, safety, and security.  

3.3.1.1.1 PREview Method 
A distinctive characteristic of PREview concerns is that they “cut across ALL 
viewpoints and the questions associated with concerns must be linked to all viewpoints 
and posed to viewpoint sources as part of the analysis process” [4]. Here functionality of 
the system is another concern among these organisational concerns and PREview 
suggests that functionality is often negotiable, as opposed to other concerns (e.g., safety 
in a safety-critical system).  

PREview uses concerns as drivers in requirement discovery. While using viewpoints for 
actual requirements discovery, the concerns (that are identified at the very start of the 
RE process and are decomposed into questions, constraints, or requirements) should be 
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addressed by all viewpoints. The decomposed concerns are used to make decisions on 
concern mapping to functional modules, early architectural or other decisions, etc. 

It should be noted that PREview concerns are handled differently from goals in the 
goal-oriented approaches: concerns are not necessarily refined through goals to 
requirements, but are used as means to identify critical information for requirements 
elicitation [31] (for instance, by generating questions and constraints that must be 
addressed by all viewpoints). 

Having a firm grounding in ‘most crucial concerns’ for each project, PREview analysis 
helps in producing not only a good requirements specification document, but also 
provides a number of ‘side products’ that are extremely useful for later stages of 
software development. For instance, having identified reliability as a concern, it could 
then be decomposed into a set of functional modules for redundancy (early architectural 
decisions) and a specification of a verification and validation procedure [4], etc. The 
process is facilitated by a small set of templates.  

3.3.1.1.2 PREview Artefacts  
PREview provides templates for concerns and viewpoints. 

A concern template is illustrated by means of the Safety concern in Figure 3-3, where an 
on-board train protection and speed control system is used as an example: 

Name: Safety 
Description: Although designated as “critical non-safety software” the 

on-board train protection system is nevertheless concerned 
with safety insofar as it must “...contribute to the safety of 
trains...controlling, in real time, the respect, by the driver, 
for the operational rules in force on the line.” 

External 
Requirements: 

 
ER1, ER2, ER3 

Questions: N/A 
Figure 3-3 2: Safety Concern in PREview. 

Here the name and description sections are self explanatory. The External Requirements 
section contains references to requirements that represent the concern elaborations that 
exert a direct influence on the requirements process. In case of conflicts, these 
constraints from concerns generally override viewpoint requirements [31]. For instance, 
the safety concern from the above example could be represented as: 

ER1: The system shall detect the occurrence of excess speed. 

ER2: The system shall detect the occurrence of overshoot. 

ER3: The system shall apply emergency braking when either excess speed or 
overshoot are detected. 

All external requirements above are now straightforward functional requirements. 
However, in some cases it could be necessary to complement these requirements with 
questions and/or constraints. For instance, if our train protection system has to link-up 
with the station safety system we could have needed to consider a question: 

Q1: Are the requirements compatible with that of the station safety system? 

                                                 
2 Source of Figure: [4] section 9.2. 
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Figure 3-4 provides an example of a PREview viewpoint. Here viewpoint name is 
complemented by Focus. Focus is a statement of perspective adopted by a viewpoint 
showing how the viewpoint relates to a part or the whole of the system.  

The organisational goals and constraints applicable to the system under analysis are 
listed in the Concerns section of the viewpoint template, while the suppliers of 
information associated with the viewpoint are provided in the Source section. Records 
of change history to the viewpoint as well as sources are kept for information 
traceability. Finally, the requirements section states the requirements of the given 
stakeholder (i.e. driver in our example) with respect to the train protection system. 

Name Driver 
Focus Usability and ergonomic requirements of driver's interaction with 

the system 
Concerns Safety 
Source Existing drivers of trains (reference to the drivers names): P. Swift 

SNCF driver safety regulations (reference to the document): No 123 
Driver ergonomics recommendations (reference to the document): No 4 

Requirements • D1 (Driver interaction) 
Change history  

Figure 3-43 : PREview Viewpoint 

Each requirement in turn is represented through a template consisting of a requirement 
identifier, description, rationale, source, and change history. 

Having identified viewpoints and requirements, PREview suggests to use decision 
tables, based on Quality Function Deployment, to cross-check requirements against 
overlapping, conflicting, or being independent of external requirements. Such a table is 
depicted in Figure 3-5. Conflicts between requirements are marked with “-”, 
overlapping among requirements with “+”, and independence with “0”.  Similar tables 
can be used for detecting dependencies between two viewpoints’ requirements. 

000req1c

+-+req1b
00+req1aVP1

er3er2er1

reqs.External

 
Figure 3-5 4: Crosschecking Viewpoint 1 (VP1) against External Requirements 

3.3.1.1.3 PREview Process  
The general outline of the PREview process is presented in Figure 3-6.  It starts with 
establishing high level concerns, for instance, from discussion with senior management. 
These concerns are then elaborated to a more specific form (e.g., Safety will be 
decomposed to specific hazards through hazard analysis) and presented as specific 
requirements (e.g., external requirements [7]), constraints or questions. The questions 
help to collect essential information from each viewpoint’s perspective.  

                                                 
3 Source of Figure: [4] section 9.2. 
4 Source of Figure: [4] section 6.2.3 
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After concerns have been elaborated, the viewpoints have to be identified from analysis 
of the applications. PREview provides a standard viewpoint hierarchy of interactors, 
stakeholders, and domain phenomena which can be used as a starting point for 
viewpoint identification. 

This is followed by requirement discovery for each identified viewpoint. At this stage it 
is essential to apply the questions and requirements derived from the concerns to each 
viewpoint. After requirement discovery viewpoint interactions have to be analysed 
using decision tables. This analysis process is somewhat assisted by viewpoint focus. 

Once identified, viewpoint inconsistencies need to be resolved through requirement 
negotiation and some trade-off mechanism, however this stage is not directly supported 
by the PREview process.  

The process completes by producing the requirements definition document.  

 

Identify  
concerns

Elaborate  
concerns

Identify 
VPs

Analyse VP 
Interactions

Resolve 
Inconsistencies

Requirements  
negotiation

Requirements discovery

Requirements  
analysis

Concerns, 
Viewpoints, 
External 
requirements, 
Requirements

Inconsistencies 
Incompleteness

Requirement 
promotions, 
VP changes

Discover 
requirements

Requirements 
definition

Integrate and  
format

Viewpoints 
Concerns

Discovery 
Analysis 
Negotiation 
cycle

 
Figure 3-6 5: The PREveiw Process Model 

Some of the outstanding problems in PREview are:  
• Only a small number of concerns (no more then 5) can be effectively addressed 

in each project. Larger number of concerns makes the amount of generated 
information unmanageable; 

• Similarly only a small number of viewpoints (under 6) should be used; 
• Absence of clear guidelines for concern decomposition;  
• Absence of a mechanism for inconsistency management, trade-off analysis and 

decision support.  
• Though Functionality may be a concern, no examples of functional concerns are 

provided, raising the questions: can this approach really identify functional 
crosscutting concerns? 

                                                 
5 Source of Figure: [4] Figure 6.1. 
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3.3.1.1.4 Identification and Treatment of Crosscutting Concerns with PREview 
The PREview approach is structured around recognition of the importance of the impact 
of non-functional crosscutting concerns. These concerns are identified using interviews 
with the stakeholders at the very offset of the development and are modularised in 
concern templates.  The concern impact on other concerns, however, is not modularised: 
answers to concern-related questions and external requirements are spread across each 
affected viewpoint.  

The PREview concern identification and treatment for non-functional concerns is 
appropriate only when a small stable set of well defined non-functional requirements are 
involved. This indeed is the type of development that PREview was intended for. The 
approach will not be suited to volatile domains. 

Also, though PREview suggests that Functionality may be a concern, in the same way 
as the non-functional concerns, there is no demonstration of how such concerns are 
identified and treated. Consequently, we conclude that the method does not support 
identification and treatment of crosscutting characteristics for functional concerns.  

3.3.1.2 Viewpoints and Inconsistency Management (VIM) 
This approach suggests use of viewpoints as a mechanism to handle the inconsistencies 
between partial requirement specifications. 

3.3.1.2.1 Viewpoints and Inconsistency Management Method 
In [16] a framework for expressing relationships between multiple viewpoints in 
requirement specification is defined. Here a viewpoint is a “loosely coupled, locally 
managed, distributable object which encapsulates partial knowledge about a system and 
its domain, specified in a particular, suitable representation scheme, and partial 
knowledge of the process of development” [16]. Thus, the framework allows 
specification of a system from multiple viewpoints without having to pre-define a 
prescribed notation to be used for all specifications. Instead, different (heterogeneous) 
viewpoints can define their own “templates” for notation and processing method. A 
template can then be instantiated for many viewpoints.  

The viewpoints that describe a system should be integratable to allow for that system’s 
representation to be complete. For this, the framework provides meta-integration 
support: a set of viewpoint consistency rules for viewpoint templates should be defined.  

However, the inconsistencies cannot always be immediately resolved. Thus, the system 
provides support for inconsistency management [32], i.e. support for dealing with inter-
viewpoint rules and situations when the rules between viewpoints do not hold [17]. 
Moreover, in some cases the inconsistencies do not have to be resolved if the cost of 
their resolution is greater then the risk of tolerating them [33]. 

3.3.1.2.2 Viewpoints and Inconsistency Management Artefacts 
The artefacts of primary importance in this approach are the viewpoints. They are 
structured as encapsulations of five information items, as depicted in Figure 3-7.  
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Figure 3-7 6: The Five Slots of a Viewpoint. 

The top two slots (style and work plan) of a viewpoint are general for each viewpoint 
template. The Style slot describes the notation chosen for viewpoint representation; 
work plan details the development process for the local viewpoint; and a viewpoint 
template is “a reusable description of a development technique (notation and process)” 
[16]. A template can then be instantiated with a domain, specification and work record, 
creating as many instances of a viewpoint template as required. Domain identifies the 
area of the viewpoint focus with respect to the system. Specification and work record 
respectively describe the viewpoint domain using the notation and work plan defined in 
previous sections, and the development history record. 

An example of a template and an instance for viewpoints is provided in Figure 3-8 (a) 
and (b) respectively. 
 

(a) (b)  
Figure 3-8 7: (a) A Viewpoint Template; (b) An Instantiation of a Viewpoint Template for a Library 
World Domain.  

The viewpoint templates can be configured into a structured collection which together 
create structured steps and notations for system specification, i.e. a configurable (per 
project) development method. 

                                                 
6 Source of Figure: [16] Figure 1. 
7 Source of Figure: [16], (a) Figure 2; (b) Figure 5. 
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Another central artefact to this approach is the set of consistency rules necessary for 
viewpoint integration and inconsistency management. Examples of such rules are 
definition of mapping of notations between viewpoints, or rules defined under the work 
plan section in Figure 3-8 (a), etc. 

3.3.1.2.3 Viewpoints and Inconsistency Management Process 
The development process in this approach starts with creating the viewpoint templates 
(i.e. defining the notations and the work plans desired for building a given system). 
There are no prescriptions as to what notations and work plan should be chosen, the 
developer is free to choose whatever is best suited to the problem in hand.  

Once the templates are developed, they need to be configured into a methodology. In 
fact, the methodology will emerge from the “local” work plans and notations of defined 
viewpoints and the consistency rules defined between them while configuring them 
together. 

After this, the produced method can be applied to a specific problem, i.e. the templates 
can be instantiated using the local notations and work plans, and the consistency rules 
checked, and inconsistency between viewpoints managed. 

The framework for managing inconsistency is presented in Figure 3-9.  Its central 
component is the set of already specified consistency rules. These rules are refined and 
the set is extended as the development progresses, or new viewpoints are defined.  

As the viewpoints evolve, the consistency rules are monitored for each changed/added 
viewpoint. When a consistency rule is broken, an inconsistency is detected and 
diagnosed: it is located (where was the rule broken?); identified (reviewing the sequence 
of actions that led to inconsistency, finding its cause); and classified (in terms of type of 
broken rule, type of action that caused it, the scale of impact of the inconsistency, etc.).  

 
Figure 3-98 : A Framework for Managing Inconsistency With Viewpoints.  

                                                 
8 Source of Figure: [33] Figure 1. 
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The inconsistency, characterised at diagnostics, is then handled, using one of the 
available strategies (i.e., ignored, tolerated, or resolved). The chosen handling strategy 
depends on risk and cost assessment. Whichever cost is lower (e.g., handling vs. 
ameliorating vs. ignoring), that strategy is recommended.  

3.3.1.2.4 Identification and Treatment of Crosscutting Concerns with 
Viewpoints and Inconsistency Management  

This approach does not identify any crosscutting concerns separately: all concerns are 
treated as part of a viewpoint. Though viewpoints can overlap and crosscut each other, 
this is treated as an inconsistency resolution issue, rather than concern separation 
problem. 

3.3.1.3 Summary of Viewpoint-Based Approaches 
The PREview and VIM approaches discussed above demonstrate how viewpoints are 
used to focus on the early requirement elicitation stage and later consistency 
management stages respectively. In fact, these approaches can be used 
complementarily, with PREview applied to identify the viewpoints and VIM used to 
manage potential inconsistencies. 

Both VIM and PREview fall sort of effectively handling crosscutting concerns, in that 
PREview limits to a small number of pre-defined non-functional concerns with no 
support for further concerns, while VIM treats all concerns as part of viewpoints, 
disregarding their individual modularisation issues. In both cases crosscutting concerns 
end up scattered and tangled with viewpoints.   

 

3.3.2 Goal-Oriented Approaches 
A goal is an objective the system under construction should achieve [9]. Goals represent 
intended properties and can cover both functional concerns that the new system should 
provide, and non-functional concerns related to its quality of service, such as security, 
safety, etc. Unlike a requirement, achievement of a goal might require cooperation 
among multiple agents.   

Goals can be used for providing rationale for requirements, assessing requirement 
completeness and relevance, as well as requirement identification. For instance, a 
requirement is justifiable and relevant if it leads to satisfaction of a goal, and 
requirements are complete if all goals are satisfied with the set of defined requirements.  

 

3.3.2.1 Non-Functional Requirements Framework (NFRF) 
The NFR Framework [10] is intended for representing and analysing non-functional 
goals.  Central to the framework is the concept of softgoal which represents a goal that 
has neither a clear-cut definition nor precise criteria for determining whether it has been 
satisfied. Softgoals are used to represent the non-functional requirements. In this respect 
the definition of softgoal fits quite well, as reliability, for instance, can have different 
meaning for different people, and even for the same person working on different 
projects, and so will affect the criteria for defining the level of system’s reliability. 
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The softgoals are interdependent on each other. These dependency relationships are 
used to see how a softgoal is satisfied, given that some other softgoals are satisfied or 
denied. 

3.3.2.1.1 NFRF Method 
The NFR framework consists of 5 major components [10]: softgoals, interdependencies, 
evaluation procedure, methods, and correlations. 

Softgoals are used for representing non-functional requirements. There are 3 types of 
softgoals: NFR softgoals, operationalising softgoals, and claim softgoals. The NFR 
softgoals act as overall constraints on the system. They are satisfied via operationalising 
softgoals that represent more concrete design or implementation solutions (e.g., 
operations, processes, data representations, etc.) obtained as a result of decisions made 
for the NFR softgoal. Operationalisations provide the design alternatives available for 
the given NFR solution. Claim softgoals provide rationale for design and development 
decisions. Through claims domain characteristics can be reflected in the decision 
making process, particular choices explained, support for prioritising certain softgoals 
over others provided, etc.  

When softgoals are refined offspring softgoals are created which relate to their parents 
through an IsA relationship. The offsprings also contribute to their parents either 
positively, or negatively. In the case of positive contribution, satisfying the offspring 
leads to satisfaction of the parent too, while in the case of negative contribution it leads 
to dissatisfying the parent. The framework provides a set of refinement methods for 
different types of softgoals: decomposition methods contain the knowledge of how to 
break softgoals into more detailed ones; operationalisation methods assist in 
operationalising a softgoal, and augmentation methods help to represent additional 
information about a softgoal.  

The NFR softgoals, their refinement, and their operationalisations, complemented with 
claims, together build the Softgoal Interdependency Graph (SIG). The evaluation 
procedure is applied to the SIG to determine the degree to which the initial NFR 
softgoal is satisfied with the given set of decisions. After NFR requirements have been 
decomposed, operationalised and evaluated, the NFR SIG is related to the appropriate 
functional requirement via design decision links and the operationalisations are related 
to the specifications (design decisions) via operationalisation links. Thus, when turning 
to the design stage, the functional requirements have clear links to their related non-
functional ones.  

The refinement methods component of the NFRF provides a set of generic procedures 
for refining a softgoal or an interdependency into one of more offsprings. These 
methods are simply patterns (or templates) and guidelines for decomposing softgoals 
and interdependencies into sub-softgoals and sub-dependencies, based on requirements 
engineers’ past experience and domain knowledge9.  

The non-functional requirements can conflict (e.g., cost and quality) or support (e.g., 
availability and dependability) each other. These relationships between non-functional 
requirements (as well as the requirements and operationalisations, and between two 
operationalisations) are called correlations. Correlations are used to examine the cross-
impact of the softgoals during trade-off analysis.  

                                                 
9 One can perceive these as loosely similar in role to that of “design patterns” for design derivation. 
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3.3.2.1.2 NFRF Artefacts  
In the NFR framework, the identified softgoals need to be catalogued and arranged into 
types, and hierarchies of IsA relationships that refine the initial softgoal. These 
catalogues are intended for future reuse and to guard against omitting important 
concerns. Such a catalogue for an information security softgoal [34] is depicted in 
Figure 3-10. The type catalogue focuses on different type of security (on the right) and 
their characteristics (on the left). While types are softgoals on their own, characteristics 
only modify and specialise the meaning of these types.  

NFR Type

Security

Availability
Integrity

Confidentiality
Operational Security

Completeness Accuracy
Internal 
Confidentiality

Operational Internal 
Confidentiality

External 
Confidentiality

Internal Consistency

External Consistency

NFR Characteristics

Life Cycle

Internal-External

Operational

Developmental

Internal

External

 
Figure 3-10 10: Information Security Type Catalogue in the NFR Framework 

The type catalogue and the decomposition methods are used to decompose a specific 
softgoal. For instance, in Figure 3-11, the account security softgoal is decomposed using 
the subtype method.  

Security 
[Account]

Integrity 
[Account]

Confidentiality  
[Account]

Availability 
[Account]

Accuracy 
[Account]

Completeness 
[Account]

InternalConfidentiality
[Account]

ExternalConfidentiality
[Account]

 
Figure 3-11 11: Refinement of Security Softgoal by Subtype 

The decomposed softgoals can now be operationalised and augmented to produce an 
even more elaborate SIG. As illustrated in Figure 3-12, the goal of Internal Consistency 
is operationalised via access authorisation which is decomposed into authentication, 
access rule validation and identification sub-goals all of which should be satisfied in 
order to satisfy access authorisation, as they are defined with an AND operator (the 
single curve between sub-goal edges). At the lowest level of decomposition the use of 
single password and card key for authentication has been selected (ticked clouds), 
leaving out biometrics. We can evaluate that use of single password positively 
                                                 
10 Source of Figure: [10] Figure 7.1 
11 Source of Figure: [10] Figure 7.3 
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contributes to password protection of the account. Also password, identification and 
access rule validation all positively contribute to the access authorisation which in turn 
positively contributes to internal consistency (the plus signs at the edges).  

AccessAuthorisation
[Account]

Authentication
Identification

AccessRuleValidation

Biometircs
CardKey

Password 
[Account]

InternalConcistency [Account]

Claim [Business 
Rule: access 
control is highly 
important]

!

SinglePassword
[Account]

!

+

+

+

Identification, 
Password & 
AccessRule
Validation 

+
+

Transaction
Generate 
Cheque

 
Figure 3-12 12: Partial Software Interdependency Graph for Internal Consistency of an Account 

The softgoal satisfaction varies in degree between satisfied to denied. The degree is 
determined by evaluating the decisions about offsprings’ satisfaction and contributions 
to the parents. The offspring satisfactions are propagated to parents through their 
contributions and their interrelationships, but also designer’s involvement is required to 
make judgement in uncertain cases. During decomposition the offsprings can be given 
different priorities and these priorities can be used while making decisions about trade-
offs and resolving conflicts between softgoals. 

The selected operationalisations are related to the target system which originates from 
functional requirements (e.g., the Transaction target originates from Generate Cheque in 
Figure 3-12).  

Although only the operationalising softgoals are reflected in the design and 
implementation (in the form of operations, data representation, assignments of tasks to 
an external agent, etc.), all softgoals participate in the construction of the SIG and can 
appear in supporting documentation for later development stages (e.g., the claim 
softgoal in Figure 3-12).   

The level of offsprings’ contribution can vary, depending on the type of contribution. If 
there is only one offspring, it can fully satisfy or deny the parent (in terms of NFR 
framework: make or break it); but if more than one offspring contributes to the parent, 
then their interrelationship counts (e.g., in case of AND relationship all offsprings need 
to be satisfied to satisfy the parent, while in case of OR – satisfaction of one is 
sufficient), as does each offspring’s contribution level. This level can vary from break 
(strong negative), through hurt (weak negative) and unknown to help (weak positive) 
and make (strong positive). 

NFRF suggests that developed refinement methods and correlations between softgoals 
both should be catalogued for future reuse.  

                                                 
12 Source of Figure: adapted from [10] Figure 7.4 
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3.3.2.1.3 NFRF Process 
The process of NFR Framework application (as presented in [10]) starts with acquiring 
knowledge about the domain and the system to be constructed, its functional 
requirements, and particular types of NFR and associated development techniques. 
From this the developer can identify particular NFRs for the domain relevant to the 
particular system. 

Once identified, the high-level non-functional requirements become the top level 
softgoals which are then decomposed using the NFRF softgoal type and refinement 
catalogues. Through this process abstract softgoals, such as security, get refined into 
more specific non-functional requirements, such as confidentiality, availability, etc. For 
each sub-softgoal suitable operationalisations are then identified, providing solution 
alternatives for the sub-goals.  

The softgoals as well as their operationalisations often have to strive for conflicting 
aims. While decomposing and identifying operationalisations, the developer has to 
consider ambiguities, trade-offs, priorities and interdependencies among NFRs and 
operationalisations. At this stage use of correlation catalogues is beneficial. The 
developer then selects some operationalisations, recoding and justifying the design 
decisions.  After completing the initial SIG, s/he should evaluate the impact of the 
decisions and the whole process or parts of it could be repeated until a satisfactory result 
is produced.  

3.3.2.1.4 Identification and Treatment of Crosscutting Concerns with NFRF 
NFRF underlines the importance of non-functional requirements, which are, by their 
nature, crosscutting. The approach does not clarify how exactly the non-functional 
requirements are identified, only suggesting that they should be obtained by gathering 
knowledge about the domain for which a system will be built. NFRF focuses on 
clarifying the meaning of non-functional requirements and providing alternatives for 
satisfying them to the highest possible level, considering the conflicts between them, 
their interrelationships (assisted by correlation catalogues), as well as the developer’s 
preferences.  

The NFR SIG encapsulates the treatment of each crosscutting non-functional 
requirement, containing details of its decomposition, mapping to decisions and choices 
for realisation at the design stage.  

On the other hand, the approach considers neither identification, nor handling of 
crosscutting functional requirements. 

3.3.2.2 Knowledge Acquisition in Automated Specification (KAOS) 
The KAOS approach has emerged from application of ideas from the machine learning 
domain to requirements engineering [35]. KAOS views requirements analysis as two 
coordinated tasks: requirements acquisition and formal specification [22]. The 
requirements acquisition task is focused on structuring requirements into a preliminary 
system model (requirements model), using a rich modelling language.   The formal 
specification task is focused on refinement of (part of) the requirements model into 
more precise formalism suitable for formal proofs and prototype generation.  In the 
flowing section we mainly consider the first task, and only briefly address the second as 
it is more relevant for the formal specification work within the AOSD-Europe Formal 
Methods Lab.  
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3.3.2.2.1 KAOS Method 
The overall KAOS approach has three main components: 

1. Conceptual model for acquiring requirements models and its supporting 
language. The conceptual model in turn has three levels: meta, domain, and 
instance; 

2. A set of requirement elaboration strategies; 
3. An automated assistant for guidance through the strategies. 

The meta-model level in the conceptual model provides a set of constructs for 
representing general domain-independent abstractions and their relationships necessary 
for modelling a system. Examples of such constructs are Agent, Action, Entity, 
Relationship, etc., as represented in the meta-classes level in Figure 3-13. 

The meta-level abstractions are concretised into sets of domain-specific concepts when 
a given domain modelling is undertaken. For instance, in Figure 3-13, a library domain 
is modelled with Agent being specialised as Borrower, Entity as BookCopy, etc. The 
domain-level concepts are linked through instances of the Relationship abstraction, such 
as Borrower performs checkout, etc.  

Finally, at the instance level (called Token level in Figure 3-13) individual instantiations 
of the domain model can be produced. 

 
Figure 3-13 13: The Levels of KAOS Conceptual Model. 

The conceptual meta-model in KAOS plays several central roles for requirements 
acquisition [22], to mention only a few, it suffices to point out that the structure of the 
requirements acquisition language is based on the meta-model abstractions and their 
relationships; each concept of the lower level inherits all properties of the corresponding 
concepts of the higher level; the meta-model drives the knowledge acquisition process. 
For instance, with a goal-directed acquisition strategy (explained below) the goal meta-
concept is considered first, instances for it are acquired, for example, through IsA links, 
objects concerned with the goal are identified and so on, but all concepts of goals, links 
and objects are defined at meta-level initially. 

The requirement elaboration strategies define specific ways of traversing the above 
described meta-model graph in order to acquire specific instances of various nodes and 
links. Strategies can differ by the meta-concepts around which they are centred: e.g., 
goal-directed, view-directed, and scenario-directed (i.e. centred around goals, views, 
                                                 
13 Source of Figure [22] Figure 1. 



 37

and scenarios respectively) etc. The strategy is made up of finer steps such as answering 
questions, input validation against higher-level constraints, etc. 

The acquisition assistant is used to guide the acquisition according to a strategy. It uses 
the requirements database and the requirements knowledge base. The Requirements 
database includes the requirements model built throughout the acquisition, and can be 
queried and analysed. The knowledge base includes the domain-level knowledge, such 
as concepts, hierarchies and fragments of requirements for a domain that can be reused 
and meta-level knowledge. The later relates to the properties of abstractions used in 
meta-model and can be represented as tactics for a strategy (e.g.,: the conflict between 
the goals can be temporarily tolerated, but will be resolved by some appropriate action 
[22]), etc. 

φ - φ is true in the next state
φ - φ is true in the previous state
=xφ - φ will be true sometime (within x)
=xφ - φ was true sometime (within x)
=xφ - φ will be always true (after some time)
=xφ - φ was always true (until some time)
φ U ψ - φ is true until ψ becomes true
φ S ψ - φ has been true since ψ became true

φ - φ is true in the next state
φ - φ is true in the previous state
=xφ - φ will be true sometime (within x)
=xφ - φ was true sometime (within x)
=xφ - φ will be always true (after some time)
=xφ - φ was always true (until some time)
φ U ψ - φ is true until ψ becomes true
φ S ψ - φ has been true since ψ became true

 
Legend: circle – previous/next state; star – some time in the 
past/future state; square: always in the past/future 

Figure 3-14: Representing Time in KAOS 

For the formalisation of the acquired knowledge KAOS provides a formal language 
representation for all its abstract concepts as well as operators. For instance, Figure 3-14 
demonstrates the time operators used in KAOS. 

3.3.2.2.2 KAOS  Artefacts 
With KAOS multiple types of artefacts can be produced. For instance, one type is the 
knowledge structures (as demonstrated in Figure 3-13) produced for the domain. 
Instances of such structures are easily mapped to scenarios, thus resulting in scenario 
artefacts. They can also be formally specified using the KAOS formalisation language, 
and result in formal specification artefacts. 
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Figure 3-1514 : Portion of Goals Structure for Borrower Goals 

On the other hand, the strategies and tactics derived for knowledge structure traversals 
are also artefacts which can also be represented formally or expressed as guidelines. 

Yet, the most popular use of KAOS is for goal-directed strategy, which results in goal 
decomposition trees. An example of such a decomposition tree is presented in Figure 
3-15 where the goal of satisfying a borrowing request from a library is decomposed into 
a set of related goals. Such decompositions can be facilitated via reuse of generic goals 
and their reductions structures collected in the knowledge base. For example, the 
decomposition of goal BookRequestSatisfied (part of Figure 3-15) can be specialised 
from the generic structure presented in Figure 3-16. 

 
Figure 3-16 15: Requirement Fragment structure for KAOS knowledge reuse. 

The selection of structures for relevant decomposition is assisted through indexing 
schemes for retrieval based on goal category (e.g., satisfaction goal), pattern (e.g., 
achieve pattern), links between objects and goals (e.g., IsA). 

 

 

                                                 
14Source of Figure: [22] Figure 3. 
15 Source of Figure: [22]. Created from text on page 23. 
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3.3.2.2.3 KAOS Process 
The KAOS acquisition process is largely defined by the selected acquisition strategy. 
For the case of Goal-Directed Strategy it can be reduced to the following steps [22] 
(which may overlap and iterate): 

1. Identify Goals and their Concerned Objects: At this step main system goals are 
identified and categorised. The objects related to the goal are identified with their 
domain specific attributes and invariants, etc. Goals are decomposed and possible 
conflicts between them are identified. This is performed by analysts in cooperation 
with clients. The knowledge base structures are also identified and reused (as 
discussed earlier).  Alternative goal decompositions are considered in order to 
minimise costs and resolve conflicts. By the end of this step a decomposition is 
selected with as few conflicts as possible and goals are decomposed to the level 
where they can be operationalised.  

2. Identify potential Agents and their Capabilities: This step overlaps with step 1, it is 
concerned with identifying human agents, physical devices and programs which are 
capable of performing actions (i.e. causing stage change) on objects from step 1. 
Agent actions and corresponding pre/post conditions for them are defined.  

3. Operationalise Goals (here goal operationalisations are called Constrains): The 
leaf goals from step 1 are converted into system objectives formulated in terms of 
objects and actions available to some agents.  Several possible alternatives can be 
considered out of which the best one is selected. Generic operationalisations could 
be available from the knowledge base which may assist in this step. 

4. Refine Objects and Actions: During steps 2 and 3 new goals, actions, objects and 
agents may be identified. In such cases it is necessary to iterate the above steps in 
order to complete the missing details about the newly identified items.  

5. Derive strengthened Objects and Actions to Ensure Constraints: At this step the 
operationalisations defined in step 3 are “strengthened”, i.e. additional pre/post 
conditions may be defined for some actions, trigger conditions may be provided, etc.  
This is carried out by reviewing the formal expressions for the operationalisations, 
checking actions and expected and occurring stage transitions against each other, 
and so on. 

6. Identify alternative Responsibilities: Here the agents identified in step 2 are assigned 
to operationalisations in accordance with the capabilities of agents (also derived in 
step 2). The assignments state which agent will be responsible for each 
operationalisation. Alterative assignments will normally be considered.  

7. Assign Actions to responsible Agents: At this step the actions are finally allocated to 
specific agents, the assignments are chosen from among the alternatives developed 
in step 6. This allocation implies that a given agent is contractually responsible for a 
given task. This allocation aims to maximise reliability of task fulfilment, minimise 
agent overloading, etc. 

3.3.2.2.4 Identification and Treatment of Crosscutting Concerns with KAOS 
Unlike most other classical RE approaches, KAOS explicitly sets out to deal with both 
functional and non-functional [22] requirements. The goal representation and 
decomposition structures of the approach and the formalisation language are well suited 
to address both types of requirements. KAOS also helps to study and analyse the 
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relationships between the goals, thus allowing to single out the goals which relate to 
many others (i.e. the crosscutting ones). The only respect in which KAOS falls 
somewhat short is in holistic treatment of the crosscutting gaols and requirements: while 
it may have tactics and heuristics for dealing with functional and non-functional 
concerns, similar heuristics and tactics for dealing with crosscutting concerns have not 
been explicitly defined. 

3.3.2.3 I* 
The I* [18-21] framework provides an agent based approach to requirements 
engineering. The term agent-based reflects that the approach is centred around the 
system stakeholders and their relationships. These relationships reflect how actors 
depend on each other for achieving their goals, carrying out some tasks, and acquiring 
resources [18]. The support for explicit modelling and analysis of multiple actor 
dependencies allows to introduce some social analysis into a system analysis and design 
framework. The purpose of such analysis is finding answers to the “why?” of 
requirements: why are the requirements of one kind and not the other. Such studies, 
grounded in social/organisational context and rationale, help not only to understand 
current requirements, but also to prepare for future changes.  

The approach also provides a set of simple intuitive graphical representations for actor 
and dependency modelling which facilitates the dialogue with stakeholders during 
requirement elicitation, encouraging stakeholder involvement and feedback.  

3.3.2.3.1 I* Method: 
I* approach is centred around agent and agent-relationship modelling. Agents are 
characterised in terms of their relationships (dependencies) with other agents. An agent 
that depends on another agent for a goal, task, or resource is called depender, that 
goal/task/resource is called dependum, and the agent dependent upon is the dependee.  
These dependencies allow an agent to achieve goals that he/she could not have achieved 
alone. On the other hand, these dependencies make the depender vulnerable if the 
dependee does not deliver the dependum agreed upon by both sides. 

I* consists of 2 major parts: Strategic Dependencies (SD) part and the Strategic Rational 
(SR) part.  The SD part studies actors and their dependencies, thus encouraging a deeper 
understanding of the business process. It helps to understand what is at stake in case of 
each particular dependency, who and how will be affected if a dependency fails. 

In this framework an agent is intentional, i.e. possesses the qualities of  [19]: 
• Intentionality: agents want to fulfil certain goals or commitments, i.e. they have 

intentions. The intentionality can also be attributed to an agent (e.g., non-human 
agents) externally, by the modeller, as this provides a useful way of analysing an 
agent. Thus, an agent can be thought of as a locality for intentionality [19, 21].  
Agents can also relate to each other at intentional level. 

• Autonomy: agents are independent (i.e. have free will) and can act towards their 
goals, thus, they are not completely knowable or controllable by the modeller. 
Yet, the behaviour of an agent can be partially characterised using his/her known 
intentions.  

• Sociality: agents exist within the network of relationships with other agents and 
environment. These relationships are multi-lateral, can be conflicting, and 
restrict an agent’s behaviour. 
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• Identity and Boundaries: define who the agents are and what their 
responsibilities are. Not only physical entities, but also abstract ones (e.g., 
teams, roles) can be agents. The boundaries of an agent can change when a 
responsibility is re-assigned from it to another agent.  

• Strategic Reflectivity: agents can reflect upon their actions and operation and re-
evaluate these. 

• Rational Self-interest: agents strive to achieve their goals, yet an agent may 
choose to constrain its strategies (in its own interest) due to social dependencies. 
However the rationality is partial and bounded due to the partial knowability of 
an agent and the limited resources available to the modeller.  

The SR part investigates different alternative configurations of actors and their 
dependencies. This allows to systematically explore the space of possible new process 
designs [36]. Each alternative may have different implications for the agents and the 
system as a whole. 

3.3.2.3.2 I*Artefacts 
The central construct in I* is that of the intentional agent, as described in the above sub-
section. Consequently, the artefacts relate to agent and dependency representation. 

In the Strategic Dependency diagram example (demonstrated in Figure 3-17) actors are 
represented as cycle with their names inside.  
 

 
Figure 3-17 16: Strategic Dependency model for meeting scheduling without computer-based 
scheduler. 

Besides the actors, the Strategic Dependency diagram includes four types of dependum: 
goals, resources, softgoals, and tasks, as well as the dependency links between agents. 
The goals are a kind of dependum which can be achieved in several alternative ways 
(e.g., attend meeting). Softgoals too are like goals, but either represent non-functional 
properties (e.g., assured to attend the meeting), or goals which are not quite clear at the 
time of representation. Tasks are dependum which should be achieved in a prescribed  
manner (e.g., attend meeting via video conferencing link).  Resources are a dependum 
for which only the delivered result matters (e.g., proposed meeting date). 
                                                 
16 Source of Figure: [18] Figure 1. 
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The links between the nodes in the SD diagram go from depender though dependum to 
dependee, and it is the depender who gets hurt if the dependum is not delivered upon.  

The Strategic Rational Diagrams are used to further the study of agents and their 
dependencies by answer such questions as why (e.g., why does a certain even occur?), 
how (e.g., how does it occur?), how else (e.g., how else can the same event come 
about?). For instance, a meeting can be scheduled by an individual, as presented in 
Figure 3-18. This figure expands the agents presented in the Strategic Dependency 
diagram and looks “inside” of them, demonstrating how they agree upon the dependum 
and why each of them does so.  

 
Figure 3-18 17: A Strategic Rationale model for meeting scheduler: manual scheduler 

 

                                                 
17 Source of Figure: [18] Figure 3. 
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Figure 3-19 18: Strategic Rationale model for a computer-supported meeting scheduling. 

Figure 3-19 demonstrates an alternative Strategic Rationale diagram for arranging a 
meeting: via a meeting planner software agent. This changes the boundaries of the 
Meeting Initiator agent by moving some tasks from him/her to the Meeting Scheduler 
agent. 

3.3.2.3.3 I*Process: 
The I* process begins by identifying the agents involved in a given process or system. 
The agents can be identified by considering who or what in the system has the 
intentionality characteristics discussed above. It is appropriate for the analyst to assign 
intentionality to non-human agents, if this assists with the analysis process. 

Once agents are identified, the Strategic Dependency diagrams (Figure 3-17) are 
constructed for them, representing their top level goals and dependencies on other 
agents. 

These SD diagrams are then elaborated into Strategic Rational diagrams by “looking 
inside” each agent. Here the structures of goal decomposition developed with NFR 
framework are used to analyse how an agent internally evaluates his/her goals and think 
about the procedures for their achievement.  

By studying the SD and SR diagrams, the analyst may devise several alternative 
dependency structures and ways to achieve agents’ goals within these structures, i.e. 
alternative SD and SR diagrams. Each of these alternatives must be analysed for 
vulnerabilities: is a dependee motivated enough to deliver upon dependum? I* suggests 
that if there is a dependency loop between the depender and dependee (i.e. the dependee 
depends on the depender for another dependum either directly or via an intermediate 
agent), it is likely that the dependum will be delivered. Out of the analysed alternatives, 
the most suitable alternative can then be selected for realisation. 

3.3.2.3.4 Identification and Treatment of Crosscutting Concerns with I* 
                                                 
18 Source of Figure: [18] Figure 4 
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As discussed above, the intentions of agents are manifested as high-level goals which 
can be either of a functional or non-functional nature. Often a behavioural goal may be 
complemented by qualifying non-functional ones [19]. The non-functional goals are 
handled similarly to NFR softgoals: through softgoal decomposition, while functional 
goals are decomposed into sub-goals and tasks. In both cases I* does not distinguish 
between crosscutting and non-crosscutting concerns. 

 

3.3.2.4 Summary of Goal-Based Approaches 
The representative goal-based approaches discussed in this section demonstrate the wide 
spectrum of usage of goals. The NFR framework focuses on the non-functional goals 
and their decomposition. I* underlines the importance of the agents, their 
characteristics, dependencies, and environment in goal analysis. Finally, KAOS is 
mostly looking at goal formalisation and knowledge acquisition.  Thus, all three 
approaches are strongly complementary: NFR provides knowledge structures about the 
non-functional goals, I* provides the agent-related knowledge, and  KAOS helps to 
formalise and reason about such knowledge. All three approaches use similar goal 
decomposition structure.   

While the goal-decomposition structures of these approaches may serve as a good 
starting point for identification and treatment of crosscutting concerns, such explicit 
identification and treatment has not been applied in these approaches. Though there 
might well be, for instance, some guidelines on composition of some crosscutting goals 
in the KAOS domain knowledge base, the same guidelines may not be identifiable for 
other crosscutting goals. In summary, the issue of crosscutting has not been clearly 
addressed. 
 
 

3.3.3 Problem Frames 
 

3.3.3.1.1 Problem Frames Method: 
The Problem Frames (PF) approach [23-26] proposes to deal with complex problems in 
software development decomposing them into structured sets of simpler interacting sub-
problems with understandable interfaces. The correctly combined descriptions and 
solutions for the sub-problems then serve as the description and solution to the original 
problem. As stated in [23], PF addresses  “... the topics that are often called functional 
requirements, software specification, and the path by which you get from one to the 
other”.  

The key point of the PF approach is decomposition of complex problems into familiar 
sub-problems, because if one has solved a similar problem in the past it will be easier 
for one to deal with the present problem. Thus, the approach sets out to identify the 
common simple problems which can be used as patterns onto which the complex 
problems should be decomposed. These classes of common problems are identified 
from the body of work on problem analysis for software development, in the same way 
as design patterns are identified from software design work.  

The broad characteristics of these identified problem classes, along with descriptions of 
interaction of the real world problem domains with the intended computer system of the 
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respective problem classes, are extracted and catalogued as problem frames. An 
example of such a problem frame is presented in Figure 3-20. This frame addresses the 
issue of building a software system that imposes certain behaviour on a part of the 
physical world.  

Control 
machine

Controlled 
domain

Required 
behaviourc

CM!C1

CD!C2
C3

 
Figure 3-20 19: The Required Behaviour Problem Frame. 

Several other problem frames, addressing specific problems are provided in [23].  
 

3.3.3.1.2 Problem Frames Artefacts  
The first artefact built in the Problem frames approach is the context diagram which 
simply represents the problem and the real world domains that interact with it. 

As depicted in Figure 3-20, a problem frame itself is represented by a problem diagram 
consisting of the software part (generally called machine, but referred to as Control 
machine is the Required Behaviour frame), one or more domains (the controlled domain 
for this frame), the requirement (in this example it is required to control the physical 
world through software) and the shared phenomena between them.  

An instantiation of the required behaviour frame (from Figure 3-20) is demonstrated in 
Figure 3-21 using the example of a one-way traffic light control. A light controller piece 
of software should control one-way traffic lights by sending red (RPulse) and green 
(GPulse) commands to the light unit; the requirement here is that Stop and Go signs 
should be demonstrated on the light unit for the red and green pulses respectively.  

Lights 
controller

Light    
units

Lights 
regime

a b

a: LC! {RPulse[i], GPulse[i]} [C1] b: LU! {Stop[i], Go[i]} [C3]
 

Figure 3-21 20: A Required Behaviour Frame for Simple One-Way Traffic Light Control. 

Each problem frame must have only one machine, which must address a distinct 
problem. Problem frames differ due to differences in their requirements, characteristics 
of problem domains21, difference in involvement of the domains (is the domain affected, 
or monitored etc.) and the frame concerns. The frame concern of each problem class 
describes what kind of descriptions are necessary to adequately understand the given 
problem and what are the logical steps for its solution. A frame concern for the required 
behaviour frame for the example in Figure 3-21 is shown in Figure 3-22.  

                                                 
19 Source of Figure: [23] section 4.3.1 
20 Source of Figure: [23] section 4.3.1. 
21 For instance, some domains have fixed casual interconnections, such as turning on/off the switch makes 
motor start/stop; others are less predictable, e.g., requesting a person to turn a switch may or may not 
result in switch being turned on. A classification of domains is provided in [23] 
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Light Controller Light units
Lights 
regime

We will build the 
machine to behave 
like this, so that …

{specification}

… knowing that the 
light units work like 
this …

{domain description}

… we’ll be sure the 
lights sequence will be 
this …

{requirement}

1

2
3  

Figure 3-22 22: Frame Concern for Required Behaviour Frame. 

From this figure we can see that a frame concern needs to have three complementary 
descriptions, named at the bottom of the notes at each step. The descriptions are for: 

• Specification, which focuses on the computer system; 
• Domains, which focuses on problem understanding;  
• Requirement, which describes the problem from the customer’s perspective. 

Thus, the frame concern demonstrates that the specification is built to accommodate 
domain phenomena so that the requirement is met.   

Since each problem class can have many variations, a number of variations and flavours 
(variants) are also considered for problem frames. A variant can add additional domains 
or features to the core problem in order to match the real problem at hand, but sill 
retains the core of the problem frame. Once the core problem frames for common 
classes of problems are known to the developers, it is easier to recognise and address the 
variations of these classes of problems and anticipate the difficulties as well as produce 
efficient solutions for them.  

It must also be noted that since problem frames address simple sub-problems, a complex 
real world problem will normally be decomposed onto several problem frames which 
(along with their frame concerns) will need to be integrated later on to produce a 
complete problem and solution description.  

3.3.3.1.3 Problem Frames Process 
Development with PF starts with focusing on a problem, locating it in the real world 
and clarifying its boundaries by establishing what the software problem is and which 
real world domains it interacts with. This results in creation of the context diagram for 
the problem. 

The context diagram is used to identify sub-problems and structure the problem as a 
collection of interacting sub-problems. The intention of this decomposition is to try and 
map the problem onto familiar simple sub-problems. During this activity, for each sub-
problem a problem diagram is constructed. The diagram consists of relevant domains 
(selected from the domains of the context diagram), the projection of the machine 
(software) from the context diagram, and the sub-problem requirement. 

Once sub-problems are identified, the developer should analyse each sub-problem and 
decide on the problem frame suitable for it. When the problem at hand fits a problem 
frame, it will satisfy, and so be solvable through, its frame concern. On the other hand, 

                                                 
22 Source of Figure: [23] section 5.2.1. 
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if the problem frame for a given problem is selected inappropriately, it will be reflected 
by the frame concern: either the frame concern will require some descriptions which 
will not make sense for the problem, or some necessary descriptions for the problem 
will be unavailable in the frame concern.  

However, in most cases the problem frame selected for a sub-problem will not fit 
perfectly: the problem is likely to be a variant or adaptation of the original frame. Thus, 
the problem frame should be adjusted correspondingly and the frame concern will need 
to be adapted to fit the sub-problem in hand.  

After each sub-problem has a fitting problem frame, these should be composed to 
produce the composite frame, where composition concern is another issue to be 
addressed. Composition concerns between pairs of sub-problems arise mainly if they 
use different projections of the same problem domain. Here composition is considered 
in terms of: 

• consistency between domain descriptions, 
• precedence between inconsistent domain descriptions, 
• interference between interactions with a domain, and  
• scheduling of machines that interact with a common domain.  

All these have to be addressed on a case-by-case basis for each individual problem. 
Finally, the frame concern of the composite frame should be checked to ensure that the 
initial problem is satisfactorily resolved.  

3.3.3.1.4 Identification and Treatment of Crosscutting Concerns with Problem 
Frames 

Although, as quoted above, the PF approach focuses on functional concerns, it also 
recognises the need to address non-functional ones. Yet, neither type of crosscutting 
concerns is identified or treated explicitly in any way. In [23] such crosscutting non-
functional concerns as completeness, overrun etc. are described. These concerns, 
however, are not incorporated into problem frames, nor have a consistent treatment 
method. They are simply referred to as other concerns that are also important. The 
notable exception to this is the reliability concern, which is separated into a new 
problem frame and modelled in terms of countering the behaviour that the machine will 
display when interacting with the real world domains if failures occur. However, to the 
best of our knowledge, there is no sufficient work available to judge if this approach can 
be applicable to other crosscutting non-functional requirements. 

3.3.3.2 Summary of Problem Frames 
Problem frames provide a way of decomposing problems into a set of familiar sub-
problems with known solutions. In their purpose and origin problem frames are similar 
to design patterns: they are intended to ease problem recognition and solution, and are 
derived from the “good practice” and experience of requirement engineers. 

As discussed above, neither functional nor non-functional crosscutting concerns are 
identified and treated modularly in the Problem Frames approach. 

   

3.3.4 Use Cases and Scenario Based Approaches 
Scenarios and use cases have recently emerged as the most popular means of eliciting 
requirements in industry.  A scenario is defined as “a sequence of actions carried out by 
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intelligent agents” [27]. Scenarios (essentially short stories) capitalise on the innate 
ability of people to reason from stories. Thus when requirements are presented as 
scenarios, people find it easier to detect inconsistencies, omissions, and threats for the 
system to be built.  

Scenarios with multiple options, conditions, and branches can be organised into use 
cases.  

A comprehensive survey of the contemporary scenario-based work is presented in [27]. 
Most of the work described in [27] uses scenarios for requirement discovery, validation, 
and deriving tests from the scenarios. Here, we present the Use Cases approach [8] and 
a scenario-based approach for misuse cases (a variant of undesirable use cases) which 
can be used for addressing (a subset of) non-functional requirements. 

3.3.4.1 Use Cases   

3.3.4.1.1 Use Case Method  
Each use case [8] describes a related set of system uses by some actors (i.e. end users of 
the system) to achieve some desired result. Use cases are used to systematically explore 
how a system is used by the stakeholders and highlight how different usage scenarios 
are handled in order to promote better understanding between users and developers and 
capture high-level, user-centric requirements.  

In addition to helping to understand stakeholders requirements for the system’s 
behaviour in a step-by-step fashion, this approach allows decomposition of a system 
onto components that “give measurable value to a particular actor” [37]. Thus, it also 
helps to derive the fundamental structure of the application as well as prioritise system 
functionality and facilitate incremental development, providing a use case as the 
smallest unit of delivery. Use cases also serve as a basis for early development of test 
cases and validation of acceptance criteria. 

3.3.4.1.2 Use Cases Artefacts 
The Use Cases approach distinguishes between actors (“what interacts with the system” 
[8]),  use case (“what should be performed by the system” [8]), use case instance or 
scenario which demonstrates a particular instantiation of a use case, and use case 
specification which details the use case as a sequence of interactions between actors and 
the system. These artefacts are presented in Figure 3-23 . 

 Figure 3-23 (a) provides a detailed description of a use case for a room reservation in a 
hotel management system. An actor is represented as a matchstick figure. Each ellipse 
in Figure 3-23 (b) represents a use case that describes the functionality indicated by its 
name. Figure 3-23 (b) itself demonstrates the use case model which consists of the 
system stakeholders, its use cases and the relationships between these use cases. The 
relationships between use cases are modelled as generalisation, extension, and 
inclusion. Inclusion is used to factor out common behaviour between use cases 
(<<include>> stereotype in Figure 3-23 (b)). Generalisation is used to refine the 
sequence of actions of the more general use case through that of more specific ones 
(similar to the generalisation relationship of classes). Finally the extend relationship 
(<<extend>> stereotype in Figure 3-23 (b)) allows the addition of extra behaviour23 to 

                                                 
23 This does not have to be optional behaviour only. Required behaviour can also be provided as an 
extension use case in order to keep the base use case simple and clear.  
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the base use case, without having to change the base, where base use case encapsulates 
the core behaviour that is self-sufficient in providing “measurable value” to the users. 
The extra behaviour is encapsulated in an extension use case (Figure 3-23  (c)), which is 
inserted into the base use case at extension points (Figure 3-23  (a)).  The extension 
points need to be pre-defined in the base use cases for every extension use case.  

 
Use-Case Specification: Reserve Room
This use case describes how customer reserves a room.
Basic Flows
B1. Reserve Room
The use case begins when a customer wants to reserve a room
1. The customer selects to reserve  a room.
2. The system displays types of rooms in a hotel and their rates
3. The customer Check Room Cost.
4. The customer makes the reservation for the chosen room.
5. The system deducts from the database the number of rooms of 

specified type available for reservation. …
Alternative Flows
A1. Duplicate Specification
If in step 5 of the basic flow if  there is an identical reservation, 
system asks the customer if he wants to proceed with new one.
1. If the customer wants to continue, system creates new reservation.
2. If the customer indicates that the reservation is a duplicate the use 

case terminates
Sub-flows:
S1: Check Room Cost
1. The customer selects a room and provides period of stay.
2. The system computes the cost of stay for given period.
Extension Points:
E1. Update Room Availability
The Update Room Availability extension point is at step 5 of Basic Flow
Preconditions…. / Postconditions … / Special Requirements …

Reserve 
room

Handle 
waiting list

<<extend>>

Check room 
cost

<<include>>

Use-Case Specification: Handle 
Waiting List

Basic Flow ……
Extension Flows
EF1. Queue for Room
This extension flow occurs at the 

extension point Update Room 
Availability in the Reserve Room 
use case when there are no rooms 
of the selected type available.

1. The system crates a pending 
reservation for the selected room 
type.

2. The system puts the created 
reservation into a waiting list

3. The system displays the unique 
identified for the created pending 
reservation to the customer.

4. The base use case terminates.

(a)

(b)

(c)  
 
Figure 3-23 24: (a) Use Case Description; (b) Use Case Model; (c) Extension Use Case Description. 

As depicted above, the main use case (represented by the basic flow) can encounter 
several eventualities when delivering the required functionality. These eventualities are 
represented by alternative flows of the use case. A use case instantiation – scenario – 
can be used to illustrate each possible flow with a possible real example. A scenario can 
also be illustrated with an interaction or sequence diagram.   

3.3.4.1.3 Use Case Process 
The Use Case process starts by identifying the actors who will be using the system. This 
can be done, for instance, by talking to the stakeholders. Then, for each actor the set of 
required functionality from the system is collected. This required functionality becomes 
the set of use cases for that actor. All use cases together form the use case model. 

Next, for each identified use case the most usual course of actor-system interaction is 
defined. This normally expected flow of interaction becomes the basic flow of the use 
case. The basic flow is described in the use case description (Basic flow in Figure 
3.23(a)). If there is any additional functionality that complements the basic flow, it is 
                                                 
24 Sources of figures  [38]: (a) adapted form Listing 5-1; (b) used from Listing 6-1; (c) adapted form 
Figure 6-1 
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recorded as an extension use case, with its description completed as well (Extension 
flow in Figure 3-23 (a) and Figure 3-23 (c)). This should be a high-level description, not 
concerned with internal workings of the system, or user interface, etc. The basic flow 
description is followed by identification and description of alternate flows (Alternative 
flow in Figure 3-23(a)). Identification of flows can be facilitated through use of 
scenarios. 

Finally the description of each use case is reviewed against the descriptions of the other 
use cases. The interaction flows common to more than one use case are separated into 
included use cases, and basic and alternative flows are also reviewed.  

Further processing of the use case approach, related to use case realisations is 
considered a matter of architecture and design stages of software development lifecycle 
and is not reviewed in this section. 

3.3.4.1.4 Identification and Treatment of Crosscutting Concerns with Use 
Cases 

Use Cases are very useful in identifying high-level user-centric functionality and 
structuring that functionality into basic, extending and included categories. Thus, 
crosscutting functionality that affects more than one use case is likely to be factored out 
into included functionality, while secondary/complementary crosscutting functionality 
may be factored out into extension use cases. Thus, the user level crosscutting 
functionality is separated from base use cases. However, because use cases only address 
user-level functionality, crosscutting functional concerns related to the internal system 
functionality are not detected.  

The non-functional requirements are not addressed by the classical use cases approach 
at all. However, there is more recent work on Aspect-Oriented Software development 
with use cases [38] that (among other things) attempts to address the identification and 
treatment of non-functional requirements. This is discussed in section 3.4.3.1.1. 

 

3.3.4.2 Negative Scenarios and Misuse Cases 
While the main body of work on use cases looks at ways of identifying the functionality 
to be provided by the system, some work has applied use cases for identifying what the 
system should prevent. Such negative use cases are called misuse cases [28-30], or 
failure cases [39], and a failure case is a special instance of a misuse case [29].  

 

3.3.4.2.1 Negative Scenarios and Misuse Cases Method 
“A misuse case is a negative form of a Use Case. It documents a negative scenario” 
[29].  The agents of misuse cases actively pursue either a hostile intent towards the 
system under development, or a goal which is damaging to the goals of the initial 
system. The actors in misuse cases could be humans with hostile intent, but also 
inanimate objects or phenomena which can metaphorically be “allocated hostile intent” 
[28]. Since the misuse cases reveal threats to the use cases, by documenting these one 
can identify means to mitigate such threats [28, 29]. Mitigation is often achieved by 
producing new use cases that provide new functionality.  
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The misuse cases method is particularly useful in security threat and safety hazard 
analysis. But it is suggested [28] that other non-functional properties, such as 
availability, maintainability, portability, etc. can also be documented via misuse cases. 
For instance, for maintainability the “hostile agent” could be an inflexible design or a 
wired-in device dependency, etc.  

3.3.4.2.2 Negative Scenarios and Misuse Cases Artefacts 
This method is essentially an extension of the use cases approach (section 3.3.4.1), 
consequently all the artefacts previously discussed for the use cases (i.e. actors, use 
cases, scenarios, use case specifications) are also applicable here. 

The artefacts specific to this method are the hostile roles and the misuse cases. The 
hostile roles are those that want either to harm the system, the stakeholders, or their 
resources intentionally, or whose goals are incompatible with the system goals. These 
roles are documented as UML actors, however, an alternative notation to the stick 
figures can be used to represent the inanimate actors (e.g., weather in Figure 3-24 which 
shows an example use and misuse cases for a fur farming company which is threatened 
by animal rights protesters and rival companies.).  

Fur farmer

Operate 
fur farm

Damage the 
business

Corner the 
market

Protester

Rival

Make site 
secure

mitigates

threatens

threatens

has exception

Establish trading 
relationships

mitigates

has exception

Damage the 
buildings

threatens

WeatherApply protective 
coating mitigates

 
Figure 3-24 25: Misuse cases documented on the use case diagram. 

The misuse cases need to be documented. In some simple cases the identified misuse 
case can be directly represented on the use cases diagram as misuse case handling or 
presenting requirement. For instance, a misuse case of an attack on one’s property can 
lead to the need for the security requirement which will result in alarm subsystem to be 
represented as install alarm use case on the use case diagram. However, in more 
complex situations the misuse case is described as a bubble of inverted colour on the 
use case diagram (Figure 3-24) and then gradually analysed to identify how it can be 
handled or mitigated. A new threatens relationship is provided to illustrate which use 
cases a misuse case threatens. Another new relationship called mitigates is provided to 
demonstrate how the identified solutions could ease the affects of the misuse case. 
Finally a has exception relationship is used to demonstrate which use cases a solution to 
a misuse case helps to handle or prevent. Other stereotyped relationships, such as 
conflicts with, and aggravates can be used to demonstrate conflicts between use and 
misuse cases. 

3.3.4.2.3 Negative Scenarios and Misuse Cases Process 
The misuse cases process application is started in same way as that for the Use Cases 
(section 3.3.4.1), i.e. by identifying the agents and main use cases of the system. Then 

                                                 
25 Source of figure: [29]. Adapted from Figure 7.5. 
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the method aims to identify the hostile agents and the goals that they might desire to 
achieve. Hostile roles can be identified in a workshop with the stakeholders. 

Having identified the hostile agents (or alongside it), the misuse cases prompted by 
these agents can be identified. These misuse cases are then documented and the 
solutions to mitigate, or prevent them from being realised are developed.  

For each identified threat at least one test case should also be developed to validate the 
proposed solution for the threat handling. 

3.3.4.2.4 Identification and Treatment of Crosscutting Concerns with Negative 
Scenarios and Misuse Cases 

As has been discussed for the Use Cases approach (section 3.3.4.1.4), use cases can be 
applied for identification and modularisation of crosscutting user-level functional 
concerns. This is also true for the misuse cases, as this approach is an extension of the 
Use Cases approach.  

In the Use Cases approach agents are the people external to the system (or other 
external systems), which restricts the use cases to the user-level. The misuse cases 
approach, on the contrary, accepts that “hazards arise … from the system and subsystem 
functions” [29], and allows the subsystems to be specified as agents also. This, in turn, 
allows for the system-specific crosscutting functionality to be identified and 
modularised. It also implies that use cases can be defined for the design and 
implementation stages. 

With regards to identification of non-functional concerns, the approach suggests to 
“think through scenarios to elicit constraints and non-functional requirements” [28]. 
Some non-functional requirements could surface from misuse scenarios, e.g., a hostile 
agent software error could “intend” to cause failure. The failure should be countered if 
the software is reliable. As a result reliability is identified as a requirement. However, 
this approach is more appropriate for understanding what the non-functional 
requirements imply, rather than their identification. For instance, thinking about 
scenarios that make the system fall short of reliability can demonstrate what the users 
expect from a reliable system. 

3.3.4.3 Summary of Use Case and Scenario-Based Approaches 
Today use cases and scenarios are the most widely used methodologies. We have 
discussed only two representative approaches from this space: the original Use Cases 
approach and its variation for misuse cases. The first one focuses on useful functionality 
of the system and system–actor interaction. The second one examines improper use of 
the system and its resources in order to develop solutions against such abuse.  

Both the discussed approaches focus on treatment of functional concerns, largely 
disregarding non-functional ones. Although the Misuse Cases approach may address 
some non-functional concerns, this is more by an accident, rather than by design and 
such concerns are still largely disregarded. Besides, while use cases can modularly 
capture crosscutting functionality in extension and inclusion cases, there is no support 
for analysing, composing and resolving conflicts for such crosscutting concerns.  

3.3.5 Summary of Non - AO Approaches 

This concludes our discussion of a selected set of cotemporary Requirements 
Engineering approaches. While we had no ambition of presenting an exhaustive survey 
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in this document, we have attempted to include the most influential pieces of work 
which have inspired the emergent work on Aspect-Oriented Requirements Engineering 
(discussed in section 3.4 below). 

 

3.4 AO approaches 
Requirements Engineering techniques that explicitly recognise the importance of clearly 
addressing both functional and non-functional crosscutting concerns, in addition to non-
crosscutting ones, are called Aspect-Oriented Requirements Engineering Approaches. 
The emergence of these approaches is prompted by three major factors: need for 
composition, traceability, and development of new technology.  

The first influencing factor is the realisation that integration of separated requirements 
artefacts (e.g., viewpoints, goals and softgoals, use cases, etc.) is a bottleneck in many 
requirement methodologies. For instance, it is difficult to integrate the viewpoints of 
individual stakeholders when producing the complete system, or it is hard to integrate 
the security and response time softgoals with the distributed data retrieval goals, etc. 
This difficulty is caused by scattering of a concern in many artefacts (e.g., security 
issues are present in many viewpoints in PREview) and intertwining of concerns (e.g., 
security and response time requirements may influence each other and constrain the data 
retrieval). This integration bottleneck makes it difficult to modularly view and reason 
about the concerns represented in several artefacts (e.g., the security concern in 
PREview is present in many viewpoints, but has no modular representation for itself). 
The inability to effectively reason about crosscutting concerns at the requirements leads 
to a poorer understanding of the stakeholders’ requirements as well as their trade-offs. 

The second factor is the need to trace crosscutting properties across the lifecycle of a 
software system. It is not just sufficient to identify and reason about crosscutting 
functional and non-functional concerns during requirements engineering. Once these 
concerns and their associated trade-offs have been established, it is essential that the 
software engineers can trace them to architecture, design, implementation and 
subsequent maintenance and evolution. Modularisation of crosscutting properties at the 
requirements level is the first step towards maintaining such traceability. 

The third factor is the arrival of Aspect-Oriented Programming, which has put forward 
new concepts for modularising scattered and tangled (i.e. crosscutting) concerns and 
new composition mechanisms (such as joinpoints and pointcuts). Identifying and 
treating such crosscutting properties from early on in the software lifecycle helps ensure 
homogeneity in an aspect-oriented software development process and also contributes to 
the aspect traceability goal mentioned above. 

Thus, Aspect-Oriented Requirements Engineering approaches focus on systematically 
and modularly treating, reasoning about, composing and subsequently tracing 
crosscutting functional and non-functional concerns via suitable abstraction, 
representation and composition mechanisms tailored to the requirements engineering 
domain. 

In the following sub-sections we discuss the most prominent and well developed AORE 
approaches. The approaches are mainly grouped into similar broad classes, as the non-
AO approaches discussed in section 3.3, except where relevant work on AO exists in for 
a class not identified earlier (e.g. a class for multi-dimensional RE work). The 
discussion on each representative approach within the group is structured in the same 
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way as for the non-AO approaches: looking at the general method, artefacts, and the 
process.  The selected groups and approaches are: 

• viewpoint-based AO group  represented by work on Aspect Oriented 
Requirements Engineering with Arcade [1, 40], 

• gaol-oriented AO group  represented by Aspects in Requirements Goal Models 
[41], 

• use case- and scenario-based  AO group  represented by Aspect-Oriented 
Software Development with Use Cases [38, 42], Scenario Modelling with 
Aspects approach [43-45], and Aspectual Use Case Driven Approach [46, 47], 

• multi-dimensional separation of concerns group [48] represented by Cosmos  
[49, 50] and Concern-Oriented Requirements Engineering [13, 51], 

• AO component-based group represented by Aspect-Oriented Requirement 
Engineering for Component-Based Software Systems [52, 53], 

• other approaches group represented by the Theme/Doc approach [54-56] 

 

3.4.1 Viewpoint-Based Aspect-Oriented Approaches 
Viewpoint-Based AO approaches extend the classical viewpoint work with the notions 
of crosscutting concerns and composition. Presently the only known viewpoint-based 
AORE approach (discussed below) is based on PRVeiw.   

3.4.1.1 AORE with Arcade 
The approach is called “aspect-oriented requirements engineering” as it is one of the 
first approaches to introduce aspect-oriented concepts at the requirements level. In fact 
[40] was the first paper to introduce the term “Early Aspects” which is now a defacto 
term for work on aspect-oriented requirements engineering and architecture design. In 
order to avoid confusion with the general topic of aspect-oriented requirements 
engineering (AORE) we will refer to this approach as “AORE with Arcade” from this 
point onwards, Arcade being the tool that supports the AORE approach in question. 

3.4.1.1.1 AORE with Arcade Method 
The Aspect-Oriented RE approach initially outlined in [40] and developed in [1] 
proposes a technique for separating aspectual and non-aspectual requirements, as well 
as their composition rules. This work has developed a general RE process model 
(demonstrated in Figure 3-27) which can be instantiated with any requirements 
engineering techniques. 

In [1] a concrete instantiation of the model is presented, using PREview-like viewpoints 
and an XML-based composition mechanism [1]. In this instantiation, the aspectual 
requirements are similar to PREview concerns – broadly scoped requirements that 
crosscut user requirements derived from many viewpoints. However, in PREview, the 
aim is to discover requirements and produce a requirements specification document26. 
AORE with Arcade, in addition, aims to modularise and compose the requirements level 
concerns, not only producing a requirements specification document, but ensuring its 

                                                 
26 This discussion is on use of PREview viewpoints for requirements specification, rather than process 
improvement. 
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consistency. This is achieved through detecting conflicts via requirement composition 
and handling the identified conflicts between viewpoints, concerns, and requirements. 

The approach balances the need to formalise the concerns, viewpoints, requirements, 
and composition operators and rules to ease representation and proof generation with 
the need to keep the artefacts simple enough to be understandable for the end users 
(who will be involved in conflict resolution with these artefacts). Consequently, the 
approach uses XML for artefact representation, keeping them structured, semi-
formalised, yet simple and understandable. An additional benefit of using XML-based 
composition rules and operators is the ease of their change and extension as required for 
an individual project.  

Composition is supported via a set of composition operators, actions, and outcomes. An 
example composition rule is presented in Figure 3-26 in the section 3.4.1.1.2. 

AORE with Arcade also assists in preparing the identified requirements for the next 
stage of the development lifecycle by providing directions for their mapping.  The 
requirements document, and conflict resolution decisions produced via AORE with 
Arcade method are then provided as inputs to the PROBE framework [57, 58]. PROBE 
was developed to establish links between aspectual requirements and their later 
lifecycle-stage artefacts. It generates proof obligations for AORE artefacts and supports 
tracing these from requirements through architecture, design, and implementation 
stages. 

The most important contributions of this approach are its ability to separate and then 
compose crosscutting and non-crosscutting requirements thorough simple yet powerful 
and flexible composition support; thorough conflict identification and resolution 
support, and the possibility of validating and tracing the requirements throughout the 
whole software development lifecycle.   

3.4.1.1.2 AORE with Arcade Artefacts 
The main concepts in the PREview-style instantiation of AORE with Arcade are 
viewpoints and concerns. An example of AORE viewpoint and concern is presented in 
Figure 3-25 which demonstrates part of a Portuguese toll collection system where a 
device (called gizmo) is credited at an ATM, installed in a car, and activated to pay tolls 
as cars pass the toll gate. 

<?xml version="1.0" ?>
<Viewpoint name="ATM">

<Requirement id="1">
The ATM sends the customer's card number, 

account number and  gizmo 
identifier to the system for activation
and reactivation.
<Requirement id="1.1">

The ATM is notified if the activation or 
reactivation was successful or not.
<Requirement id="1.1.1">In case of

unsuccessful activation or 
reactivation the ATM is 
notified of the reasons for failure.

</Requirement>
</Requirement>

</Requirement>
</Viewpoint>

<?xml version="1.0" ?>
<Concern name="Compatibility">

<Requirement id="1">
The system must be compatible 
with systems used to:

<Requirement id="1.1">activate
and reactivate gizmos;

</Requirement>
<Requirement id="1.2">deal with 
infraction incidents;

</Requirement>
<Requirement id="1.3">charge

for usage.
</Requirement>

</Requirement>
</Concern>

(a) (b)
 

Figure 3-2527: Viewpoint and Concern Artefacts in AORE 

                                                 
27 Source of Figure: [1] (a): Figure 2, (b): Figure 6. 
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In AORE with Arcade, both the viewpoints (Figure 3-25 (a)) and concerns (Figure 3-25 
(b)) have requirements and sub-requirements (also referred to as children of the top 
level requirement) with their unique identification numbers. These identification 
numbers are used to refer to the specific requirements during composition, as shown in 
Figure 3-26(a).  

The composition also uses a Constraint tag which defined how a viewpoint’s 
requirements have to be constrained by a specific aspectual requirement. Constraint has 
actions, operators and outcome elements. While AORE provides a set of such reusable 
actions, operators, and outcomes, it also allows for introduction and use of new user-
defined ones, as and when needed. Figure 3-26(b) provides some examples of these 
reusable elements and their semantics. 

<?xml version="1.0" ?>
<Composition>

<Requirement aspect="Compatibility" id="1.1">
<Constraint action="ensure" operator="with">

<Requirement viewpoint="ATM" id="all" />
</Constraint>
<Outcome action="fullfilled" />

</Requirement>
</Composition>

Constraint Action:
Enforce: used to impose an additional condition 

over a set of viewpoint requirements.
Ensure:  used to assert that a condition that should 

exist for a set of viewpoint
Constraint Operator:
During: describes the temporal interval during 

which a set of requirements is being 
satisfied.

With: Describes that a condition will hold for two 
sets of requirements with respect to 
each other.

Outcome Action:
Satisfied: used to assert that a set of viewpoint 

requirements will be satisfied after the 
constraints of an aspectual requirement 
have been applied.

Fulfilled: used to assert that the constraints of an 
aspectual requirement have been 
successfully(a) (b)

 
Figure 3-26 28: An example Composition and composition Actions, Operators, and Outcomes for 
AORE. 

The composition rule defines the relationship between the aspectual requirements (i.e. 
requirements defined for the concern) and viewpoint requirements (the requirements of 
an individual viewpoint) at the granularity of an individual requirement. If one wants to 
include/exclude all the requirements of a viewpoint in a composition, it can be done by 
using all value for the id attribute of the Requirement element in the composition 
specification (e.g., Figure 3-26(a)). The composition operators of a Constraint tag 
define the type of relationship between the requirements, actions define how these 
relationships should be enacted; and outcomes define what should be expected as a 
result of the composition. Thus, the composition rule presented in Figure 3-26(a) states 
“Compatibility Requirement 1.1 (that the system must be compatible with the systems 
used to activate and reactivate a gizmo: Figure 3-25(b)) must be ensured with regards 
to all Requirements of ATM with the outcome that the latter are fulfilled”. 

In addition to these XML-based elements, AORE with Arcade also uses matrices to 
relate concerns to each other and to viewpoints as well as to assign weights to 
conflicting requirements during conflict resolution.  

Another important set of artefacts are the proof obligations generated by PROBE  [57, 
58] expressed in standard linear temporal logic.  
                                                 
28 Source of Figure:  
[1] Ibid. (a) adopted from Figure9; (b) adopted from Tables 4, 5, 6. 
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3.4.1.1.3 AORE with Arcade Process 
The process of AORE with Arcade usage (as described in [1]) is depicted in Figure 3-27 
below.  

Identify and specify 
stakeholders’ requirements

Identify and 
specify concerns

Identify coarse-grained 
concern/stakeholders’ 
requirements relationships

Identify candidate 
aspects

Define composition 
rules

Compose aspects 
and stakeholders’ 
requirements

Build 
contribution 
table

Attribute weights 
to conflicting 
aspects

Resolve 
conflicts

Handle conflicts

Revise 
requirements 
specification

Specify aspect 
dimensions

Compose

Identify & Specify

 
Figure 3-27 29: The Process Model for AORE 

The process starts by identifying stakeholders’ requirements. When using the PREview-
based instantiation, this implies identification of viewpoints and collection of their 
related requirements. The identified requirements then are specified through provided 
XML templates. 

The next step focuses on identification and specification of concerns. Unlike PREview, 
where concerns are discovered first and viewpoint requirements collected with these 
concerns in mind, AORE discovers concerns by analysing the initial requirements and 
also allows recursive concern and requirement identification. This is followed by 
identification of coarse-grained relationships between concerns and viewpoints. For this 
a matrix is built to mark which concerns affect which viewpoints. If a concern affects 
several viewpoints in the matrix it is considered a candidate aspect.  

Next the developer defines composition rules between aspectual requirements30 and 
viewpoint requirements at the level of an individual requirement [1]. At this stage the 
requirements engineer should specify how the identified viewpoint requirements and 
concerns should be composed and (if necessary) specify customised composition 
operators. Then the concern and viewpoint requirements are composed in accordance 
with the specified rules.  

After composition the conflict handling is supported at two levels. First, due to the 
ability to compose aspectual and non-aspectual requirements at fine granularity, the 
need for analysing possible conflicts is eliminated when different concerns affect 
different requirements within the same viewpoint. Secondly, a mechanism for conflict 
assessment and resolution is provided when concerns do affect the same requirement. In 
this case a contribution matrix is to be built, with only negative contributions presenting 
a real problem. Then weight attribution based on fuzzy intervals is used to prioritise the 
conflicting requirements. Only if equal weights are assigned to conflicting requirements, 
there is a need for negotiation between stakeholders. 

                                                 
29 Source of Figure: [1] Figure 1. 
30 These are called external requirements in PREview. 



 58

Finally, the process concludes by specifying aspect dimensions, i.e. deciding whether 
the aspect should be mapped to a function, decision or aspect at the later stages of 
software lifecycle [1].  

All artefacts and documents produced via the above described process then form an 
input to the PROBE framework [57, 58], which gives temporal logic semantics to the 
natural language of the AORE-related terms, indicating what is to be proven about the 
implemented system with the given concerns, as opposed to a system without them. 
Additionally all UML design elements realising the AORE requirements should also be 
fed into PROBE, when available. Having treated all its inputs, PROBE produces proof 
obligations in temporal logic that should hold for the implemented aspects of the 
system. These proof obligations can be used both as input for formal model checkers or 
for test case generation to validate that the requirements have been correctly 
implemented. 

3.4.1.1.4 Identification and Treatment of Crosscutting Concerns with AORE 
This approach has a generic mechanism for concern handling which can easily suit both 
functional and non-functional concerns. However, it is not clear how the crosscutting 
functional concerns should be identified. Identification of crosscutting non-functional 
concerns is also not completely satisfactory, as there is no support (e.g., guidelines, 
tools, etc.) for the requirements engineer in detecting these from the requirements 
collected from the stakeholders.  

On the other hand, the very recent work [59] on this approach turns to application of 
semantic linguistic analysis of natural language and requirements documents for aspect 
identification. Although this work is at an early stage at the time of preparation of this 
report, it already has a sound well structured mechanism for identifying both functional 
and non-functional crosscutting concerns. An aspect identification tool built on a corpus 
linguistics analysis tool WMATRIX [60] is presently under construction. 

 

3.4.2 Goal Based Aspect Oriented Approaches 

For the goal-based approaches it is common to have a goal or a softgoal contributing to 
several other goals. Such relationships clearly fit into the crosscutting pattern of 
scattering and tangling. However, presently there is not much work available for goal-
based aspect-oriented requirements engineering.  

3.4.2.1 Aspects in Requirements Goal Models (ARGM)  

3.4.2.1.1 ARGM Model 
The work presented in [41] argues that aspects can be identified during goal-oriented 
requirements analysis. Aspects are discovered from the relationships between functional 
and non-functional goals by decomposing these into sub-goals, sub-softgoals, and their 
operationalisations.  When the goals and softgoals have been decomposed and 
operationalised, the correlation links between softgoals and related functional goals are 
established, as discussed in section 3.3.2.1. From the resulting Goal/Softgoal 
Interdependency Graphs the aspects can be detected as tasks with high fan-in (i.e. links 
to goals/softgoals to whose satisfaction a task in question contributes). 

A specific type of graph, called V-graph, is used to represent the goal-softgoal-aspect 
relations. 
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3.4.2.1.2 ARGM Artefacts 
This approach is based on goal and softgoal [10] approaches, thus all the artefacts for 
goals, softgoals, tasks, decompositions and alike used in those approaches are also used 
in here. In particular, in order to reason about the interdependencies between functional 
and non-functional requirements, V-graphs are used.  

As shown in the Figure 3-28 (a), a V-graph consists of a functional goal, a non-
functional softgoal and a task contributing to the satisfaction of both the goals.  

(a)

(b)

 
Figure 3-28 31: (a) V-Graph Used to Link a Task of the Goal Hierarchy to a Softgoal as Its 
Operationalisation; Goals is an Octagon, Task – a Hexagon, a Softgoal – a Cloud.  (b) Consistent 
Decomposition of Goals and Softgoals.  

The use of V-graphs for decomposing goals and softgoals and generating the 
interdependency graphs is shown in Figure 3-28 (b) for an on-line shopping site 
example. On this interdependency graph, the contributions (S for satisfy, D for deny) 
and weights (ranging from 0 to 1) of sub-goals and sub-softgoals to their parents are 
also labelled. 

After the goal and softgoal decomposition is complete, the goal interdependency graph 
is produced that contains both functional and non-functional goal-related tasks. Figure 
3-29 shows part of such a graph for an on-line shopping site’s shopping transaction 
(supported through a session cookie) which includes selecting the products, adding them 
to the cart, preparing to check out, and the actual checking out with its related tasks. 

                                                 
31 Source figure: [41] (a) Figure 3; (b) Figure 9; (c) Figure 13. 
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[cart] is the pointcut topic
Clearing, Updating, Login/Logout, Selecting, 
Addition are functional advice
Session Cookie is non-functional (aspectual) 
advice
The graph is Goal Aspect

 
Figure 3-29 32: Goal, Softgoal, and Task Graph 

Similar to the NFR framework, each goal has a topic and a type. The type reflects the 
generic functional/non-functional requirement (e.g., in Figure 3-29 the goal is of 
Transaction type), while the topic captures the contextual information of the goal (e.g., 
in Figure 3-29 the Transaction is within the context of cart topic). In this approach 
topics are also used as pointcuts at which functional goals and tasks are related to non-
functional softgoals (e.g., [cart] topic in Figure 3-29). The tasks are advising the goal 
with the given topic. Aspectual tasks are the operationalisation tasks for the non-
functional requirements.  

Additionally, the approach puts forward the concept of goal-aspect: the goal which 
aspectual task and functional tasks realise. This is illustrated in Figure 3-29. Also, it is 
suggested that the advising tasks can be separately viewed and worked on, for 
convenience, and later composed into the general SIG through their topics. 

3.4.2.1.3 ARGM Process 
This approach provides a set of clear processes for goal/ softgoal decomposition and, at 
the end, for aspect identification. A number of procedures and sub-procedures for this 
work are discussed in [41]. Below we consider the main procedures.  

The decomposition begins with a procedure called AspectFinder, which takes as input a 
set of goal and softgoal nodes, iteratively breaks them into sub-goals and sub-softgoals 
(this is performed via user input) using the Decompose procedure, correlates these goals 
and their decompositions using the Correlate procedure, and resolves conflicts between 
goals/subgoals through the Resolve Conflicts procedure. 

                                                 
32 Source of Figure: [41]. Adopted from Figure 14. 



 61

The Correlate procedure establishes an initial relationship between root functional goals 
and softgoals. The relationship is represented by one or more correlation links. The sub-
goals propagate their contributions up to the parent goal satisfaction, over the 
correlation links.  

The Decompose procedure is used to input new sub-goal nodes, defined from the parent 
goals and softgoals. If any of the sub-goals provides a negative contribution to the 
parent, the Resolve Conflicts procedure is invoked, which removes the link between the 
offending sub-goal and its parent goal. The refinement process must be monotonic: no 
goal/softgoal must become less satisfied due to decomposition. 

The aspect identification procedure is called ListAspects. It gathers a set of tasks that 
contribute to a softgoal. Aspects are the operationalisations of the softgoals that 
contribute to the functional goals. It is suggested that aspects are named after the 
softgoals they operationalise.   

 

3.4.2.1.4 Identification and Treatment of Crosscutting Concerns with ARGM 
With ARGM the goals (functionality) and softgoals (non-functional concerns) are 
recursively decomposed until they can be reduced to a specific task. The crosscutting 
functional and non-functional concerns can then be identified as the tasks that contribute 
to several goals and softgoals. However, due to the decomposition mechanism which 
does not allow decomposition to sub-goals that negatively contribute to the parent goal, 
it is not evident that the user requirements are adequately mapped to sub-goals and 
tasks. For instance, a worst case scenario for such decomposition is illustrated in Figure 
3-30. 

A

A1 A2

A3 A4

-

 
Figure 3-30: A worst case scenario for Decompose procedure 

Here A3 negatively contributes to A1, thus the Decompose procedure will remove A3, 
which will deny A2 (since A2 requires both A3 and A4), and consequently, A itself 
(which requires A1 and A2).  
 

3.4.3 Use Cases and Scenario Based Aspect Oriented Approaches 
The use cases and scenario based approaches have been somewhat ahead of other 
classical approaches with regards to composition (e.g., through extend and include 
relationships). However, the functionality-centred nature of these techniques has left the 
issues of non-functional concerns not effectively tackled by them. Consequently the 
AORE work in this area extends the available composition support and attends to 
covering the non-functional properties. 
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3.4.3.1 Aspect-Oriented Software Development with Use Cases 
Aspect-Oriented Software Development with Use Cases (AOSD/UC) [38, 42] suggests 
that use cases are crosscutting concerns, since the realisation of each use case affects 
several classes. This approach adopts an implementation-language-like view on use 
cases as aspects. This view is strongly influenced by AspectJ [61] and HyeprJ [62] 
languages. AOSD/UC adopts AspectJ-style linguistic constructs (e.g., joinpoint and 
pointcut) and HyperJ-type decomposition modules (e.g., slices). 

3.4.3.1.1 AOSD/UC Method 
AOSD with use cases [38] extends the traditional use cases approach [8] (discussed in 
section 3.3.4) with two main elements: pointcuts for use cases and grouping of 
development artefacts in use case slices and use case modules: 

• Pointcuts here are groupings of use case joinpoints represented by extension 
points [42] and such elements as classes, operations, etc. within a use case.  
Whereas extension points (named points in the body of a use case specification) 
were available in use case modelling before AOSD/UC, these were only used to 
refer to a particular extension use case. In AOSD/UC extension points become a 
part of an ‘extension point and pointcut’ pair that helps to decouple the 
extending and base use cases and facilitates pointcut identification at the design 
stage.  

• A use case slice contains the details of a use case at a given development phase, 
e.g., requirements or design. A use case module, on the other hand, contains all 
the details related to a use case, across all development phases. 

The approach distinguishes two types of use cases: peer and extension. Peer use cases 
are distinct and independent of each other, each can be used separately with no 
reference to the other; they are the base requirements. When peer use cases are 
composed, their full operations are composed without intervention in their execution. 
However, composition of peer use cases needs to take into consideration the 
overlapping behaviour and conflicts between classes used for realisation of different use 
cases.  

Extensions are additional features on top of the base use cases. Though extensions can 
be defined independently of the base cases, they should normally be used along with the 
base. When extensions are composed with the base cases, their operations usually 
interfere with the execution of the operations of the base use case.  

The AOSD/UC also encourages the capture of non-functional requirements as use cases, 
using a construct called infrastructure use case which refers to the activities that the 
system infrastructure needs to perform to meet user requirements.  

3.4.3.1.2 AOSD/UC Artefacts 
All the artefacts discussed in section 4.3.4 for Use Cases are applicable in AOSD/UC, 
even if some will be slightly modified.  

The UML use case representation as a classifier (Figure 3-31) is preferred to the ellipse 
representation because a classifier can provide more details about the use case. The 
classifier is extended with /basic/, /alt/, and /sub/ tags for basic, alternative and use case 
execution flows respectively. The basic tag indicates that the use case can be triggered 
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by an actor, while the sub tag indicates that the flow can be referenced or included only 
by another flow. Alternative flows can be defined as extension use cases.   

Reserve Room
Flows
{basic} Reserve Room
Extension Points
Update Room Availability = 
Bacis Flow step 5

Handle Waiting List
Flows
{alt} Queue for Room

{after UpdatingRoomAvailability yields
NoRoomAvailable }

Extension Pointcuts
UpdateRoomAvailability = Reserve Room. Update 
Room Availability

<<extend>>

 
Figure 3-31 33: Use of UML Extended Classifier with Extension Points and Pointcuts for AOSD/UC, 
Using an On-Line Hotel Room Booking Example. 

As demonstrated in Figure 3-31, the extension use case can be referenced from the base 
use cases through the names of these sub-flows (called extension points, provided in the 
Extension Points section of the use case representation). These extension points are in 
turn referenced from within the extension use cases themselves, via extension pointcuts. 
The flow definition in the extension use cases can also be complemented with an 
extension condition and before, after, around keywords, reflecting the conditions and 
sequence of extension point execution in the base use case flow. The extension points 
and pointcuts are later on used to develop design level pointcuts. 

The newly introduced notions of use case slice and use case module in AOSD/UC are 
both used to localise use case related and complementary artefacts respectively at a 
specific lifecycle stage and across all stages. Some of the elements that can be contained 
in a requirements level use case slice are demonstrated in Figure 3-32. 

use case 
specification 
slice

interaction 
diagrams

conceptual 
model 
(classes, 
operations, 
properties)

…

 
Figure 3-32: Some Elements Contained in a Requirements Level Use Case Slice. 

Similar use case slices should be produced for other stages of development, containing 
their corresponding elements. The design slice, for instance, should include the 
collaboration diagrams, classes, extensions, etc. for a given use case. All such slices are 
then packaged into a use case module, as shown in Figure 3-33. 

use case 
specification 
slice

analysis 
slice

design 
slice

implementation 
slice

test 
implementation 
slice

test 
design 
slice

<<trace>> <<trace>> <<trace>>

<<trace>>

<<trace>><<trace>><<trace>><<trace>>

 
Figure 3-33 34: The Use Case Module. 

                                                 
33 Source of figure: [38] Figure 6-4. 
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The special infrastructure use case <Perform Transaction> is used to capture the non-
functional requirements. The template non-functional requirements should be 
represented as extension use cases to <Perform Transaction>, as demonstrated in Figure 
3-34 below.  

<Perform Transaction>

<<extend>>

Track Preferences

<<extend>>

<<extend>>
<Actor> Audit Transactions

Handle Authorization

Use-Case Specification: <Perform Transaction>
Basic Flows
The use case begins when an actor instance performs a 

transaction to view the values of the entity instance
1. The system prompts the actor to identify the desired 

entity instance
2. The actor instance enters the values and submits this 

request.
3. The system retrieves the entity instance from its data 

store and displays its values.
4. The use case terminates
Alternative Flows
A1. Access Control
If in step 3 of the basic flow the request requires 

authorization, the system checks the actor instance’s 
access rights.

1. If the actor instance does not have access rights, the 
request is rejected. The use case terminates.

2. Otherwise, the use case proceeds.
A2: User Preference
….
Special Requirements:
All retrieval of records should take no longer then 2 seconds

Handle Authorization
Flows
{basic} Define Permission
{alt} Check Authorization {around 

PerformTransationRequest}
Extension Pointcuts
PerformTransationRequest = Perform Transation. 

Perform Request

(a)

(b)(c)
 

Figure 3-34 35: An Example Infrastructure Use Case in AOSD/UC. 

The suggested advantages of using the template use case are that it helps to visualise the 
context of infrastructure mechanisms (such as authorisation, etc.) and serves as a base 
for systematically identifying extension points. 

The approach also provides a number of design level artefacts, such as design level 
pointcut, parameterised use case slice, etc. These, however, are not considered relevant 
for this section and are not reviewed. 

3.4.3.1.3 AOSD/UC Process 
AOSD/UC is a development approach that spans the whole development lifecycle: from 
requirement gathering to implementation. Here, we focus on requirements engineering 
part of the process only.  

For the requirements engineering part, the AOSD/UC process is very similar to that of 
the traditional Use Case process (discussed in section 3.3.4). The only significant 
difference is the inclusion of separate use cases for non-functional requirements. These 
should be identified, defined and recorded using the infrastructure use cases along with 
identification and processing of functional use cases. Another minor difference is the 
packaging of each use case and its related elements separately into a use case slice. 

 

 

                                                                                                                                               
34 Source of figure: [38] Figure 10.5. 
35 Source of figure: [38] (a) Figure 7.6; (b) adapted from Listing 7.3; (c) Figure 7.7. 
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3.4.3.1.4 Identification and Treatment of Crosscutting Concerns with 
AOSD/UC 

Identification and treatment of crosscutting functional concerns by AOSD/UC at the 
requirements engineering stage is quite similar to that of the Use Case approach 
(discussed in section 3.3.4.1.4), with minor differences of using classifier representation 
with an Extension Pointcut section for use case representation. 

In addition, AOSD/UC advocates applicability of use cases for non-functional 
requirement treatment: “so long as a requirement requires some observable response to 
be programmed into the system you can apply use cases” and “as long as you can define 
a test, you can define a use case for it” says [38]. As demonstrated in Figure 3-34, these 
are modelled as extensions to the Perform Transaction template use case.  

However, the argument for the non-functional use case definition seems to disagree 
with the actual definition of a use case as what the user does and what the system does 
in response. A user does not do anything for the non-functional requirements, s/he 
simply requires them to be present. So there is no action involved from the user’s side in 
most cases, for instance, when a user enquires about the weather over the internet, the 
user does not act with an intention to get a response within 2 seconds, or to synchronise 
his/her query with that of the weather update system – these are by-products of asking 
about the weather. Thus, the non-functional use case identification in this case should 
traverse in the following order: (a) what the user wants, (b) how it can be tested, (c) 
design test, (d) convert it into a use case, (e) extend the functionality with new use case. 

Another uncertain area is that of aspect definition in AOSD/UC. As mentioned earlier, it 
is suggested that a use case is an aspect as it crosscuts many classes. This, however, 
assigns a characteristic to the requirements level concern on the basis of its design 
representation. Such a concern will certainly be crosscutting at the design level (with 
OO classes), but this might not be sufficient for it to be crosscutting at the requirements 
level as well. 

3.4.3.2 Scenario Modelling with Aspects  
Scenario Modelling with Aspects focuses on effects of aspects on behaviour modelling, 
taking a UML-based view. Here, the repeated behaviours is generalised into aspects, 
which are then instantiated when required.  

3.4.3.2.1 Scenario Modelling with Aspects Model 
In [43-45] an approach to modelling aspects as part of scenario-based modelling is 
proposed. The motivation for this approach is to assist in developing a more complete 
and consistent set of scenarios by removing the need to repeatedly deal with the same 
‘non-nominal, crosscutting’ scenarios (e.g., failures, exceptions, etc.), which occur 
along with many scenarios. 

The non-crosscutting and aspectual parts of scenarios are modelled separately from each 
other then merged as required, producing the complete scenarios. The composed 
complete scenarios can then be executed for validation purposes. 

3.4.3.2.2 Scenario Modelling with Aspects Artefacts 
This approach uses use cases for identification of functional requirements. 
Consequently, all artefacts discussed for the Use Cases approach (discussed in section 
3.3.4) are also applicable here. An example use case diagram is presented in Figure 3-35 
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(a) for a parking lot use and payment example. Additionally, UML sequence diagrams 
are used for representing non-crosscutting scenarios (e.g., Figure 3-36(a)), from which 
Finite State Machines are generated using a state machine synthesis algorithm [63].  

(a) (b)
 

Figure 3-35 36 : Artefacts of the Scenario Modelling with Aspects approach: (a) An Example Use 
Case; (b) Interaction Pattern Specification Example.  

Aspectual scenarios are represented as Interaction Pattern Specifications (IPS) [64], 
where the IPS describes a pattern of interaction between its participants in terms of roles 
that the participants must fill in. It should be noted that this approach extends the notion 
of Interaction Patterns specification, allowing non-role elements to be included in it. An 
example of IPS is illustrated in Figure 3-35(b). While this might appear to be very 
similar to the UML interaction diagrams, some of the messages and their parameters 
have “|” prefixed to their names. This prefix indicates a role that needs to be filled by 
the participants instantiating the pattern.  

The aspectual scenarios are translated from IPS to State Machine Pattern Specifications 
(SMPS) using a state machine synthesis algorithm [63]. An example for SMPS is 
provided in Figure 3-36(b). Again, the SMPS are quite similar to the UML state 
machines, but have role elements that need to be filled.  

(a) (b)
 

Figure 3-36 37:  (a) UML Sequence Diagram; (b) State Machine Patter Specification. 

                                                 
36 Source of Figures: [45] :(a) Figure 9, (b) Figure 10. 
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Before SMPS for aspectual scenarios and Finite State Machine (FMS) for non-aspectual 
scenarios are composed, the roles defined in SMPS need to be mapped to elements of 
the FMS. For this a State Machine Binding Specification is necessary. For instance, an 
example binding specification to bind the SMPS from Figure 3-36(b) to FSM of Figure 
3-37(a) can be as follows: 

|s1 binds to t1 
|s2 binds to t2 
|Action binds to insertTicket 
|a binds to t 
|CannotRespond binds to timeout 

After this specification is provided, the state machines can be merged, producing the 
complete state machine presented in Figure 3-37b). 

(a) (b)
 

Figure 3-37 38 : (a) Finite State Machine Produced form Interaction Diagram from Figure 3-36(a); 
(b) Composed FSM, Combined from State Machines on Figure 3-36(b) and Figure 3-37(a). 

3.4.3.2.3 Scenario Modelling with Aspects Process  
Figure 3-38 presents the process of the Scenario Modelling with Aspects approach.  

Identify and define 
requirements

Identify 
scenarios

Specify aspectual 
and non-aspectual 
scenarios

Identify aspectual 
scenarios

Simulate and validate 
system requirements

Compose aspectual 
and non-aspectual 
state machines

Generate aspectual 
and non-aspectual 
state machines

 
Figure 3-38 39: The process of Scenario Modelling with Aspects Approach. 

The process commences with requirements identification and definition. [44] suggests 
that this is carried out using use cases to identify functional requirements and templates 
as in [46] for non-functional ones. This is followed by use case refinement and scenario 
identification. The non-functional requirements are likely to result in crosscutting 
scenarios, and other crosscutting scenarios may be identified for some functional 
requirements.  

                                                                                                                                               
Source of Figure: [45] (a): Figure 11, (b) Figure 12. 
38 Source of Figure: [45] (a): Figure 13, (b) Figure 14. 
39 Source of Figure: [45] Figure 1. 
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Thereafter,  the non-crosscutting scenarios are modelled as UML sequence diagrams 
(Figure 3-36(a)), then Finite State Machines are generated from them (Figure 3-37(a)) 
using a state machine synthesis algorithm [63].  

Aspectual scenarios are modelled as Interaction Pattern Specifications (IPS; Figure 
3-35(b)) [64], which are then translated into State Machine Pattern Specifications 
(Figure 3-36(b)) using a state machine synthesis algorithm [63].  

The aspectual state machines are then instantiated and, finally, merged with non-
aspectual ones using State Machine Binding Specification, which provides a 
correspondence between relevant states of each of the state machine. 

Now, the composed state machine (Figure 3-37(b)) can be simulated using existing 
simulation tools. Alternatively, analysis tools for formal model checking techniques can 
be applied to prove conformance of the scenarios to the requirements. 

When this process (discussed in [45]) is used the instantiation and merging of aspectual 
scenarios is carried out at the state machine level. An alternative process to this is 
discussed in [44] where the IPS for aspectual scenarios are instantiated, producing 
interaction diagrams; then the interaction diagrams for aspectual and non-aspectual 
scenarios are merged, followed by the generation of a composed state machine. When 
merging is carried out with interaction diagrams, the operators detailing how to 
interleave messages from different scenarios also need to be provided. Yet, both the 
processes lead to the same end and are both acceptable. 

3.4.3.2.4 Identification and Treatment of Crosscutting Concerns with the 
Scenario Modelling with Aspects Process  

The approach does not address the issues of aspectual scenario identification, merely 
stating that scenarios that represent use cases which affect other use cases (such as 
failure handling) are aspectual. The approach also suggests that the non-functional 
requirements will result in crosscutting scenarios. Such scenarios are illustrated in [44] 
as behaviours constraining the main functionality (e.g., preventing client connection 
while some processing is in progress). While this could indeed be a part of the non-
functional requirement representation, further discussion is necessary to clarify how 
fully such scenarios can represent non-functional requirements. Nevertheless, once 
identified, the treatment of functional and aspectual scenarios is well represented and 
justified.  

 

3.4.3.3 Aspectual Use Case Driven Approach 
The Aspectual Use Case Driven Approach is similar to AOSD/UC in that it separates 
the crosscutting functionality into inclusion and extension use cases and also suggests to 
model quality attributes as use cases. However, here quality attributes do not have to be 
attached to an infrastructure use case. Also this approach provides a structured way – a 
template - for identification of crosscutting concerns. 

3.4.3.3.1 Aspectual Use Case Driven Approach Method 
The Aspectual Use Case Driven Approach [47] is concerned with extending the use 
case model to integrate non-functional requirements and identify the crosscutting 
functional use cases. The separated use cases for all concerns should also be integrated 
into a complete model using the provided composition mechanism.  
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This model extends the work on crosscutting quality attribute identification and 
integration into requirements engineering carried out in [46] where the crosscutting 
quality attributes are considered as fundamental modelling primitives; and it is further 
developed in [65] with support for unanticipated requirements change handling. 

3.4.3.3.2 Aspectual Use Case Driven Approach Artefacts 
Since the Aspectual Use Case Driven Approach is a use case based approach, all the 
artefacts discussed for the Use Cases approach (such as use case diagrams, etc.) are also 
appropriate and used for this approach. 

Additionally, in this approach the quality attributes are initially represented with the 
template depicted in Figure 3-39. The template itself is influenced by [10, 66, 67]. In 
order to identify if the quality attribute is crosscutting, one needs to consider the 
information provided in the Where and Requirements rows of the template. If the quality 
attribute traverses several use cases/models and requirements, it is crosscutting. 

Represents how the quality attribute affects other quality attributes. This contribution can be positive (+) or 
negative (-)

Contribution

Requirements describing the quality attributeRequirements

List of the actors influenced by the quality attribute and also a list of models (e.g. use cases and sequence 
diagrams) requiring the quality attribute

Where 

Activities of the software process affected by the quality attribute Influence

Can be optional or mandatoryObligation 

Expresses the importance of the quality attribute for the stakeholders. A priority can be MAX, HIGH, LOW 
and MIN 

Priority

Quality attributes can be decomposed into simpler ones. When all (sub) quality attributes are needed to 
achieve the quality attribute, we have an AND relationship. If not all the sub quality attributes are 
necessary to achieve the quality attribute, we have an OR relationship 

Decomposition 

Source of information (e.g. stakeholders, documents)Source

A quality attribute can affect the system (i.e. the end product) or the development processFocus 

Executive descriptionDescription

The name of the quality attributeName 

 
Figure 3-39 40: Template for Quality Attributes.  

The Aspectual Use Case Driven Approach also employs the notions of overlapping, 
overriding and wrapping of functional requirements by non-functional attributes. The 
overlapping of a functional requirement by an NFR implies that the NFR modifies the 
functional requirement (FR) by being applied before or after it. Overriding implies that 
the behaviour described by the quality attribute substitutes the behaviour of the FR. 
Finally the wrapping implies encapsulation of the FR by the NFR. Examples of such 
relationships are presented in Figure 3-40 and Figure 3-41 (using the Portuguese toll 
collection example mentioned in section 3.4.1.1.2 ).  

Figure 3-40 displays how Response Time attribute is wrapping certain functionality of 
Gizmo, Vehicle, BankAccount and PriceTable classes. These classes will be involved in 
corresponding scenarios and use cases listed in the Where clause of the Response Time 

                                                 
40 Source of figure: [46] Table 1. 
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NFR template. Their corresponding requirements will also be visible in the 
Requirements section of the template. 

 
Figure 3-40 41 : Response Time Quality Attribute Wraps the Functional Requirements.  

Figure 3-41 displays the overlapping of Pay Bill and Register Vehicle use cases with the 
Security NFR. Here confidentiality must be used before the executions of the use cases 
and integrity must be used after them. Correspondingly, the dashed line represents after 
conditions while the dark line shows before conditions. 

 
Figure 3-41 42: Security Overlaps Use Cases.  

In [65] it is suggested to extend the set of relationships between use cases, 
complementing the standard UML include, extend, and inherit  relationships with new 
ones for collaborate, damage and constrain. Collaborate reflects the positive 
contribution of one use case to the other, damage the negative contribution, and 
constrain reflects that a global property restricts another use case. An example of such 
use of constrain in use case diagrams is presented in the Figure 3-42. 
                                                 
41 Source of figure: [46] Figure 5. 
42 Source of Figure: [46] Figure 6. 
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Figure 3-42 43: Projecting Response Time quality attribute on the use case diagram, using 
<<constrain>> relationship.  

Another new artefact used in this work is the Use Case Pattern Specification (UCPS) 
[65] applied to represent the generic use cases in an abstract way which can later on be 
instantiated to suit a particular situation.  

The idea of UCPS is based on the idea of Interaction Pattern Specification proposed in 
[68]. Use case roles represent the concerns that are more likely to change over time and 
these can be instantiated differently for particular configurations of the system. To 
describe these use cases in a generic way the generalised UML activity diagrams can be 
used. The generalisation of these diagrams is in inclusion of role elements into their 
definition, producing the Activity Pattern Specification (APS), in the same way as for 
UCPS. The APS are instantiated during use case composition, with assignment of role 
elements and a chosen composition operator. Such a composition example is presented 
in Figure 3-43. 

Compose <use case A> with <use case B>
<step #.> Replace |<modelElement A> 

with 
<modelElement B>

[ ]
<modelElement B>  

Figure 3-43 44: Composition of Use Case A and Use Case B with Instantiation of |<modelElement> 
A Role.   

3.4.3.3.3 Aspectual Use Case Driven Approach Process 
The steps of the process are depicted in Figure 3-44. The process commences with 
actors and use case identification, as per the common Use Cases approach [8]. This is 
followed by refinement of the identified use cases to externalise the functionalities that 
are spread across several use cases; these functionalities are encapsulated in include or 
extend use cases.  

Having modularised the functional concerns, the process addresses the identification of 
the non-functional ones by analysing the already elicited requirements as well as 
obtaining additional information from the system stakeholders. These NFRs are 
represented in a template (as shown in Figure 3-39).  

                                                 
43 Source of Figure: [47] Figure 3. 
44 Source of Figure: [65]. 
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Figure 3-44 45: The process model for the Aspectual Use Case Driven Approach.  

At the next step, the identified NFRs are integrated into the use case model derived in 
the previous steps. The integration is achieved by extending the use case model with the 
new stereotyped relationships which link the functional use cases with the new NFR use 
cases for each of the identified non-functional concern. The extended set of 
relationships, as discussed in section 3.4.3.3.2 (i.e. extend, include, inherit, collaborate, 
damage, constrain), is used. 

Finally, the process summarises the candidate aspect use cases: if a use case is related 
to more than one other use case, then that use case is a good candidate for an aspect.  

3.4.3.3.4 Identification and Treatment of Crosscutting Concerns with 
Aspectual Use Case Driven Approach 

In this approach the functional requirements are identified through use cases. The use 
cases are then analysed for repeated behaviour and the crosscutting functionality is 
separated from all use cases into included or extending use cases. Also, a single-
standing functionality can be identified as potentially crosscutting if it has relationships 
with many other use cases. Treatment of functional requirements is supported via the 
use cases approach, as well as can be assisted with the newly introduced additional 
relationships (damage, collaborate, constrain). 

Identification of crosscutting NFRs, on the other hand, is not supported with a clear 
procedure. The NFRs are identified via analysis of other requirements and additional 
information. Once identified, the NFRs receive a systematic treatment: by being 
represented via templates which help to record their inter-relationships, via use case 
diagrams with quality attributes and generalised use case pattern and action 
specifications. 

3.4.4 Multidimensional Separation of Concerns Approaches 
Multidimensional Separation of Concerns [69] is based on the premise that all software 
development artefacts are made up of multiple, overlapping concerns and that software 
                                                 
45 Source of Figure: [47] Figure 1. 
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development will benefit if software systems can be flexibly decomposed and composed 
according the alternative combinations and organisations of concerns [48].  

Approaches discussed in this sub-section maintain the principle that concerns are worth 
studying by themselves and that no concern is more important than the others, i.e. there 
is no evident base and crosscutting distinction between concerns. Since all concerns are 
treated uniformly, one can project their influences on each other and hence observe and 
analyse any crosscutting behaviour amongst them. 

3.4.4.1 Concern Modelling with Cosmos 
Cosmos [48, 49, 70] is a general-purpose concern modelling schema which allows to 
model concerns generically and independently (irrespective of any other software 
artefact).  

3.4.4.1.1 Concern Modelling with Cosmos Method 
This work aims to promote concerns to be first-class entities in software development 
[50] where concerns are defined as any matter of interest in a software system [49].  

The motivations for this intent are many. To illustrate some we should consider that 
concerns arise at all stages of software life cycle and are present in various forms 
throughout; a single concern can span multiple phases of the life cycle, be related to 
multiple instances and types of artefacts, and affect the phases and artefacts in different 
ways. Concerns also change over time, causing change in their respective software 
artefacts [49].  

Cosmos models the software concerns space in terms of concerns, relationships, 
predicates, and topics.  

Concerns are divided into two main categories: logical and physical. Logical concerns 
relate to conceptual entities, such as issues, problem, “itlities”46, etc. Physical concerns 
refer to actual constituents of software systems, such as software units, hardware, 
services, etc. Each type of concerns can further be grouped into sub-categories [71].  

Relationships reflect how the concerns interact with each other; they also are subdivided 
into several types. Predicates represent integrity conditions over various relationships 
and can be classified accordingly too [49]. Finally, topics are groupings of all other 
elements that relate to some particular topic of interest. The general concern model 
elements for Cosmos, as presented in [49] are depicted in Figure 3-45. 

                                                 
46 i.e. such quality attributes as availability, reliability, etc. 
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• Concerns
– Logical

• Classifications
• Classes
• Instances
• Properties
• Types

– Physical
• Collections
• Instances
• Attributes

– Predicates
– Relationships
– Groups
– Predicates

• // subtypes not elaborated

• Relationships
– Categorical
– Classification
– Generalization
– Instantiation
– Characterization
– Topicality
– Attribution
– Membership

• Interpretive
– Contribution
– Motivation
– Admission
– Logical implementation
– Logical composition
– Logical requisition

• Physical
– Physical association
– Physical requisition

• Mapping
– Mapping association
– Physical implementation  

Figure 3-45 47: Cosmos Concern Model Elements: Outline.  

3.4.4.1.2 Concern Modelling with Cosmos Artefacts 
Cosmos intends to model the concerns independently of any type of artefact, 
consequently it does not produce any specific artefacts, but only concern descriptions, 
as illustrated in Figure 3-46.  

The example shown in Figure 3-46 is that of a sample of concerns for a general purpose 
cache [70] which supports usual caching and also has some extra functionality such as 
logging, collection of statistics, and object dependency tracking. It is interesting to note, 
that in this example the cache has been implemented before its concerns were modelled, 
consequently, concerns collected for the cache also include its implementation related 
elements. 

Logical Concerns: Classes
• Object classes

– Cache
– CachedObject
– Other object classes …

• Functionality
– Cache

• Core
• Object expiration
• Operation-enabling
• Statistics logging …

– CachedObject
• Core
• Expiration
• Other functionalities …

– Other classes …
• Behavior

– Cache
• Operational

– Core
– Object expiration
– Operation logging
– Statistics logging…

• Aspectual
– Input checking
– Operation logging..

• Non-operational
– Statistics logging

• State
– Cache

• Objects
• Dependencies
• Configurable controls …

• Properties
– Static properties
– Dynamic properties

• Java code
– Programmed classes

• Classes
• Members

• Decomposed classes
– Anticipated

Logical Concerns: Other Categories

Instances
• Omitted for brevity
• Topics
• Dependencies and transitivity
• Configurable behaviors
• Other topics ...

Properties
• Generality
• Performance
• Information hiding
• Concurrency
• Configurability
• Correctness
• Other properties ...

Instances
• com.ibm.ws.abr.gps.-
• Cache.java
• com.ibm.ws.abr.gps.-
• Cache.class
• com.ibm.ws.abr.gps.-
• CachedObject.java
• com.ibm.ws.abr.gps.-
• CachedObject.class
• Other classes ...

Collections
• whimbrel.watson.ib

m.com
• C:\$Sutton\Caching\

Code\Java\Prog
• rammed
• Other collections ...
Attributes
• com.ibm.ws.abr.gps.
• Cache.java.Size
• Other attributes ...

Physical Concerns

 
Figure 3-46 48: Selected Concerns from GPS Cache modelled in Cosmos.  

Figure 3-46 illustrates what concerns are involved, their functionality, behaviour, 
properties, possible mapping to a specific development language, etc. The concern 
space thus modelled is multidimensional, in that many elements in the cache can be 
                                                 
47 Source of Figure: [49]] Table 20.1. 
48 Source of Figure: [49] Table 20.2 . 
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assigned to concerns in multiple classifications, and any of the available classifications 
can be selected as the base for viewing the rest of the concerns [49]. Once modelled, 
concerns can then be used in further software development artefacts at any stages of 
development.  

By relating concerns to the various artefacts in which they appear, the developers can 
improve traceability, foresee impact of concern change and achieve many other benefits 
of modularisation and clear understanding of software artefact dependencies. 
 

3.4.4.1.3 Concern Modelling with Cosmos Process 
The concern model can be built for any type of development: new, evolutionary, COTS 
[49]. For instance, the example described above showed that concerns can be modelled 
for an already implemented system. In this case the development will probably be 
linked to the needs of evolution, or product family development. The concerns 
identified from the implemented system will be complemented with the concerns 
representing additional or changed features, which will be related to additional artefacts 
and their interactions with the existing system. The developed system can also be re-
modularised on the basis of concern-units. 

When used with COTS development, concern models can be used to evaluate the 
suitability of particular products for development from the perspective of how their 
concerns will interact with the concerns of other products, and contribute to the desired 
software system concerns, etc. 

If concern modelling is used for a new development, a limited concern model can be 
built at the start of the development which can be elaborated as the development goes 
on. Concerns related to requirements, design etc. can be added and related to the 
artefacts, the relationships between these concerns can be analysed and the software 
products structured to reflect the semantics of concern interaction. This, in turn, 
facilitates evolution and change. The changes themselves too can be validated against 
the concern model. 

Besides the descriptions above, presently there is no standard process defined for 
concern modelling and analysis with Cosmos [48]. The basic approach is to carefully 
study the available documents and artefacts of interest and identify the explicitly 
expressed concerns, as well as concerns implied by the documents and artefacts. It is 
necessary to select only concerns that are reasonably relevant to the software system, as 
the number of concerns will be very high even for small systems. The identified 
concerns then should be fitted into the Cosmos categories and used for whatever 
development type is appropriate.  

3.4.4.1.4 Identification and Treatment of Crosscutting Concerns with Concern 
Modelling with Cosmos 

Cosmos does not distinguish either between crosscutting and non-crosscutting or 
functional and non-functional concerns. All concerns are identified and modelled in the 
same way; they simply are classified per different categories of the schema.   

3.4.4.2 Concern-Oriented Requirements Engineering  
The Concern-Oriented Requirements Engineering Model (CORE) [13, 51] is an 
adaptation of the Aspect-Oriented Requirements Engineering (AORE) approach [1] 
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discussed in section 3.4.1.1. While many of the requirement treatments and 
representation techniques used in AORE  [1]  are carried forward to CORE,  the main 
difference between these approaches is the adoption of a uniform view on all concerns 
in CORE. Concerns in CORE imply any coherent collection of requirements.  

3.4.4.2.1 Concern-Oriented Requirements Engineering Method 
CORE strives to decompose requirements in a uniform fashion regardless of their 
functional or non-functional nature. This makes it possible to project any particular set 
of requirements on a range of other requirements, hence allowing the flexibility to 
choose “base” and “crosscutting” concerns as desired, rather then having to follow 
“functional base and non-functional crosscutting” tradition.  

Figure 3-47 illustrates this model. It represents the CORE concern space at the 
requirements level: it is presented as a hypercube each face of which stands for a 
particular concern. Since all concerns are treated equally, any set of concerns can be 
selected as the base to project the influence of another concern or set of concerns onto 
this base. In this way CORE supports multi-dimensional separation of concerns [69]. 

 

Figure 3-47 49: Concern space represented as a hypercube in CORE. The block arrows represent 
concern projections. 

The concern projections are achieved through the same composition approach as in [1]: 
employing informal, often concern specific, actions and operators. The CORE approach 
also supports establishment of early trade-offs among crosscutting and overlapping 
requirements, as well as  negotiation and decision-making among stakeholders using 
similar techniques to AORE [1]. Additionally, this model defines the notions of meta 
concern space and compositional intersection [13].  

The meta concern space (Figure 3-48) comprises all abstract concerns (both functional 
and non-functional) that can manifest themselves in various systems. In this sense the 
meta concern space is a catalogue of concerns that appear time and again in various 
software systems. Consequently, the abstract concerns from this space can be used as a 
basis to classify the requirements of a given system in order to identify the 
corresponding concrete concerns in the system space. The utility of the meta concern 
space is in cataloguing the abstract concerns, their likely relationships and possible 
ways of utilisation.   

                                                 
49 Source of Figure: [51] Figure 1. 



 77

Meta Concern
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System
Space

Requirements

 
Figure 3-48 50: Meta Concern Space 

The analysis of concern interactions and trade-offs is fairly straight forward in 
approaches which have a strong base-aspect separation. The base concerns act as a 
reference point with respect to which the trade-offs and interactions of aspectual 
concerns are analysed (e.g., [1], [44], etc.). However, in a multi-dimensional RE model, 
such as the one employed by CORE, each concern can affect multiple other concerns 
and one can choose any set of concerns as a base to observe the trade-offs amongst 
other concerns. If left unchecked, this can lead to serious scalability issues due to the 
potentially large number of concern combinations to be analysed. The notion of a 
compositional intersection introduced by [13] is, therefore, a very powerful concept 
within the model. A compositional intersection provides a restricted set of concerns that 
can be used as a base for concern projection during concern interaction and trade-off 
analysis. In order to understand compositional intersection let us consider that C1, C2, 
C3, …, Cn are the concrete concerns in the system requirements and Sc1, Sc2, Sc3, …, 
Scn are the sets of concerns that each of them cuts across respectively. If one wants to 
identify the trade-offs (if any) between C1 and C2 then, in order to do this, one should 
take the compositional intersection of Sc1 and Sc2. However, note that a compositional 
intersection is not a simple intersection as in set theory. If Ca is a member of both Sc1 
and Sc2, Ca will appear in the compositional intersection iff both C1 and C2 
influence/constrain the same or overlapping set of requirements in Ca. That is, if C1 and 
C2 influence disjoint sets then Ca will not be in the compositional intersection. The 
compositional intersection is thus used to simplify concern interaction analysis by 
reducing the number of potential combinations of concerns to be used as a base.  

3.4.4.2.2 Concern-Oriented Requirements Engineering Artefacts 
The concern representation in CORE is very similar to that of AORE. The concern 
artefacts are represented in XML (see Figure 3-25 for AORE) the only difference being 
that all concerns are encapsulated in  <Concern> tag, rather than sorted into individual 
types, such as <Viewpoint> or <Aspect> etc. The hierarchical structure of a concern is 
same as for AROE: it can contain requirements and sub-requirements each of which has 
a unique identifier. 

Similarly, the composition rules, operators, actions, and composition specifications 
illustrated in Figure 3-26 for AORE are also used for CORE, with only the <viewpoint> 
and <aspect> tags replaced by <concern>. 

                                                 
50 Source of Figure: [13] Figure 2. 
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CORE, as AORE, also uses matrices for illustrating if the concerns influence each other 
(Figure 3-49 (a)) and also for depicting the types of contributions that concerns have on 
each other, where negative contributions indicate conflicts that need to be resolved 
(Figure 3-49(b)). 

 
C1           C2          …         Cn

C1

C2

…

Cn

+
C1           C2          …         Cn

C1

C2

…

Cn

(a) (b)  
Figure 3-49 51: (a) Table of concern relations; (b) Table of concern contributions 

 
One artefact unique to CORE is the folded table of contributions which contains the 
reflected contributions of concerns towards each other. This is illustrated in Figure 3-50. 

Concernn

Concernn-1

Concernn

Concernn-1

Concern1 Concern2

 
Figure 3-50 52: The concern contribution table folder along its diagonal. 

 

Each cell in the folded table contains the reverse projections – note that the composition 
rules represent projections of the influence of one concern on other concerns – 
indicating how multiple concerns cumulatively influence a single one. This provides a 
powerful mechanism to observe both influencing and influenced relationships among 
concerns.  

The conflicting concerns are allocated weights with respect to the concern for which the 
composition rule was defined and the concern with the higher weight gets priority 
during conflict resolution. In case if equal weights are assigned to conflicting concerns, 
stakeholder negotiations are necessary for conflict resolution. 

3.4.4.2.3 Concern-Oriented Requirements Engineering Process 
The CORE process is illustrated in Figure 3-51.  

                                                 
51 Source of Figure: [51]  (a) : Table 1; (b) Table 2 
52 Source of Figure: [51] Figure 3. 
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Figure 3-51 53: The process model for CORE. 

 

The process commences with concern identification which can be carried out with any 
mix of RE approaches, such as viewpoints or use case based approaches. Alternatively, 
or complementarily, the meta concern space can also be employed for concern 
identification. The identified concerns are related to each other through a matrix like 
one depicted in Figure 3-49(a). The relationships between concerns are identified using 
domain analysis, ethnographic studies, natural language processing or alike. 

Having established the course-grained relations between concerns (Figure 3-49(a)), the 
more specific kind of influence between them is defined through composition rules. The 
composition rules apply at the requirements-level granularity of the concerns and are 
similar to those of the AORE approach, discussed in section 3.4.1.1.2. 

After specifying the compositions between the concerns and their requirements, conflict 
identification and resolution begins with building of a contribution matrix (Figure 
3-49(b)). This table is then folded to obtain the cumulative influence of concerns on 
each other (note that [51] and  [13] propose two different approaches to folding as the 
latter employs a compositional intersection as the basis for trade-off analysis). Where a 
conflict is detected, a priority is assigned to the conflicting concern with respect to the 
concern that it is projected on. The decisions regarding conflict resolution can be then 
discussed with the stakeholders, using the assigned weights to assist with decision 
making. The conflict resolution might lead to requirement re-definition and iteration of 
the above process. 

Once the conflicts are satisfactorily resolved, the mapping of the concerns onto the later 
stages of development is identified in the same way as for AORE. Additionally, the 
influence of concerns on the development lifecycle is specified: for instance, an 
availability concern may influence system architecture, while mobility may influence 
all: architecture, design, and implementation. This mapping and influence is considered 
in more detail in [13] which discusses the various architectural choices posed to the 
developer by each concern and its associated trade-offs. The architectural choices made 
by the developer for each concern then pull the architecture in various, at times 
conflicting directions. The trade-off and interaction analysis conducted at the 
requirements level helps to tailor these choices to ensure that the architecture has an 
optimal pull in the various directions and meets the stakeholders’ requirements 
effectively.  
                                                 
53 Source of Figure: [51] Figure 2. 
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Figure 3-5254: Architectural pull of various concerns 

3.4.4.2.4 Identification and Treatment of Crosscutting Concerns with 
Concern-Oriented Requirements Engineering  

Similar to AORE, the CORE approach has a generic mechanism for concern handling 
suitable for both functional and non-functional concerns. Moreover, CORE does not 
make any particular distinction between these types. The approach also suggests a 
number of methods that can be used for concern identification as well as concern 
relationship identification. The meta concern space based concern identification 
approach can be complemented by the semantic natural language processing-base 
concern identification tool (discussed in section 3.4.2.1.4) which is presently under 
construction [59]. Such an integrated technique can provide a powerful concern 
identification mechanism well suited for both AORE approaches based on an aspect-
base separation and those employing a multi-dimensional perspective for requirements 
analysis.  

3.5 Component-Based AO 
The AORE approaches discussed so far have not specified the granularity of the 
aspectual modules. The Component-Based Aspect-Oriented techniques address the 
utility of aspects within a component-based system, thus, applying the notion of aspects 
specifically to modules of a large granularity. 

3.5.1.1 Aspect-Oriented Requirements Engineering for Component-
Based Software Systems (AOREC) 

Aspect-Oriented Requirements Engineering55 for Component-Based Software Systems 
(AOREC) [52, 53] is devised to address such open issues of traditional component 
requirements engineering as classification of component services per systemic areas (or 
aspects) of application, sufficient detail per service, and ability to address a given 
service at required detail level at run-time. An aspect in AOREC is a characteristic of a 
system for which components provide or require services [52]. Aspects help to identify, 
categorise, and reason about the component requirements. 

3.5.1.1.1 AOREC Method 
AOREC focuses on identifying and specifying the component requirements relating to 
key aspects of the system. Examples of such systemic aspects are, for instance, user 

                                                 
54 Source of Figure: [13] Figure 11. 
55 The term “aspect-oriented requirements engineering” has been for the first time mentioned in this work 
in [52]. 
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interface, persistence, collaborative work, etc. Then they can be refined into sets of 
aspect details. For instance, a user interface can have the affordance and view details. 
Such aspects are a way to take multiple, systemic perspectives onto components and, in 
so doing, to better understand and reason about the data, functionality, constraints, and 
inter-relationships of components. For instance, they can be helpful in reasoning about 
how different components interact via providing and requiring aspect details (e.g., see 
Figure 3-53), or what will be required when reusing a specific component, or if a given 
configuration of components will be valid with respect to a given aspect of the system, 
etc.  

3.5.1.1.2 AOREC Artefacts 
The aspects can be produced for both newly developed and re-engineered components. 
In Figure 3-53 an example of aspect-oriented requirements identification artefacts 
obtained through re-engineering is provided. The figure demonstrates that an Event 
History component provides and uses with several aspects, namely: User Interface, 
Persistence, Collaborative Work and End User Configuration aspects. Each aspect 
details within an aspect can be provided or required by a given component. For instance, 
in Figure 3-53 extensible affordance detail in the User Interface aspect is provided by 
the Event History component, but this component also requires viewer detail from the 
same aspect. The viewer detail is provided to the User Interface aspect by another 
component: the Event History Viewer.  

 
Figure 3-53 56: Example components and some of their aspects. 

Aspects identified and documented with diagrams, such as in Figure 3-53, are 
complemented with detailed textual descriptions. These descriptions provide additional 
documentation for functional and non-functional requirements. The full textual aspect-
oriented specification for the Event History component is provided in Figure 3-54. 
                                                 
56 Source of Figure: [52] Figure 4. 
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Collaborative Work Aspects : COLLABORATION 

1) +data fetch/store functions : DATA_MANIPULATION 

-- Provides services for getting some/all of event history data and for updating some/all of event 
history data. Used by components providing collaborative work infrastructure to keep 

distributed data synchronised or partially synchronised. 

QUERY=true; UPDATE=true 

2) +event broadcasting/actions functions : EVENT_MANAGEMENT 

-- Provides services allowing other components to detect event history update events and to action 
(replay) events received by other components. Used by components providing collaborative 

work infrastructure to keep distributed event history synchronised or support deltas of event history 
version changes. 

DETECT=true; ACTION=true 

3) + event annotation functions : AWARENESS 

-- Provides services for annotating, selecting, highlighting events. Used by components providing 
collaborative work infrastructure to support basic group awareness facilities for updated 

event history events. Other components should use these to annotate events with remote user name, 
colour them with a colour associated with a particular user, etc. 

HIGHLIGHT=colour; ANNOTATE=tex 

4) - remote data/event synchronisation : LOCKING 

-- Requires component(s) that supports remote data/event synchronisation. Could support fully 
synchronised data or semi-synchronous update. This should be robust if network connections 

fail, and should work over low or high bandwidth networks. 

SYNCHRONOUS=true OR false; SEMI_SYNCHRONOUS=true OR false; 
NETWORK_SPEED=any; STORE=true 

5) - data/event versioning : VERSIONING 

-- Requires component(s) providing data versioning. Should support both event history data and 
event history update event recording/versioning. This should be a simple-to-use facility for 

end users. Should extend the viewer affordances to provide at least check-in/check-out capabilities 
via +extensible affordance aspect. 

DATA=true; EVENT=true; INTERFACE=extensible affordances; CHECKIN=true; 
CHECKOUT=true 

 
Figure 3-54 57: Detailed aspect-oriented component requirement specifications. 

AOREC also introduces the concept of aggregate aspect which is an aspect specified 
for groups of interrelated components used to reason about aspect-oriented requirements 
of a set of components or even the whole system.  

3.5.1.1.3 AOREC Process 
The AOCRE process is demonstrated in  
Figure 3-55. The process starts with analysing general application requirements. The 
system requirements are used to identify candidate components, as shown by step (1) in 

                                                 
57 Source of Figure: [52] Figure 5. 
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Figure 3-55. The requirements for identified components are then elaborated. Aspects 
for each component are identified (step 2) and refined to determine the provided and 
required aspect details (step 3). Aspects are used to reason about component 
composition and configuration. 

The refined aspects for groups of components, or the whole system, if appropriate, are 
analysed for aggregate aspects (step 4). The aggregate aspects can then be identified as 
new components, thus also causing change in previously analysed components and 
initiating revision cycles (step 3.b).  

 

System Requirements Component 
Requirements Revise

Identify candidate 
components Identify aspects for 

each component

Refine aspects 
(provides/requires)

Analyse Aggregate 
Aspects

Verify that system 
requirements are met

(3 b)

Design

component 
requirements

component 
requirements

component 
requirements

system 
requirements

refine 
component basic aspect

detailed aspect

aggregate 
aspect

new/changed 
component

new/changed 
componentrefine requirements

(1)
(2)

(3)

(4)
(5)

 
 

Figure 3-5558: Basic AOREC process. 

Once all system requirements are allocated per components; aspects for components and 
component groups are identified and aggregated, the produced components and aspects 
are verified against the system requirements (step 5). If the requirements are 
satisfactorily met by the produced component and aspect requirement model, the design 
phase commences.  

 

3.5.1.1.4 Identification and Treatment of Crosscutting Concerns with AOREC 
AOREC  does not provide any general support for crosscutting concern identification. 
The aspects and aspect details are identified on a case-by case basis by the requirements 
engineer.  

For a small subset of aspects (namely User Interface, Collaboration, Persistence, 
Distribution, and Configuration) used in case studies for publications on AOREC [52, 
53] an initial reusable breakdown of  aspects to aspect details is suggested. 

                                                 
58  Source of Figure: [52] Figure 3. 
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This approach is well suited for treating component contributions to non-functional 
concerns, as many (all) components will contribute to any given non-functional 
requirement. Examples of such non-functional aspects are provided in the AOREC 
work. On the other hand, it is difficult to perceive how a functional requirement could 
be crosscutting in a component-based system, where components are intended to 
modularise functionality. Presently there are no examples of functional concerns for 
AOREC. Yet, the general approach of using provided/required aspect details for an 
aspect is well suited for both non-functional and functional aspects.  

 

3.5.2 Other AO Approaches 

We have discussed that most AORE approaches have emerged as extensions of some 
non-AO approaches. Yet, there are also a small number of AORE approaches which are 
completely new or are driven by the needs of existing AO approaches at design and 
implementation level. Currently, the most prominent such approach is Theme/Doc. 
Although the Theme approach has emerged from the work on Subject-Oriented 
Programming [72], Theme/Doc itself has not: it is a new approach developed to provide 
requirements analysis capabilities for subsequent aspect-oriented design with 
Theme/UML. 

3.5.2.1 Theme/Doc 
Theme/Doc [54-56] is the Requirements Engineering part of the Theme  [55, 56] 
approach. The core of the approach is the concept of a theme which represents a 
meaningful unit of cohesive functionality.  

The themes are loosely similar to functionalities identified by use cases. The method is 
centred around graph-based representation of the potential themes and this 
representation-assisted analysis. 

3.5.2.1.1 Theme/Doc Method 
Them/Doc [54-56] supports “aspect identification and analysis in requirements 
documentation “where aspects manifest themselves as “descriptions of behaviours that 
are intertwined, and woven throughout” [55]. Thus, it is aimed at later stages of RE, 
when at least an initial requirements document is available for lexical analysis. Due to 
its focus on “behavioural” aspects, it aims to discover the functional crosscutting 
concerns, since the non-functional ones could have no behaviour-related manifestations.  

The approach is supported by the Theme/Doc tool which provides a set of views that 
assist in requirements analysis, as well as direct mapping of the requirement views to 
Theme/UML – the design counterpart of the Theme approach. In fact, the Theme/Doc 
tool is quite central to the Theme/Doc approach because the analysis and steps of the 
approach are based on the graphical visualisations from the tool. 

Currently the work on Theme/Doc is focused on addressing the scalability issue of the 
approach [73]. It is also looking at other possible clues for detecting crosscutting, in 
addition to the current one of having several actions/concerns mentioned in the same 
requirement. 

 

3.5.2.1.2 Theme/Doc Artefacts 
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Most artefacts produced by the Theme/Doc approach are those generated by the 
Theme/Doc tool. However, the initial input to the tool is the manually compiled list of 
action words and entities. Action words are the verbs from the requirements document 
which indicate some activities performed, while entities are the nouns to which those 
activities relate directly or indirectly.  

The central generated artefact of the approach is the action view graph depicted in 
Figure 3-56 for a course registration system where students are registered/unregistered 
for a course and marks given to them: 

 
Figure 3-56 59: Action View in Theme/Doc for a Course Registration System.  

When the action words are assigned per requirement and the links between secondary 
actions and their requirements are cut (or clipped) and replaced with a decorated link, 
the clipped action view is produced (Figure 3-57 (a)). Besides identifying the base and 
crosscutting themes (base ones being the themes at the lowest level of the clipped action 
view hierarchy, and crosscutting ones being those at the higher levels), this view also 
demonstrates the required order of composition. The themes should be composed from 
the bottom up, as the higher level themes might rely on those below them.  
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Requirement 
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Legend

 
Figure 3-57 60: Clipped Action View (a) and Theme View (b) From Theme/Doc Tool for a Course 
Registration System. 

The actions and their associated entities and requirements are collected into a theme 
which can be viewed in the theme view (Figure 3-57 (b)). 

                                                 
59 Source of Figure: [55] Figure 1. 
60 Source of Figure: [55] (a) Figure 2, (b) Figure 3. 
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3.5.2.1.3 Theme/Doc Process 
The process of Theme/Doc [55, 56] is shown in Figure 3-58. 

actions

clipped 
view

Select aspects

rework

categorise major and minor

designtheme 
view

augment

show 
themes

 
Figure 3-5861: Theme/Doc Process 

It commences with the requirements engineer identifying action words from the 
requirements document and providing these, along with the requirements document 
itself, as inputs to the Theme/Doc tool. It should be noted that synonyms referring to the 
same action can be grouped under one action word, and so can “minor” actions which 
do not have strong enough themes of their own.  

Using the provided inputs the tool generates action views. This view demonstrates the 
links between requirement sentences and the action words, as shown in Figure 3-58. If a 
requirement is linked to many action words, tangling of behaviour is identified. This 
could be caused either by a badly specified requirements (in which case the 
specification should be corrected), or by presence of crosscutting behaviour. 

In case of many links from a requirement to action words, where re-stating requirements 
does not alleviate tangling, the predominant action for the requirement should be 
defined (and thus selected as base), and the secondary action(s) should be clipped (using 
the tool), which indicates that the secondary action/behaviour will crosscut the base 
behaviour. 

After all shared requirements are clipped from their secondary behaviours (with a faded 
arrow between primary and secondary behaviours replacing the link between the 
requirement and the secondary behaviour), the clipped action view is obtained (e.g., 
Figure 3-57 (a)). 

The theme view is created by identifying entities, to be used at design stage, from the 
requirements document and providing these as additional input along with the actions 
words and the requirements document. The theme view can be used for the design stage 
to produce separate themes for mapping onto Theme/UML. This view also helps to 
design generic views of the crosscutting themes (by generalising the concrete project-
related specifics from the crosscutting theme). 

At this stage the work of Theme/Doc part of the Theme approach is completed and 
Theme/UML steps in to create the designs. However, after the design process is 
complete, the final designs can be validated against the theme views of Theme/Doc. The 
theme views can also be augmented by design level elements. This can help to verify 
that the produced designs align with the requirements. 

                                                 
61 Source of figure: adopted from [56] 
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3.5.2.1.4 Identification and Treatment of Crosscutting Concerns with 
Theme/Doc 

As discussed above, Theme/Doc approach has based aspect identification on using 
action words, which makes it well suited to identify crosscutting functional 
requirements. On the other hand, non-functional requirements often do not have any 
action associated with them. The approach suggests that in such cases the requirements 
can be re-written to include action words. However this assumes that such requirements 
can be identified by the requirements engineer which in most cases is precisely the 
problem that the identification needs to address. Besides, the issue of how a particular 
non-functional requirement is related to other requirements is still unresolved (e.g., how 
security affects response time of mark allocation).  

 

3.6 Comparison 
Having outlined the RE approaches earlier in this section, we now investigate how well 
they perform against our comparison criteria (presented in section 2 and refined in 
section 3.2).  

3.6.1 Traceability through software lifecycle 

3.6.1.1 Traceability of Requirements and Change to Their Sources of 
Origin 

Table 3-1 shows the comparison of the features that support traceability of requirements 
and change to their sources of origin for all the non-AO and AO approaches considered 
in section 0. 
Approach Features That Support Traceability Of Requirements And Change To Their 

Sources Of Origin Criterion 

PREview source and change history sections in template; use of viewpoint focus 

VIM viewpoint owner, work record section in a viewpoint 

NFRF SIG for sub-goals from the softgoals, indirectly: softgoal topic 

Problem Frames indirectly: context and problem diagrams and problem frames. 

KAOS domain model, links between agents and goals; gaol decomposition graphs, 
formal representations  

I* SD and SR diagrams, within SR diagrams the SIGs for goal and softgoals from 
the softgoals; implied intentionality  

Use Cases actor in the use case diagram 

Misuse Cases actor in the use case diagram, including misuse cases and solutions to mitigate 
them. 

AORE with 
Arcade 

viewpoint of requirements 

ARGM SIG for sub-goals from the softgoals, indirectly: softgoal topic 

AOSD/UC actors in use case diagram 

SMA actors in use case diagram, source in templates for NFR 

AUCDA actors in use case diagram, source in templates for NFR 
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Cosmos not considered 

CORE abstract concerns in the meta concern space 

AOREC not considered  

Theme/Doc not considered 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-1: Summary of Features that Support Traceability of Requirements and Change to their 
Sources of Origin Criterion. 

PREview records the source of a requirement origin in the source section of 
requirement templates and keeps the record of change in the change history section. 
Besides, through the reference of a requirement to the viewpoint that it comes from, one 
can use the viewpoint focus for relating the requirement to the part of the system that its 
originating viewpoint represents.  

In VIM each viewpoint and its requirements are assigned to a viewpoint owner for 
whom the viewpoint is elicited. Also the work record section of each viewpoint will 
contain the development and change state and history. 

Although NFRF records the origin of sub-goals from the softgoals in the SIG, it does 
not record the sources of softgoals themselves. Using the topic of the softgoal, one can 
get a general idea as to where in the system it belongs, but not where the softgoal 
originated from.  

PF does not explicitly attend to this issue, yet in many cases the sources of the 
requirements may be identified from the context and problem diagrams and problem 
frames.  

The conceptual model in  KAOS provides a way of detailing the relationships between 
goals the agents from which they originate through the kinds of links characteristic for a 
given domain. On the other hand, the origins of sub-gals are traceable back to the larger 
goals through the goal decomposition graphs. Additionally, all information in KAOS is 
formally represented and recorded, thus providing another traceability link. 

I* identifies the agent associated with each goal, task or resource. Thus, each elicited 
requirement will have an associated agent. Even the reason for the requirement or 
change is identifiable from the SR diagrams. Also, since I* supports “implied” 
intentionality, non-human agents (such as government bodies, law, etc.) will act as 
agents when they generate requirements or cause change. 

Use Cases identify the functionality per an actor, and record the actor and his/her use 
cases (and their related requirements) in the use case diagram. This approach does not 
record the information related to non-user level requirements and change. 

Misuse Cases, also record the actors and use cases, in the same way as the Use Case 
approach does. In addition, actors here can be people, external system, internal sub-
systems, and inanimate objects and phenomena. In this way the non-user level 
requirements and change can also be recorded. This, however, necessitates design and 
even implementation level requirement integration with the user-level requirements.  
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AORE with Arcade keeps clear reference to the sources of requirements origin, as each 
requirement is nested within the viewpoint that it originates from. It is unclear if and 
how AORE with Arcade will record the sources of change, as no example or discussion 
on this is available. However, we envisage that version control in the native XML 
database system employed by the Arcade tool can be used for the purpose. 

Aspects in Requirements Goal Models approach uses the NFR-type recoding, thus it has 
the same shortcomings as the NFR framework in recording sources of origin for goals, 
softgoals and change. 

Similar to Use Cases, AOSD/UC records the origin of functional requirements on the 
use case diagram, though when classifier representation is used instead of ellipse, these 
details might be lost. Additionally, this approach records the non-functional concerns 
through a parameterised <Perform Transaction> use case for a parameterised <Actor>. 
The parameterised use case is instantiated for each relevant actor type, thus recording 
the source of origin of specific sets of non-functional concerns per actor. 

Although the Scenario Modelling with Aspects approach does not detail how source 
traceability is preserved, it relies on use cases for requirement identification and 
scenario generation, which provides the mechanisms of the Use Cases approach. In 
addition, the templates used for non-functional requirements [46] record their source. 

In the Aspectual Use Case Driven approach the functional requirements are traceable to 
their sources through the use case diagram and non-functional ones through the 
templates used for their representation.  

In Concern Modelling with Cosmos the source of the concerns is not deemed important, 
as many concerns will be implied. 

Unlike AORE, CORE does not use viewpoints for concerns structuring. However, the 
sources of concern origin are recorded via the classification based on the abstract 
concern representations in the meta concern space. 

AOREC does not address the issues of requirement or change origin. 

Theme/Doc assumes that some requirements document is already produced and does 
not attend to the issue of the requirements source or the source of change to the 
requirements. Such issues are assumed to be handled during the initial requirements 
document production.  

 

3.6.1.2 Traceability between Lifecycle Artefacts 
Table 3-2 shows the comparison of the features that support traceability of requirements 
between lifecycle artefact representations for all the non-AO and AO approaches 
considered in section 0. 

Approach Features That Support Traceability Between Lifecycle Artefacts Criterion 

PREview unique identifiers link requirements to viewpoints 

VIM viewpoint work plan , templates and specifications  

NFRF design decision and operationalisation and correlation links, claims and 
augmentations in SIG 

KAOS operationalisations, formal representation 

I* design decision and operationalisation and correlation links, claims and 
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augmentations in goal and softgoal interdependency graph 

Problem Frames problem diagrams and annotations, frame concerns. 

Use Cases collaboration diagrams 

Misuse Cases records of misuse case solutions, collaboration diagrams, 

AORE with 
Arcade 

records of mapping decisions; PROBE framework 

ARGM design decision and operationalisation and correlation links, claims and 
augmentations in SIG 

AOSD/UC collaboration diagrams; use case slices and modules 

SMA not considered 

AUCDA collaboration diagrams 

Cosmos physical concern links to conceptual counterparts 

CORE records of mapping decisions and influence of concern on architectural choices 

AOCRE design-level aspects 

Theme/Doc direct match between its requirements engineering and design models; major 
action and theme views 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-2: Summary of Features that Support Traceability between Lifecycle Artefacts Criterion. 

 

PREview concerns end up scattered across viewpoints in the requirements elicitation 
stage and across requirements specification and design artefacts later on, though the 
requirements have unique identifiers that link them back to the concerns that they 
represent. 

For artefact traceability VIM uses the work plan section of the viewpoint which 
provides such information as viewpoint actions and trigger/guide actions which 
respectively detail how and when new instances of a particular template should be 
created. Since the new instances may represent the later lifecycle stage specifications of 
a given artefact, a traceability link between them will be established (e.g., RE stage 
objects can become detailed objects at the design stage) [16, 74]. 

NFRF relates its softgoals to the appropriate functional requirements via design decision 
links while the operationalisations relate to design decisions via operationalisation 
links, thus, linking requirements and designs as well as functional requirements with the 
non-functional ones which they are related to. Besides, all design decisions and choices 
are recorded in the SIG via claim softgoals and augmentations which remain available 
during further development.  

In KAOS operationalisations define the simple tasks to which goals are reduced. These 
tasks are assigned to corresponding agents and the pre and post conditions for respective 
actions of agents are defined. Although this does not directly trace to design entities, it 
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may facilitate such traceability, for instance, by facilitating identification of classes per 
main agents, and grouping data and functionality for each agent in a class, etc. 

While I* is mainly concerned with early requirements engineering process, some 
support for lifecycle artefact traceability is inherent within the method due to the use of 
NFRF-style goal and softgoal decomposition in its Strategic Rationale diagrams. From 
this perspective I* provides traceability support similar to NFRF. However, since I* 
encompasses goal decomposition (in addition to softgoal), functionality is more closely 
related to non-functional requirements then with NFRF. 

Although PF does not provide explicit means for traceability preservation the approach 
is focused on understanding the links between the real world and the machine, which 
become documented in the problem diagrams and annotations. In addition, the solution 
patterns can be traced to the problem frames via frame concerns. However, the 
approach does not consider traceability needs in justification for selected problem 
decomposition, or problem frame selection, or variant extension. 

The identified use cases in the Use Cases approach are mapped onto collaboration 
diagrams at the architecture design stage, but are consequently dissolved into object 
classes where all parts of a given class are combined from all use cases. This makes 
traceability of an individual use case to its specific contribution to a class difficult to 
maintain. 

From the traceability between lifecycle artefacts perspective the misuse cases are the 
same as ordinary use cases. The only slight difference is that, in some simple cases, 
when a solution for misuse case mitigation is clearly defined on the use case diagram, it 
could be traced straight to the design or implementation. For instance, if the solution to 
the security requirement is identified as a training procedure for the system users, it will 
be clearly traceable to the requirement. 

AORE with Arcade records what type of architecture or design artefact a concern 
transforms to (e.g., decision, function, etc.) and can trace it to architecture, design, and 
implementation via the PROBE framework [57]. The PROBE framework helps in 
tracing not only initial aspectual requirements, but also their associated trade-off.  

For this criterion too the Aspects in Requirements Goal Models approach is same as the 
NFR framework, as it uses exactly the same mechanisms. 

Similar to Use Cases, in AOSD/UC use cases are mapped onto collaboration diagrams 
at the architecture design stage, but here, thanks to use of use case slices, the partial 
information on operations and states of object classes can be preserved independently 
too.  

Scenario Modelling with Aspects does not consider scenario tracing to the later stages, 
however the approach provides valuable insight into how aspects affect the future 
system behaviour. 

Aspectual Use Case Driven approach does not address the traceability of its NFR use 
cases to the later stages of development, while the functional use cases can be traced to 
the collaborations, as in the standard Use Cases approach. 

Concern Modelling with Cosmos is focused on concern modelling only. It does not 
venture into any development activity. Nevertheless, when the modelled concerns are 
represented as artefacts, these will be represented as physical concerns in Cosmos with 
links to their conceptual counterparts, in this way promoting artefact traceability.  
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The CORE approach records details of concern mapping to architectural decisions, 
design level function, or crosscutting design elements, as well as their scope of 
influence on the later development stages. Although presently the PROBE framework 
[57] is not yet adapted to be used for CORE, it may be adapted with not much change 
required. This will be addressed in the near future in order to help with tracing and 
validation of the initial aspectual requirements as well as their related trade-off 
decisions. 

The requirements level aspects and aspect details identified by AOREC are directly 
propagated to design level, where these are refined. 

Theme/Doc keeps clear links between requirements artefacts and their design 
incarnations due to direct match between its requirements engineering and design 
models as well as the major action and theme views of the Theme/Doc tool which allow 
to compare the requirements grouped into a theme against their designs. 

 

3.6.2 Composability 
Table 3-3 shows the comparison of the features that support composability of 
requirements all the non-AO and AO approaches considered in section 0. 

 
Approach Features That Support Composability 

PREview not considered  

VIM inter and intra viewpoint check rules  

NFRF indirectly: SIG 

KAOS indirectly: and/or groups in goal decomposition, formal representation, heuristics  

I* agents, dependency relationships, indirectly: SIG 

Problem Frames common domains 

Use Cases extend and include relationships and use cases 

Misuse Cases extend and include relationships with mitigates, threatens, aggravates, conflicts 
with, has exception stereotypes and use/misuse cases 

AORE with 
Arcade 

Flexible and extensible composition rules and operators, unique ids for 
viewpoints, requirements and sub-requirements 

ARGM matching topics of goals and task 

AOSD/UC extension pointcut ;  extend and include relationships an use cases 

SMA binding definitions; operators for message interleaving; incoming and outgoing 
events; states; role parameters in IPS and SMPS specifications 

AUCDA new use case relationships: collaborate, damage, and constrain as well as 
standard extend and include; role parameters in UCPS and APS; binding 
specifications 

Cosmos concern relationships and constraint specifications 

CORE Flexible and extensible composition rules and operators, unique ids for 
viewpoints, requirements and sub-requirements, concern projections and 
compositional intersections 

AOREC per-component provided/required aspect details, provides/requires links 

Theme/Doc order for theme composition in clipped action view  
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Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-3: Summary of Features that Support Composability. 

 

Problem decomposition is a natural way of reducing complexity, and it is indeed the 
path taken by all the approaches discussed above. On the other hand, the need for 
composing the decomposed requirements/concerns and understanding their mutual 
relationships has been addressed less thoroughly. 

PREview decomposes stakeholder requirements into viewpoints and concerns, but does 
not consider the issue of composition. The details for each concern-viewpoint 
interaction are maintained for each viewpoint separately. 

VIM does not directly address composition, instead it limits to the issue of consistency 
checking - a necessary, but not sufficient characteristic of composition. Moreover, while 
the approach demands that consistency checking is carried out, it does not provide any 
assistance with the difficult task of deciding which consistency rules need to be defined.  

NFR Framework does not explicitly consider composition of softgoals or functional 
requirements.  However, since in most cases, softgoals will affect each other, the 
complete Softgoal Interdependency Graph can provide good information about softgoal 
interdependencies. Some information about relationships of operationalisation decisions 
to functional requirements affected by them can also be obtained from the SIG. Yet, the 
complete picture of the system requirements is not available. 

KAOS does not directly address composability. However, its formal representations 
maybe be reviewed with AND/OR operators and collecting the sub-goals into the super 
goal. KAOS also provides sets of heuristics (e.g., “do not overload the agent”) which 
provide a perspective on the composite result of individual goals/tasks. 

I* does not address the issues of composition. Yet, it is reasonable to expect that in 
many cases parts of agent’s requirements could be modelled separately and require 
integration (e.g., due to system maintenance). In such cases it is essential to first 
integrate the agents: only the requirements of agents representing the same stakeholders 
can be composed, or the semantics of the analysis will be lost. This needs to be followed 
by the goal and softgoal interdependency graph integration for the merged agents: a 
problem that presently is not resolved. 

In Problem Frames approach composite frames are built by joining simple frames 
through their common domains. Since each frame has its own description of a domain 
and PF does not have well defined composition semantics, except that in order to be 
composable the frames need to have the same domains. Presently, composition often 
requires solution-level information, thus departing from requirements to design and 
implementation issues. As a result, the composition is often an ad hoc process, and 
though Problem Frames have a potentially usable joinpoint model through the domains, 
these joinpoints are inconsistent between different frames. This approach does not allow 
quantification for composition either. Nevertheless, we should note that the most recent 
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work on Problem Frames [25] has started to look at the issue of composition and a 
solution for cases with timed machine interference is suggested.   

In Use Cases approach composition is achieved via extend and include relationships. 
The extension use cases are composed with the base use cases via extend; while 
repeatedly used sub-flows are composed with base flows via include. The composition 
of individual base use cases is not considered until design time, where still there is no 
explicit composition support, but mere merging of partial class information for each 
class from all use cases into a single representation of that object class in UML. 

In respect with composition, Misuse Cases are quite similar to Use cases, except that 
additional relationships such as mitigates, threatens, aggravates, conflicts with, has 
exception allow to reflect more specific kinds of integration links. 

AORE with Arcade supports requirement composability through a clear joinpoint model 
(where requirements in a viewpoint are joinpoints) and well defined composition 
semantics provided through its composition rules and operators. Moreover, the 
composition semantics are adaptable for each problem, as the set of composition 
operators is extensible.   

In Aspects in Requirements Goal Models composition is carried out by matching the 
topics of the decomposed functional goals and the functional goal to which the non-
functional task (so called advising task) applies (see Figure 3-29). The syntax of this 
composition still requires further research, as presently it is not well defined. Moreover, 
even the semantics of it are not quite clear. 

AOSD/UC provides much more support for use case composition than the Use Case 
approach both at requirements level and later. As demonstrated in Figure 3-31 and 
Figure 3-34(c), a new construct for extension pointcut has been developed. It allows the 
provision of more details of extension use case application to base use cases. Examples 
of such details are condition of extension case application (e.g., as in Figure 4.19, ‘when 
no room is available’), or the order of extension operation application to the use case 
(e.g., before, after, or instead of it). Also, the same extension case can be applied to 
many base use cases without having to clutter the use case diagram with notes, as it 
would be required with traditional Use Cases. Additionally, special design level 
composition semantics are provided. 

The Scenario Modelling with Aspects approach has two alternative composition 
avenues for bringing together aspectual and non-aspectual scenarios: (a) composing 
interaction diagrams; (b) composing at state machine level. While (a) is more intuitive, 
it requires application of additional operators detailing how the messages from the 
aspectual and non-aspectual diagrams should interleave. This cannot be automated, as 
interleaving will depend on semantics of interaction. In (b), on the other hand, 
composition can be defined in terms of incoming and outgoing events, as well as states 
which are not available with option (a). In any case, manual mapping of roles to events, 
parameters (and states) is necessary. It should also be mentioned that the approach can 
easily accommodate composing functional scenarios together, while the semantics of 
composing non-functional scenarios together are not clear.  

In the Aspectual Use Case Driven approach the composition of the Use Cases is 
extended with new use case relationships: collaborate, damage, and constrain [65]. 
Along with the standard inherit, extend, and include, these relationships help to 
incorporate both functional and non-functional use cases into the use case diagram. 
Besides, use of Use Case and Activity Pattern Specifications allow to use role 
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parameters in use cases and activity diagrams. The composition requires a set of 
instantiation steps [65], where the Pattern Specification elements are replaced with 
concrete elements or other pattern elements that perform the necessary roles. However, 
this level of reuse and generality of use cases comes at the cost of one-to-one 
specification of every role binding for composition.  

Concern Modelling with Cosmos does not directly address requirement or concern 
composition. Yet, the relationships that can be defined between concerns can be used to 
reflect how concerns should be treated together, e.g.,: does concern A require the 
presence of concern B, or should A be only included into the system if B is not there. 
This work provides no composition rules or operators or joinpoints, but allows all these 
to be specified as concerns of their own using the Cosmos schema.  

The composability of CORE approach is the same as that of AORE with Arcade, 
discussed above. CORE, however, extends this composition model with the notion of 
concern projections and compositional intersection to facilitate extensive yet scalable 
analysis of interactions and trade-offs among concerns. 

Requirement composition in AOREC differs from other composition approaches 
because here requirements are defined per component. Component requirements in 
AOREC are composed through the aspects: a component provides some aspect details 
as its requirement to an aspect and uses (requires) aspect details provides by other 
components. Thus, requirements are composed from the perspective of belonging to a 
component and contributing or using aspect details of an aspect. The aspect details are 
also clearly linked to the providing/using components via dashed arrows (which may 
turn unreadable for larger systems). 

Theme/Doc in its clipped action view provides the order for theme composition, but it 
does not produce a view for composed requirements. Instead, it postpones actual 
composition to design level, where Theme/UML composition semantics are used. 
Hence, while Theme/Doc does have a clear joinpoint model (with requirements in 
themes acting as joinpoints) the composition semantics at requirements level are 
missing.  

 

3.6.3 Evolvability 
Table 3-4 shows the comparison of the features that support evolvability of 
requirements and change to their sources of origin for all the non-AO and AO 
approaches considered in section 0. 

 
Approach Features That Support Evolvability 

PREview not considered 

VIM tolerance for inconsistency, new template definitions, use of alternative 
representations, support for overlapping 

NFRF correlation catalogue; claims and augmentation on SIG, sub-goal decomposition; 
link of softgoal to functional goal 

KAOS thorough understanding of domain, detailed modelling of relations, reusable 
knowledge and requirements; sub-goal decomposition 

I* understanding reasons for requirements, use of NFR facilities 

Problem Frames sub-problem decomposition 
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Use Cases use case decomposition; minimalist notation for use case diagrams 

Misuse Cases use case decomposition 

AORE with 
Arcade 

separation of concerns and composition concerns ; cross-reference tables  

ARGM correlation catalogue; claims and augmentation on SIG, sub-goal decomposition; 
link between functional goal-goal-task 

AOSD/UC use case decomposition; minimalist notation for use case diagrams; use case 
slices and modules 

SMA generic role elements; bindings 

AUCDA nfr templates, generic role elements, bindings 

Cosmos flexible schema; independence of concern representations 

CORE separation of concerns and composition concerns ; cross-reference tables; absence 
of base/aspect distinction  

AOREC use of aspect details 

Theme/Doc automation provided by the tool 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-4: Summary of Features that Support Evolvability. 

 

With regards to evolvability, in PREview removal or addition of a concern will result in 
heavy changes across all viewpoints requirements since the small number of concerns is 
assumed to be stable (a legacy of PREview’s origin in the dependability domain).  

From the perspective of evolvability the strongest part of VIM is its tolerance of 
inconsistency. Newly added or changed requirements artefacts may contain 
inconsistencies or conflicts with other artefacts, but these could be tolerated for a time 
or even for the life of the system, if the assessment of their removal cost is greater than 
that of risk from their retention.  Besides, a new template with alternative 
representations can be defined for new viewpoints, if required. On the other hand, 
change to consistency rules or templates will result in a ripple effect of checks and 
changes through all artefacts. 

The NFR framework initially considers the non-functional requirements and their 
decomposition one-by-one, before correlating them together in the SIG. Thus, the effect 
of a change will depend on its type. In the best case the change will affect only a single 
operationalisation or softgoal and have no influence on the rest of the SIG. This can 
happen if the change does not affect any major decisions and has no negative 
contributions to the existing softgoals. On the other hand, if the change requires re-
consideration of major decisions or has large negative correlations with many other 
softgoals, the whole SIG could require re-evaluation. Also the correlation catalogue 
helps the developer to examine the cross-impact of the softgoals. 

One of the main goals of KAOS is to facilitate knowledge reuse, which facilitates 
evolution. Reuse is achieved through cataloguing generalised knowledge, as well as 
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domain-specific and instance knowledge. These can be reused by querying the KAOS 
knowledge base. Another important feature of KAOS is detailed analysis of both agents 
and their relationships all of which is recorded and can be easily applied to understand 
how to fit in the new/changed requirements or the effects of adding/removing an agent, 
etc. Also a change to a sub-goal, more often than not, can be localised to a given branch 
of the goal decomposition tree. However, the formal representation of KAOS artefacts 
while helpful in many cases, may result in added effort for understanding and 
maintenance. 

Support for evolution is one of the goals of I* method which aims to prepare for the 
future change by understanding the reasons for present requirements. Having analysed 
the dependencies and the vulnerabilities of the stakeholders, their environment and 
volatile factors affecting it, this approach helps to make informed choices in system 
design that can anticipate the change. In addition this approach uses the NFR-style 
decomposition, thus benefiting from its correlation catalogues, claims and 
augmentations on SIG, and the sub-goal decomposition. 

In PF, in some cases, a change in requirements can result in a change as serious as 
review of previously selected problem decomposition. However, most often a change 
may be reduced to a change in a particular sub-problem, without affecting other sub-
problems. In any case, because there are no systematic composition means, all 
composition-related decisions will need to be reviewed [24].  

Use cases are used to capture high-level user-centric requirements helping to structure 
required functionality and prioritise delivery of requirements. Thus, addition of new 
functionality can be treated as dealing with an extra use case, without affecting other 
use cases. At the same time, change of a use case functionality is also localised within 
that use case. All this suggests that use cases are well suited for tackling evolving 
requirements. Also, some guidelines are provided to assist in this, for instance  [37] 
suggests to “never extend the extension” to avoid deep hierarchies of extend 
dependencies that could make use cases difficult to understand. 

Though Misuse Cases are extension of the Use Cases approach, the evolvability of this 
approach is poorer due to relationships established between misuse cases and the main 
use cases. Any change in the main use cases will have to be also considered in terms of 
change of the currently related misuse cases and potential new misuse cases brought 
about by the change.   

AORE with Arcade specifies each concern independently and provides a separate 
module for composition specification. Thus, change of a concern will affect only the 
evolving concern representation and the related composition specification for affected 
requirements. The approach uses a number of cross-reference tables to identify impacts 
and contributions of concerns. When a change occurs, in each of these tables the 
changed line/column will have to be reviewed, without affecting the rest of the tables. 
These tables also provide the necessary references to requirements whose composition 
should be reviewed. Evolution is also facilitated by the Arcade tool which can re-
establish the potential trade-off points upon requirements change and evolution. 

Similar to NFRF, Aspects in Requirements Goal Models could require reviews of the 
whole SIG in cases of significant requirement change. However, in most cases the main 
goals and softgoals of the system will be stable and changes will require reviewing only 
a branch or an operationalisation in a SIG. Additionally, due to the clear link between 
the functional and non-functional goals and tasks, the change in one can be clearly 
related to the others, using the composition specifications, as well as the graphs. 
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The discussion provided earlier for Use Cases, is also true for functional use cases in 
AOSD/UC, as in this respect there has been no major change made by AOSD/UC to the 
use cases approach. However, the addition of the infrastructure use cases for non-
functional requirements will necessitate checks as to how the newly added or changed 
requirement in any use case affects these non-functional use cases. These might cause 
changes to be introduced to the non-functional use case specifications. On the other 
hand, use of use case slices may help in localising and locating use case related 
requirement artefacts. 

Because Scenario Modelling with Aspects investigates scenarios, i.e. instances of 
interactions, change in a requirement will result in changes in one or more scenarios, 
causing the complete review of the affected scenarios, their interaction diagrams, 
binding and the composite scenario. However, due to separation of aspectual scenarios, 
a change in these will require review of elements only for that scenario, even if all its 
compositions with other non-aspectual scenarios will have to be reviewed. The review 
of scenarios due to change in requirements cannot be avoided, as scenarios are used 
precisely for understanding that behaviour. Thus, the merits of using separate aspectual 
scenarios will only be revealed in comparison with updating bindings and composed 
state machines with aspectual scenarios, as opposed to individually updating each full 
scenario and state machine if the aspectual part is not separated.  

With the Aspectual Use Case Driven approach the modularity and localisation of 
change of functional concerns within a use case is preserved, as this approach is based 
on the Use Cases approach. For the non-functional concerns, any change requires 
review of the concern template’s Where and Requirements sections in order to verify 
that the change does not invalidate the relationships and requirements of the NFR with 
the rest of the use cases. If changes have occurred in the way that NFR relates to the 
other use cases, the bindings of Use Case and Activity patterns to specific elements also 
need to be reviewed. On the other hand, the approach distinguishes between stable 
requirements and volatile ones [65]. The volatile ones – those prone to change – should 
map to Use Case Pattern Specifications and Activity Pattern Specifications and their 
change should result in composition review, but not review of any of the other use 
cases. 

Concern Modelling with Cosmos is well suited for evolution as change will result in 
change of the concern and its related information (e.g., relationships, constraints if any) 
in the schema only, no other concern will be affected. Addition of a new concern simply 
entails recoding it along with its related information into the schema.  

The evolvability of the CORE approach is similar to that of AORE, but is improved due 
to absence of a pre-specified “base and crosscutting” restriction. Thus, a concern 
initially identified as being non-crosscutting, can become crosscutting during the course 
of evolution. Such change will be accommodated in the model without major reworking 
of the requirements, except for corresponding cells in the relationship and contributions 
tables and the compositions. 

AOREC does not assist with actual requirement evolution, but use of aspect details in 
AOREC clearly demarks the relationships between components, and so facilitates 
planning for requirement evolution. For instance, when there is a change in a 
component requirement, the impact can be evaluated in terms of effect on the provided 
or used aspect details. Questions such as, for instance,: is the changed aspect detail 
required by another component; is the newly required detail provided by others, will 
help in estimating the scale and cost of change.  
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Evolution in Theme/Doc is assisted by the automation provided by the tool. When a 
requirement is added or changed, it only requires re-generation of the views (using 
changed/added action words and entities) involving decision as to which theme does the 
new requirement belong to, and how the change/addition of a theme affects composition 
ordering. While the general composition order might be changed significantly, the 
themes themselves will be unaffected, except for the one that has been changed. 

3.6.4 Scalability 
Table 3-5 shows the comparison of the features that support scalability of requirements 
and change to their sources of origin for all the non-AO and AO approaches considered 
in section 0. 
Approach Features That Support Scalability 

PREview not considered 

VIM modularity of templates and viewpoint check rules 

NFRF catalogues for correlations and decompositions; records of decisions via claims 

KAOS catalogues for reusable knowledge, tactics and heuristics  

I* indirectly: NFR framework support through catalogues for correlations and 
decompositions; records of decisions via claims 

Problem Frames modularity of frames 

Use Cases use  of coarse-grained use cases 

Misuse Cases use of coarse-grained use and misuse cases, per use case decomposition 

AORE with 
Arcade 

XML representation of artefacts and composition, extensibility of composition 
operators/actions set 

ARGM catalogues for correlations and decompositions; records of decisions via claims 

AOSD/UC use  of coarse-grained use cases; packaging support 

SMA scalable state machine generating algorithm 

AUCDA use  of coarse-grained use cases; partial use case diagrams 

Cosmos scalable schema; simple concern representation format 

CORE XML representation of artefacts and composition, extensibility of composition 
operators/actions set; use of XPath queries 

AOREC aggregate aspects , aspects 

Theme/Doc Coarse-grained actions, action groups 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-5: Summary of Features that Support Scalability. 

In PREview scalability is affected by two factors:  

1. larger problems require more viewpoints and concerns to be identified to 
adequately cover the problem requirements; 
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2. the larger the number of identified viewpoints and concerns, the more likely 
that there will be conflicts between requirements, imposing need for 
negotiation, trade-offs and information management. 

Since the approach does not provide sufficient support for conflict resolution and 
information management, the number of concerns usable per project is limited to about 
6. 

On one hand the modularity of VIM templates and the possibility of incremental 
provision of viewpoint consistency checking rules contributes to evolvability of the 
approach, but, on the other hand, it adds to the complexity of rules and to the need for 
additional checks.  

The scalability of NFR SIG is limited: even for small examples it becomes 
cumbersome. The level of detail for each decision with supporting arguments and 
decomposition (such as including the attributes) makes the graph unmanageably large. 
Even with tool support this causes inconvenience. On the other hand, use of catalogues 
for correlations and decompositions and records of decisions via claims may assist in 
managing growing systems. 

KAOS scalability may be hampered by the need to formalise each task, define pre and 
post conditions for each action and check that each action is performed as expected. On 
the other hand, the vast amount of knowledge and tactics and heuristics collected in the 
KAOS knowledge base is invaluable in supporting scalability by providing solutions to 
many potential problems. 

Scalability is a bottleneck in the I* approach: even with tool support, working with large 
Strategic Rationale graphs is difficult. Use of NFR catalogues and claims would only 
weakly assist with some issues of scalability. 

Problem Frames require a separate problem frame to be defined for each requirement 
with its corresponding frame concern. The number of graphs produced will increase 
linearly with the number of requirements. However, the biggest difficulty for scalability 
of this approach is caused by generation of the composite problem frame, when all 
individual frames and their concerns will need to be combined. Combining the graphs 
on a case-by case basis, where each new addition could require design or 
implementation specific knowledge, can become quite difficult. The feature that may 
support in scaling the system is modularity of each frame. 

With the Use Cases approach each use case specifies a unit of useful functionality that 
the system provides to its actors. Thus, when new functionality is required, a new use 
case is added to the use case model, and though the model is graphical, each use case 
requires only a few additions, leading to a relatively good scalability for a graphical 
representation. However, for larger systems the developer faces a trade-off between 
dealing with too many use cases that overcrowd the use case diagram, or fewer use 
cases each of which is a larger and more complex unit. If the developers fall into the 
trap of ‘functional decomposition’ representing each function as a use case, the diagram 
will become cluttered and cumbersome. 

Though misuse cases can benefit in terms of scalability from using coarse-grained 
cases, in general they give much poorer scalability than that of Use Cases. This is 
caused both because of a very large number of possible misuses to a use case, and due 
to the multiplication of their relationship links. These two factors together make even a 
small use case diagram rather unreadable. A partial solution is to consider each use case 
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with its misuses separately, but this results in disjoined use cases and loss of the 
complete use case diagram.  

The XML-based requirement representation and composition in AORE is very scalable. 
The only bottleneck of the approach for scalability could arise due to the tables used for 
correlation representation which can grow inconveniently large. Yet, this is simple 
enough to deal with using already existing everyday software tools, such as Excel 
tables, where the columns and rows irrelevant to the task in hand can be hidden, or 
different (e.g., reduced) views of the same table can be created with changes in one 
table reflected in all related ones. 

The scalability problem of Aspects in Requirements Goal Models approach is even 
more severe then that of the NFRF approach. This is due to the direct merging of two 
SIGs (for functional and non-functional goal decomposition) into one. Although  [41] 
suggests that advising parts of the graphs can be separated for analysis, it does not 
provide an adequate solution for managing oversize SIGs. 

AOSD/UC faces the same scalability issue as discussed for Use Cases above. 
AOSD/UC also provides packaging support, whereby in large systems use case modules 
can be partitioned into use case packages. Each package can contain a set of use cases 
for a group of actors or package use cases according to the entities that the use case 
manipulates. Each such use case package should have a use case diagram to show use 
cases contained in it from a glance. Maintenance of separate packages is possible due to 
the composition support in the approach as opposed to the traditional Use Cases 
approach.  

In the Scenario Modelling with Aspects approach scalability is hampered by the need to 
provide individual binding specifications not only for each aspect but also for each 
composition of that aspect separately. On the other hand, the scalability of the state 
machine generation algorithm has been shown to be satisfactory [63]. 

The scalability of Aspectual Use Case Driven approach is hampered with the problem 
of use case explosion (as for the Use Cases approach), augmented by the need to add a 
new use case and (particularly) its relationships for each NFR. The need to deal with 
relationships of several NFRs with the rest of the use cases will make the use case 
diagram unreadable. A possible partial solution is to build partial use case diagrams for 
each NFR, reflecting only the sets of use cases affected by a given NFR [47]. However, 
this solution will result in multiple use case diagrams for one system and will not depict 
the relationships between non-functional use cases themselves. 

Concern Modelling with Cosmos is very scalable: any increase in the size of the project 
will only increase the number of modelled concerns. Nevertheless, though the Cosmos 
tool is scalable, the effort required for collection of the sufficiently complete set of 
concerns for a larger problem can be quite big due to the very large number of concerns 
involved [48]. 

The scalability of CORE approach is similar to that of AORE. In addition, XPath 
queries can be used to select specific concern projections and their cumulative effects. 

The aggregate aspects in AOREC allow modularisation of requirements that affect 
groups of components. Thus, a coarse-grained relationship between aspect and a group 
is obtained, reducing repetitive specifications. Aspects too assist with supporting focus 
of component contributions/requirements on one concern at a time. On the other hand, 
the graphical representation of component and aspect requirements is not scalable, and 
easily becomes unreadable for larger systems.  
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Presently scalability is an unresolved issue for Theme/Doc: the graphical representation 
of actions and requirements in Theme/Doc tool become unmanageably large for even a 
medium size problem. Some possible solutions, such as ‘zooming out’ to a higher level 
of granularity, are currently under investigation [73].  

 

3.6.5 Trade-off Analysis and Decisions Support  
Table 3-6 shows the comparison of the features that support trade-off and decision 
support for all the non-AO and AO approaches considered in section 0. 

 
Approach Features That Support Trade-Off Analysis And Decisions 

PREview Rule “organisational concerns take precedence over viewpoint requirements” 

VIM cost/benefit analysis, inter-viewpoint consistency rules 

NFRF correlation catalogues; priority assignment to softgoals; SIG augmented with 
claims about past decisions and contribution types 

KAOS knowledge base, tactics, heuristics, priority assignment to goals 

I* Strategic Dependency and Strategic Rationale, use of NFR features 

Problem Frames partial support for assigning priorities  to machines and events 

Use Cases not considered 

Misuse Cases not considered 

AORE with 
Arcade 

conflict detection through composition, contribution tables, temporal logic 
assertions of PROBE framework; weights assignment; stakeholder negotiations 

ARGM Conflict resolution process with Rule: “remove negative contribution link“ 

AOSD/UC before, after, and around keywords for extension use cases 

SMA not considered 

AUCDA not considered 

Cosmos decision recording via constraints; concern relationships 

CORE conflict detection through composition, contribution tables, weights assignment; 
stakeholder negotiations, use of cumulative effects through folded tables and 
compositional intersection 

AOREC aspect details 

Theme/Doc not considered 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-6: Summary of Features that Support Trade-Off Analysis and Decisions. 

 

In PREview the need for trade-off and conflict resolution is identified when viewpoints 
and concerns display negative relations in decision tables. PREview does not provide 
any particular trade-off resolution mechanism, but simply acknowledges the need for it. 



 103

The only direction given by this approach is that the organisational concerns take 
precedence over viewpoint requirements.   

In VIM identification of trade-off points in case of inconsistency is assisted by the 
consistency checking rules, but these rules may not detect conflicts where the goals of 
stakeholder differ. When an inconsistency or conflict is detected, the cost-benefit 
analysis of the alternative handling strategies are considered (e.g., eliminate or ignore?) 
and the most suitable strategy selected. VIM does not detail how to detect conflicts or 
how to carry out cost-benefit analysis: these are left open for the method used to decide.  

NFRF provides good support for identification of trade-off points via correlation 
catalogues which help the developer to examine the cross-impact of the softgoals and 
decide between competing alternative solutions. The approach allows priority 
assignment to softgoals (by stakeholders or developers). The NFR SIG helps to visually 
pass over alternative choices, see their interrelationships and influences and make an 
informed decision. NFR also provides good support for decision recording via claims 
and augmentations as well as contribution types (e.g., weak positive, strong negative, 
etc.).  

KAOS allows priority values (between 0 and 1) to be assigned to goals. These are used 
during conflict resolution or alternative selection for decomposition: the goals with 
higher priorities are favoured. Decision support in KAOS is provided via reusable 
knowledge of the knowledge base and also through sets of tactics and heuristics 
designed to support the KAOS process in case of difficulties. 

I* assists in resolving trade-offs from the process level to that of an individual task. The 
Strategic Dependency and Rationale graphs allow to model and evaluate alternative 
channels of stakeholder interest satisfaction. The principle of “reciprocal dependency” 
[21] (which suggests that in order to ensure dependum delivery, there should exist a 
reciprocal dependence between dependee and depender) helps in checking the viability 
of alternatives. The NFR contribution types help in assessing the degree of 
contributions. Weights and priorities may also be used to decide between alternatives. 

The main work on Problem Frames [23] did not consider conflict resolution and trade-
off support. More recent work in [25] has begun to look at conflict resolution, and 
addresses a certain set of such problems by assigning priorities  to machines, events, etc. 
This, however, is not a sufficiently complete solution, as it addresses only a small subset 
of problems where timed machine interference can be used. 

The Use Cases approach does not provide any conflict resolution because it simply 
records all user requirements in separate use cases and does not attempt any 
reconciliation. This is left to be addressed at the design time, when the user 
requirements are mapped to object classes.  

Misuse Cases provide numerous misuse possibilities per use case. The requirements 
engineer does not always accept all the possible cases, but selects the ones s/he 
considers relevant. Nevertheless, this approach does not provide any guidelines, 
heuristics, or any other support for misuse case selection decisions. Similar to Use 
Cases, this approach also does not provide any conflict resolution support. 

AORE with Arcade provides good support for trade-off analysis: the need for these is 
initially detected through the composition process of requirements, contribution tables, 
as well as through temporal logic assertions of the PROBE framework at the later stages 
of development. Once detected, the conflicting requirements are evaluated against the 
weights assigned to them by the stakeholders, the requirements with lesser weights are 
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weakened to resolve the conflict (with approval from stakeholders). However, if these 
have equal weights, the stakeholders are invited for negotiations. 

In the Aspects in the Requirements Goal Models approach, when conflicts are detected 
between the SIG nodes (i.e., goals, softgoals, or tasks) the contribution link from the 
negatively contributing node to the parent node is simply removed. While this approach 
does remove the conflicts, it is in danger of losing relevant links between goals and 
tasks. It also assumes that a goal can be achieved through means where conflicting 
solutions can be ignored. This may not always be possible, or sometimes may result in a 
sub-standard solution compared to those where conflicts are actually resolved rather 
than removed at the source. 

Similar to Use Cases, AOSD/UC does not attend to conflict resolution at the 
requirements engineering level. The only addition of AOSD/UC at requirements level, 
that could address some ordering of conflicts, is that of before, after, and around 
keywords which clarify the order of operation application of the extension use cases to 
the base ones. 

Scenario Modelling with Aspects does not provide any support for trade-off analysis, 
though this could often be required when defining bindings of aspectual scenarios to 
specific elements in non-aspectual ones. 

Presently the Aspectual Use Case Driven approach does not provide any trade-off 
resolution support either.  

Concern Modelling with Cosmos does not need to resolve trade-offs between concerns 
for concern modelling. However, any trade-off decisions taken during development can 
be recorded as constraints in the schema for the relevant concerns. The concern 
relationships are a helpful source of information when making such decisions, as they 
help to understand the implications of such decisions on the concerns involved. 

The trade-off support in CORE is mainly similar to that of the AORE with Arcade. 
Additionally, the use of cumulative effect of concerns on each other can help in more 
informed decision making. 

AOREC does not provide any explicit trade-off analysis or decision support, except for 
the possibility to evaluate the impact of a selected decision on provided/required aspect 
details and their effects on other components.  

Theme/Doc does not provide any explicit support for conflict identification and 
resolution or trade-off decision making. Though some trade-offs are required even when 
applying the method (e.g., when deciding on major/minor actions, or base/secondary 
role of the action for the requirement) these are made implicitly, using the developer’s 
experience and intuition. 

 

3.6.6 Support for Mapping  
Table 3-7 shows the comparison of the features that support mapping of requirements to 
types of artefacts (e.g., decisions, structures, procedures, etc.) of later stages of lifecycle 
for all the non-AO and AO approaches considered in section 0. 

 
Approach Features That Support Mapping 

PREview templates for concern decomposition 
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VIM work plan viewpoint trigger actions, inter viewpoint check rules 

NFRF type and decomposition catalogues; operationalisations – functional requirement 
links; contribution records 

KAOS decomposition structures of the knowledge base; action-to-agent assignments 

I* actors, use of NFR framework (type and decomposition catalogues; contribution 
records) and  goal and softgoal operationalisations 

Problem Frames not considered 

Use Cases collaboration diagrams, some guidelines 

Misuse Cases collaboration diagrams, some guidelines 

AORE with 
Arcade 

Guidelines 

ARGM type and decomposition catalogues; operationalisations – functional requirement 
links; contribution records 

AOSD/UC collaboration diagrams, some guidelines; pointcuts and aspects 

SMA not considered 

AUCDA collaboration diagrams, some guidelines 

Cosmos concern relationships; allows recording of mapping decisions 

CORE Guidelines 

AOREC use of same aspects and details at both requirements and design levels.  

Theme/Doc closeness of requirements and design models; theme view of the Theme/Doc tool 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-7: Summary of Features that Support Mapping. 

 

In PREview mapping of concerns to requirements is supported through templates for 
concern decomposition. However, mapping of requirements to the artefacts of later 
lifecycle stages is not supported, barring a very weak proposition to derive the high 
level architecture alongside software requirements specification development.  

In VIM, the inter viewpoint checking rules developed by the method users may also 
include rules on how to map specific artefacts to their representations in other notations. 
These rules may be required to be checked for a viewpoint template instantiation, thus 
supporting artefact mapping. On the other hand such rules and related automation 
support is not readily available and will have to be developed by the users of the 
methodology.  

The NFRF type and decomposition catalogues assist in mapping concerns to non-
functional requirements. The links between operationalisations and target system’s 
functional requirements also help to implicitly envisage their mapping to the design 
artefacts. Also the contribution records inform and helps to make decisions on particular 
decompositions and operationalisations. Thus, the major architectural choices and 
design decisions about the non-functional requirements can be taken along with the 
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softgoal decomposition process, though no specific guidelines for mapping (other than 
the SIG construction guidelines) are provided. 

KAOS has decomposition structures similar to those of NFRF decomposition 
catalogues. These too help in mapping non-functional, but also functional, goals onto 
functionalities or tasks that can be directly implemented. Some tasks (e.g., for the non-
functional goals) may map to procedures which will not be automated by the software 
system, but may become processes or procedures in the wider environment of the 
system, etc. On the other hand, assignments of actions to agents can also be perceived as 
mapping of the functionality onto a potential class. 

I* may help in identification of major architectural modules via agent and top-level goal 
identification, yet this approach does not detail how the Strategic Dependency and 
Rationale graphs should map to architecture. On the other hand, by using the NFR-style 
decomposition of its goals and softgoals, the approach results in specific decomposition 
and operationalisation choice commitment, as discussed for NFRF above.  

The Problem Frames approach does not provide any significant support for mapping 
frames onto later stages of development, though in some cases it relies on knowledge of 
later stage artefacts for decisions on frame composition or modelling some phenomena  
[75]. 

Use Cases provide a good mapping support for requirements-level use cases to their 
design realisations through collaboration diagrams – some guidelines are also provided 
to this end. However, there is no support for mapping crosscutting functional 
requirements onto separate units (the crosscutting non-functional ones are not addressed 
in this approach at all). Also, it should be noted that the collaboration diagrams do not 
represent the final design artefacts for the use cases: to conform to OO design, all 
corresponding partial class representations from the collaborations will have to be 
combined into a single design class for each OO class representation.  

Unlike a traditional use case, a misuse case will not always map to a design-level use 
case. Often a misuse case will result in a decision on the business process, or procedure 
or alike. Yet, some misuse cases will indeed become design-level use cases. In this 
respect, the misuse cases approach does not provide any mapping support or distinction 
for misuse cases. Regarding the use cases part of the misuse cases approach, the 
discussion is the same as that for Use Cases.   

AORE with Arcade provides guidelines for mapping requirements to later stages of 
software development (referred to as aspect dimension specification in the approach). 
However, presently these guidelines are mainly intuitive, and need to be documented 
more effectively and fully. 

The Aspects in Requirements Goal Models is completely similar to NFRF in providing 
mapping support. 

Similarly to Use Cases approach, AOSD/UC supports mapping of functional use cases 
to designs through collaboration diagrams; but this time these representations can 
remain independent at the design time (due to the AOSD/UC defined design-level 
composition support). At the requirements engineering stage, the concepts of pointcuts 
and aspects are used to map the crosscutting relationships between base and extension 
use cases. 

Scenario Modelling with Aspects does not consider scenario mapping to the later stages 
of software development. 
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Aspectual Use Case Driven approach does not provide any extra mapping support on 
top of that already available from the Use Cases approach for the functional use cases.  

The Concern Modelling with Cosmos approach does not consider mapping the concerns 
onto any artefacts. That should be done within a particular development methodology 
employed for development. Nevertheless, Cosmos can help in recording the mapping to 
physical concerns (artefacts) and also provide information on the implications of 
mapping from the perspective of influence of other concerns. 

The mapping support of CORE is same as for AORE. It also extends the mapping 
guidelines to map the requirements-level concerns and trade-off analysis to potential 
architectural choices. 

In AOREC the same aspects and aspect details are used that were identified at the 
requirements stage. During design the requirements aspects are simply further 
elaborated.  

The concerns grouped at the requirement engineering stage into a theme in the theme 
view of the Theme/Doc tool are neatly mapped to Theme/UML themes due to closeness 
of their requirements and design models.  

 

3.6.7 Homogeneity of Concern Treatment 
Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-1: Summary of Features that Support Traceability of Requirements and Change 
to their Sources of Origin Criterion.Table 3-8 shows the comparison of the features that 
support homogeneity of requirements treatment for all the non-AO and AO approaches 
considered in section 0. 

Approach Features That Support Homogeneity of Concern Treatment 

PREview n/a 

VIM n/a 

NFRF n/a 

KAOS equal importance of functional and non-functional goals, decomposition structures 
for both, single formal language representation 

I* equal importance of functional and non-functional goals, decomposition structure for 
both 

Problem Frames n/a 

Use Cases support representation of crosscutting and non-crosscutting functional concerns via 
extend and include relationships 

Misuse Cases support of the Use Cases approach, support for some non-functional concerns by 
countering possible misuses. 

AORE with 
Arcade 

“in step” identification and treatment of functional and non-functional, crosscutting 
and non-crosscutting concerns. 

ARGM equal importance of functional and non-functional goals, decomposition of both 
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alongside each other. 

AOSD/UC support of the Use Cases approach, use case representation for functional and non-
functional, crosscutting and non-crosscutting concerns 

SMA scenario modelling for functional and non-functional, crosscutting and non-
crosscutting concerns 

AUCDA support of the Use Cases approach, use case representation for functional and non-
functional, crosscutting and non-crosscutting concerns 

Cosmos single possible way of representing all concerns as concerns in general 

CORE single way of concern treatment, independent of concern type, accommodating all 
type of concerns 

AOREC n/a 

Theme/Doc single uniform treatment of all identified concerns, accommodating all types of 
concerns 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 
Table 3-8: Summary of Features that Support Homogeneity of Concern Treatment 

In PREview the organisational concerns (i.e. the crosscutting non-functional concerns) 
are considered of prime importance. When the functional concerns are elicited, it is 
ensured that the influence of the organisational concerns on the functionality is 
considered. If necessary, the functionality is adjusted to maintain the requirements of 
the organisational concerns. Crosscutting functional concerns have been overlooked 
entirely.  

VIM does not address the issue of crosscutting concern treatment either for functional 
or non-functional concerns. In fact the non-functional concerns do not appear to be 
considered in general.  

The concern treatment in NFRF is very similar to that in PREview: non-functional 
concerns are prioritised over functional ones and the crosscutting functional concerns 
are overlooked. However, unlike PREview, the effect of non-functional concerns on 
functionality is not analysed, though their effects on other non-functional concerns is 
detailed in the SIG. 

In KAOS both functional and non-functional concerns (or goals) are treated via the 
same procedure: none is considered more important than the other. The mutual 
influences of the gals can also be studied by looking at the relationships of the objects 
and agents associated to a goal or its task, though the appropriate treatment of 
crosscutting concerns is not explicitly addressed. 

In I* the functional concerns are represented as goals and tasks, and non-functional ones 
as softgoals. Both are decomposed to task and finally operationalisation levels, and so 
are treated similarly. However, I* does not separately address the issue of crosscutting 
and non-crosscutting concerns. 

As already mentioned, Problem Frames do not treat non-functional concerns in any 
systematic way. While functionality is dealt with through problem frames, non-
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functional concerns are mainly discussed as “also concerns” and treated in an ad hoc 
way (except for reliability). Crosscutting concerns (either functional or non-functional) 
are not explicitly acknowledged either. 

In the Use Cases approach the crosscutting functional and non-crosscutting functional 
concerns are treated quite evenly at the requirements engineering stage. The 
crosscutting functional use cases are expressed through extend and include and are 
elaborated along with functional use case identification. The non-functional concerns 
are not addressed by this approach. 

Misuse cases are similar to use cases with regards to homogeneity. However, through 
the misuse cases some issues of non-functional concerns can also be addressed. For 
instance, security concern can be explored through this method. 

In AORE with Arcade all concerns are treated evenly at all steps of the approach: 
viewpoints are the base decomposition, with organisational concerns crosscutting them, 
but they are identified and treated in step with each other. There is a base-aspect 
separation in that viewpoints act as the base for observing influences and trade-offs of 
aspects. 

Unlike NFRF, the Aspects in Requirements Goal Models approach considers both 
functional (goals) and non-functional (softgoals) crosscutting concerns as part of goal-
aspect building. Both types of goals are decomposed alongside and their corresponding 
operationalisations chosen in step with decomposition. Thus, this approach treats all 
concerns quite evenly.  

Both functional and non-functional concerns in AOSD/UC are treated via use cases. 
However, while functional concerns are use cases on their own, non-functional concerns 
are treated as extensions to a specific Perform Transaction use case, thus becoming 
“lesser” use cases then the functional ones. Nevertheless, at the requirements 
engineering stage, all kinds of concerns appear to be given sufficient regard. 

Scenario Modelling with Aspects is well suited for representing and treating both 
functional and non-functional crosscutting and non-crosscutting concerns, which can be 
represented by scenarios. Yet, as has been mentioned earlier, it is not clear how fully the 
non-functional concerns can be covered by scenarios.   

Aspectual Use Case Driven approach provides equal attention to both functional and 
non-functional crosscutting concerns. Both of these types are represented in the use case 
diagram and activity diagrams. The issues related to identification and treatment of both 
concern types are of equal importance in this approach. 

In Concern Modelling with Cosmos all concerns are treated similarly: as concerns in 
general. The only distinction between them is their mapping to different types within the 
Cosmos schema. Presently in this approach concern identification is decided manually 
by the requirements engineer. 

CORE has a homogeneous concern treatment process: it does not make any distinctions 
between functional or non-functional, crosscutting or non-crosscutting concerns. 

During AOREC the functional concerns are assigned to particular components, while 
non-functional ones are assigned to aspects. While there are no clear instructions for 
this, it is generally expected that the functional assignment will be carried out first, then 
aspects identified. There also has been no example of using aspects for functional 
crosscutting concerns. Thus, we conclude that requirements allocated per component are 
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the base decomposition elements, while aspects are an additional crosscutting 
dimension for non-functional requirements. 

Theme/Doc’s methodology of concern treatment through graphs could be applicable to 
both functional and non-functional crosscutting concerns. The unresolved problem, 
however, lies in identification of non-functional concerns in absence of actions 
associated with them, and even more importantly, ensuring that this “absent action” is 
identified in all affected requirements.  

3.6.8 Verification and Validation 
Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 

Table 3-1: Summary of Features that Support Traceability of Requirements and Change 
to their Sources of Origin Criterion.Table 3-9 shows the comparison of the features that 
support verification and validation of requirements with respect to their design and 
implementation outputs for all the non-AO and AO approaches considered in section 0. 

Approach Features That Support Verification and Validation 

PREview not considered 

VIM multiple representations, consistency rules 

NFRF “walking through” SIG 

KAOS formalism of the representation, “walk though” decomposition graph  

I* participatory development of the Strategic Dependency and Rationale graphs, 
walking through  goal and softgoal interdependency graphs, scenario generation. 

Problem Frames “walking through” frame concern 

Use Cases simplicity of use case model, the text-based style of use case specifications, 
scenarios and interaction diagrams are all well suited for user validation; acceptance 
and black-box test descriptions can be derived from scenarios  

Misuse Cases the text-based style of use case specifications, scenarios and interaction diagrams for 
misuse validation; acceptance and black-box test descriptions derived from misuse 
case scenarios 

AORE with 
Arcade 

“walking through” the composed requirements; proof obligations from PROBE 
framework for model checking and test cases;  

ARGM “walking through” SIG 

AOSD/UC simplicity of use case model, the text-based style of use case specifications, 
scenarios and interaction diagrams are all well suited for user validation; acceptance 
and black-box test descriptions can be derived from scenarios  

SMA executable state machine specifications; simplicity of use case model, the text-based 
style of use case specifications, scenarios and interaction diagrams are all well suited 
for user validation; acceptance and black-box test descriptions can be derived from 
scenarios 

AUCDA partial projections of the functional use cases per an NFR use case; simplicity of use 
case model, the text-based style of use case specifications, scenarios and interaction 
diagrams are all well suited for user validation; acceptance and black-box test 
descriptions can be derived from scenarios 
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Cosmos textual representation of artefacts 

CORE “walking through” the composed requirements 

AOREC matching provided/required aspect details per aspects 

Theme/Doc “walking through” the action view and clipped action view graphs;  informal 
validation of designs against the themes 

Legend: PREview (section 3.3.1.1); VIM: Viewpoints and Inconsistency Management (section 3.3.1.2); NFRF: Non-
Functional Requirements Framework (section 3.3.2.1); KAOS: (section 3.3.2.2); I* (section 3.3.2.3); PF: Problem 
Frames (section 3.3.3); Use Cases (section 3.3.4.1); Misuse Cases (section 3.3.4.2); AORE with Arcade: Aspect 
Oriented Requirements Engineering with Arcade (section 3.4.1.1); ARGM: Aspects in Requirements Goal Models 
(section 3.4.2.1); AOSD/UC: AOSD with Use Cases (section 3.4.3.1); SMA: Scenario Modelling with Aspects 
(section 3.4.3.2.1); AUCDA: Aspectual Use Case Driven Approach (section 3.4.3.3); Cosmos (section 3.4.4.1); 
CORE: Concern Oriented Requirements Engineering (section 3.4.4.2); AOREC: Aspect Oriented Requirements 
Engineering for Components (section 3.5.1.1); Theme/Doc (section 3.5.2.1 ). 
Table 3-9: Summary of Features that Support Verification and Validation. 

PREview collects requirements from individual viewpoints. These requirements can 
often be merged or amended due to conflict resolution or influence of organisational 
concerns. Nevertheless, the approach does not provide any support for verification of 
the end-produced requirements against those from the individual viewpoints. Neither 
does it support validation of the derived architecture and designs against requirements.  

The viewpoint check rules in VIM can be used to verify the consistency of different 
viewpoints, as well as their mappings to the different lifecycle stage artefacts, if such 
rules are specified in each given case. Verification of individual viewpoints too can be 
accomplished through participation of the agent from whom the viewpoint was elicited. 
However, these cannot ensure that the viewpoints are conflict free or that each 
viewpoint representation will be understood by the source stakeholder (e.g., if defined 
in a formal representation, etc.). 

NFRF does not provide specific verification and validation procedures either, though its 
SIG can be used for “walking through” the concern decomposition and its verification 
with the user (if appropriate).   

The formalism of KAOS artefacts allows precise analysis to be carried out for the 
system artefacts, thus supporting verification. On the other hand, the gaol 
decomposition graph is quite informal and can be used for “walk through” validation 
with the users. 

One of the attractions of the I* approach is its intuitiveness and ease of stakeholder 
integration into dependency and rationale graph development. Through the 
“participatory” involvement of the stakeholders, the software developers can achieve a 
verifiable and reliable model for the system development. These graphs can also be used 
for verification via scenario generation (e.g., what if agent x did not deliver on 
dependum y?). In addition, the NFRF-style interdependency graph can be “walked 
through” to verify specific goal/task decomposition and operationalisation. 

In the Problem Frames approach the composite frame concern is an excellent way of 
“walking through” and verifying the problem and its solution with the users to ensure 
that they agree with assumed domain properties and are satisfied with the way that the 
requirements will be met by the system. The formal validation of designs and 
implementation against the requirements is not discussed in this work. 

With the Use Cases approach the simplicity of use case model, the text-based style of 
use case specifications, scenarios and interaction diagrams are all well suited for user 
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validation. Use cases also help to explore various ways in which a system is used and 
derive acceptance and black-box test descriptions from scenarios against which the final 
system can be verified. In essence, each scenario in a use case is a test case ready for 
validation.   

For verification and validation the Misuse cases are used in the same way as Use Cases. 

Verification in AORE with Arcade can be easily accommodated by “walking through” 
the composed requirements (which will appear in text due to their XML representation) 
with the customers. Validation, on the other hand is thoroughly supported through the 
PROBE framework which provides proof obligations for aspectual requirements and 
associated trade-offs. The proof obligations generated in PROBE can be used as input to 
both formal method tools (such as model checkers) or as a basis to derive test cases. 

Aspects in Requirements Goal Models approach does not provide specific verification 
and validation procedures, though the SIG can be “walked through” for verification 
purposes and the discussion for NFR framework is also applicable here.  

From the verification and validation perspective at requirements engineering level 
AOSD/UC fits the same description as Use Cases approach, discussed above.  

The final aim of Scenario Modelling with Aspects approach is to generate executable 
state machine specifications to allow users to validate the requirements by injecting 
events into the modelled system, thus making it highly suitable for validation. Besides, 
the use cases and scenarios can also be verified with the users, as with the Use Cases 
approach. 

In the Aspectual Use Case Driven approach verification and validation of functional use 
cases is same as for the Use Cases approach. Additionally, the non-functional 
requirements and their effect on the functional use cases can be validated with the 
partial projections of the functional use cases per NFR use case. Yet, the influences of 
non-functional concerns on each other are not verifiable and their validation is not 
considered either.  

Concern Modelling with Cosmos could be helpful in validating the artefacts and their 
relationships against original concerns and their relationships, as well as any defined 
constraints. Concerns and relationships themselves can be discussed with the users, to 
verify their correctness; the textual representation of artefacts can be helpful in this 
respect. However, presently Cosmos does not provide any formal verification and 
validation support.  

Verification in CORE is same as that of AORE. The validation process may also 
become quite similar once the PROBE framework is adapted to the multi dimensional 
separation of concerns used in CORE. This adaptation is intended to be performed in 
the near future. 

AOREC has no explicit verification and validation support either for verifying 
requirement assignment per component, or aspect detail assignment per aspect. On the 
other hand, the aspect details can be used to verify if the details required by a 
component are provided by another component, thus checking the correctness of 
component composition. 

Verification with the customers by “walking through” the action view and clipped 
action view graphs is possible for Them/Doc. Informal validation of designs against the 
themes produced at the requirements stage is also possible. Though this validation 
cannot prove correctness of designs and will not provide a 1-1 mapping between 
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requirements themes and design operations, it helps to put the design decisions in 
context of their corresponding requirements and verify the decisions themselves [55].  
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4. AO Architecture  

4.1 Introduction: Architecture  
Software architectures are high-level design representations that facilitate the 
communication between different stakeholders, enable the effective partitioning and 
parallel development of the software system, provide a means for directing design 
decisions and their evaluation, and finally provide opportunities for reuse [76] [77]. 

Software architecture is generally considered to play a fundamental role in coping with 
the inherent difficulties of the development of large-scale and complex software 
systems [78]. A common assumption is that architecture design should support the 
required software system qualities such as robustness, adaptability, reusability and 
maintainability [79] [76].  

The term architecture is not new and has been used for centuries to denote the physical 
structure. A common definition that is applied to the context of software systems is the 
following [76]:  

“The software architecture of a program or computing system is the structure or 
structures of the system, which comprise software components, the externally 
visible properties of those components, and the relationships among them”.  

Software architecture forms one of the key artefacts in the entire software development 
life cycle since it embodies the earliest design decisions and includes the gross-level 
components that directly impact the subsequent analysis, design and implementation. 
Accordingly, it is important that the architecture design supports the software system 
qualities required by the various stakeholders. For ensuring the quality factors it is 
necessary to identify the fundamental concerns for architecture design and various 
architecture design methods have been introduced for this purpose.  

Current software architecture design methods, however, do not make an explicit 
distinction between conventional architectural concerns that can be localised using 
current architectural abstractions and architectural concerns that crosscut multiple 
architectural components. The risk is that potential aspects might be easily overlooked 
during the software architecture design and remains unsolved at the design and 
programming level. This may lead to tangled code in the system and consequently the 
quality factors that the architecture analysis methods attempt to verify will still be 
impeded. Similar to the notion of aspect at the programming level, these concerns are 
crosscutting and denote so-called architectural aspects. Since the crosscutting property 
of architectural aspects is inherent, these cannot be undone simply by redefining the 
software architecture using conventional architectural abstractions. In fact, like various 
aspect-oriented programming abstractions,  we need explicit mechanisms to identify, 
specify and evaluate aspects at the architecture design level. In this sense aspectual 
architecture design approaches describe steps for identifying architectural aspects and 
their related tangled components. This information is used to redesign the given 
architecture in which the architectural aspects are made explicit. This is different from 
traditional approaches where architectural aspects are implicit information in the 
specification of the architecture. 

The survey of architecture approaches in this report discusses state-of-the-art in both 
non-AO and AO architecture approaches from the perspective of treating crosscutting 
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concerns at the architecture level. Each set of approaches (i.e., AO and non-AO) is 
categorised as follows: 

1. Approaches for modelling architecture - include all the approaches for 
modelling architectures visually or textually. 

2. Approaches for architecture design process - include the approaches that 
provide explicit process and heuristic rules for designing architectures 

3. Architecture evaluation approaches - include the approaches that mainly focus 
on the analysis of architecture with respect to required quality criteria 

We use the general quality criteria from section 2 as a basis to provide a qualitative 
comparison between the various approaches. 

This section is further organised as follows: section 4.2 describes the non-AO 
approaches, section 4.3 presents the AO approaches, section 4.4 discusses the 
comparison. 

 

4.2 Non-AO Approaches 
4.2.1 Architectural Modelling Approaches 
This section discusses the architectural modelling approaches which are grouped into: 

• Architectural Description Languages or ADLs  (section 4.2.1.1), represented by 
ACME [80], Chiron-2 [81, 82], Aesop [83, 84], Darwin [85, 86], Rapide [87, 
88], and Wright [89] approaches; 

• Approaches that use Unified Modelling Language (UML) for  software 
architecture modelling (section 4.2.1.2), represented by  [90]; 

• Architecture Evaluation Methods (section 4.2.3), represented by Software 
Architecture Analysis Method [91] (SAAM), Architecture Trade-Off Analysis 
Method [92], SAAM Founded on Complex Scenarios [93], Extending SAAM 
by Integration in the Domain [94], SAAM Evolution and Reusability [95], and 
Architecture Level Prediction of Software Maintenance [96] approaches. 

 

4.2.1.1 Architecture Description Languages 
Several ADLs have been proposed as modelling representations to support 
architecture-based development. In general, an ADL is used to model the components, 
the connections, and the configuration of software architecture. The set of ADLs in the 
literature is quite broad and several surveys have already been published by various 
authors, e.g., [97, 98]. Although each ADL provides a specification language for 
representing the high level structure of the system we can identify several differences. 
First of all, it appears that several ADLs focus on modelling particular domains [99] 
whereas other ADLs are general-purpose. Secondly, different ADLs focus on 
specification of different characteristics of the architecture. Some focus on the 
specification of the architectural components, some on interaction of the components 
and others on the configuration. Finally, ADLs can be distinguished by their goals. 
While most of them can be considered as a means for communication and 
understanding, some of them can be considered as models that can be adopted to derive 
the subsequent artefacts from it.  
Since the set of ADLs is too broad to consider, we will not redo the work on 
classifying ADLs but suffice to refer to the surveys [97, 98] and, in addition, describe 
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the ADLs that are representative of the above distinctions. The representative ADLs 
discussed below are ACME [80], Chiron-2 [81, 82], Aesop [83, 84], Darwin [85, 86], 
Rapide [87, 88], and Wright [89]. 
 

4.2.1.1.1 ACME 
ACME [80] builds on the experience of other ADLs and intends to serve as a common 
representation for software architectures. ACME supports the definition of software 
architectures from four distinct perspectives: 
1. Structuring of a system into its constituent parts;  
2. Properties of interest about a system or its parts that allow one to reason abstractly 

about overall behaviour (both functional and non-functional); 
3. Constraints on how the architecture can change over time; 
4. Types and styles defining classes and families of architecture.   
 
ACME focuses on architectural interchange, predominantly at the structural level [98]. 
An architecture description in ACME can comprise of seven types of entities: 
components, connectors, systems, ports, roles, representations, and rep-maps. The first 
five are illustrated in Figure 4-1.  

 
Figure 4-1 : Entities of ACME 

Components represent computational elements and data stores of a system. A 
component may have multiple interfaces, each of which is termed a port. A port 
identifies a point of interaction between the component and its environment.  

Connectors also have interfaces that are defined by a set of roles. Each role of a 
connector defines a participant of the interaction represented by the connector. Systems 
are defined as graphs in which the nodes represent components and the arcs represent 
connectors. This is done by identifying which component ports are attached to which 
connector roles. A representation map  (rep-map, also called attachment in Figure 4-2) 
defines this correspondence. In the simplest case a rep-map provides an association (an 
attachment) between internal ports and external ports (or, for connectors, between 
internal roles and external roles).   

Each of the seven entity types can be annotated with a property list. Properties 
document details of an architecture relevant to its design and analysis. A property has a 
name, an optional type, and a value. A simple example of a Client-Server system in 
ACME is presented in Figure 4-2.  
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Figure 4-2 : Example specification 

Constraints determine how an architecture design is permitted to evolve over time. 
ACME provides a syntax to describe such constraints. Constraints can be associated 
with the seven entity types. 
Styles allow one to define a domain-specific or application-specific design vocabulary, 
together with constraints on how that vocabulary can be used. The basic building block 
for defining styles is a type system that can be used to encapsulate recurring structures 
and relationships. 
 

4.2.1.1.2 C2 
A Chiron-2 (C2) architecture [81, 82] is a hierarchical network of concurrent 
components linked together by connectors in accordance with a set of style rules. C2 
communication rules require that all communication between C2 components be 
achieved via message passing. C2 focuses on architectures of highly-distributed, 
evolvable, and dynamic systems [98]. 
C2 is a component- and message-based style designed to support the particular needs 
of applications that have a graphical user interface aspect, with the potential for 
supporting other types of applications as well. The C2 style supports a paradigm in 
which user interface components, such as dialogs, structured graphics models, and 
constraint managers, can more readily be reused. A sample C2 architecture is depicted 
in Figure 4-3. 
 

 
Figure 4-3 : Example C2 application 

C2’s ADL describes the components and the topology of the architecture. A C2 
architecture in ADL is modelled as depicted in Figure 4-4 [82]: 
 



 118

 
Figure 4-4 : ADL of C2 

The ADL can also be used to describe the topology, or configuration, of the 
architecture. These features have not been discussed here but can be found in [82]. 
 

4.2.1.1.3 Aesop 
Aesop [83, 84] is a system for developing style-specific architectural development [98] 
environments. Each of these environments supports:  
• A palette of design element types (i.e., style-specific components and connectors) 

corresponding to the vocabulary of the style;  
• Checks that compositions of design elements satisfy the topological constraints of 

the style; 
• Optional semantic specifications of the elements; 
• An interface that allows external tools to analyse and manipulate architectural 

descriptions;  
• Multiple style specific visualisations of architectural information together with a 

graphical editor for manipulating them.  
Aesop combines a description of a style (or set of styles) with a shared toolkit of 
common facilities to produce an environment called a Fable, specialized to that style 
(or styles) [84]. The Aesop ADL is not being actively developed at present; emphasis 
is shifting to ACME instead. 
An Aesop architectural representation contains seven entities: components, connectors, 
configurations, ports, roles, representations, and bindings. Most entities correspond to 
an entity that is used by ACME. Each of the seven entities is represented as a C++ 
class. Pipeline, real-time and event-based styles can be represented using Aesop. 
 

4.2.1.1.4 Darwin 
Darwin [85, 86] is a language for describing component-based architectures. It 
supports a hierarchical model and is accompanied by a corresponding graphical 
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notation. The main contributions of Darwin are its simple yet elegant grammar, its 
solid concept of components and the introduction of dynamism in the specification of 
software architectures. Darwin focuses on architectures of highly-distributed systems 
whose dynamism is guided by strict formal underpinnings [98]. 
In Darwin, components are strongly typed first-class language primitives, supporting 
single inheritance. A component interface specifies what the component can provide to 
others, and what it requires. These ‘provide and require’ statements serve as implicit 
connectors; there is no explicit connector language construct. The component 
abstraction is deemed powerful enough to encompass connectors, i.e. if a specific type 
of connector is required, it can be specified as a component, with other components 
connected to it. Darwin supports a bind statement which is used to tie together 
components using their ‘provide and require’ statements. The Darwin compiler checks 
that connections are only made between compatible communication objects.  
 

4.2.1.1.5 Rapide 
Rapide [87, 88] has been designed to support component-based development of large, 
multi-language systems by utilising architecture definitions as the development 
framework. Rapide focuses on modelling and simulation of the dynamic behaviour 
described by an architecture [98]. 
Rapide, in fact, can be considered as a language framework consisting of four 
elements: 
1. A type language used to define component interfaces. The language is based on a 

single general interface type construct together with inheritance derivations for 
building new interfaces from existing ones.  

2. An executable architecture definition language which provides features for 
composing systems from component interfaces by defining their synchronisation 
and communication interconnections in terms of patterns of events. 

3. A constraint specification language which provides constructs for abstract 
specification of the behaviour of a distributed system, including timing 
requirements. 

4. A concurrent reactive programming language which uses types, objects, and 
expressions of the type language, and provides module and control structures. Its 
principal constructs are independent (or concurrent) reactive processes that activate 
when patterns of events occur during execution. These pattern-triggered processes 
are used to define architecture connections between components and construct 
component behaviours via rule-based, reactive programming. 

 

4.2.1.1.6 Wright 
As an ADL, Wright [89] is built around the basic architectural abstractions of 
components, connectors, and configurations. It provides explicit notations for each of 
these elements, formalising the general notions of component as computation and 
connector as pattern of interaction. Its main focus is on modelling and analysis of the 
dynamic behaviour of concurrent systems [98]. 
The description of a component in Wright has two important parts: the interface and 
the computation. An interface consists of a number of ports. Each port represents an 
interaction in which the component may participate. The structure of a Wright 
component is described in Figure 4-5. 
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Figure 4-5 : Structure of Wright component 

The structure of a Wright connector is depicted in Figure 4-6.  The Glue of a connector 
describes how the participants work together to create an interaction. 
 

 
Figure 4-6 : Structure of connector 

In order to describe a complete system architecture, the components and connectors of 
a description must be combined into a configuration. A configuration is a collection of 
component instances combined via connectors.  
 

4.2.1.2 Unified Modelling Language 
The possibility of using the Unified Modelling Language (UML) to model the software 
architecture has been investigated in [90]. The authors consider two possible ways for 
the purpose: use UML “as  is” or constrain the UML meta-model using UML’s built-in 
extension mechanisms, like the  Object Constraint Language (OCL) and stereotypes. 
For using UML “as is”, an architecture that is modelled in the ADL of C2 is used. To a 
large extent, the C2-style architecture can be successfully modelled with UML. Part of 
the success can be attributed to the fact that, as anticipated, many architectural 
concepts are found in UML.  It must be noted, however, that the modelling capabilities 
provided by UML “as is” do not fully satisfy the structural needs of architectural 
description for two key reasons. First, UML does not provide specialised constructs for 
modelling architectural artefacts. For example, connectors and components must be 
modelled in UML “as is” using the same mechanism. Second, the rules of a given 
architectural style can not be modelled with UML. 
The second approach, i.e., constraining the UML meta-model, can also be employed to 
constrain the UML to enforce the rules of the C2 style in a fairly straightforward 
fashion. This is because many C2 concepts are found in UML (cf. the example 
architecture depicted in Figure 4-7). 
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Figure 4-7 : Example architecture 

This architecture modelling strategy has also drawbacks. It is heavily reliant on OCL, 
whose formality may hinder wide adoption of the strategy even though end users of the 
constrained UML model typically will not need to write OCL constraints. OCL is a 
part of the standard UML definition, and it is expected that standardised UML tools 
will be able to process it. However, OCL is considered an uninterpreted part of UML, 
and UML tools may not support it to the extent needed for creating, manipulating, 
analysing, and evolving architectural models.  
 

4.2.2 Architectural Design Process Approaches  
In this section a meta-model that is an abstraction of various architecture design 
approaches is provided. This meta-model is used to analyse and compare architecture 
design process approaches. The meta-model is presented in Figure 4-8. 
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Figure 4-8 : Meta-model for architecture design process approaches 
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The rounded rectangles represent the concepts and the lines represent the association 
between these concepts. The diamond symbol represents an association relation 
between three or four concepts. The meanings of the concepts are as follows:  

• Client - the stakeholders who are interested in the development of a software 
architecture design. A stakeholder may be a customer, end-user, system 
developer, system maintainer, sales manager, etc.   

• Domain Knowledge - the area of knowledge that is applied to solve a certain 
problem. This term is used three times but has different meanings in different 
approaches. The following specialisations of this concept are distinguished (cf.  
Figure 4-9):  

o Problem Domain Knowledge refers to the knowledge of the problem 
from a client’s perspective (includes requirement specification 
documents, interviews with clients, prototypes delivered by clients, 
etc.).  

o Business Domain Knowledge is the knowledge of the problem from a 
business process perspective (includes knowledge on the business 
processes and also customer surveys and market analysis reports). 

o Solution Domain Knowledge is the knowledge that provides the domain 
concepts for solving the problem. It is separate from specific 
requirements and the knowledge on how to produce software systems 
from this solution domain. This kind of domain knowledge is included 
in, for example, textbooks, scientific journals and manuals. 

o General Knowledge is the general background and experiences of the 
software engineer and also may include general rules of thumb.  

o System/Product Knowledge is the knowledge about a system, a family 
of systems or a product. 

• Requirement Specification - the specification that describes the requirements 
for the architecture to be developed.  

• Artefact - the artefact descriptions of a certain method. This is, for example, the 
description of the artefact Class, Operation, Attribute, etc. In general each 
artefact has a related set of heuristics for identifying the corresponding 
instances.  

• Solution Abstraction - the conceptual representation of a (sub)-structure of the 
architecture. 

•  Architecture Description - a specification of the software architecture.  

In Figure 4-8 there is a ternary association relation between the concepts Client, 
Domain Knowledge and Requirement Specification. This association means that for 
defining a requirement specification both client and the domain knowledge are utilised. 
The order of processing is not defined by this association and may differ per 
architecture design approach. 

There is a quaternary association relation between the concepts Requirement 
Specification, Domain Knowledge, Artefact and Solution Abstraction which describes 
the structural relations between these concepts to derive a suitable solution abstraction. 
The ternary association relation between the concepts Solution Abstraction, 
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Architecture Description and Domain Knowledge is referred to as Architecture 
Specification as it represents the specification of the architecture utilising the three 
concepts. 
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Figure 4-9 : Different specializations of the concept Domain Knowledge 

Various architectural process approaches can be described as instantiations of the 
meta-model in Figure 4-8. Each approach will differ in the ordering of the processes 
and the particular content of the concepts. 

A number of approaches have been introduced to identify the architectural design 
abstractions. We classify these approaches as requirements-driven and domain-driven 
architecture design approaches. The criterion for this classification is based on the 
adopted basis for the identification of the key abstractions of architectures. Below each 
approach is explained as a realisation of the meta-model from Figure 4-8. 

 

4.2.2.1 Requirements-driven Architecture Design 
The approaches in this category use requirements, such as use cases, as the primary 
artefacts for deriving the architectural abstractions. As discussed in section 3.3.4.1, a 
use case is defined as a sequence of actions that the system provides for actors [100]. 
Actors represent external roles with which the system must interact. The actors and the 
use cases together form the use case model. The use case model is meant as a model of 
the system’s intended functions and its environment, and serves as a contract between 
the customer and the developers. The Unified Process [100] applies a use case driven 
architecture design approach. The conceptual model for the use case driven 
architecture design approach in the Unified Process is given in Figure 4-10. Hereby, 
the dashed rounded rectangles represent the concepts of Figure 4-8. For example, the 
concepts Informal Specification and the Use Case Model together form the concept 
Requirement Specification in  Figure 4-8. 

The Unified Process consists of core workflows that define the static content of the 
process and describe the process in terms of activities, workers and artefacts. The 
organisation of the process over time is defined by phases. The Unified Process is 
composed of six core workflows: Business Modelling, Requirements, Analysis, Design, 
Implementation and Test. These core workflows result respectively in the following 
separate models: business & domain model, use case model, analysis model, design 
model, implementation model and test model.  
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Figure 4-10 : Conceptual model of use case driven architectural design 

In the requirements workflow, the client’s requirements are captured as use cases 
which results in the use case model. This process is defined by the function 1:Describe 
in Figure 4-10. Together with the informal requirement specification, the use case 
model forms the requirement specification. The development of the use case model is 
supported by the concepts Informal Specification, Domain Model and Business Model 
that are required to set the system’s context. The Informal Specification represents the 
textual requirement specification. The Business Model describes the business processes 
of an organisation. The Domain Model describes the most important classes within the 
context of the domain. From the use case model the architecturally significant use 
cases are selected and use case realisations are created as it is described by the 
function 2:Realize. Use case realisations determine how the system internally performs 
the tasks in terms of collaborating objects and as such help to identify the artefacts 
such as classes. The use case realisations are supported by the knowledge of the 
corresponding artefacts and the general knowledge. This is represented by the arrows 
directed from the concepts Artefact and General Knowledge respectively, to the 
function 2:Realize. The output of this function is the concept Analysis & Design 
Models, which represents the identified artefacts after use case realisations.  

The analysis and design models are then grouped into packages which is represented 
by the function 3:Group. The function 4:Compose represents the definition of 
interfaces between these packages resulting in the concept Architecture Description. 
Both functions are supported by the concept General Knowledge.  
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4.2.2.2 Domain-driven Architecture Design  
Domain-driven architecture design approaches derive the architectural design 
abstractions from domain models. The conceptual model for this domain-driven 
approach is presented in Figure 4-11. 

Domain models are developed through a domain analysis phase represented by the 
function 2:Domain Analysis. Domain analysis can be defined as the process of 
identifying, capturing and organising domain knowledge about the problem domain 
with the purpose of making it reusable when creating new systems [101]. The function 
2:Domain Analysis takes as input the concepts Requirement Specification and Domain 
Knowledge and results in the concept Domain Model. Note that both the concepts 
Solution Domain Knowledge and Domain Model in Figure 4-11 represent the concept 
Domain Knowledge in the meta-model of Figure 4-8. 
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Figure 4-11 : Conceptual model for Domain-Driven Architecture Design 

The domain model may be represented using different representation forms such as 
classes, entity-relation diagrams, frames, semantics networks, and rules. Several 
domain analysis methods have been published, e.g., [102], [103], [101], [104] and 
[105]. Two surveys of various domain analysis methods can be found in [106] and 
[107]. In [105] a more recent and extensive up-to-date overview of domain engineering 
methods is provided.  

In this section we are mainly interested in the approaches that use the domain model to 
derive architectural abstractions. In Figure 4-11, this is represented by the function 
3:Domain Design. In the following we consider two domain-driven approaches, 
namely product-line architecture design and pattern-driven architecture design, that 
derive the architectural design abstractions from domain models.  

4.2.2.2.1 Product-line Architecture Design 
In the product-line architecture design approach, an architecture is developed for a 
software product-line that is defined as a group of software-intensive products sharing 
a common, managed set of features that satisfy the needs of a selected market or 
mission area [78]. A software product line architecture is an abstraction of the 
architecture of a related set of products. The product-line architecture design approach 
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focuses primarily on the reuse within an organisation and involves core asset 
development and product development. The core asset base often includes the 
architecture, reusable software components, requirements, documentation and 
specification, performance models, schedules, budgets, and test plans and cases [108], 
[109], [78]. The core asset base is used to generate or integrate products from a product 
line.  

The conceptual model for product-line architecture design is shown in Figure 4-12. 
The function 1:Domain Engineering represents the core asset base development. The 
function 2:Application Engineering represents the product development from the core 
asset base.  
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Product

2:Application Engineering

Domain
Knowledge

 
Figure 4-12 : A conceptual model for a Product-Line Architecture Design 

Note that various software architecture design approaches can be applied to provide a 
product-line architecture design. In the following section we describe the DSSA 
approach that follows the conceptual model for product-line architecture design in 
Figure 4-12. 

 

4.2.2.2.1.1 Domain Specific Software Architecture Design 

The domain-specific software architecture (DSSA) [110] [111] may be considered as a 
multi-system scope architecture, that is, it derives an architectural description for a 
family of systems rather than a single-system. The conceptual model of this approach 
is presented in Figure 4-13. The basic artefacts of a DSSA approach are the domain 
model, reference requirements and the reference architecture. The DSSA approach 
starts with a domain analysis phase on a set of applications with common problems or 
functions. The analysis is based on scenarios from which functional requirements, data 
flow and control flow information is derived. The domain model includes scenarios, 
domain dictionary, context (block) diagrams, ER diagrams, data flow models, state 
transition diagrams and object models.  

In addition to the domain model, reference requirements are defined that include 
functional requirements, non-functional requirements, design requirements and 
implementation requirements and focus on the solution space. The domain model and 
the reference requirements are used to derive the reference architecture. The DSSA 
process makes an explicit distinction between a reference architecture and an 
application architecture. A reference architecture is defined as the architecture for a 
family of application systems, whereas an application architecture is defined as the 
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architecture for a single system. The application architecture is instantiated or refined 
from the reference architecture. The process of instantiating/refining and/or extending 
a reference architecture is called application engineering. 
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Figure 4-13 : Conceptual model for Domain Specific Software Architecture (DSSA) approach 

 

4.2.2.2.2 Pattern-driven Architecture Design 
Christopher Alexander’s idea on pattern languages for systematically designing 
buildings and communities in architecture [112] has been adopted by the software 
community and led to the so-called software design patterns [113]. Similar to the 
patterns of Alexander, software design patterns aim to codify and make reusable a set 
of principles for designing quality software. The software design patterns are applied 
for the design phase, though, the software community has started to define and apply 
patterns for the other phases of the software development process. At the 
implementation phase patterns or idioms [114] have been defined to map object-
oriented designs to object-oriented language constructs. Others have defined patterns 
for the analysis phase in which patterns are applied to derive analysis models [115]. 
Patterns have also been applied at the architectural analysis phase of the software 
development process [116, 117]. Architectural patterns are similar to the design 
patterns but focus on the gross-level structure of the system and its interactions. 
Sometimes architectural patterns are also called architectural styles [77, 118]. An 
architectural pattern is not the architecture itself, as it is often mistaken, but rather it is 
just an abstract representation at the architectural level [76, 119]. 

Pattern-driven architecture design approaches derive the architectural abstractions from 
patterns. Figure 4-14 depicts the conceptual model for this approach. 
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Figure 4-14 : Conceptual Model for a Pattern-Driven Architecture Design 

The concept Requirement Specification represents a specification of a problem that 
may be solved using a pattern. The function Search represents the process for 
searching a suitable pattern for the given problem description and is supported by the 
concept General Knowledge.  

The concept Architectural Pattern Description represents a description of an 
architectural pattern. It consists mainly of four sub-concepts62: Intent, Context, 
Problem, and Solution. The concept Intent represents the rationale for applying the 
pattern. The concept Context represents the situation that gives rise to the problem. The 
concept Problem represents the recurring problem arising in the context. The concept 
Solution represents a solution to the problem in the form of an abstract description of 
the elements and their relations. For the identification of the pattern the intent of the 
available patterns is scanned. If the intent of a pattern is found relevant for the given 
problem then the context description (Context) is analysed. If this also matches the 
context of the given problem, then the process follows with the function 3:Apply. 
Thereby the sub-concept Solution is utilised to provide a solution to the problem. The 
concept Architectural Pattern represents the result of the function 3:Apply. Finally, the 
function 4:Compose represents the incorporation of the architecture pattern into the 
architecture description.  

 

4.2.3 Architecture Evaluation Methods 
As discussed earlier, software architecture forms one of the key artefacts in the entire 
software development life cycle since it embodies the earliest design decisions and 
includes the gross-level components that directly impact the subsequent analysis, 
design and implementation. Accordingly, it is important that the architecture design 
supports the software system qualities required by the various stakeholders. For 
ensuring the quality factors the common assumption is that identifying the fundamental 
concerns for architecture design is necessary and various architecture design methods 
have been introduced for this purpose. To verify that the right concerns have been 
                                                 
62 There are other sub-concepts but we consider these four sub-concepts as important for the 
identification of the architectural abstractions. 
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identified generally static analysis of formal architectural models is conducted or a set 
of architecture analysis methods are adopted. Next we discuss some of these 
architecture evaluation methods. 

4.2.3.1 Software Architecture Analysis Method (SAAM) 
In [91] a comprehensive survey is given of the various software architecture design 
analysis methods that have been proposed so far. Among these methods the Software 
Architecture Analysis Method (SAAM) can be considered as a mature method which 
has been validated in various cases studies. Other methods such as SAAMCS, 
ESAAMI, SAAMER and ATAM are based on or adopt the concepts used in this 
method [91]. The basic activities of SAAM are illustrated in Figure 4-15. 
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Figure 4-15 : SAAM inputs and activities [120] 

SAAM takes as input a problem description, requirements statement and architecture 
descriptions. The steps of SAAM are as follows [120] : 
1. Describe candidate architecture: The candidate architecture is described which 

includes the system’s computation and data components, as well as all component 
relationships, sometimes called connectors.  

2. Develop scenarios: Development of scenarios for various stakeholders; the 
scenarios illustrate the kinds of activities the system must support and the 
anticipated changes that will be made to the system over time.  

3. Perform scenario evaluations: Scenarios are categorised into direct and indirect 
scenarios. For each indirect task scenario the required changes to the architecture 
are listed and the cost of performing these changes is estimated. A modification to 
the architecture means that either a new component or connection is introduced or 
an existing component or connection requires a change in its specification. 

4. Reveal scenario interaction: Different indirect scenarios that require changes to the 
same components or connections are said to interact with respect to the 
corresponding component. Determining scenario interaction is a process of 
identifying scenarios that affect a common set of components. Scenario interaction 
measures the extent to which the architecture supports an appropriate separation of 
concerns. Semantically close scenarios should interact at the same component. 
Semantically distinct scenarios that interact indicate an improper decomposition.  

5. Overall evaluation: Finally, each scenario and the scenario interactions are 
weighted in terms of their relative importance and this weighting used to determine 
an overall ranking. The weighting chosen reflects the relative importance of the 
quality factors that the scenarios manifest. 
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4.2.3.2 The Architecture Trade-Off Analysis Method (ATAM) 
The Architecture Trade-Off Analysis Method (ATAM), as presented in [92], is based 
on SAAM, with an explicit quality model. ATAM uses a utility tree and, depending on 
the qualities that are important, the appropriate attribute characteristics are used. The 
steps that are used in ATAM to analyse the software architecture are as follows. 

Presentation: 
1. Present the ATAM: The evaluation leader describes the evaluation method to the 

assembled participants, tries to set their expectations, and answers questions they 
may have. 

2. Present business drivers: A project spokesperson (ideally the project manager or 
system customer) describes what business goals are motivating the development 
effort and hence what will be the primary architectural drivers (e.g., high 
availability or time to market or high security). 

3. Present architecture: The architect will describe the architecture, focusing on how 
it addresses the business drivers. 

Investigation and Analysis: 
4. Identify architectural approaches: Architectural approaches are identified by the 

architect, but are not analysed.  

5. Generate quality attribute utility tree: The quality factors that comprise system 
“utility” (performance, availability, security, modifiability, usability, etc.) are 
elicited, specified down to the level of scenarios, annotated with stimuli and 
responses, and prioritised. 

6. Analyse architectural approaches: Based upon the high-priority factors identified 
in Step 5, the architectural approaches that address those factors are elicited and 
analysed (for example, an architectural approach aimed at performance). During 
this step architectural risks, sensitivity points, and trade-off points are identified 
(cf. Figure 4-16). 

 
Figure 4-16 : Concepts interaction in ATAM 

 
7. Brainstorm and Prioritise Scenarios: Once the scenarios have been collected, they 

must be prioritised. This is typically done via a voting procedure where each 
stakeholder is allocated a number of votes equal to 30% of the number of scenarios, 
rounded up. 



 131

8. Analyse Architectural Approaches: In this step, step 6 is reiterated. Mapping the 
highest ranked newly generated scenarios onto the architectural artefacts thus far 
uncovered. Assuming Step 7 didn’t produce any high-priority scenarios that were 
not already covered by previous analysis, Step 8 is a testing activity: This step is 
expected to be uncovering little new information.  

9. Present Results: Finally, the collected information from the ATAM needs to be 
summarised and presented back to the stakeholders. 

 

4.2.3.3 SAAM Founded on Complex Scenarios (SAAMCS) 
SAAMCS [93] is alternative method for software architecture analysis. The main 
differences between this method and SAAM are in the way in which we arrive at the 
scenarios and in the way in which we evaluate their impact. The process steps of 
SAAMCS are depicted in Figure 4-17. The first two steps: architecture description and 
scenario development are performed in parallel. The goal of the latter is to identify 
complex scenarios. A measurement instrument is used to measure the complexity of 
the scenarios. The goal of the measurement instrument is to provide insight into the 
complexity of scenarios for administrative systems. A distinction is made between the 
effect of a scenario on the system and on the environment. A couple of factors are 
defined to measure the impact on the system and on the environment. The results of 
this measurement instrument are used to evaluate the scenarios in the third step. 
 

 
Figure 4-17 : Inputs and activities of SAAMCS [91] 

 

4.2.3.4 Extending SAAM by Integration in the Domain (ESAAMI) 
ESAAMI, the integration of SAAM in domain-centric and reuse-based development 
processes, is presented  in [94]. The inputs to the ESAAMI process are depicted in 
Figure 4-18. 
 



 132

 
Figure 4-18 : Inputs of ESAAMI [91] 

The SAAM process had to be made reuse-aware for the execution of the architecture 
analysis itself and overcoming the ad-hoc way of doing reuse. ESAAMI provides 
proto-scenarios, generic descriptions of reuse situations or interactions with the system. 
A proto-scenario may be classified as direct or indirect like a conventional SAAM 
scenario. The evaluation of the scenarios can be facilitated by providing protocols of 
earlier analyses in different projects as well as proto-evaluations. A proto-evaluation 
describes, by example, how the scenario can be performed using a set of abstract 
architecture elements. Hints are associated with each scenario indicating which 
architectural structures would make the scenario convenient to handle. Similar to the 
evaluation of the scenarios themselves, the analysis of scenario interactions can also 
benefit from protocols of earlier analyses in the same application domain. These 
elements are combined to form an analysis template. 
The reuse of a SAAM analysis template in a domain-centric development process 
allows exploitation of the knowledge and experience from the specific application 
domain to increase the relevance of the analysis results. 
Unlike domain-specific proto-scenarios, the proto-scenarios in an architecture-specific 
analysis template may refer to characteristics and elements of the scrutinised 
architecture. However, similar to the situation described above, they are still generic 
with respect to the considered application. The deployment of an architecture-specific 
analysis template supports a focused evaluation of characteristics relevant to the 
considered architecture, thus increasing the expressiveness of the analysis results. 
 

4.2.3.5 SAAM Evolution and Reusability (SAAMER) 
This framework [95] contains a set of architectural views that were developed to assess 
software architectures for evolution and reuse built upon SAAM. The framework is 
used to model different types of information, namely, stakeholder information, 
architecture information, quality information, and scenarios. 
SAAMER considers the following architectural views as critical: static, map, dynamic, 
and resource. The static view integrates and extends SAAM to address the 
classification and generalisation of a system’s components and functions and the 
connections between components. These extensions facilitate the estimation of cost or 
effort required for changes to be made. The dynamic view is appropriate for the 
evaluation of the behaviour aspect, to validate the control and communication to be 
handled in an expected manner. The mapping between components and functions 
could reveal the cohesion and coupling aspects of a system [91]. 
The SAAMER process consists of four steps. The first step involves gathering 
information about stakeholders, software architecture quality, and scenarios; modelling 
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usable artefacts and undertaking analysis. The second step involves evaluation of the 
architecture while the later last steps are similar to those of SAAM.  
 

4.2.3.6 Architecture Level Prediction of Software Maintenance 
(ALPSM) 

This approach [96] aims to estimate the required maintenance effort for a software 
system during architectural design. The estimated effort can be used to compare two 
architecture alternatives or to balance maintainability against other quality attributes. 
The approach takes as input the requirement specification, the design of the 
architecture, expertise from software engineers and historical maintenance data. The 
main output of the approach is an estimation of the required maintenance effort of the 
system built based on the software architecture. The maintenance profile is a second 
output from the method. The profile contains a set of scenario categories and a set of 
scenarios for each category with associated weighting and analysis (scripting) results.  
ALPSM process consists of six steps:  
1. Identify categories of maintenance tasks: The categories are defined based on the 

application or domain description.  
2. Synthesise scenarios: For each of the maintenance categories, a representative set 

of concrete scenarios is defined.  
3. Assign each scenario a weight: The prediction method requires probability 

estimates, i.e. weights, for each scenario. These probabilities are used for balancing 
the impact on the prediction of more occurring and less occurring maintenance 
tasks.  

4. Estimate the size of all elements: To estimate the maintenance effort, the size of the 
architecture needs to be known and the sizes of the affected components need to be 
known.  

5. Script the scenarios: The maintainability of the architecture is estimated by 
scripting the scenarios.  

6. Calculate the predicted maintenance effort: The value is a weighted average for the 
effort for each maintenance scenario. Based on that, one can calculate an average 
effort per maintenance task. 

 

4.3 Aspect-Oriented Approaches 
Like the non-AO approaches, we categorise the aspect-oriented architecture design 
approaches into: 

• Architectural modelling approaches represented by the Perspectival Concern-
Space Framework [121] and DAOP-ADL [122];  

• Architectural process approaches represented by Aspect-Oriented Generative 
Approaches  [123, 124] and TranSAT [125];  

• Architecture Evaluation approaches represented by Aspectual Software 
Architecture Analysis Method [126].  

Each approach in each of the three categories is described in terms of its method for 
architecture design, the artefacts and the process, if applicable. 

 

4.3.1  Architectural Modelling Approaches  
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4.3.1.1 The Perspectival Concern-Space (PCS) Framework 
PCS Method 
The Perspectival Concern-Space (PCS) [121] is a technique for depicting concerns of 
multiple dimensions in an architectural view consisting of one or more models and 
diagrams. A perspective is a “way of looking” at a multidimensional space of software 
concerns from one specific viewpoint. Figure 4-19 gives an idea of the key concepts 
used in the PCS Framework and summarises the combination of the realisations of the 
conceptual frameworks for Multi Dimension Separation of Concerns (MDSOC) and 
IEEE-Std-1471, and UML. 

 
Figure 4-19 : A Perspectival Concern-Space in Overview 

PCS Artefacts 
The Aspect-Oriented Construction PCS is a specific type of PCS and demonstrates 
how MDSOC helps deal with software complexity by supporting the composition of 
independent software components along different interaction concerns.  
A UML Space is used for Aspect-Oriented Modelling (AOM), see Figure 4-20 for a 
high level view and Figure 4-21 for a low level view. The approach proposes two 
packages as extension to UML. The AOM Core package specifies the basic AOM 
constructs necessary to model aspect-oriented software. The AOM Data Types package 
defines basic data types. The Aspect-Oriented Model can be mapped to an AspectJ 
program, which is a manual process. 
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Figure 4-20 : High-Level Package View of the UML Space for AOM 

 

 
Figure 4-21 : The UML Space for AOM — A Low-Level View of AOM Core 

With the tool ConcernBase it is possible to translate the UML models to Structural 
Architecture Description Language (SADL). SADL is a particular ADL that focuses on 
understanding, specifying and refining the representation of structural concerns in 
complex software systems. SADL is different from other ADLs, such as Wright, in that 
it supports structural decomposition at multiple levels. This is called refinement of 
high-level system structures in the SADL terminology. 
 

4.3.1.2 DAOP-ADL  
DAOP-ADL Method 
DAOP-ADL [122] is an XML-based architecture description language to describe the 
architecture of an application in terms of a set of components, a set of aspects and the 
interconnections among them. As shown in Figure 4-22, these interconnections are 
structured in two different kinds of composition constraints:  
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1. The componentCompositionRules describe the rules that drive the composition of 
components 

2. The aspectEvaluationRules, which are the equivalent to aspect pointcuts in aspect-
oriented programming languages, describe the weaving rules between components 
and aspects.  

The dependencies among non-orthogonal concerns are expressed by means of shared 
properties. The language also includes all the information needed to deploy the 
application (the deployment information) and the application initial context. DAOP-
ADL is part of the CAM/DAOP approach described in section 5.4.16 of this document.  
The goal of this approach is specification of component and aspect based distributed 
applications.  

 
Figure 4-22 : The structure of the DAOP-ADL language 

 

DAOP-ADL Artefacts  
The artefacts in DAOP-ADL are the components and the aspects that set up an 
application. These artefacts are described by means of their provided and required 
interfaces. 



 137

 
<component role = “chat”> 
  <providedInterface> ChatProv.xml </providedInterface> 
  <requiredInterface> ChatReq.xml </requiredInterface> 
  <implementations> 
     <implementation> 
        <name>chat1</name> 
        <language>java</language> 
        <class>Chat.class</class> 
     </implementation> 
  </implementations> 
</component> 
 
<aspect role = “persistence”> 
  <evaluatedInterface> PersistenceEval.xml </evaluatedInterface> 
  <implementations> 
     <implementation> 
        <name>persistence1</name> 
        <language>java</language> 
        <class>Persistence.class</class> 
     </implementation> 
  </implementations> 
</aspect> 
 
<aspect role = “authentication”> 
   … 
  <setProperty>username</setProperty> 
</aspect> 
 
<aspect role = “userfilter”> 
   … 
   <getProperty>username</getProperty> 
</aspect> 
 
<property name = “ username“> 
   <type>String</type> 
</property> 
 
<compositionRules> 
    <compCompositionRules>…</compCompositionRules> 
    <aspectCompositionRules> 
       <aspectRule> 
           <targetCompRole>chat</targetCompRole> 
             <BEFORE_NEW>   //rule to apply the authentication aspect 
                <aspectList>authentication</aspectList> 
             </BEFORE_NEW> 
       </aspectRule> 
       <aspectRule> 
           <sourceCompRole>chat</targetCompRole> 
           <targetCompRole>chat</targetCompRole> 
            <BEFORE-SEND>    //rule to apply the persistence aspect 
                <messages>sendText</messages> 
                <aspectList>persistence</aspectList> 
            </BEFORE_SEND> 
            <BEFORE_RECEIVE>   //rule to apply the userfilter aspect 
                <messages>sendText</messages> 
                <aspectList>userfilter</aspectList> 
            </BEFORE_RECEIVE> 
        </aspectRule> 
   </aspectCompositionRules> 
</compositionRules> 

<providedInterface>
  <method name = “sendText”>String</method> 
  <method name = “sendColour”>Colour</method> 
  … 
</providedInterface> 

<requiredInterface>
    <message name = “sendText”> 
       <targetRole>chat</targetRole> 
       <parameter>String</parameter> 
    <message> 
    … 
</requiredInterface> 

<evaluatedInterface> 
  <method name = “sendText”></method> 
  … 
</evaluatedInterface>

 
Figure 4-23 : Component and aspect XML description 

The output artefact of using the DAOP-ADL language is an XML-based document (cf. 
Figure 4-23) that contains the description of all the components and aspects that may 
be instantiated in the final application and the set of plug-compatibility rules that 
determines how the entities in the application (core functionality and concerns) are to 
be composed.  

DAOP-ADL Process  
The process for DAOP-ADL based architecture design is as follows. First, all the 
components and aspects that may be instantiated in an application are described using 
the component and aspect description section of the DAOP-ADL language. If COTS 
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components and aspects are going to be used the information can be automatically 
generated by inspecting the component and aspect binary code. Then, the information 
about the composition among components, the relationships among aspects and the 
composition between components and aspects is provided in the composition 
constraints section of the language. After this, this information can be validated to 
check if some mismatches exists.  

The tool Component and Aspect Repository is used to register COTS components and 
aspects. The tool automatically generates the description of loaded components and 
aspects using the syntax of the DAOP-ADL language. Then, the tool Aspect 
Specification and Validation is employed. It has the DAOP-ADL language as its back-
end and supports description and validation of the software architecture of the 
application.  

DAOP-ADL is used in conjunction with CAM/DAOP. CAM is a design model used to 
design component and aspect based applications in UML. DAOP, on the other hand, is 
a component and aspect based platform that loads the architecture description provided 
via the DAOP-ADL specification to obtain the information needed to instantiate 
components and aspects and to perform the dynamic composition of components and 
aspects at runtime. DAOP-ADL supports traceability in the sense that all the 
components and aspects identified during the design of the application with CAM are 
described in XML using the DAOP-ADL language. Additionally, all the information 
provided with DAOP-ADL is directly used at runtime, closing the "gap" between the 
design and implementation of component and aspect-based applications. 

 

 

4.3.2 Architectural Process Approaches 

4.3.2.1 Aspect-Oriented Generative Approaches (AOGA) 
AOGA Method 
Aspect-Oriented Generative Approaches (AOGA) [123, 124] is an architecture-centric 
approach that was initially outlined in [127] and further extended in [123, 124, 128] 
with the purpose of supporting developers of multi-agent systems (MAS) with domain-
specific languages, modelling notations, and code generation tools. Although the 
approach has been initially applied to the MAS domain, the concepts introduced are 
general and not limited to the MAS domain. The basic idea of the approach is to 
promote the integration of generative and aspect-oriented technologies in order to 
facilitate the domain modelling, the architectural specification and the code generation 
of crosscutting features starting from early development stages. Aspects can be 
captured and specified in preliminary development stages, even before the architectural 
stage. In this sense, AOGA has defined extensions to feature models [129] and a new 
domain-specific language (DSL) in addition to a UML-based notation to express 
architectural aspects. 

This approach covers the following life cycle phases: Domain analysis and 
specification, Architecture design, and Implementation. As illustrated in Figure 4-24, 
the first phase encompasses the specification of crosscutting features as domain 
aspects. The architecture design involves the use of a UML-based notation to define 
the architectural aspects as part of an aspect-oriented software architecture. The 
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implementation phase includes the use of a code generator, pre-defined frameworks, 
pre-defined components, and code templates. 
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Figure 4-24 : The development phases covered by the AOGA approach 

The driving goal of the AOGA approach is to empower software developers with 
means to modularise crosscutting features in a stepwise fashion. This top-level goal is, 
in turn, decomposed into three subgoals: 
• support the identification and specification of domain aspects; 
• enable the identification and specification of architectural aspects; 
• automate the code generation of the specified aspect-oriented architecture.  

AOGA Artefacts  

Extended feature models are the artefacts used in the domain analysis and specification 
phases. The original definition of feature models was intended to explicitly support the 
representation of common and variable features in a certain domain. Feature models 
are also used to represent different types of relationships between features. The AOGA 
approach extends feature models to emphasise the distinction between non-crosscutting 
features and crosscutting ones. Figure 4-25 presents an illustrative example of the 
feature models. Note that a new relation type is defined, called crosscutting, which 
makes it explicit which features a given crosscutting feature is affecting. A feature A 
crosscuts a feature B, when either A or one of its sub-features depends and inspects B 
or one of the sub-features of B. In Figure 4-25, for example, feature A is being affected 
by the crosscutting feature B. It is also possible to express which specific sub-features 
are being affected; in Figure 4-25, the features A1 and A2 are the affected sub-features. 
The AOGA approach also provides a domain-specific language, called Agent-DSL, 
which is used to collect and model both orthogonal and crosscutting features of agent-
based applications. Although this is an XML-based language that is compliant with the 
generic AO extensions of the feature models, it is specially tailored to the MAS 
domain. 
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Feature AFeature A

Concept XConcept X

A1A1 A2A2

Feature BFeature B

B2B2A3A3 B1B1 B3B3

A1A1 A3A3

crosscuts

A2A2 A3A3

Legend:

mandatory feature

optional feature

alternative features

affected feature  
Figure 4-25 : Crosscutting feature models 

 

For the architectural stage, AOGA has a UML-based language for specifying and 
communicating aspect-oriented software architectures. It provides a notation and 
semantics that enable architects of AO software to build models that focuses on the key 
components of aspect-oriented systems. The main goal is to avoid the architect to deal 
with design issues that are not relevant in the architectural stage. Figure 4-26 illustrates 
the notation elements of the architectural model that makes a distinction between 
normal components and aspectual components. Aspectual components (or architectural 
aspects) are aspects at the architecture level. Architectural aspects are UML 
components [130] represented as diamonds. Each of the aspectual components is 
related to more than one architectural component, thus representing its crosscutting 
nature. Note that the architectural view of an aspect suppresses all information about 
its inner elements. 

NI2

ComponentA

NI1

CI1

AspectA

Legend:
aspectual component

component
crosscutting interface
normal interface

crosscuts

CI2

AspectB

CI3
 

Figure 4-26 : Architectural aspects and crosscutting interfaces 

 

Interfaces of the architectural components are also defined in a higher-level fashion. 
Figure 4-26 illustrates some architectural components and their interfaces. Each 
interface is displayed as a small circle with the interface name placed next to the circle. 
Each architectural component has one or more interfaces, and different components 
can realise the same interface. The interfaces are attached to the architectural 
components, and are categorised into two groups: normal interfaces and crosscutting 
interfaces [131]. Normal interfaces are coloured in white and crosscutting ones in grey. 
A crosscutting interface is different from a normal interface. The latter only provides 
services to other components. Crosscutting interfaces in the architectural model specify 
which architectural components an aspectual component affects; note that the 
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architectural model does not declare how they are affected. An aspectual component 
conforms to a set of crosscutting interfaces. An aspect interface crosscuts either 
internal elements of architectural components or other interfaces. The first case means 
that the architectural aspect directly affects the internal structure or dynamic behaviour 
of the target component. The second case means that the aspect affects the behaviour 
defined by the crosscutting interface. 

The output artefacts are: feature models and component models. Feature models are 
represented in a domain specific language called Agent-DSL. Agent-DSL uses an 
XML Schema to represent the features. In the architecture design phase, the aSide 
modelling language is used to represent the software architecture. 

AOGA Process 
In the AOGA process first a domain-specific language (DSL), called Agent-DSL is 
used to collect and model both non-crosscutting and crosscutting features of software 
agents. After that, the system designers specify an AO architecture for the system at 
hand. In this architectural phase, the designers concentrate on two main issues. First, 
they work on the specification of the central components of the AO system, as 
described above. Second, software architects define the interfaces of the architectural 
components in a higher-level fashion. Thus the AO architecture is centred on the 
definition of aspectual components to modularise the crosscutting agent features at the 
architectural level of abstraction. In the last step a code generator, that maps 
abstractions of the Agent-DSL to specific compositions of objects and aspects in the 
agent architecture, is used. The tool agent architecture generator is implemented as an 
Eclipse plug-in. The tool can read the agent description of the Agent-DSL. The plug-in 
can generate the classes that represent the elements of the XML Schema. 

There is a direct trace link between a crosscutting feature in domain analysis and an 
aspectual component in domain design [123]. So, there is traceability support available 
from the domain application model to the architecture application model. In addition, 
an architectural aspect is mapped to a set of implementation aspects that refine that 
aspectual component. 

 

4.3.2.2 TranSAT 
TranSAT Method 
TranSAT [125] is a framework for the specification of software evolution. TranSAT 
focuses on facilitating architecture evolution through realising AOSD principles in an 
architecture context. It proposes the incremental definition of the software architecture 
by weaving new architecture plan within a software architecture. Architecture 
specification is transformed by integrating technical concerns within the architecture. 

Three challenges are addressed by TranSAT. First, the integration of a new concern 
should be performed by the framework. Second, a concern should be generic enough to 
be reusable in several contexts. Third, the integration of a new concern must not break 
the architecture description consistency. 

TranSAT Artefacts 
To solve the two first challenges, TranSAT introduces the concept of software 
architecture pattern. Though associated with a concern, it is independent of the 
integration context. A pattern gathers all the information needed to enable the 
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integration of a concern and organises this information in three parts: an architecture 
plan, a join point mask, and a set of transformation rules. 

A new architecture plan identifies a self-sufficient component assembly, which 
implements a given concern, and specifies its structural and behavioural properties. A 
new plan contains only the information related to the concern. It is defined 
independently from any given software architecture specification in order to enable its 
reuse in several contexts. 

To integrate a new plan, the pattern needs plugs on the basis plan. These plugs called 
join points correspond to any locations in a component assembly to which the plan can 
be hooked.  

Even if the pattern is independent of the integration context, it must assume some 
hypotheses on the software architecture that it can transform. These hypotheses are 
captured by the join point mask. It is an architecture template that determines the 
integration context constraints. It declares structural and behavioural preconditions that 
a basis plan must satisfy before the integration operation is performed. It defines the 
form of plug on which the new plan can be attached.  

The transformation rules specify the operations to be carried out in order to integrate 
the new plan into a basis plan. These operations are applied on each of the selected join 
points. They specify how a concern should be integrated with a system on an 
architectural, structural and behavioural level.  

To enable integration of concern and architecture, a weaver describes the interactions 
between specific software architectures and a technical concern (a pattern). The weaver 
binds the concern to the specific architecture. It contains the pointcut which defines 
where the new plan must be integrated and performs the transformation rules. It 
updates relevant parts of the architecture with the concern.  

A (TranSAT) pointcut specialises the join point mask of the pattern with respect to the 
target basis plan.  It selects, among all the join points compatible with the join point 
mask, a set of join points on the basis plan based on context criteria, such as 
architectural element names or relations. 

Each technical concern that is integrated is considered to be an evolutionary step. For 
each evolution, a specific weaver is required to translate the join point mask to the 
correct set of pointcuts.  

To deal with the last challenge, TranSAT introduces several levels of verification 
before the transformation with the join point mask, during the transformation with the 
addition of constraints on the transformation rules meta-model and after the 
transformation with tools provided by the architecture description language called 
SafArchie [132]. 
 
TranSAT Process 

TranSAT can be viewed as a process in two distinct ways. Firstlym TranSAT supports 
the entire software development lifecycle as an iterative evolution process. In this 
view, concerns are merged together until a system is complete. This assumes that the 
core model is a composite concern that grows at each evolution of the architecture. 
Concerns are developed completely independently of the core and then integrated with 
the core. During iterations the core grows and evolves.  Secondly, TranSAT applies to 
the maintenance phase of a software development lifecycle.  In this case, development 
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is finished and a core architecture and system exists. Evolution through expanding the 
architecture with new technical concerns could be considered to be maintenance. 

Taking either view, a set of steps is outlined for using TranSAT. When abstracted 
away from TranSAT, these steps can be considered a high level process description for 
concern integration. 

The integration of a new plan into a basis architecture plan is guided by the pattern’s 
join point mask and transformation rules. The TranSAT framework determines, based 
on the join point mask, the set of all the possible join points, i.e., the locations on the 
basis plan where the new plan can be attached. The architect may, however, want to 
impact only a few join points among this set. To select specific join points, the 
architect defines a pointcut expression.  Similarly to AOP approaches, this expression 
specifies concrete architecture element names and relations in order to restrict the set 
of possible join points and to consequently keep only the ones that should be impacted 
by the transformation operations.  At each chosen join point, the weaver integrates the 
new architecture plan according to the pattern’s transformation rules. This weaving 
operation is a two-step process. At the first step, for each join point, the tagged 
elements present in both the join point mask and the transformation rules are 
substituted by the actual elements of the basis plan. At the second step, the weaver 
executes the transformation rules at each join point to finally yield the transformed 
software architecture plan.  

In the TranSAT approach, several actors participate in the transformation process: a 
domain expert, an integrator, and an architect. The role of the domain expert is to 
define a component assembly for a given concern (a plan). The integrator is in charge 
of specifying the join point mask and the transformation rules to associate with the 
component assembly and form a complete software architecture pattern. The architect 
builds the software architecture by successively integrating patterns. 

From the architect point of view, the transformation process is decomposed into four 
steps. First, (s)he chooses a pattern corresponding to his/her needed concern. Second, 
for this pattern and in accordance with the pattern’s join point mask, the weaver is used 
to determine a set of compatible join points on the basis plan. Third, the architect 
defines a pointcut expression that selects only the join points to which the new plan 
should be attached. Fourth, the transformation rules are performed on each selected 
join point.  The result is a new software architecture specification that contains the 
given concern.  The architect can consider this software architecture as a new basis 
plan on which s/he can perform other transformations. 

 

4.3.3 Architectural Evaluation Approaches 

4.3.3.1 Aspectual Software Architecture Analysis Method (ASAAM)  
ASAAM Method 
The aim of ASAAM is to explicitly identify and specify architectural aspects early in 
the software life cycle [126]. The approach builds on scenario-based architecture 
analysis methods, and as such, should be considered as a complementary approach to 
these methods. The benefit of ASAAM is in the systematic support for the 
management of architectural aspects in an explicit manner. 
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ASAAM Artefacts 
The two key artefacts in ASAAM are scenarios and architectural components. There 
are three types of scenarios: direct, indirect and aspectual. A direct scenario can be 
directly performed. Indirect scenarios require a change of a component and aspectual 
scenarios can either be direct or indirect and are scattered across multiple components. 
There are four types of components:  

• Cohesive component, which is a component that is well defined and performs 
semantically close scenarios; 

• Ill-defined component, a component consisting of several sub-components each of 
which performs semantically close set of scenarios; 

• Tangled component, a component that performs an aspectual scenario which is 
either directly or indirectly performed by the component;  

• Composite component, a component that includes semantically distinct scenarios 
but which cannot be decomposed or does not include an aspectual scenario.  

The architectural aspects are the output artefacts, these aspects can be used to refactor 
the architecture.  

ASAAM Process and Heuristics Rules   
The process consists of five activities which are depicted in Figure 4-27 [126]: 

1. Candidate architecture development: A (candidate) architecture design is provided 
that will be analysed with respect to the required quality factors and potential 
aspects. 

2. Development of scenarios: This activity is similar to SAAM. Scenarios from 
various stakeholders are collected, which represent both important uses and 
anticipated uses of the software architecture. 

3. Individual scenario evaluation and aspect identification: Scenarios are categorised 
into direct and indirect scenarios. The scenario evaluation also searches for 
potential architectural aspects. The application of the heuristic rules results in a 
further classification of the scenarios into direct scenarios, indirect scenarios, 
aspectual scenarios and architectural aspects. Aspectual scenarios are derived from 
direct or indirect scenarios and represent potential aspects.  

 
Figure 4-27 : The activities for ASAAM 
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4. Scenario interaction assessment and component identification: The goal of this 
activity is to assess whether the architecture supports an appropriate separation of 
concerns. This includes both non-crosscutting concerns and architectural aspects. 
For each component both direct and indirect components are analysed and 
categorised into cohesive component, tangled component, composite component, 
or ill-defined component. 

5. Refactoring the architecture: A refactoring of the architecture is proposed based on 
the scenario interaction assessment and component classifications. The 
architectural aspects and the tangled components are explicitly described in the 
architecture. 

ASAAM defines a set of heuristic rules to categorise scenarios into direct scenarios, 
indirect scenarios and architectural scenarios and aspects. This set of rules is depicted 
in Figure 4-28. ASAAM also defines heuristic rules to categorise the architectural 
components. 

 
Figure 4-28 : Heuristic rules for scenario evaluation 

ASAAM has been implemented as an Eclipse plug-in in the tool environment 
ASAAM-T [133]. 

 

4.4 Comparison 
This section compares the architecture design approaches presented earlier. The 
comparison is performed with respect to the criteria of section 2. 
 

4.4.1 Traceability 
Preservation of traceability between the artefacts of the software lifecycle is one of the 
crucial qualities required for understandable and maintainable software. This criterion 
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could be broken into two counterparts: 1) traceability of artefacts to their source of 
origin and change and 2) traceability between lifecycle artefacts . 
 
Approach Features that Support Traceability of 

artefacts to their source of origin and 
change  

Features that Support Traceability 
between lifecycle artefacts 

ACME Not considered ACME properties serve to document 
details of an architecture relevant to its 
design and analysis. 

C2 Not considered Architecture is refined into a partial 
implementation, which contains 
completion guidelines for developers 
derived from the architectural description. 

Aesop Not considered Not considered. 
Darwin Not considered Architectural description serves to ensure 

proper interconnection and communication 
among architectural components when 
they are implemented in a specific 
programming language. 

Rapide Not considered Executable sublanguage that contains 
many common programming language 
control structures. Three kinds of 
conformance criteria are checked between 
system implementations and architecture: 
decomposition, interface conformance and 
communication integrity. 

Wright Not considered Glue information in connectors is 
augmented with a trace specification, 
which defines a predicate that must be true 
for every trace of the glue, thereby 
restricting the set of traces permitted by 
the connector. 

UML for 
Architecture 

Not considered UML tools supports the automatic 
generation of code and XMI-based 
descriptions (that can be processed by 
tools at runtime) from UML models 

Requirements-
driven AD 

This document describes a conceptual 
model for requirements-driven AD. 
Support for traceability depends on 
specific requirements-driven AD 
approaches 

This document describes a conceptual 
model for requirements-driven AD. 
Support for traceability depends on 
specific requirements-driven AD 
approaches 

Domain-
driven AD 

This document describes a conceptual 
model for domain-driven AD. Support for 
traceability depends on specific domain-
driven AD approaches. 

This document describes a conceptual 
model for domain-driven AD. Support for 
traceability depends on specific domain-
driven AD approaches. 

DSSA 
(Product-line 
Driven AD) 

Not considered Reference requirements include functional 
requirements, non-functional 
requirements, design requirements and 
implementation requirements and focus on 
the solution space. This information is 
used to derive the reference architecture. 

Pattern Driven 
AD 

This document describes a conceptual 
model for pattern-driven AD. Support for 
traceability depends on specific pattern-
driven AD approaches. 

This document describes a conceptual 
model for pattern-driven AD. Support for 
traceability depends on specific pattern-
driven AD approaches. 

SAAM First, the definition of scenarios for 
various stakeholders anticipates changes 
that will be made to the system over time. 
Then, during the evaluation of scenarios 

Requirement Specification taken into 
account during the evaluation of the 
architecture. 
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the required changes to the architecture are 
listed and the cost of performing these 
changes is estimated. 

ATAM Approach based on SAAM Requirement Specification taken into 
account during the evaluation of the 
architecture. 

SAAMCS Approach based on SAAM Requirement Specification taken into 
account during the evaluation of the 
architecture. 

ESAAMI Approach based on SAAM Requirement Specification taken into 
account during the evaluation of the 
architecture. 

SAAMER Approach based on SAAM Requirement Specification taken into 
account during the evaluation of the 
architecture. 

ALPSM Not considered It estimates the required maintenance 
effort for a software system during 
architectural design. The maintenance 
profile is a second output from the method. 

PCS 
Framework 

Not considered Generated Aspect-Oriented Models can be 
mapped to AspectJ programs, which is a 
manual process. 

DAOP-ADL Not considered DAOP-ADL supports traceability in the 
sense that all the components and aspects 
identified during the design of the 
application with CAM are described in 
XML using the DAOP-ADL language. 
Additionally, all the information provided 
with DAOP-ADL is directly used at 
runtime, closing the "gap" between the 
design and implementation of component 
and aspect-based applications 

AOGA  Not considered There is a direct trace link between a 
crosscutting feature in domain analysis 
and an aspectual component in domain 
design. In addition, an architectural aspect 
is mapped to a set of implementation 
aspects that refine that aspectual 
component. 

TransSat Not considered TranSAT supports the entire software 
development lifecycle as a iterative 
evolution process. Concerns are merged 
together until a system is complete. During 
iterations the core grows and evolves. 
TranSAT applies also to the maintenance 
phase of a software development lifecycle.  
In this case, development is finished and a 
core architecture and system exists. 
Evolution through expanding the 
architecture with new technical concerns 
could be considered to be maintenance. 

ASAAM Not considered Requirement Specification taken into 
account during the evaluation of the 
architecture. 

Table 4-1: Summary of traceability criterion 

 

With respect to traceability of artefacts to their source of origin and change, as shown 
in Table 4-1, neither the non AO architecture design approaches nor the AO 
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approaches provide support to trace changes in architecture artefacts. Only in SAAM, 
and the rest of architecture evaluation approaches based on it, possible changes to the 
architecture are first anticipated and then listed together with an estimation of the cost 
of performing these changes. 

With respect to traceability between lifecycle artefacts, most approaches provide some 
level of traceability to previous phases (e.g., requirements) or later phases (e.g., 
implementation) of the software lifecycle, though in general they offer only partial 
information that do not allow a complete trace of artefacts through all the phases of 
development. Only three of them, DAOP-ADL, AOGA and TranSat explicitly define 
the architecture design as part of a more complete development process, including 
other phases of the lifecycle, though not all of them. 

The rest of the approaches offer limited and different support for traceability. ADLs, as 
is the case for ACME, C2, Aesop, Darwin, Rapide and Wright, go from approaches 
that allow the definition of properties with information related to analysis and design 
(e.g., ACME), to approaches that provide support to code generation (e.g., C2, 
Rapide), to approaches that allow to check that resulting implementations conform to 
the constraints and properties specified during the architecture design (e.g., Darwin, 
Rapide, Wright). 

Traceability in conceptual models such as Model-Driven architecture, Requirement-
Driven architecture and Pattern-Driven architecture processes will depend on specific 
approaches conforming to these conceptual models. In the case of DSAA, which is a 
specific approach conforming to the conceptual model defined for Product-Line 
architecture processes, traceability is achieved from requirements to architecture 
design. This is achieved by using the reference requirements as an input to the design 
of the architecture, where the reference requirements include functional requirements, 
non-functional requirements, design requirements and implementation requirements. 

Finally, architecture evaluation approaches, including non AO and AO ones, support 
some level of traceability from requirements during the evaluation of the architecture, 
considering requirements as an input to the evaluation process. 
 

4.4.2 Composability 
Composability is described in Section 2 as the ability to compose artefacts and 
consequently to view and understand the complete set of artefacts and their 
interrelationships, as well as to perceive the system as a whole from the associated 
artefacts. 
 
Approach Features that support Composability 
ACME ACME components and connectors are composed in Systems – a graph where nodes 

are components and arcs represent connectors. A representation map describes the 
connections between component ports and connector roles. 
 
Acme supports hierarchical descriptions of architecture, permitting any component or 
connector to be represented by the composition of one or more detailed, lower-level 
description. 

C2 Components linked together by connectors in accordance with a set of style rules. 
Aesop The composition of artefacts (components, connectors, ports and roles) are described 

by means of configurations, representations and bindings. Hierarchical description of 
components and connectors is supported. 

Darwin Darwin supports a bind statement which is used to tie together components using 
their ‘provide and require’ statements. The Darwin compiler checks that connections 
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are only made between compatible communication objects. 
Rapide Composition of systems from component interfaces is described by an executable 

architecture definition language. The language defines components’ synchronisation 
and communication interconnections in terms of patterns of events. 

Wright Component and connector instances are composed by defining which component’s 
ports are attached to which connector’s roles. 

UML for 
Architecture 

- Using UML “as is”: It does not fully satisfy the structural needs of architectural 
descriptions. Lack of specialised constructs for modelling architectural artefacts and 
rules for architectural styles. 
- Constraining the UML meta-model using UML’s built-in extension mechanisms: 
Using stereotypes and OCL it is possible to enforce the rules of a particular 
architectural style. 

Requirements-
driven AD 

The Architecture Description is the composition of the following models: business & 
domain models, use-case models (representing requirements) and analysis & design 
models. 

Domain-driven 
AD 

Architectural design abstractions as a composition of requirement specifications and 
domain models 

DSSA 
(Product-line 
Driven AD) 

The application architecture is an instantiation of a reference architecture for a 
family of products. A reference architecture is the composition of a reference 
requirements model and a domain model. 

Pattern Driven 
AD 

Artefacts are composed according to the architectural style described by a specific 
architectural pattern. 

SAAM Composition of architectural artefacts not applicable in this analysis approach. 
 
Single architecture analysis is defined in terms of the analysis of individual scenarios 
and scenario interaction. Individual scenarios are composed of scenario development 
and architecture description models.  

ATAM Composition of architectural artefacts not applicable in this analysis approach. 
 
Analysis of architecture designs is defined in terms of a composition of elements: 
high-priority scenarios, attribute-specific questions, architectural approaches, 
sensitivity points, trade-off points and risks. 

SAAMCS Composition of architectural artefacts not applicable in this analysis approach. 
 
Analysis of architecture designs is defined in terms of architecture description, 
scenario development, categories of complex scenarios, macro and micro 
architectural description and measurement instruments. 

ESAAMI Composition of architectural artefacts not applicable in this analysis approach. 
 
Analysis of architecture designs is defined in terms of reusable architecture & 
analysis templates, domain-specific analysis templates, architecture description, 
problem description and requirement statements. 

SAAMER Composition of architectural artefacts not applicable in this analysis approach. 
 
Analysis of architecture designs is defined in terms of different types of information, 
namely, stakeholder information, architecture information, quality information, and 
scenarios. 

ALPSM Composition of architectural artefacts not applicable in this analysis approach. 
 
The analysis approach takes as input the requirement specification, the design of the 
architecture, expertise from software engineers and historical maintenance data. 

PCS 
Framework 

It supports the composition of independent software components along different 
interaction concerns by means of Aspect-Oriented Constructions. Concerns of 
multiple dimensions are depicted in an architectural view. 

DAOP-ADL Composition of components among them and weaving of aspects with components 
(aspects’ pointcuts) are expressed in XML. Connections between components are 
implicitly expressed by the correspondence between their provided and required 
interfaces. Aspect pointcuts are described in terms of the description of component 
and aspect interfaces. 

AOGA  Architectural description as a composition of aspectual components and non-
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aspectual components. Composition is expressed in UML by means of crosscutting 
interfaces, normal interfaces and the relationships between them (crosscut 
relationship) 

TransSat The core architectural model is a composite concern that grows at each evolution of 
the architecture. Concerns are developed completely independently of the core and 
then integrated with the core. 

ASAAM It refactors architecture designs to be converted into a composition of architectural 
components and architectural aspectual scenarios. 

Table 4-2 : Summary of composability criterion 

 

With respect to composability, Table 4-2 shows that considered architecture design 
approaches provide some level of composition between the artefacts in the 
architecture. The main difference among them is in the kind of artefacts that are 
composed among them. 

In the case of ADLs, artefacts are components and connectors for non AO approaches 
and components, concerns and explicit or implicit connectors for AO approaches. All 
of them offer composition of these artefacts to describe the complete architecture of a 
system. Some of them explicitly introduce the concept of system as a composition of 
components and connectors (e.g., ACME, Aesop). In other ADLs composition is 
expressed in terms of attachments, binding or composition constraints sections where 
composition is defined in terms of the provided and required interfaces of artefacts  or 
their ports and roles (e.g., DAOP-ADL, Darwin, Wright). 

In the case of architecture design processes, artefacts are usually a set of different kinds 
of models (e.g., business model, domain model, etc.) that are composed among them or 
taken into account to derive the architecture design model. Finally, in architecture 
evaluation processes artefacts are different kinds of models, scenarios, existing 
architecture description, etc. All of them are taken into account during the analysis of 
candidate architectures.  

 

4.4.3 Evolvability 
In Section 2 evolvability is described as the ease of changing the artefacts for an 
existing design or the addition or removal of a new one. 
 
Approach Features that support evolvability 
ACME It provides constraints guidelines for how the architecture can change over time. New 

components, connectors and ports can be incorporated into an existing system. 
C2 New components and connectors can be incorporated into an existing architectural 

style. Connections can be modified/adapted when component interfaces and 
connector ports match. 

Aesop New components and connectors can be incorporated into an existing system. 
Matching of component interfaces and connector ports needed to modify/adapt the 
architecture. 

Darwin It supports variation of components, allowing a component to have the potential to 
define more than one configuration structure, and to be able to defer the choice until 
the component is instantiated. 

Rapide Architecture can be refined by defining detailed modules for existing components. 
When an application is “(re)architected” the conformance of new incorporated and 
existing modules is checked. Connections, features and interfaces are dynamic and 
can also evolve at runtime, depending on specific runtime parameters. 

Wright New components and connectors can be incorporated to an existing system by 
attaching the corresponding component’s ports with connectors’ roles. 
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UML for 
Architecture 

New UML elements (classes, interfaces, associations, dependencies, etc.) can be 
added to the UML architectural diagrams to incorporate new architectural artefacts. 

Requirements-
driven AD 

This document describes a conceptual model for requirements-driven AD. Support 
for evolvability depends on particular requirements-driven AD approaches 

Domain-driven 
AD 

This document describes a conceptual model for domain-driven AD. Support for 
evolvability depends on specific domain-driven AD approaches. 

DSSA 
(Product-line 
Driven AD) 

Application architectures can be extended and/or refined. 

Pattern Driven 
AD 

This document describes a conceptual model for pattern-driven AD. Support for 
evolvability depends on specific domain-driven AD approaches. 

SAAM Possibility of comparing new and existing architecture designs by generating single 
architecture analysis for the new incorporated architecture designs. Incorporation of 
new evaluations is reflected in the overall evaluation. 

ATAM Approach based on SAAM 
SAAMCS Approach based on SAAM 
ESAAMI Approach based on SAAM 
SAAMER Approach based on SAAM 
ALPSM New maintenance tasks can be categorised, synthesised and estimated to predict the 

maintenance effort for such scenario. New maintenance efforts are used. 
PCS 
Framework 

Additional perspectives of an existing architecture design can be incorporated to 
provide additional concerns from one specific viewpoint. 

DAOP-ADL New components, aspects and connections among them can be incorporated into an 
existing architecture. Only a correspondence between interfaces of the new and 
existing entities and the definition of new composition constraints is needed. 

AOGA  New aspectual components and non-aspectual components can be incorporated into 
the architecture description by appropriately connecting them by their crosscutting 
and normal interfaces. 

TranSat It proposes the incremental definition of the software architecture by weaving new 
architecture plans within a software architecture. 

ASAAM During the analysis of the architecture design scenarios evolve and are categorised 
into direct scenarios, indirect scenarios, aspectual scenarios and architectural 
scenarios. 

Table 4-3 : Summary of evolvability criterion 

 

With respect to evolvability (Table 4-3) and ADLs, all the considered ones support the 
incorporation of new artefacts into an architecture design, including AO approaches 
such as DAOP-ADL and AOGA. The only constraint is to ensure that the connection 
rules among the existing artefacts and the new ones are possible (according to existing 
and new ports, roles, provided interfaces, required interfaces, etc.). Most of them are 
based on the use of formalisms that allow verifying that the modifications are correct. 
Additionally, some of them provide explicit support to express dynamic behaviour of 
the architecture, supporting its dynamic evolution (e.g., Darwin, Rapide, Wright). 

With respect to conceptual models such as Model-Driven architecture, Requirement-
Driven architecture and Pattern-Driven architecture processes evolvability will also 
depend on specific approaches conforming to these conceptual models. In the case of 
DSAA, which is a specific approach conforming to the conceptual model defined for 
Product-Line architecture processes, evolvability is achieved by extending/refining 
application architectures. 

With respect to architecture evaluation approaches such as SAAM and the rest of 
approaches based on it, some level of evolvability is achieved by allowing the 
evaluation of single architecture designs to be incorporated into an existing overall 
evaluation in an incremental way. In the case of ALPSM, an architecture evaluation 
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approach not based on SAAM, evolvability is achieved by incorporating new 
maintenance tasks to calculate the maintenance effort for the complete system. 
ASAAM is an AO architecture evaluation approach where scenarios evolve during the 
analysis of the architecture. 

For the rest of systems not commented on yet, the PCS framework achieves 
evolvability of the architecture design by incorporating new perspectives of the 
architecture for one specific “concern” viewpoint. In TranSat the evolution of the 
architecture is achieved by incorporating new architecture plans. 

 

4.4.4 Scalability 
 
Approach Features that support scalability 
ACME A semantically extensible language to support complex architectural features, and a 

rich toolset for architectural analysis and integration of independently developed 
tools. The simple core set of concepts in ACME can be extended using properties, 
constraints, types and styles that are appropriate to the context of use. Scalable by 
supporting a hierarchical model. 

C2 No bound on the number of components or connectors that may be attached to a 
single connector. 

Aesop Scalable by supporting a hierarchical model. The characterisation of architectural 
styles as specialisations through subtyping can help to develop different projects with 
different architectural styles. Toolkit for creating an open architectural design 
environment from a description of a specific architectural style. 

Darwin Scalable by supporting a hierarchical model, tractable and accompanied by a 
corresponding graphical notation. Increase reusability supporting generic structures 
and derived composite components (inheritance). 

Rapide Rapide provides interface services and the concept of dual services as an approach to 
scalability issues. Services are interfaces within interfaces. They provide a way to 
structuring interfaces in sub-interfaces. 

Wright Connectors are defined and analysed independent of their actual use, and then later 
instantiated to describe a particular system, thereby supporting reuse. Support for 
reusing helps to cope with large complex architecture definitions. 

UML for 
Architecture 

The use of UML in this section has been described as used to express a specific 
architectural design approach or architectural style. Besides the scalability that UML 
may offer, scalability will depend on the mechanisms defined by the specific 
architectural design approach. 

Requirements-
driven AD 

This document describes a conceptual model for requirements-driven AD. Support 
for scalability depends on particular requirements-driven AD approaches 

Domain-driven 
AD 

This document describes a conceptual model for domain-driven AD. Support for 
scalability depends on specific domain-driven AD approaches. 

DSSA 
(Product-line 
Driven AD) 

Several application architecture can be instantiated/refined and/or extending from a 
reference architecture.  

Pattern Driven 
AD 

This document describes a conceptual model for pattern-driven AD. Support for 
scalability depends on specific pattern-driven AD approaches. 

SAAM Scalability is supported by adding new single architecture analysis to the overall 
evaluation, modifying the weighting according to the values introduced by new 
analysis. 

ATAM Approach based on SAAM 
SAAMCS Approach based on SAAM 
ESAAMI Approach based on SAAM 
SAAMER Approach based on SAAM 
ALPSM Scalability is supported by adding new maintenance effort scenarios to the overall 

evaluation. 
PCS 
Framework 

Helps deal with software complexity by supporting the composition of independent 
software components along different interaction concerns.  



 153

DAOP-ADL It provides support to define the architecture of both small and large projects. 
Supporting tools are provided to cope with the complexity of describing complex and 
large architectures. 

AOGA  Deal with scalability problems using a code generator tool that maps abstractions of 
the elements in the Agent DSL (XML Schema) to specific compositions of objects 
and aspects in the agent architecture. Agent architecture generator implemented as 
an Eclipse plug-in. 

TransSat Scalability achieved by the definition of software architecture patterns and by 
encouraging the reusability of concerns. First, integration of new concerns is 
performed by the framework. Second, concerns should be generic enough to be 
reusable in several contexts. 

ASAAM Process supported by the tool environment ASAAM-T, implemented as an Eclipse 
plug. Tool support helps to cope with the refactoring of large-scale complex 
architecture designs. 

Table 4-4 : Summary of scalability criterion 

With respect to scalability (Table 4-4), most approaches cope with it by providing 
some kind of tool support that helps software architects to use the particular approach 
in large projects. In the case of ADLs, these tools allow not only to generate code from 
architecture design but also to analyse and verify that the artefacts and the 
interconnections among them conform to the properties and constraints explicitly 
specified by the software architect. Hierarchical specification of artefacts is another 
approach provided to cope with scalability issues. Support for reusability of artefacts 
and the definition of patterns are other approaches to help with the complexity of large 
projects. 
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5. AO Design  

5.1 Introduction 
The design activity of a software development process gives a designer an opportunity 
to reason about a required software system as defined by a set of requirements. This 
process of reasoning about the system entails consideration of the behaviour necessary 
for the system to achieve its goals, and a corresponding structure to support that 
behaviour. For example, in an object-oriented software system, the designer is likely to 
consider behaviour in terms of (at least) interaction and state diagrams, and structure in 
terms of (at least) class and object diagrams. The designer may iterate over the 
behaviour and structure, considering more and more levels of detail over time. The 
resulting output of the design activity is a set of models that characterise and specify 
the behaviour and structure of the required system. These models may be at different 
levels of abstraction depending on the level of detail of the designer’s reasoning. 
Standard software engineering quality measures of the output include the cohesiveness 
and coupling of the modules described. 

Aspect-oriented design (AOD) has the same objectives as any software design activity; 
to characterise and specify the behaviour and structure of the software system. Its 
unique contribution to software design relates to extensions to modularity capabilities. 
Concerns of a software system that are necessarily scattered and tangled in non-AOD 
approaches can be modularised. Corresponding module cohesiveness is enhanced, and 
module coupling reduced. An AOD approach will provide design language constructs 
to support concern modularisation, regardless of whether a concern has an impact on 
(or crosscuts) other concerns. AOD will also support corresponding specification of 
concern composition, with due consideration for conflicts or co-operations. Beyond 
that, the design of each individual modularised concern is likely to mirror standard 
software design.  

 An AOD approach is likely to include a process and a language. An AOD process is 
one that takes as input requirements (be they engineered in an AORE process or 
otherwise) and produces a design model that may partially realise an architecture. The 
AOD model produced during the AOD process represents separate concerns and 
relationships between these concerns. This model is an abstract specification for 
implementation which can occur on an AOP platform or otherwise.  

An AOD language is a language that includes constructs that can describe the elements 
to be represented in design and the relationships that can exist between those elements. 
In particular for AOD languages, constructs are provided to support the modularisation 
of concerns, and the specification of concern composition. This includes a means to 
capture conflict and co-operation specifications. 

5.2 Specific criteria 
The unique contribution of AOD is its support for enhanced modularisation based on 
concern. In this report, we therefore examine each AOD approach based on the level of 
concern separation. We also examine the level of abstraction at which consideration 
of “aspects” (or concern modules) is possible 
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5.2.1 Level of abstraction supported:  
A design approach can be thought of as an intermediate translation between 
requirements and implementation. The level of abstraction is important for an AOD 
approach as different decisions can be made as design moves from an abstract high-
level design model to a concrete low-level. As described in this report, we have 
encountered various levels of abstraction for the approaches discussed in this section.  

Concerns and relationships between concerns expressed at high levels of abstraction 
are close to requirements and are low in the level of detail required to implement them 
on specific platforms. Concerns and relationships between concerns expressed at low 
levels of abstraction contain the details required to implement the concern on particular 
platforms but may be less naturally mapped to requirements from which the software 
was developed. Low levels of abstraction make changes to requirements difficult to 
deal with. 

Software engineering quality attributes such as reuse, flexibility and comprehensibility 
are closely linked with our level of abstraction criterion. A design at a high level of 
abstraction is reusable as it is not likely to be tied to any implementation; it is flexible 
because it is relatively simple and less resistant to change; and it is easy to understand, 
as it is not laden with details. As design becomes more concrete and low level, 
reusability, flexibility and comprehensibility lessen. When choice of a platform 
becomes constrained, some design decisions may be less feasible on different 
platforms, reducing reuse and flexibility. As design becomes more concrete, the size 
and detail of designs also increase, reducing comprehensibility. 

There is a conflict between the advantages gained from high level of abstraction and 
the practicalities of implementing design. On one hand, abstraction provides the higher 
levels of reusability, flexibility and comprehensibility, but on the other developers need 
to implement designs and for this they need design to be concrete and mapped directly 
to a target implementation platform [134]. 

5.2.2 Level of concern separation: 
There are two levels of concern separation supported by existing AOD approaches, 
symmetric and asymmetric .63 In general, the distinction relates to whether an approach 
includes a means to separate all kinds of concerns, both crosscutting and non-
crosscutting (symmetric) or includes a means to just separate crosscutting concerns 
from the rest of the system (asymmetric).  
 

Some significant benefits of concern separation across the software development 
lifecycle include traceability, flexibility, comprehensibility, reusability, composability, 
scalability and evolvability. Symmetric approaches offer a greater opportunity than 
asymmetric approaches to separate concerns and therefore may provide greater 
benefits during design. However, many design approaches have followed asymmetric 
models. In many cases, the asymmetric model has been employed because the AOD 
approach has emerged from a particular AOP platform. These AOD approaches target 
the AOP platform for design implementation.  

                                                 
63 W.H.Harrison, H.L. Ossher, P.L. Tarr. “Asymmetrically vs. Symmetrically Organized Paradigms for 
Software Composition” IBM Research Division, Thomas J. Watson Research Center. RC22685, 
December 30, 2002. 
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The difference between symmetric and asymmetric approaches impacts both the design 
process and design language.  

5.2.2.1 AOD Process 
The Rational Unified Process (RUP) [135], Feature driven development (FDD) [136], 
Fondue [137], Catalysis [138], Tropos [139], Kobra [140] and eXtreme Programming  
(XP)[141] are example of current non-AO software development processes. Many of 
these processes already separate concerns into concern development processes.  
A concern development process is a separate process for developing a concern. The 
overall process is a composition of separate concern development processes. Table 5-1 
presents these processes and the concern development process associated with them. 

 
Process Concern development process 
Rational Unified Process Work flows 

eXtreme Programming Stories 

Feature Driven Development  Features 

Tropos  Goals 

Fondue Scenarios 

Catalysis Actions 

Kobra Products 

Table 5-1 Concern Development Processes 

Although these processes separate concerns in terms of a process, each process works 
on a core system. The system is divided into modular units that can be worked on in 
complete separation and composed during or at the end of the software development 
process. During the design phase of the software development lifecycle, a design is 
created during the development that necessarily scatters and tangles different concerns 
of the system. Because concerns are not separate, changes in any one concern will 
impact other related concerns. 

Asymmetric AOD processes allow the separation of crosscutting concerns from the 
core system. Non-crosscutting concerns may be designed in a similar manner to the 
processes described above. Crosscutting concerns may however be separately designed 
as aspects. In an asymmetric design process, there are parallel concern development 
processes - one that creates and expands the core design model and another that creates 
aspect designs that crosscut that core. 

Symmetric AOD processes facilitate separate concern development processes. Each 
process creates separate software design modules that realise a system in design. There 
is no core system. There is one type of concern development process. Unlike the 
existing non-AO processes these processes do not work on creating or expanding a 
core system. Symmetric concern development processes allow the creation of separate 
designs that realise crosscutting and non-crosscutting concerns.   
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5.2.2.2 AOD Language 
An AOD language consists of some way to specify aspects; some way to specify how 
aspects are to be composed; and a set of well defined composition semantics to 
describe the details of how aspects are to be integrated. 

Symmetric and asymmetric AOD languages are similar in that they both provide a 
means of separately specifying crosscutting concerns as aspects, specifying aspect 
integration and composition semantics for aspect.  Symmetric AOD languages further 
provide a means of modularising non-crosscutting concerns. They enable the 
specification of how these non-crosscutting concerns are integrated with other non-
crosscutting software modules as well as aspects, expanding the composition semantics 
accordingly.             

5.3 Non-AO Approaches 
The Unified Modelling Language (UML) is the OMG standard design language for 
OO design. It is the most widely used object-oriented design language, and has 
effectively precluded the use of any other language except in exceptional 
circumstances.  The UML has also been the basis from which most AO design 
languages have been developed, apparently sensible where aspect-oriented design is 
primarily an enhancement to object-oriented design. We therefore limit our attention to 
non-AO approaches to a discussion on the UML.  

5.3.1 UML  
The UML provides design models that are adequate for capturing and representing 
problems in the object-oriented paradigm. The UML allows particular concerns to be 
represented through different OO design models. Views of the structure and behaviour 
of concerns can be separated. 

5.3.1.1 UML Artefacts 
In this section, we look at elements of standard UML, which will provide a basis for 
the discussion of many of the AOD approaches described in this report. 

5.3.1.1.1 UML architecture  
UML is the graphical notation that defines the semantics of the object meta-model, and 
defines a notation for specifying and communicating object structure, behaviour, state 
and interaction. In its meta-model architecture, UML supports extension mechanisms 
that allow tailoring it to fit the needs of a specific domain such as AOD.  

The Object Management Group (OMG) defines UML as a four-layer architecture (see 
Figure 5-1). The bottom level of Figure 5-1 defines the meta-meta-model layer, which 
is defined by the Meta Object Facility (MOF). The UML meta-model specifies the 
modelling language; it is defined and standardized on top of the MOF in the level 
second from bottom. Profiles (which are further examined later) are defined at this 
level, they specialize the meta-model for particular domains that are being modelled. 
The level labelled model defines the model layer, and the user object layer defines 
instances of the model at the top level [142]. 
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Figure 5-1 UML Architecture [142] 

5.3.1.1.2 Standard UML  
Standard UML has been used to support AOD. At this level standard OO diagrams are 
used to represent AO base systems. This generally is semantically limiting as the 
standard OO diagrams have not been designed to represent the concepts and 
relationships that embody the AO paradigm. Although the use of standard UML 
diagrams requires no extension of UML to support AOD it does not express the 
semantics required for AOD. 

5.3.1.1.2.1 UML Extension mechanisms 

UML extension mechanisms allow a standardised method to augment UML elements 
with new properties or semantics. Adding properties or tagging values can be used to 
add information to elements. New semantics or constraints can be specified for a 
model element, refining the concept the model represents.  New UML elements can 
also be composed of existing elements. New elements, called stereotypes, have the 
same structure to the elements from which they are derived but differ semantically and 
may require additional tagged values. Stereotypes can be used to indicate the 
difference between elements with identical structure. Due to a certain amount of 
perceived similarity between the OO and AO paradigm, many approaches have used 
these extensions to create new AOD elements from OOD elements.  Extensions on 
their own do not provide a consistent integrated tool set for AO designers to create 
large-scale designs. 

5.3.1.1.2.2 UML profile 

A UML Profile is a predefined set of extension mechanisms. A UML Profile allows the 
specialisation of the existing UML design elements for a certain domain. A UML 
Profile enables the expression of the semantics of the domain systems using a well-
defined set of extensions. A profile does not extend the UML meta-model. Profiles are 
extensions of UML models and as such the principles of UML must not be broken, but 
must be extended. Profiles provide that consistent integrated tool set. 

5.3.1.1.2.3 Meta-model 

Many have found that the extension mechanisms available are not enough to support 
AOD. The extension mechanisms allow the extension of OO semantics. It may be 
argued that an AOD language cannot be specified in terms of OO semantics and the 
extensions thereof. The approaches that take this view extend the UML language itself 
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and alter the UML meta-model. This allows the complete definition of AO semantics 
without adhering to the constraining features of the OO paradigm.  

UML is a standard language. The use of standard extension mechanisms either on their 
own or grouped in profiles respects the standard. UML is a common language. By 
altering the standard this makes any AOD language conceived in this way non-
standard, however semantically fitting.   

5.3.1.1.2.4 UML 1.X diagrams 
 

Diagrams Scope & Abstraction Models 
Use Case Diagrams Inter system Behaviour 
Component Diagrams Inter component Structure 
Class Diagrams  Inter class Structure  
Object Diagrams Inter object Structure 
Collaboration Diagrams  Inter object Behaviour  
Sequence Diagrams Inter class Behaviour  
Activity Diagrams Inter class Behaviour  
State Diagrams Intra class Behaviour  

Table 5-2 UML Diagrams 

UML 1.X provides several views to model the static and dynamic behaviour of a 
software system. Table 5-2 identifies each of the diagrams provided by the UML. For 
each we identify what the diagram models, the diagrams scope and also the level of 
abstraction is provided by the diagram.  

As illustrated in Table 5-2 we consider UML diagrams [143] to model dependency, 
structure and behaviour. What is modelled is very much linked with the scope and 
level of abstraction that a particular diagram provides.  

Inter system indicates that the scope is a system level scope where a system is being 
modelled at a very high level of abstraction. At this level of abstraction the overall 
systems behaviour is modelled. Use case diagrams model the high level structure and 
behaviour of a system. 

Inter component indicates that the scope is a component level scope where a system is 
being modelled in terms of the components that is contains .A component diagram 
exposes the structure of a system by indicating the components in a system and the 
relationship between components.   

Inter class indicates that the scope is a class level scope where the system is being 
modelled in terms of class. At this level of abstraction structure and behaviour can be 
modelled. Classes are used to compose features. Class diagrams model class structure 
and the structural relationship between classes. Sequence and activity diagrams model 
behaviour across the class structure.  

Intra class indicates that the scope is a class and models the states that instances of a 
class can be in and the conditions in which state transitions occur. State diagrams 
model the state and state transitions of a class. 

Inter object indicates that the scope is an object level scope where the system is being 
modelled in terms of objects. Models at this level depict runtime structure and 
interactions based on behaviour and state. Object diagrams model runtime structure 
and collaboration diagrams model runtime behaviour.  
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5.3.1.1.2.5 UML 2.0 

UML 2.0 has increased the scope to separate concerns in UML by providing new 
opportunities to separate concerns into separate diagrams and new constructs that can 
represent designation. The significant improvements in UML2.0 include ([144]): 

 
Diagrams Improvement AOD impact  
Class & Component New concepts for describing the internal 

architectural structure of Classes, Components and 
Collaborations by means of Part, Connector and 
Port. 

Better separation of 
components may aid 
aspect representation 
[145] 

State machines Introduction of inheritance of behaviour in state 
machines and encapsulation of sub machines 
through use of entry and exit points.  

Can aid modelling 
crosscutting behaviour  

Activity diagrams A redefinition of Activity diagrams in which Petri 
net flow semantics are used instead of state 
machines and extension points are introduced. 

Can aid modelling 
crosscutting behaviour  
[146, 147] 

Table 5-3: UML 2.0 Diagrams 

 

5.3.2 UML and AOD 
Standard UML was not designed to support the kinds of concern separation that are the 
focus of AOSD. Nonetheless, it provides the basis for object-oriented design from 
which many AOD approaches extend. It is therefore not a surprise that many of the 
AOD approaches discussed in this report have used or extended UML to facilitate 
AOD in different ways. Different approaches range from extending the UML meta-
model itself, to using UML’s standard extension mechanisms. Table 5-4 gives a 
summary for each of the AOD approaches in this report. 

 
Approach Language 
 UML  Standard/Extensions/Profile/Meta-model 
Theme  Yes Meta-model 
AODM Yes Extensions 
AAM Yes Extensions 
CoCompose No n/a 
SUP Yes Profile 
AML Yes Extensions 
Concern Modelling No n/a 
TranSAT Yes Extension 
AOCE Yes Meta-model 
UFA Yes Meta-model 
ADT  Yes Extension 
UXF/a  Yes Meta-model 
IDAM Yes Meta-model 
AVA Yes Extension 
Component Views Yes Meta-model 
Meta Models  Yes Meta-model 
AOSDUC Yes Meta-model (UML 2.0) 
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CAM/DAOP Yes Profile 
Activity Yes Profile (UML 2.0) 
UMLAUT Yes Meta-model 

Table 5-4: UML & AOD 

 

In [148] it is noted that the choice between possible options is based on the level of 
concerns separation and AOD language targeted. Beyond concern separation, there are 
other rationales for choosing each [149]. Meta-model extension is suggested if the AO 
concepts are well defined, stable and not subject to transfer or composition with other 
domains. UML extensions and profiles are suggested where the aspect domain is not 
subject to consensus, subject to change and evolution, subject to transfer or 
composition with other domains.  

Tool support has become very important to designers. UML based tools are built on the 
meta-model. By changing the meta-model new corresponding extensions to UML tools 
must be made. The use of profiles for extension means that no extensions for tool 
support are required. 

5.3.2.1.1 OCL and AOD 
The Object Constraint Language (OCL) is a subset of the UML that allows software 
developers to write constraints and queries over object models. OCL enables the 
description of expressions and constraints on models and other modelling artefacts. An 
expression is an indication or specification of a value. A constraint is a restriction on 
one or more values of a model or system.   

In terms of AOD, OCL has been used to constrain the selection of join points in design 
models. As such OCL is mainly used in the specification of model integration.  Current 
AOP approaches are supporting more complex integration specifications to identify 
join points. To keep up with AOP developments this complexity must be mirrored in 
an AOD language.  

OCL is a non-graphical language. As such it is not intuitive to the designer. In [150] 
[151] a graphical language called Join point designation diagrams that represents OCL 
constraints are visualised such that the integration complexity they expect from AOP 
can be expressed in a natural manner at design. 

OCL has also been used to define the constraints for aspect models as well as defining 
the constraining composition. In terms of constraining aspect models, OCL has been 
used to aid in the ensuring the well-formedness of aspect specifications and integration 
specification. In terms of composition, OCL can be used to define the composition 
semantics for an AOD language.   

5.3.2.1.2 Parameterised templates  
At the core of all AOD approaches (symmetric and asymmetric) is a requirement to 
represent crosscutting relationships between models. Many UML-based approaches 
achieve this through the utilisation of parameterised templates.  

Parameterised templates allow the creation of abstract design models. A model is 
abstract in this sense in that it reasons about abstract elements relative to the concrete 
elements within the model. The abstract element is a parameter (i.e., template) that can 
be replaced with a concrete element. This replacement generates a new diagram where 
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the replacing concrete element gains the relationships, attributes and constraints 
associated with the parameter being replaced.  

This is one mechanism for representing crosscutting. A crosscutting relationship is one 
where one model alters a number of different models. As such parameterised templates 
support the specification of crosscutting. 

5.3.2.1.3 AOD and UML Diagrams 
As we have discussed previously, AOD has the same objectives as any software design 
activity; to characterise and specify the behaviour and structure of the software system. 
Its unique contribution to software design relates to extensions to modularity 
capabilities. AOD must therefore provide language constructs and a process to handle 
the structural and behavioural extensions required to manage the separation and 
composition of the kinds of concerns supported by the paradigm. Table 5-5(a) 
identifies the diagrams that have been used to express aspect structure and the 
approaches that these diagrams have been used in. Table 5-6(b) identifies the diagrams 
that have been used to express aspect behaviour and the approaches that these diagrams 
have been used in. 

 
  Use case Package Component Class 

Theme   Structure   Structure 

AODM       Structure 

AAM   Structure   Structure 

SUP       Structure 

AML   Structure     

TranSAT       Structure 

AOCE     Structure Structure 

UFA    Structure     

ADT       Structure 

UXF/a       Structure 

IDAM       Structure 

AVA   Structure   Structure 

Component Views     Structure   

Meta Models   Structure   Structure 

AOSDUC Structure Structure Structure Structure 

CAM/DAOP     Structure Structure 

Activity         
UMLAUT    Structure 

Table 5-5 (a) Aspect Structure in UML Diagrams 

Structure and behaviour are described under the headings of aspect specification, 
crosscutting specification, integration specification and composition semantics. It is 
interesting to note that the choice of diagram used in the AOD approach is based on the 
level of separation and abstraction that the AOD language supports.  
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  Use case Sequence Communication Activity State  
Theme   Behaviour       
AODM Behaviour Behaviour       
AAM     Behaviour     
SUP         Behaviour 
AML           

TranSAT           
AOCE     Behaviour     
UFA            
ADT         Behaviour 

UXF/a           
IDAM           
AVA   Behaviour Behaviour   Behaviour 

Component 
Views           
Meta 

Models           
AOSDUC Behaviour Behaviour Behaviour Behaviour Behaviour 

CAM/DAOP       Behaviour Behaviour 
Activity       Behaviour   

UMLAUT  Behaviour   Behaviour 

Table 5-6 (b) Aspect Behaviour in UML Diagrams 

 

5.4 AO Approaches 
 

5.4.1 Aspect-Oriented Design Modelling (AODM) 

5.4.1.1 AODM Method 
The Aspect-Oriented Design Modelling [152] (AODM) approach extends standard 
UML with aspect-oriented concepts. The AODM UML extension was originally 
defined to support the aspect-oriented concepts of the AspectJ implementation 
language.  However, AODM has evolved to become more generic and now supports 
other asymmetric AO Programming approaches (such as composition filters and 
adaptive programming) [153] [154]. Yet, symmetric AO implementation techniques 
are not naturally supported by AODM.  
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Figure 5-2 Aspect Oriented Design Issues [153] 

5.4.1.2 AODM Artefacts 

5.4.1.2.1 AOD Language  
Since AODM was originally designed to model AspectJ-style AOP, its design 
elements are still heavily related to AspectJ. We rely on AspectJ terminology when 
discussing AODM even when discussing design models that target various [150] [153, 
154] AOP platforms.  

5.4.1.2.2 Specification of Aspects 
In AODM, aspects are represented as classes with the <<aspect>> stereotype (see 
Figure 5-4 and Figure 5-7).  This was adopted because of the structural similarities 
between aspects and classes. Like classes, aspects act as containers and namespaces for 
attributes, operations, pointcuts, advice and intertype declarations. Aspects can also 
engage in the same association and generalization relationships as classes .  

Aspects differ from classes in their instantiation and inheritance mechanisms. In 
AspectJ, aspect declarations can contain instantiation clauses that specify the way in 
which the aspect should be instantiated. Child aspects inherit all features from their 
parent aspects but only abstract pointcuts and java operations can be overridden. This 
stereotype augments the meta-class with some additional meta-attributes to hold the 
instantiation clause, and a Boolean expression to specify whether the aspect is 
privileged or not. 

5.4.1.2.3 Specifications of crosscutting 
AODM supports the specification of behavioural and structural crosscutting. 
Crosscutting structure is expressed in class diagrams within a parameterized template 
collaboration diagrams. 
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Figure 5-3  Structural Crosscutting [152] 

Figure 5-3 illustrates an example of structural crosscutting. Crosscutting structure is 
captured in a parameterised class and partial sequence diagrams. Parameterisation is 
used to represent crosscutting. The type(s) to be crosscut are represented as 
parameter(s) to the template. The crosscutting structure is applied to this parameter. 
The concrete structural elements to be crosscut are applied to the template as 
arguments. Class and sequence diagrams dictate the manner in which integration 
occurs.  

In Figure 5-3 all arguments that match the BaseType parameter are extended by the 
Subject type. Any type that is extended in this way exposes a getData()signature 
which can be invoked.  
 

 
Figure 5-4 Advice AODM [152] 

As illustrated in Figure 5-4 behavioural crosscutting is represented as an operation with 
an <<advice>> stereotype. Advice operations, like standard operations, have a 
signature and are semantically similar to standard UML operations. Figure 5-4 also 
reveals the closeness between AODM and AspectJ notations for advice, yet there are 
some semantic differences between these two.  

Firstly, AspectJ advice is not uniquely identifiable. This conflicts with the UML rules 
that operations of the same classifier must not have the same signature.  AODM 
resolves this problem by using “pseudo” identifiers. Secondly, advice in AspectJ 
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cannot be overridden, as it has no unique identifier. Finally, AspectJ advice signatures 
reference pointcuts. The operations of the <<advice>> stereotype must be implemented 
by methods of a special stereotype that has an additional property named “base” to 
hold the pointcut declaration.  

The semantic value that the <<advice>> stereotype in AODM adds to the operation is 
not immediately apparent. A designer can reason about <<advice>> only if he is aware 
of the AODM-AspectJ relationship and fully understands the underlying semantics of 
the AspectJ advice. 

Additionally, the link between AODM and AspectJ is broken by using stereotyped 
operations: use of pseudonyms to identify advice does not match the AspectJ 
implementation of advice. This highlights the fact that the AOP languages constructs 
do not always naturally match the UML elements extensions to capture the additional 
characteristics of the construct. 

5.4.1.2.4 Integration specification  
AODM supports the specification of structural and behavioural integration through 
integration of crosscutting design models. Structural crosscutting affects the type 
structure of a given design model and can occur at some location in a target class 
hierarchy. Behavioural crosscutting affects the model’s behavioural specifications and 
occurs at some joinpoint  in the execution specification.    

UML classifiers from within a target class hierarchy may identify points to be 
structurally altered. 

 
Figure 5-5 AODM Join points  [152] 

A Link in UML represents communication between two instances resulting from a 
particular action. As illustrated in Figure 5-5, AODM represents join points as UML 
links with stereotyped “pseudo” operations. The stereotyping is required as UML links 
imply a delegation of program control, but some joinpoints (e.g. field access) do not 
delegate control. These joinpoints then cannot be modelled within the standard UML 
and must be represented as pseudo operations. There are also cases such as object 



 167

instantiation, where initialization only occurs after a constructor call. Here one link is 
used to represent the join points. Interaction diagrams are used to represent the order in 
which control passes between these join points. The type of join point being modelled 
is indicated by special stereotypes. The <<execution>> stereotype, for example, 
indicates an execution join point that occurs in the context of a method invocation.  

Differing AOP implementations apply different mechanisms to separate concerns. 
AspectJ supports behavioural and structural crosscutting, composition filters support 
behavioural crosscutting, and adaptive programming supports structural crosscutting. 
The Hyper/J-SOP model differs from AOP models in that AOP models support the 
augmentation of a single model where as the Hyper/J model supports the integration of 
multiple models. In the Hyper/J model, crosscutting support is identified as structural 
because the primary concern is the integration of type hierarchies.  

AODM provides design models that can be applied to the AOP models that separate 
concerns models from a single set of base modes. However, due to the differences in 
the possible integration between multiple models and the integration between a base 
and crosscutting model, AODM cannot express all possible integration strategies of 
Hyper/J.  

In the following sections we will look at the AODM design models used to specify 
structural and behavioural crosscutting.  

Structural crosscutting is termed “intertype declarations” in ApectJ. Intertype 
declarations are used to insert members and relationships into the base structure. 
Intertype declarations are represented as templates in AODM. These templates are 
parameterized model elements that are used to generate other model elements by 
binding its template parameters to actual arguments.  

As illustrated in Figure 5-3, a template of the <<introduction>> stereotype is used to 
capture the semantics of inter-type declarations [152]. Templates are not useable 
directly in the model design - arguments must be bound to them in order to be used in 
design models. UML’s well-formedness rules allow at most one client model element 
to participate in one binding. This does not match the AspectJ weaving model where a 
class can be crosscut by many inter-type declarations. Inter-type declarations in 
AspectJ are always bound to a fixed number of actual base classes. Template 
parameters of an <<introduction>> stereotyped collaboration template are required to 
be of a special stereotype <<containsWeavingInstruction>>. This stereotype augments 
the template parameter with a meta-attribute named “base” to hold the type pattern that 
specifies the actual base classes to be crosscut.  

In more recent work however there are some slight variations. Although not much 
detail has been provided [154] [151], the main difference seems to be in usage of the 
<<join point>> stereotype to indicate structural crosscutting. It remains unresolved if 
or how this changes the original AODM representation of specifying structural 
crosscutting.  
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Figure 5-6  Pointcut AODM [152] 

In earlier work [152] pointcuts are represented as operations of a special stereotype 
<<pointcut>>. As illustrated in Figure 5-6, the <<pointcut>> stereotype captures the 
AspectJ pointcut semantics. Figure 5-6 also shows the corresponding pointcut 
expressed in the AspectJ language.  

There is also a graphical method to represent pointcuts in a more abstract manner 
avoiding the use of AspectJ specific join point designators.  Join point designation 
diagrams [150, 151] [154] represent behavioural and structural crosscutting in a 
language independent manner while retaining the complex semantics typically found 
only in implementation languages.   As illustrated in Figure 5-7 join point designation 
diagrams are reusable templates that specify join points in a constrained manner.  

 
Figure 5-7 Join point designation diagram [154] 

Figure 5-7  is an example of a join point designation diagram. This diagram illustrates 
the graphical specification of a pointcut. On the right side of the diagram are the 
parameterised sequence diagrams that describe a set of join points. There are two 
sequence diagrams joined through an “or” association. Each sequence diagram 
represents a primitive pointcut. The “or” association between these two internal 
diagrams represents the composition of primitive pointcuts. The left side of the 
diagram is a graphical constraint language that declares the structural requirements that 
must be met by arguments that are used to fulfil the right hand side of the diagram.  

This graphical constraint language is based on OCL and is described in [151] [150]. As 
illustrated here in Figure 5-9 a complex join point selection criteria is provided. 
Constrains are expressed on instances and classes. The constraints represent static and 
dynamic join point selection constraints. Class and instance based constraints are 
represented in a class like structure. An example of a constraint representation is given 
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in Figure 5-8.  An example of a static constraint is on the classifier name Con* means 
any type that is to match this constraint must be begin with “Con”. An example of a 
dynamic constraint is where the multiplicity range of an attribute is set. An instance 
will match this constraint if it has an attribute att2 that is an integer value between 2 
and 100.  

 
Figure 5-8  UML –classifier selection  [151] 

Relationships constraints can also be represented. These again can be static or 
dynamic. There are four types of constraints: association, generalization, specialization 
and flow of control. Association constraints impose statically constraint relationships 
between types and dynamically constrains the multiplicity of relationships between 
instances. Generalisation and specialisation constraints constrain a type in terms of 
type hierarchies.  Named message selection criteria constrain join point identification 
based on the flow of control between types. Message selection constraints are 
represented in diagrams similar to sequence diagrams.  

5.4.1.2.5 Composition Semantics 
Detailed composition semantics are not provided for AODM in the literature. Due to 
its close ties with AspectJ we infer that the composition semantics followed by AODM 
are very similar to AspectJ. 

AODM supports the representation of composition semantics through two diagrams. 
The first diagram, illustrated in Figure 5-9, identifies the join points that are crosscut 
by an aspect and crosscutting element in that aspect that will actually affect that join 
point. The second diagram represents an actual join point and specifies the composition 
at that join point.  



 170

 
Figure 5-9 Join Point Indication Diagram [154] 

The points that are crosscut are captured within Class Diagrams elements for structural 
crosscutting, and sequence diagrams links for behavioural crosscutting, by augmenting 
these with a “crosscutBy” property. This property references a crosscutting element 
within an Aspect. This indicates that an element augmented with     the “crosscutBy” 
property is composed with the crosscutting element named by the “crosscutBy” 
property.  

This diagram provides an overview of all the join points identified by a join point 
designation diagram. It also shows the advice that will crosscut these join points.  

The second diagram represents an actual join point and the composition at that join 
point is, in fact, a number of diagrams. There are two options provided by AODM for 
the representation of per-join point composition.  The first option is to present 
composition in a number of partial sequence diagrams. The second is to represent 
composition through use cases.  

An example of the first option is represented in Figure 5-13. To show how, and where, 
advice affects the base classes an interaction diagram is spit. Splitting occurs at a 
particular join point. The join point is indicated by a stereotyped link. The serotype 
specifies the join point type. The advice types supported include before, after or around 
advice. The advice is recomposed into a new sequence diagram that is made up of the 
original join point sequence with the advice included.  

 
Figure 5-10 Join point Composition [155] 

Figure 5-10 shows how a join point can be split into three sequence diagrams to 
represent the before, around and after points at the join point at which advice can be 
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injected. The advice to be injected at the join point is represented in the sequence 
diagram in the top right of Figure 5-10. This advice is declared as after advice. The 
join point split diagram is combined with the advice diagram to create a new diagram 
(see lower right side of Figure 5-10) which represents the composed join point and 
advice.  

An example of the second option to represent composition is seen in Figure 5-11 and 
Figure 5-12. Here a use case is used to represent some behaviour. This use case can 
then be split into smaller use cases via a refinement relationship. Use cases may also 
include behaviour from other use cases.  A use case may augment another by using 
extension. As such a join point can be refined into before, around and after. 
Composition of advice and base behaviour can be depicted by refining the join point 
use case and using the include relationship. In the case of before and after advice or 
extends in the case of around advice to form a new woven use case that represents the 
join point composed with advice. 

 
Figure 5-11 Weaving Advice [152] 

Figure 5-11demonstrates the weaving at a join point and a piece of advice related to 
that join point. The join point use case is used to represent a join point. This is again 
split into three separate use cases. These represent the points at which this join point 
can be crosscut. The crosscutting behaviour that is to be woven at this join point is also 
represented as a use case. The actual composition of advice and behaviour at the join 
point is represented by the wovenClick use case. The association between the elements 
to be composed and the actual composition representation is an <<include>>.  

 
Figure 5-12 Weave Order [152] 

Figure 5-12 extends the example presented in Figure 5-11. In Figure 5-11 we see that 
the actual composition can be visualised. There are the possibilities for advice 
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injection, before, after and around the join point. Each possibility is represented in the 
figure as a separate diagram through associated with the composition. 

The weaving of inter-type declarations is represented in use case diagrams. The aspect 
that contains the inter-type declarations is represented as a use case. The inter-type 
declaration is firstly refined from the aspect use case, into use cases to represent the 
actual features that are to be introduced into the base classes. These use cases are then 
included in a use case that represents a woven entity.  In Figure 5-13 we can see that 
the composition is represented as use cases. These are related to the base and 
crosscutting elements that are composed through the <<include>> association.  
 

 
Figure 5-13: AODM TP 2002 Weaving intros [152] 

 

5.4.2 Theme/UML 

5.4.2.1 Theme/UML Method 
Theme [55] is an analysis and design approach that supports the separation of concerns 
for analysis and design phases of software lifecycle. The Theme approach also 
provides a UML based AOD language called Theme/UML which extends the UML 
meta-model. 

The Theme approach expresses concerns in conceptual and design constructs called 
themes. Themes are more general than aspects, and more closely encompass concerns 
with relation to the symmetric separation. Any concern, whether crosscutting or not, 
may be encapsulated in a theme. [156]. 

5.4.2.2 Theme Artefacts  

5.4.2.2.1 AOD Language  

 
Figure 5-14  Themes and Theme Integration [157] 
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5.4.2.2.2 Specification of Aspects 
Being a symmetric language, Theme/UML supports the representation of base and 
aspect themes. Base and aspect themes are specified in packages. Theme packages are 
identified as themes through the stereotype <<theme>>, as shown in Figure 5-14. Base 
and aspect themes contain class diagrams that represent aspect structure. The class 
diagram within the theme package represents the design concepts that are required to 
realize the requirements related to the theme.  

An aspect theme differs from a base theme in that it is a parameterized template 
package. Figure 5-15  is an example an of aspect theme. The dotted box in the top right 
hand side of the diagram specifies the parameters to the template. The parameters 
represent the join points that the theme crosscuts. The parameter, in this example, is a 
Type and method and the parameter is represented as follows <TracedClass 
_tracedOp(..)>. This example shows the design of crosscutting tracing functionality. 
The structural relationship between the parameter and the crosscutting elements 
encapsulated within the theme described in the class diagram. The behavioural 
relationship between the parameter and the crosscutting elements is encapsulated 
within the theme described in the sequence diagram. 

 
Figure 5-15 Aspect Theme [157] 

5.4.2.2.3 Specification of Crosscutting 
Both aspect and base themes support a degree of structural crosscutting due to the 
possibility of domain concept overlap between themes. Aspect themes support 
behavioural crosscutting as well as structural crosscutting. 

At design, themes are partial views of requirements. Requirements express all of the 
domain concepts that must be modelled to create a system. An overlap between themes 
occurs when the requirements for different themes partially describe a domain concept. 
At design, this overlapping is seen in classes in different themes that represent the 
same domain concept. These classes have members, methods and attributes, as well as 
relationships with other classes in a theme. Methods and attributes can overlap as can 
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relationships. Overlapping of class members and inter-class relationships is less 
common. During composition, those overlapping classes are converged into full 
models. Due to possible overlap between themes, all themes are prone to implicit 
structural crosscutting. Overlap is relative to other themes and hence, structural 
crosscutting (in this sense) is too. 

Aspect themes provide more scope for structural crosscutting. Returning to the 
example in Figure 5-15, and in particular the class diagram, structural crosscutting can 
be explicitly specified in this class diagram.  As discussed in Section 4.3.1, aspects are 
parameterised templates. The parameters represent all join points at which the aspect is 
to crosscut other themes. A class that represents the parameter type is included in the 
class diagram. This class is related to the crosscutting classes. Structural crosscutting is 
specified in the relationships that are expressed between the parameter class and aspect 
themes classes.  

Only aspect classes support behavioural crosscutting. Behavioural crosscutting is 
specified in a sequence diagram. Figure 5-15 depicts an aspect theme. This aspect 
theme contains a class and sequence diagram that specifies crosscutting behaviour. The 
parameter that is specified as a TracedClass type and _tracedOP(..) method. In the 
class diagram, TracedClass is represented as a class with two methods tracedOp(..) and 
_tracedOP(..).tracedOp(..) represents the composed method or output and _tracedOP(..) 
represents the parameter method or input. Any method that replaces _tracedOP(..) is 
specified in the sequence diagram to be crosscut before execution by 
traceEntry(String)and after execution by traceExit(String).  

5.4.2.2.4 Integration specification 
Theme supports the specification of two types of integration - override and merge. Due 
to the symmetric model that theme supports, integration relationships can be specified 
between different theme types. Integration specification is denoted by an arc and can 
be specified at two levels.  

Firstly, integration can be specified at a theme level. This indicates that all elements at 
the arc endpoints must be composed in accordance to any integration rules specified by 
that arc. An example of a basic integration rule is match<name>. This indicates that 
overlapping is recognized by name and specifies that where names match, all elements 
of matching name should converge during composition.  

Secondly, integration can be specified between elements within theme encapsulations. 
To illustrate this case, we follow on from our previous example. Where classes in 
themes overlap but do not have the same name, a lower level of specification is 
required to specify that these classes should converge. Override and merge integration 
can be specified at both levels.  

Override integration is a specification of structural crosscutting. It is used to specify 
that an overlap between theme elements is to be resolved by replacing the elements in 
existing themes with the theme elements that are overriding. Override integration is 
between theme elements and can specify the replacement of elements across themes. 
As such, override integration can be considered to be a specification of structural 
crosscutting. Override integration is denoted by a one way arc. 

Merge integration is a specification of structural crosscutting. Merge integration is 
used to specify that an overlap between theme elements is to be resolved by adding the 
parts of overlapping elements together. The result of a merge is the sum of the parts of 
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those elements specified to be merged. This result is an altered structure in that merged 
structures are compositions of structures. A merge specification can be merge elements 
between many themes. Therefore, it can be considered to be a specification for 
structural crosscutting. Merge integration is denoted by a two way arc. 

Merge integration between base and aspect themes are specifications for crosscutting 
behaviour. As noted in section 4.3.1, aspect themes are parameterized templates. 
Arguments that match the parameters are specified by bind<> expressions associated 
with merge integration specification. A bind specification is illustrated in Figure 5-14. 
In a bind relationship join points are specified or a criterion for join point selection is 
specified. In either case the join points are the behavioural points to be crosscut by the 
behaviour encapsulated in the aspect theme. In Figure 5-14, the bind specification uses 
wildcards (denoted by *) to indicate that all methods in all classes encapsulated in 
theme S1 are to be crosscut by the trace theme.  

5.4.2.2.5 Composition semantics 
Detailed composition semantics are defined for Theme/UML in [158]. These semantics 
are represented more generally in [159].  

5.4.2.3 AOD Process  
The Theme process is described as a three phase process [160] – analysis, design and 
composition. In the analysis phase, themes are identified and characterised. In the 
design phase the identified and characterised themes are specified in technical design 
models. Finally, in the composition phase, the composition of themes is specified. The 
entire process is illustrated in Figure 5-16.  

The Analysis part with Theme/DOC has been discussed earlier (section 3.5.2.1). In 
short, Theme/Doc supports the characterisation of two theme types, aspect and base 
themes. Base theme views present the designer with the requirements for the base 
themes that are needed to produce a design model that fits the base theme 
requirements. Aspect theme views present the designer with the requirements for the 
aspect theme. Aspect theme views also present the themes that are crosscut by the 
aspect. 

The design phase, shown as the second step in the Theme process in Figure 5-16, takes 
each theme and produces separate and possibly overlapping models. The requirements 
related to the theme view are used to construct theme designs for each theme. Each 
theme is constructed as a class diagram in a separate theme construct. A theme 
construct is a specialised package. Aspect themes require an extra sequence diagram to 
be produced which indicates where and how the aspect theme is to crosscut the 
behaviour of another theme. 

Once the themes are captured in separate and possibly overlapping design models the 
composition phase begins. This is presented as the final process at the bottom of Figure 
5-16. In this phase, the integration or composition of themes is specified. Classes in 
Theme/UML model domain concepts. Overlapping design models are those where the 
same domain concept is represented in more than one theme as a class. An overlap 
occurs when the requirements for different themes partially describe a domain concept. 
Here the domain concept is fully described across all themes in which the domain 
concept expressed.  
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During the composition process, overlapping domain concepts must be composed. The 
composition of these domain concepts is specified during the composition phase. 
Aspect themes are expressed as parameterised template packages in Theme/UML. In 
order to specify the integration or composition of aspect themes with other themes, it is 
necessary to specify the join point’s selection criterion.  This indicates where the 
aspect theme crosscuts the other themes. The specified selection criterion facilitates the 
identification of the points in the related themes that are to be crosscut by the aspect 
theme. These points are used as arguments to the parameterised template package. 
Once the arguments are bound to the template, a composition can be realised. 

 
Figure 5-16 Theme process [160] 

The result of overlapping concept composition is a model in which all domain concepts 
are fully represented in a model. The result of composing aspect themes is the 
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generation of models where the join points identified by the specified selection criteria 
are used as arguments to the parameters in the aspect theme templates.  

Although not described in Figure 5-16, Theme also provides guidelines for a process 
for the implementation of theme designs on the AspectJ, HyperJ, AspectWerkz and 
CME implementation platforms [160-162].  

The theme process and its relationship with existing design processes are discussed in 
[160]. The theme process is said to usable in a waterfall, iterative or agile context. 
 
 

5.4.3 State charts and UML Profile (SUP) 
 

5.4.3.1 SUP Method: 
The SUP approach supports a process for AO analysis and design based on state charts, 
complemented with an AOD Language based on a UML profile.  

5.4.3.2 SUP AOD Artefacts 

5.4.3.2.1 Language 
To support this process an AOD Language specified as a UML profile is proposed in 
[142, 163]. This profile models base and aspect structure in class diagrams. Behaviour 
is modelled in state chart, use case, state machine and collaboration diagrams. A set of 
stereotypes that extend the semantics of existing UML elements are used across these 
design diagrams. 

5.4.3.2.2 Specification of Aspects 
Aspects are structural specified in class diagrams. Aspects are specified as using an 
<<aspect>> stereotype. Aspects can be specified as being synchronous or 
asynchronous through the inclusion or exclusion of an <synchronous> tag. 
Synchronous aspects alter the control flow and asynchronous aspects do not.  

Aspects are also specified in state chart diagrams. In this sense the aspect is specified 
as a set of states that are connected through a series of events.     

5.4.3.2.3 Specification of Crosscutting 
The specification of behavioural crosscutting is achieved through the use of state charts 
[164]. Here crosscutting behaviour is modelled as an event that triggers a state 
transition.   

5.4.3.2.4 Integration specification 
Specification of behavioural crosscutting is done in two ways. Firstly, in class 
diagrams, integration is specified through an association type that indicates 
crosscutting. This association is denoted by the <<crosscut>> stereotype. The 
<<crosscut>> association supports symmetric integration specification.   

Secondly, in state charts, integration is specified through linking events across state 
chart diagrams.  Aspects, as stated in Sections 5.3.1 and 5.3.2, can be specified in state 
chart diagrams and crosscutting behaviour is modelled as linking events (by name) 
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between state chart diagrams. Integration is specified as these linked events. Linking 
indicates that when the base event is triggered, the aspect event that is linked to that 
event should also execute.  

5.4.3.2.5 Composition semantics 
This approach provides relatively informal composition semantics. As discussed, 
integration is specified through linking events across state diagrams. Composition 
occurs when events are broadcast from one state diagram to other state diagrams. Any 
events that are linked to the event broadcasted are activated in the state diagrams to 
which the event is broadcast. These events can then cause an alteration of the states of 
many modules in the overall system. 

5.4.4 SUP AOD Process  
The SUP process is based on the use of state charts. The process is described and 
illustrated as a series of steps in [165] and [164]. The process is used to extract aspect 
concerns from an OO concern description by identifying the crosscutting state 
transitions that exist in the OO model. Once identified, the aspects and base concerns 
can be specified separately during design.   

Analysis begins with requirements for a base concern which are tangled with 
descriptions of aspect concerns. These requirements are used to create a state chart 
diagram. This state chart diagram represents the state transitions for the concern.   
Through analysis of the state chart diagram the aspect concerns and are identified and 
the relationship with the main concern is captured.  

Once base and aspects concerns are identified, class diagrams are used to describe the 
static structure of the base and aspect concerns. Aspects and base concerns are 
specified as classes. Operations and attributes for the classes can be derived from the 
state chart diagram developed during analysis.  

Crosscutting relationships between base and aspect behaviours are specified in state 
chart diagrams. Each state diagram is specified separately and it has its own states. The 
events that trigger transitions between states are shared by aspects and base state chart 
diagrams. As such the events that are shared between base and aspect classes can be 
considered as join points.  

When events occur the event is described as being broadcast. As such, the aspects are 
notified of the event and the invocation of crosscutting behaviour is modelled as a 
change in state of the aspect class.  

In [166] the use of state charts is linked with Feature Driven Development [136]. State 
charts in this instance are used to specify features. A process of incremental feature 
development is supported though feature composition being specified in state charts. 

 

5.4.5 Aspect-Oriented Architecture Modelling (AAM) 
 

5.4.5.1 Aspect-Oriented Architecture Modelling Method 
Aspect-oriented Architecture Modelling (AAM) is an approach that focuses on 
specifying concerns at middle to high design levels. This approach is based on role 
based meta-modelling and uses UML as a basis for an AOD language [167].  
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5.4.5.2 Aspect-Oriented Architecture Modelling Artefacts 

5.4.5.2.1 AOD Language 
AAM as an AOD language supports two types of aspects - context-free and context 
specific aspects. Context free aspects are reusable aspects that are expressed at a high 
level. Context specific aspects are aspects that are instances of context free aspects that 
can be specified for use (or reuse) in specific design models.  

5.4.5.2.2 Specification of Aspects 
High level aspects are specified as parameterized template package diagrams. 
Parameters are explicitly demarked using the “|” symbol in the diagrams. Parameters 
are described in this way to avoid listing the parameters in the package header. Listing 
the parameters in the package header is described as unwieldy when there are many 
parameters.  

The diagrams encapsulated in an aspect parameterized template package describe the 
aspects in terms of structure and behaviour. Structurally, aspects are modelled in class 
diagrams. Within the class diagram, template classes, their template members and their 
inter-template relationships are used to describe the structural properties and 
constraints that a middle level aspect must contain to realise the high level aspect. 

Aspect behaviour is modelled in collaboration diagrams. Within the collaboration 
diagram the interactions between object templates are described. The sequenced 
interactions between the object templates are described in terms of the messages sent 
between object templates.  

5.4.5.2.3 Specification of Crosscutting 
A high level aspect can be completely modelled in terms of an abstract primary model. 
Design elements external to the primary solution can be used to describe relationships 
between the primary model and elements introduced through the aspect model.  

A high level aspect introduces relationships and constraints to the primary design 
model, by binding the context of the primary model to an abstract primary model 
described in the high level aspect.  

The context that realizes the context specific aspects is identified through bindings 
between the context free aspects and the primary model. Only certain primary model 
context can be bound to high level aspects. Before context can be bound to high level 
aspects, the context must be validated. 

Pre and post conditions specified in OCL defined conditions that determine the validity 
of a context binding. Each template has associated with it a set of OCL context 
constraints. These constraints ensure that any context bindings that are used to ensure 
that middle level aspects are valid.  

Structural crosscutting is specified in context specific aspects. Structural crosscutting is 
specified in the class diagrams that are generated from the template class diagrams 
described in the high level aspect. 

Behavioural crosscutting is specified in context specific aspects. Behavioural 
crosscutting is specified in the collaboration diagrams that are generated from the 
template collaboration diagrams described in the high level aspect.  
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5.4.5.2.4 Integration specification 
Integration of middle level aspects and a primary model is specified through 
composition directives [168]. Composition directives specify how primary and aspect 
models are to be merged. Model merging is based on model overlap between aspect 
and primary models and is described in Section 4.3. Composition directives specify the 
addition of elements to primary models, removal of elements from primary models, 
renaming elements in primary models, changing references within primary models, 
overriding elements in primary models and a specification to order aspect composition 
with the primary model. 

Composition directives are divided into two categories - high level and low level. Low 
level composition directives are used to specify the composition of a single aspect 
model and a primary model. High level composition directives specify the composition 
of many aspect models with the primary model. Composition directives constraints are 
specified in OCL.   

5.4.5.2.5 Composition semantics 
Composition semantics associated with AAM are best outlined in [168]. The 
composition semantics associated with AAM are similar to Theme/UML. The 
semantics differ based on the levels of separation supported by each.   

Composed models are both structural and behavioural in representation. Structurally, 
composition is specified in a class diagram in which the aspect models and primary 
model are composed. Behavioural composition is specified in a collaboration diagram.  

5.4.5.3 AOD Process 
AAM is not explicitly discussed in terms of an AOD process. Figure 5-17 illustrates 
the overall AAM model. From this model we can infer or assume some of the primary 
steps that one may follow when using the AAM approach. 

In analysis the primary model is identified and the high level aspects that are needed to 
realize the concerns that crosscut the primary model are identified. If there are no high 
level aspects that capture a particular crosscutting concern, a middle level aspect is 
required to realize that concern.   

In the design phase the primary model is expressed in a middle level design. At this 
point, the designer can assess the high level aspect designs available to see if context 
required to realize the high level aspects in a middle level design, is available in the 
primary model.  

When the relevant high level aspects and context is available, then bindings for these 
high level aspects to the application is specified. The composition of high level aspects 
and application context are middle level (or context sensitive) aspects.   

Middle level (or context sensitive) aspects are then composed with the primary model.  

Composition directives specify the order and manner in which a middle level aspect 
and primary models are to be composed.  The result of applying the context sensitive 
aspects to the primary model, as specified in the composition directives is a fully 
composed OO model expressed in UML.  
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Figure 5-17 Components of the AOM Approach [167] 

 

5.4.6 CoCompose 

5.4.6.1 CoCompose Method 
CoCompose is a (non-UML) design language that supports the representation of high 
level reusable aspects as features [169]. CoCompose introduces a feature construct in 
the CoCompose AOD language. A feature is a high level aspect that crosscuts 
application boundaries.  

5.4.6.1.1 AOD language 
CoCompose is a graphical design language that can be used to support AOD. 
CoCompose supports executable designs by design language elements being 
semantically well-defined.  

Design Algebra is a technique for determining and selecting concrete language 
constructs for implementing concepts.  This is basis for the CoCompose design 
language to programming language translation. 

5.4.6.1.2 Specification of aspects 
Reusable aspects are specified as features in CoCompose. Features are abstract 
constructs that describe design patterns. Features are semantically well defined. A 
feature is a composition of concepts and roles. A role is a template concept. Concepts 
are the basic language construct in CoCompose and are used to model domain 
concepts.  

Concepts can have implementation strategies associated with them. Where concepts 
have no implementation strategies associated with them, a suitable implementation 
strategy may be provided by the feature in which the concept is expressed.  

5.4.6.1.3 Specification of crosscutting 
Roles are templates that must be fulfilled to realise features as concrete entities. Roles 
are specifications of crosscutting. They have associated constraints that restrict and 
validate the concepts that are used to realise or match the role.  
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5.4.6.1.4 Integration specification 
Solution patterns are CoCompose constructs that specify the integration of a features 
roles and concepts.  

5.4.6.1.5 Specification of Composition 
Once a solution pattern integrates the concepts, a full concept model is the result. As 
implementation strategies are linked with concepts and features, a composition can be 
treated as an executable system. Once composition is complete the design model can 
be translated into an implementation.   

5.4.6.1.6 Composition semantics  
Composition semantics are not well defined for CoCompose.  

5.4.6.2 CoCompose Process 
CoCompose is aimed at automating the design to implementation process. Automating 
code generation is achieved through defining implementation strategies for 
semantically well-defined design elements. As such, this approach is focused on 
automating the transformation from high level design models to platform specific 
implementations.  
 

5.4.7 UML For Aspects (UFA) 

5.4.7.1 UML For Aspects Method 
UFA, or UML For Aspects, is an AOD approach based on the Aspectual 
Collaborations Model (ACM) [170]. UFA is an extension of UML.  

5.4.7.2 UML For Aspects Artefacts 

5.4.7.2.1 AOD Language 
UFA is an extension to the UML which supports symmetric AOD.  

5.4.7.2.2 Specification of aspects 
Reusable or high level aspects are modelled independent of the context in which they 
will be applied. An aspect is specified as an abstract package. In UFA, UML packages 
are used for encapsulating parts of a system that contribute to a complex behaviour. To 
extend the semantics provided by UML packages defining top–level properties 
(attributes and methods) of packages is allow. This encourages using a package as a 
façade. Graphically, this is achieved by adding one or two compartments to the box 
representing a package, one for attributes and the other for methods. 

As illustrated in Figure 5-18, packages are tagged as abstract. Aspects are defined 
abstractly to support reuse. The implication is that reusable packages are incomplete. 
Packages are reused through specialization and parameterization. Direct 
parameterization is not used because explicit parameters are only convenient when 
used in a small number and with little structure. Aspect packages contain class 
diagrams that represent the detailed design of the complex behaviour being modelled. 
Abstract classes and methods defined with aspect packages are roles that need to be 
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fulfilled to realize the aspect in the context of an application. Role classes need to be 
specialized and adapted to a specific application.    

5.4.7.2.3 Specification of crosscutting 
Specialization allows the aspect be specialized to crosscut a specific application. The 
adaptation relationship indicates that application context is bound to the aspect 
specialization to adapt the abstract aspect to the specific application context. As 
illustrated in Figure 5-18, an adaptation relationship plus a specialization relationship 
specify a <<connector>>. A <<connector>> is middle level aspect design that is 
specific to the application.  

 
Figure 5-18 Package level Composition 

An aspects role classes and methods are bound to application context within the 
<<connector>>. This type of binding is called a “callout”. A callout is represented by 
an arrow moving from the role method to a method in the core class. Fulfilling the 
method can be achieved in two ways.  

The first way is to delegate from the role method to an existing method in the design 
module class. Delegation is used where a role and context are semantically similar but 
syntactically differ The second way is to have a direct syntactic and semantic match 
between aspect and application elements affected, in which role is directly specialized 
by the application design elements A callout can be considered as a specification of 
structural crosscutting.  

Weaving methods into the core model is another way of binding application and role 
classes. This type of binding is called a “callin”. A callin is represented in by an arrow 
moving from the core method to a method in the role class. Callin bindings specified as 
before, after, or replace. A callout can be considered as a specification of behavioural 
crosscutting.  

Callin and callout bindings are visual represented on the connector package. Callin and 
callout bindings are specified in OCL.  

5.4.7.2.4 Integration specification 
At the package level the connector package represents integration specification.  The 
connector package is a specialisation of an abstract package that contains a 
crosscutting specification and adapts a package representing core functionality. At a 
class level, the binding of roles to core classes specifies an integration of classes and 
roles. At method level the callin and callout relationships between methods specify 
integration. 
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5.4.7.2.5 Composition semantics  
The composition semantics for UFA are not well defined. 
 

5.4.8 Uml eXchange Format (UXF) 

5.4.8.1.1 Uml eXchange Format Method: 
UFX focuses on support AOD information exchange between UML case tools [171]. 
Specifically, the UXF approach introduces an XML based language called UXF/a. 
UXF/a as an exchange language is based on an AOD extension of the UML meta-
model.  

5.4.8.2 Uml eXchange Format Artefacts 

5.4.8.2.1 UXF AOD Language 
In Figure 5-19 a segment of the UML meta-model extension shows that an aspect is 
defined as a construct derived from the classifier element. A classifier is an abstract 
UML meta-class that describes structural and behavioural features. Aspects are 
described as having attributes, operations and relationships. Aspects relationships 
include generalisation, association, and dependency.  Aspects are in effect represented 
as <<aspect>> stereotyped class like constructs.  

 
Figure 5-19 Aspect as a classifier [171] 

 

The aspect-class relationship is defined as an extension of the dependency relationship 
defined in the UML meta-model. As illustrated in Figure 5-20, the meta-model defines 
structure and relationship for describing the composition of aspects and classes. 
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Figure 5-20 Composition [171] 

5.4.8.2.2 Specification of aspects 
An aspect is specified by the presence of a classifier of the <<aspect>> stereotype.   

5.4.8.2.3 Integration specification 
Integration specification is a stereotyped relationship between classes and aspects. The 
stereotype describes and is dependant on the type of integration being specified. 

5.4.8.2.4 Composition semantics  
Composition semantics are not well defined for UXF.   

5.4.8.3 Uml eXchange Format AOD Process 
 

 
Figure 5-21 A typical process of aspect-oriented development [171] 

In [171] UXF support for a development process that is based on stepwise refinement 
is described. In this process, illustrated in Figure 5-21, aspects are designed and 
implemented separately from classes. Classes and aspects are interwoven and then 
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executed. After weaving or execution we assume there is some verification, followed 
by appropriate refactoring of the design.  

 

5.4.9 Architectural Views of Aspects 

5.4.9.1 Architectural Views of Aspects Method 
Architectural Views of Aspects (AVA) builds on superposition-position based design 
[172].  AVA recognises two problems with current AOD approaches. The first 
problem is that there is no generic way to reason about the influence on one aspect of 
some other aspect of the same system. The second is that there is not much provision 
for the incremental design of aspects [173]. 

These problems arise because aspects are treated as being independent of each other. 
Overlap between aspects exists when more than one aspect implements one concern. 
This overlap means that, although aspects are separate entities, they are related and are 
not completely independent.  

Sub-aspects are aspects that are not completely orthogonal. Sub-aspects can be 
composed to form a composite aspect, which represents a single concern. Due to a 
possible dependency between sub-aspects, the order in which sub-aspects are applied 
to other concerns, or are composed may be important. Identifying sub-aspects and their 
interdependencies is important to ensure that sub-aspects work in unison. 

This approach introduces a Concern Architecture Viewtype (CAV). A CAV is defined 
to group sub-aspect designs that represent one concern. Within a CAV, dependency 
relationships are specified between multiple sub-aspect designs, that when composed 
represent a concern. These relationships are specifications to ensure that sub-aspect 
compositions reflect the correct behaviour of the concern. 

Concern architectures are one view type. It is noted that other view types that capture 
other perspectives can complement the concern architecture view type. 

5.4.9.2 Architectural Views of Aspects Artefacts 

5.4.9.2.1 AVA AOD Language 
A concern architecture is a concern model described in a software architecture view 
type. A view type specifies the types of elements and relationships which can be used 
to describe software architecture. A concern view type specifies the types of elements 
and relationships that can be used to describe a concern. An aspect describes a 
crosscutting concern. An aspect view type specifies the types of elements and 
relationships that can be used to describe a crosscutting concern. An aspect view types 
described in [173] is the basis for an AOD language. This AOD language addresses 
both high level and middle level design modelling.  

5.4.9.2.2 Specification of aspects 
Crosscutting concerns are described as being modelled as one or more aspects. As 
such, an aspect can be a composition of sub-aspects, which are aspects in their own 
right. Aspects themselves are described as being a composition of required and 
provided  parts. The required part of an aspect describes the context that corresponds to 
join points, at which provided parts are introduced. Provided parts are then 
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specifications of crosscutting.  Aspects are described as having an interface. A subset 
of the provided parts can be designated as hidden. The provided parts of an aspect that 
are not hidden are exposed through this interface and hidden parts are not. As such, 
aspects can be modelled at different levels. High level aspects completely represent 
one crosscutting concern.  Low level aspects represent parts of potentially many 
crosscutting concerns. Lower level aspects offer their non-hidden provided parts, to 
satisfy the required parts of other aspects.  

A high level aspect is depicted as an encircled collection of low level or sub-aspects. 
The high level aspect is dependant on sub-aspects. Dependency is illustrated in Figure 
5-23 as a <<concern>> stereotyped dependency relationship. Aspects are specified in 
packages which are stereotyped with the <<aspect>> stereotype.  

Aspects packages contain structural and behavioural diagrams. These can be used to 
specify aspect behaviour. Class diagrams are used to model aspect structure. Sequence 
and state diagrams are used to model aspect behaviour. 

5.4.9.2.3 Specification of crosscutting 
As illustrated in Figure 5-22, structural crosscutting is specified in class diagrams. The 
classes in these class diagrams are tagged as required or provided.  As mentioned in 
Section 11.3.1, the provided parts are then specifications of crosscutting. As such, the 
classes tagged as provided are specifications of structural crosscutting.  

As illustrated in Figure 5-22, behavioural crosscutting can be specified in state 
diagrams. The states and events in state diagrams are tagged as required or provided. 
As mentioned above, the provided parts are then specifications of crosscutting. As 
such, states and events tagged as provided are specifications of behavioural 
crosscutting. Other behavioural diagrams, such as sequence diagrams, can be used in a 
manner similar to state charts, to describe aspect behaviour.  

5.4.9.2.4 Integration specification 
Integration is specified at two levels in this approach. The first is at the package level, 
where one aspect package is specified as an integration of sub-aspect packages. In this 
case, a composite aspect is specified as ordered dependencies on sub-aspects which are 
required by the composite. This composite aspect package can then crosscut the other 
concerns. Another way to view an aspect, is as a group of sub-aspects that individually 
crosscut other concerns. In this case, the order of that application is defined for the 
application of the sub-aspects to the concerns that they collectively crosscut. In both 
cases, the order in which sub-aspects are composed or applied is of importance due to 
their inter-dependence. To specify an order for aspect integration an 
“aspect1/aspect2/aspect3” notation is used. Figure 5-23 provides an example, where 
this notation can be used to describe aspect dependency. In the example, there are three 
aspects, where C is used by both O and S (so there is an arrow from each of them to 
C). The integration of C into O and S is specified as a stereotyped <<crosscut>> 
relationship. There are two possible composition orders of these sub-aspects O and S, 
these include O/S/C and S/O/C (“O using S using C” and “S using O using C”, 
respectively).  

Integration is specified at two levels in this approach. The first is at the package level, 
where one aspect package is specified as an integration of sub-aspect packages. In this 
case, a composite aspect is specified as ordered dependencies on sub-aspects which are 
required by the composite. This composite aspect package can then crosscut the other 
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concerns. Another way to view an aspect, is as a group of sub-aspects that individually 
crosscut other concerns. In this case, the order of that application is defined for the 
application of the sub-aspects to the concerns that they collectively crosscut. In both 
cases, the order in which sub-aspects are composed or applied is of importance due to 
their inter-dependence. To specify an order for aspect integration an 
“aspect1/aspect2/aspect3” notation is used. Figure 5-23 provides an example, where 
this notation can be used to describe aspect dependency. In the example, there are three 
aspects, O and S are sub-aspects and C is a composite aspect. The integration of O and 
S into C is specified as a stereotyped <<crosscut>> relationship. There are two 
possible composition orders of these sub-aspects O and S, these include O/S/C and 
S/O/C.  

The second level at which integration can be specified, is between the design elements 
within the aspect package. As mentioned in Section 11.3.1, class and state chart 
diagrams are used to specify the aspects structure and behaviour. As such, integration 
is specified between the elements specified in these diagrams. Integration at this level 
is specified as composition binding relationships. The types of composition binding 
relationships supported by this approach include - regular binding, replacement and 
unification. These relationships specify the elements to be integrated and how they are 
to be integrated. 

Figure 5-22 illustrates several examples of composition relationships. Binding is 
characterised as the required part of one element being bound to required part of 
another. On the left side of Figure 5-22, the provided part of class C, in <<aspect>> A, 
is bound to the required part of class D, in <<aspect>> B, through the <<bind>> 
relationship. A bind relationship is a high level specification of integration, where the 
providing class augments the provided class. Returning to our example, class C 
augments class D. Augmentation amounts to the merger of overlapping aspects. 
(Overlapping concerns are discussed in Section 4.)   

Replacement is characterised by the provided part of one element replacing the 
provided part of another element. The middle diagram in Figure 5-22 illustrates an 
example of a replacement integration specification. Elements of the same name appear 
in <<aspect>> A and B. These elements represent the states that aspects A and B can 
be in. Transition between states is triggered by the execution of the provided parts of 
the aspects. Execution is depicted through events. In the example, the provided part of 
<<aspect>>, named E_event, is replaced by the provided parts of <<aspect>> B, 
named F_event and G_event. This replacement is legal, as E_event allows a transition 
from state S_state to T_state, F_event facilitates a transition from state S_state to 
U_state and G_event causes a transition from state U_state to T_state. As such, the 
state transitions in <<aspect>> A are augmented through the <<replace>> relationship 
imposed by <<aspect>> B. 

Unification occurs when distinctly named elements are renamed such that they become 
identical. This can be considered a merger of the provided parts of aspects A and B. An 
example of a unification relationship is illustrated on the right side of Figure 5-22.  
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Figure 5-22 Superimposition Binding Mechanisms [173] 

 
Figure 5-23 Concern architecture [173]  

 

5.4.9.2.5 Composition semantics  
Composition semantics are required at two levels in this approach. As aspects can be 
compositions of aspects, the semantics of sub-aspect composition to form aspects is 
required at a package level. Within aspect packages, class diagrams represent structure, 
state and possibly other diagrams that represent the behaviour associated with that 
structure. The integration of these, more detailed diagrams, is specified through bind, 
replace and unify relationships.  Aspects are described as well formed “if and only if 
the corresponding artefact in language L obtained by ignoring the 
required/provided/hidden tags are well formed”. Composition is well formed when a 
“well formed aspect B can augment another well formed aspect A with given bindings 
if and only if the resulting composite aspect B/A is well formed”. Well-formedness 
rules are specified in OCL. 
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5.4.10 Aspect Modelling Language (AML) 

5.4.10.1 Aspect Modelling Language Method 
The Aspect Modelling Language (AML) supports middle-to-low level design [174-
176].  AML is aimed at supporting aspect reuse, by following the UFA approach, and 
described Section 9. AML is a UML based notation that allows support for forward 
engineered of designs into implementation. 

5.4.10.2 Aspect Modelling Language Artefacts 

5.4.10.2.1 Aspect Modelling Language AOD Language 
AML is based on a subset of the AspectJ language constructs and the design notation 
described in UFA. 

5.4.10.2.2 Specification of aspects 
Like UFA, AML considers aspects to be higher level constructs than classes. Aspects 
are specified as packages of the <<aspect>> stereotype.  

5.4.10.2.3 Specification of crosscutting 
Aspect packages encapsulate crosscutting structure and behaviour. The connector 
package contains the crosscutting structure and behaviour specification. The 
association between the connector and aspect packages is shown by using a <<uses>> 
stereotyped dependency relationship. As illustrated in Figure 5-24, the aspect uses the 
connector to specify the crosscutting structural and behavioural features, encapsulated 
by the aspect.  

In the connector package, introductions are specified in an <<introduction>> 
stereotyped classifier. This contains intertype declarations specified in the AspectJ 
style. These intertype declarations reference structural elements declared in the aspect.  

In the connector package, advice is specified in a classifier stereotyped as <<advice>>. 
Within this classifier, advice is specified in the AspectJ style. The type of advice is 
indicated through a <<before>>, <<after>> or <<around>> stereotype. Advice 
declarations reference elements declared in the aspect.  

5.4.10.2.4 Integration specification 

 
Figure 5-24  AML Aspect, connector, base [176] 
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Integration is specified in the connector package. A connector package encapsulates a 
pointcut classifier, an introduction classifier and an advice classifier. These constructs 
represent the AspectJ programming constructs. As illustrated in Figure 5-24, a 
connector package represents a crosscutting relationship between an aspect and 
potentially many base packages.  

The introduction, pointcut and advice constructs are represented as stereotyped 
classifiers. A <<pointcut>> class contains the pointcuts related to an aspect. Pointcuts 
themselves are represented as method like signatures of the form <pointcut name [!] 
execution point>. The [!] symbol indicates that the method is a pointcut. The name is a 
reference to the point of execution identified. At the class level, this specifies the 
execution point identified in the pointcut as a point of integration. 

5.4.10.2.5 Composition semantics  
Composition semantics follow the AspectJ implementation of AOP.   
 

5.4.11 Aspects At Design Time (ADT) 

5.4.11.1 Aspects At Design Time Method 
ADT, or Aspects at Design Time, is an approach to AOD that proposes extensions to 
UML [177]. This approach was an early proposal for AOD. ADT approach focuses on 
representing synchronisation as separate concern. 

5.4.11.2 Aspects At Design Time Artefacts 

5.4.11.2.1  ADT AOD Language 
This language is focused on enabling the separation of a synchronisation concern.  

5.4.11.2.2 Specification of aspects 
A class of the <<synchronised>> stereotype represents a synchronisation concern. A 
<<synchronised>> class models synchronisation for an application. Synchronisation 
behaviour is specified a state diagram that corresponds to the class.   

5.4.11.2.3 Specification of crosscutting 
Crosscutting elements are specified in the <<synchronised>> class and in a 
corresponding state diagram that models that class.  

5.4.11.2.4 Integration specification 
This integration is specified through a <<synchronise>> association between the class, 
that encapsulates the synchronisation concern, and those classes which it crosscuts. 
Actions are specified for this <<synchronise>> association. These actions reference 
events described in the state diagram. This reference implies that when a call that is 
defined on a class is crosscut, the synchronisation concern is invoked and the 
crosscutting behaviour expressed in the state diagram is executed.  

5.4.11.2.5 Composition semantics  
Composition semantics for ADT are not well defined. 
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5.4.12 Aspect Oriented Component Engineering (AOCE) 

5.4.12.1 Aspect Oriented Component Engineering Method 
Aspect Oriented Component Engineering (AOCE) is a software development 
methodology that describes aspects as services, provided to and required by 
components [53] AOCE supports the identification, description and reasoning about 
components and aspects. In AOCE components and aspects are composed at run-time. 
AOCE as an approach to AOD facilitates modelling of dynamic AO systems.  

5.4.12.2 Aspect Oriented Component Engineering Artefacts 

5.4.12.2.1 AOCE AOD Language 
AOCE supports a design language based on component based dynamic AOP. This 
approach supports design of applications that target a component based dynamic AOP 
implementation platform.  

5.4.12.2.2 Specification of aspects 
Aspects are specified as components in AOCE. Components are related through the 
services they provide and require. Components can also be specified at a higher level, 
in a detailed design model. The definition of a component as an aspect is separate to 
the definition of the component. Components are defined in a component model in 
AOCE. AOCE extends the component model with an aspect model. The 
component/aspect design model is representation of the underlying implementation 
framework. The framework is extended to create application specific designs.  

The aspect model supports separate aspectual characterisation of a component.  
Components are extensions of a type that links the component with an AspectManager. 
The AspectManager, and associated types, are representations of the AOCE 
component/aspect framework. The AspectManager has associated with it 
AspectDetails. AspectDetails encapsulate the crosscutting and integration specification 
for components. In AOCE there are different specialisations of AspectDetail that 
capture specific features for encapsulating the crosscutting and integration 
specification for components.   

Aspects are also specified in component diagrams. The aspect-component runtime 
interactions can be specified in collaboration diagrams. 

5.4.12.2.3 Specification of crosscutting 
The crosscutting part or provided part of a component is specified at runtime through 
information encapsulated in instances of AspectDetails. 

In collaboration diagrams, the provided part of a component is specified as a 
crosscutting interaction with components. 

5.4.12.2.4 Integration specification 
The join point part or required part of a component is specified at runtime through 
information encapsulated in instances of AspectDetails.  

In collaboration diagrams, integrate is specified as interactions between the required 
and provided parts of components. 
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In detailed collaboration diagrams, specify how the aspect will integrate with the 
components that the aspect crosscuts through specifying interactions. 

5.4.12.2.5 Composition semantics  
Composition in AOCE occurs at run-time. Composition semantics are specific to the 
AOCE implementation platform. 

5.4.12.3 AOCE Process  
Components are first identified and characterised using conventional OO analysis. The 
resulting components are analysed, in terms of the services provided by, and used by 
each component. Related services are grouped, and categorised as being required 
(used) by, or provided by the component.  

Functional and non-functional features of the system are identified. Service 
relationships are distinguished by their association with a feature. For each group of 
services, the services required by the component are associated with the components 
that provide those services. The services provided by the group are associated with 
components that require those services.  

As all components are assessed in a similar fashion, the result is a matrix in which all 
services can be commonly grouped. This matrix provides views in which component 
features can be categorised into conceptual groupings. Provided services can be 
expressed once and related to all the places that it is required. This conceptual grouping 
is considered to be an “aggregate aspect”.  

Aspect details describe the aggregate aspect. Aspect details describe aspects and their 
relationship with other aspects. Aspects and aspect details can be described textually in 
a vocabulary skewed toward component based software development. Alternatively 
they can be graphically represented as an extension to OOD diagrams (see [53]). 

Once identified, aspect details are refined into software component aspects that 
categorise design level component services. Refinement begins by associating aspects, 
identified during analysis, with design models. Design in AOCE is not implementation 
neutral. Design is focused on implementation specification.  

AOCE designs can be implemented on any component framework. AOCE uses an AO 
extension of component platforms to implement AOCE designs. AO platforms enable 
the decoupling of components at implementation that have been decoupled at design 
when following the AOCE methodology. 

Where run-time composition is possible coupling only occurs at run-time. Run-time 
composition can be illustrated in design by collaboration diagrams however the 
relevant elements of the run-time composition environment that are used in 
composition must be expressed in this diagram. 

 

5.4.12.4 UML for AOSD Method 

5.4.12.4.1 UML for AOSD AOD Language 
A UML notation for AOSD [178] (UML4AO) is a proposed UML extension to support 
the design of AO programs. The significant extensions are the introduction of groups, 
pointcut relations and aspect classes. Groups provide means for the classification of 
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heterogeneous and distributed entities. Pointcut relations allow the developer to define 
crosscuts within the program. Aspect classes implement the extension of the program 
based on the join points identified by the pointcut relations. 

This approach supports design focused on the JAC framework. The primary goals of 
the JAC framework are supporting dynamicity and distribution. The JAC framework is 
also a general purpose AOP environment based on AspectJ concepts. The UML 
extension defined provides a design view of the JAC facilities and language. 

5.4.12.4.2 Specification of aspects 
Aspects are specified as aspect-classes. An aspect-class is a classifier that contains 
aspect-methods.  These constructs are similar to regular classes and methods, but differ 
semantically, due to their crosscutting nature. An aspect class is specified through an 
<<aspect>> stereotype. 

5.4.12.4.3 Specification of crosscutting 
UML4AO supports behavioural and structural crosscutting. To specify crosscutting 
several stereotypes are provided. <<before>>, <<after>> and <<around>> stereotypes 
are associated with aspect-methods specify behavioural crosscutting. Structural 
crosscutting is specified by the <<replace>> and   <<role>> stereotypes. The <<role>> 
stereotype indicates that the element it is associated with is to be introduced into the 
base classes the aspect crosscuts. The <<replace>> stereotype indicates that the 
element it is associated with is to replace elements in the base classes the aspect 
crosscuts. 

5.4.12.4.4 Integration specification 
A pointcut relation allows the designer to indicate where aspect-methods crosscut base-
methods. The crosscutting association between the two is indicated at the classifier 
level, where the aspect-class crosscuts the base-class. This relationship is defined by a 
<<pointcut>> stereotyped association.  

A group, in UML4AO, represents a group of design elements, which may be 
heterogeneous, that are identified by a pointcut. The UML does not naturally support 
grouping of heterogeneous objects. The group notation facilitates reasoning about 
group-typed sets of objects. The group notation allows a designer to map a concern 
space to a set of objects. Grouping can be done based on the location (host/container) 
of an object instance. A <<group>> stereotype is used to identify groups.  

5.4.12.4.5 Composition semantics  
As UML4AO is based on the JAC framework, the composition semantics associated 
with this language are similar to the composition semantics of JAC.  

5.4.12.5 TranSAT Process 
TranSAT can be viewed as a process in two distinct ways. The first view is TranSAT 
supports the entire software development lifecycle as an iterative evolutionary process. 
In this view, concerns are merged together until a system is complete. This assumes 
that the core model is a composite concern that grows at each evolution of the 
architecture. Concerns are completely developed independently of the core and then 
integrated with the core. During iterations the core grows and evolves.  
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The second view is that TranSAT applies to the maintenance phase of a software 
development lifecycle.  In this view, development is finished and a core architecture 
and system exists. Evolution through expanding the architecture with new technical 
concerns could be considered to be maintenance. 

Taking either view, a set of steps is outlined for using TranSAT. When abstracted 
away from TranSAT, these steps can be considered a high level process description for 
concern integration. 

The process assumes an existing architecture or core model. A concern is 
independently specified.  Once a concern is specified, the rules to integrate the concern 
with a generic component framework are conceived. These integration rules are 
developed a generic architecture model. As such, this provides rules that allow the 
concern to be integrated with any architecture that matches the generic architecture 
model. When a target architecture requires that concern, the meta-model is matched 
against the target framework. The points that the integration rules identify, in the 
architecture meta-model, are reified in the target architecture. Pointcuts can then be 
devised to facilitate the integration.  
 

5.4.13 Component Views 

5.4.14 Component Views Method 
View components are introduced in [179] to promote reuse of functional concerns 
across component based systems. View components are an extension of components 
models, based on views.  

A concern view over components is a decomposition of the components based on the 
components relationship with a concern. Each view represents a concern and each view 
contains the components and component relationships that are part of a concern. A 
system space is a set of systems that share common concerns.  

In [180] views abstraction and reuse across concern boundaries is explained. In 
abstracting views the components and inter-component relationships related to a 
concern are abstracted. Component functionality can also be captured in this 
abstraction. Concerns can be then be reused in other applications. An abstract view 
component can be reused by mapping the abstract elements of the view component to 
the application elements. The functionality preserved in the abstract components can 
be reused in other application contexts.  

View components define roles that have an associated reusable behaviour and a 
reusable relationship between roles. Concerns can be reused by filling the roles 
expressed in a view component with applications entities.  

To represent these concepts in a design language, a meta-model for view components 
is proposed as an extension to UML 1.4. This meta-model (Figure 5-25) introduces the 
concept of a connection between an abstract view components element and a base (or 
application) element.   
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Figure 5-25 View Components Meta-Model [179] 

The meta-model defines an abstracted component that represents crosscutting concerns 
as ViewClasses. A ViewClass is a specialization of the Classifier UML meta-class, and 
is defined as a class that can be applied to a collection of classes. A Component is a 
specialization of the package meta-class and represents an abstracted concern. 
Components are made up of ViewClasses and Classes. The structural and behavioural 
features of ViewClasses are specified as ViewStructuralFeature and 
ViewBehavioralFeature elements. A ViewAssociation is a specialization of the 
Association UML meta-class. An instance of this type makes it possible to specify an 
association between ViewClasses. 

Constraints for the meta-model are expressed in OCL. Design constrains are used to 
check the coherence at the modelling phase. Association constraints are used to check 
that the system obtained by the assembly of packages is coherent.   

5.4.14.1 Component Views Artefacts 

5.4.14.1.1 Specification of aspects 
Aspects are specified as components. Components contain ViewClasses.  

5.4.14.1.2 Specification of crosscutting 
View classes contain ViewBehavioralFeatures and ViewBehavioralFeature. 
ViewBehavioralFeatures specify crosscutting behaviour and ViewBehavioralFeature 
specify crosscutting structure.  

5.4.14.1.3 Integration specification 
Integration specified by mapping abstract components design to concrete application 
design. As such, the abstract elements that are aggregated within the component are 
realised with a concrete application structure.  
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5.4.14.1.4 Composition semantics  
Composition semantics are not well defined for the View components approach.  
 

5.4.15 Activity Diagrams 

5.4.15.1 Activity Diagrams Method 
UML 2.0 introduces a new version of activity diagrams [130]. This differs from UML 
1.X versions of activity diagrams as it separates activity from state diagrams and is 
based on Petri net semantics.   

A Petri net is an approach for modelling systems characterized as being concurrent, 
asynchronous, distributed, parallel, nondeterministic, and/or stochastic. It consists of 
places, transitions, and arcs that connect them. Input arcs connect places with 
transitions, while output arcs start at a transition and end at a place. There are different 
types of arcs, e.g. inhibitor arcs. Places can contain tokens; the current state of the 
modelled system is given by the number of tokens in each place. Transitions are active 
components. They model activities which can occur, thus changing the state of the 
system. Transitions are only allowed to fire if they are enabled, which means that all 
the preconditions for the activity must be fulfilled. When the transition fires, it removes 
tokens from its input places and adds some at all of its output places. The number of 
tokens removed/added depends on the cardinality of each arc. As such there are 
multiple token flows for each activity.  

Due to the redefinition of activity semantics with Petri nets, modelling of activities is 
more natural as activities can have multiple flows at any one time. This is different to 
UML 1.X where multiple tokens were used only during the behaviour occurring 
between a fork and join.    

Activity diagrams define activities and the relationships between activities. Activities 
represent behaviour in software. The relationships between activities represent the flow 
between activities.  

Activities can be composed hierarchically. An activity defined with an activity diagram 
can refer to another activity diagram that describes that activity in greater detail. We 
refer activities that are composed into higher level activities, as sub-activities.  

Activity diagrams by their nature are aimed at modelling complex systems. As such, 
activity diagrams can be complex and graphically tangled. The only form of 
decomposition available in this instance is the breaking of activities into hierarchies of 
sub activities (or vertical decomposition). This form of decomposition does not 
facilitate the modelling of crosscutting concerns. In [147] and [146] horizontal 
decomposition of activity diagrams is introduced.   

Three types of activity nodes are defined for activity diagrams that are to be composed 
horizontally - interface nodes, activity nodes and subtraction nodes. Addition nodes are 
activity nodes that are added to an activity diagram during horizontal composition. 
Subtraction nodes are activity nodes that are removed from an activity diagram during 
horizontal composition. An interface node represents the point at which the 
horizontally decomposed activity diagram can be integrated into an orthogonal activity 
diagram. 

A UML profile specifies the semantics of the three activity node types. Stereotypes are 
introduced for the subtraction activity node and the interface activity node. No 
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stereotype is introduced for addition activity nodes as these are considered the default 
semantic for nodes that appear in an aspect activity diagram.  

In [146] a compelling, yet simple example is provided, and is seen here in Figure 5-26. 
This illustrates the horizontal composition (Process Order form) of an activity diagram 
(Order handling) and an initially unrelated aspect activity diagram (invoice handling). 

 
Figure 5-26 Activity Diagram Composition [146] 

If we look at the Order Handling activity diagram, we notice that the forks in the 
diagram are named a and b, respectively. Notice also, that these names are referenced 
in the Invoice Handling stereotyped interface nodes that identify the forks present in 
the Invoice Handling diagram as points of horizontal integration for the Invoice 
Handling diagram which here is an aspect activity diagram. Fork a and b can be 
considered to be join points in this case. The composition of these diagrams is 
presented in the Process Order Diagram. We can see that the activities that are invoked 
in between the forks in the aspect activity diagram have now been added to the initial 
activity diagram, at the forks identified as a and b. Further examples are available in 
[146].  
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5.4.15.2 Activity Diagrams Artefacts  

5.4.15.2.1 Activity Diagrams AOD Language 
The ability to capture crosscutting behaviour in activity diagrams in UML 2.0 is clearly 
demonstrated here. 

5.4.15.2.2 Specification of aspects 
Aspects are specified as specialised activity diagrams that use the activity addition 
profile.  

5.4.15.2.3 Specification of crosscutting 
Addition and subtraction activity nodes in the activity diagram are specifications of 
crosscutting.  

5.4.15.2.4 Integration specification 
Integration is specified in interface activity nodes. These nodes reference nodes in 
target activity diagrams at which integration is to take place.  

5.4.15.2.5 Composition Semantics 
Basic composition semantics for activity diagram composition are specified in [147] 
and [146]. 

 

5.4.16 CAM/DAOP 

5.4.16.1 CAM/DAOP Method 
CAM/DAOP is a component and aspect based approach that supports the separation of 
concerns through the software development lifecycle, from design to implementation. 
This approach defines the CAM (Component-Aspect Model) [181] model, the DAOP-
ADL language [122] and the DAOP (Dynamic Aspect-Oriented Platform) platform. 
The DAOP platform is out of the scope of this document.  
 
CAM is a component and aspect based model that defines an extension of UML to 
specify how to design the structure of an application in terms of components, aspects 
and the composition among them. The information provided with CAM during the 
design is then expressed in terms of an XML document using the DAOP-ADL 
language. This information is directly consulted and used by the DAOP platform at 
runtime. The different levels of modelling aspects in CAM/DAOP are related among 
them by using MDA.  

5.4.16.2 CAM/DAOP Artefacts 

5.4.16.2.1 CAM/DAOP AOD Language 
CAM is an AOD language based on components and aspects. CAM supports 
symmetric concern decomposition where the core functionality of the system is 
modelled as any number of different components and the concerns that crosscut this 
core functionality are modelled as aspects.  
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Figure 5-27 64 The Component and Aspect Model 

 
Figure 5-27 shows an UML diagram with the basic entities of the CAM model and the 
relationships that can be established among them. This diagram is considered as the 
metamodel of CAM (part of the UML Profile for CAM), so the entity names are UML 
stereotypes for modelling applications in terms of CAM. 

5.4.16.2.2 Specification of aspects, integration and crosscutting 
In CAM those concerns that are modelled as components are identified with the 
stereotype <<Component>>, while those concerns that are modelled as aspects are 
identified with the stereotype <<Aspect>>.  
 
As shown in Figure 5-27, in the CAM model aspects are treated as a “special” kind of 
component and therefore, both share some common features. Both have a set of 
attributes stereotyped with <<StateAttributes>> that represent their public state, both 
are identified by a unique role name (<<Role>>) to identify the specific functionality 
played by the component or the aspect, and both make use of the concept of property 
(<<Property>>). For instance, properties are used to decouple non-orthogonal aspects, 
which do not need to directly interact among them to resolve their dependences. 
Instead, they indirectly interact by sharing properties with the same name and type. 
 
In CAM both components and aspects can act as units of composition with 
contractually specified interfaces and explicit context dependencies. CAM describes 
the provided and required interface of components to describe both the services the 
component provides to the environment and also those services it requires in its 

                                                 
64 Source of Figure: [181] Figure 1 (extended). 



 201

interaction with other components (see Figure 5-27). For aspects CAM describes the 
aspect evaluated interface, which includes information about the join points an aspect 
is able to intercept and evaluate (see Figure 5-27). The internal behaviour of 
components and aspects can be described using standard UML models. CAM does not 
constraint or gives specific guidelines about it.  
 
Figure 5-28 shows an example of the partial design of an application in CAM. It shows 
one component and an aspect and the relationship among them. As shown in Figure 
5-28, the information provided with CAM is expressed in XML. This is done using the 
XML-based DAOP-ADL language. This diagram describes that when a component 
with role name “c1” sends the “foo” message the aspect with role name “trace” is 
applied before sending the message (join point BEFORE_SEND). 

<ApplicationArchitecture>
    <components>
        <component role="c1"> ... </component>
    </components>
    <aspects>
         <aspect role="trace"> ... </aspect>
    </aspects>
    <compositionConstraints>
       <componentCompositionRules>
          ...
       </componentCompositionRules>
       <aspectEvaluationRules>
           <sendMessage>
               <source-comp role="c1"/>
               <message name="foo"/> 
               <BEFORE_SEND>
                   <concurrent>
                       <aspectList>trace</aspectList> 
                   </concurrent>
                </BEFORE_SEND>
             </sendMessage>
       </aspectEvaluationRules>
    </compositionConstraints>
</ApplicationArchitecture>

-joinpoint = ANY

TraceEvaluatedInterface
<<EvaluatedInterface>>

+foo()

<<ProvidedInterface>>
C1ProvidedInterface

<<Component>>
C1

-name = "trace"

<<Role>>
TraceRole

<<Message>>
foo

-name = "c1"

<<Role>>
C1Role

<<Aspect>>
Trace

<<sends>>

{join point=BEFORE_SEND}
<<applies to>>

fulfills

fulfills

<<provides>>

<<evaluates>>

 
Figure 5-28 An example of CAM Component and Aspect Integration 

5.4.16.2.3 Specification of crosscutting 
In CAM the specification of crosscutting between components and aspects is expressed 
in terms of the “applies to” relationships shown in Figure 5-27. CAM was previously 
classified as an approach with a low-middle concern abstraction. This is reflected in 
the way in which CAM specifies crosscutting where the join point intercepted by the 
aspect is specified. 
 
CAM considers that aspects are composed with black-box components and therefore 
this model intentionally avoid the definition of join points that intercept the internal 
behaviour of components, and only have access to components through its public 
interface. Therefore, CAM defines that aspects can crosscut the behaviour of 
components before and after (incoming and outgoing) messages and events, and also 
before and after the creation and destruction of component instances (see Figure 5-27). 
The “applies to” relationships in Figure 5-27 can be tagged with the specific join points 
in which an aspect should be applied. This can be seen in the example in Figure 5-28 in 
order to indicate that the aspect with role name “trace” crosscuts the component with 
role name “c1” before the component sends the “foo” message (tagged value 
joinpoint=BEFORE_SEND).  
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For non-orthogonal aspects, the crosscutting between aspects is expressed in terms of 
CAM Properties. Non-orthogonal aspects indirectly interact to resolve their 
dependencies by sharing properties with the same name and type.  For example, let us 
suppose an authentication aspect that requests the user’s name and password in order to 
authenticate him or her; and a filter aspect that filters the messages received by a 
component according to the user’s preferences. In order to get the user preferences the 
filter aspect needs to know the user’s name and this name is previously obtained by the 
authentication aspect, creating dependences among them. In order to solve this 
dependency, the authentication and the filter aspects may share a property with name 
“username”. The value of the property will be established by the authentication aspect 
when the user is authenticated and consulted by the filter aspect when needed. 

5.4.16.2.4 Integration Specification 
 
CAM integrates the specification of all the components and aspects that set up an 
application by describing the software architecture of the application using the DAOP-
ADL language [122]. This language describes all the components and the aspects that 
model the application and the integration among them.   
 
In addition to describe the components and aspects through their role names, 
interfaces, etc, the DAOP-ADL language describes: (1) how to compose components 
among them and, (2) how to compose aspects with components. The prior are 
expressed in the componentCompositionRules section of the XML document (see right 
side of Figure 5-28) and are described in terms of the role name of source and target 
components. The later are expressed in the aspectEvaluationRules section of the same 
document (see again right side of Figure 5-28) and are expressed in terms of the role 
names of the source and the target components, the role name of aspects and the join 
points in which aspects crosscuts the source and/or target components. In Figure 5-28, 
the sendMessage eval rule in the XML document in the right side translates the 
information expressed in UML with the CAM model. 

5.4.16.2.5 Composition Semantics 
The design of a CAM application provides information about the composition among 
components, the relationship among aspects and the composition between components 
and aspects. 

The composition among components is expressed as part of the 
componentCompositionRules section of the DAOP-ADL language in terms of the 
source and target role names (see right side of Figure 5-28). Additionally, the 
information provided during the description of their provided and required interfaces 
determines how they can be composed among them.  

The relationship among aspects is expressed using a UML activity diagram, where 
each aspect is represented as an activity as shown in Figure 5-29. With this diagram 
CAM indicates if several aspects being evaluated in the same join point are evaluated 
in sequence or concurrently. Usually, this decision will depend on the orthogonality of 
aspects. Orthogonal aspects may be evaluated both in sequence and concurrently, while 
non-orthogonal aspects (sharing common CAM properties) should be evaluated in 
sequence. This information is also expressed with the DAOP-ADL language in the 
aspectEvaluationRules section (see right side of Figure 5-28). 
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{{A1},{A2,A3,A4},{A5,A6}}

A2

A6

A1

A5

A4

A3

 
Figure 5-29 65 Activity Diagram showing Aspect Relationship in CAM 

Finally, the composition among components and aspects is expressed in CAM by 
means of the “applies to” dependency relationships shown in Figure 5-27. For each of 
these relationships the CAM model has a tagged value indicating the join point that the 
aspect is intercepting and another tagged value indicating the criticality of the aspect. 
CAM aspects are classified as either critical aspects or non-critical aspects, depending 
on how important the result of the evaluation of that aspect is for the behaviour of the 
final application. Once again all this information is expressed with the DAOP-ADL 
language in the aspectEvaluationRules section. 

5.4.16.2.6 CAM/DAOP & MDA Process 
CAM/DAOP uses MDA to enable the implementation of a methodology for creating 
systems based on the CAM/DAOP approach. This process allows the refinement of the 
system from an OO representation of the design to a DAOP middleware specific 
implementation as is shown in Figure 5-30. 

In [182] an example of this AOD process is described in MDA. MDA is used to 
formalise the models and transformation between models that are created during 
design. By using MDA this process begins with a computational model of an 
application. A computational model is a basic model of the application entities. This 
model is then marked and transformed into a CAM model based on the CAM profile. 
The CAM model describes the computational model in terms of components, aspects 
and the relationships among them. The CAM model (the PIM) is then marked and 
transformed into a DAOP model (the PSM). The DAOP model represents an 
implementation independent meta-model for the DAOP approach. It also includes the 
                                                 
65 Source of Figure: [182] Figure 3 (extended) 
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description of the architecture of the application with DAOP-ADL, which is 
automatically generated from the CAM model. The DAOP in turn is marked for 
transformation to a specific implementation platform. 

 
Figure 5-30 The MDA Stack of Models for CAM/DAOP 

 

5.4.17 Implementation Driven Aspect Modelling (IDAM) Approach and AOP-to-
UML Approach 

 

5.4.17.1 Implementation Driven Aspect Modelling and AOP-to-
UML Approach Methods 

Implementation driven aspect modelling (IDAM) [183] proposes an integration of 
aspect oriented programming and model driven development. To support this 
integration, an approach to model aspects is required. Contemporary asymmetric 
approaches to aspect modelling associate aspects with core models. This is achieved 
through parameterization, and binding or directly relating aspect and core models. The 
former uses bind statements which can be complex to interpret, while the latter is said 
to introduce graphical tangling. A new visualization called dynamic aspect diagrams is 
suggested to overcome these problems.   

Dynamic aspect diagrams (DAD) are user responsive diagrams, that model AspectJ 
constructs (aspects, inter-type declarations, pointcuts and advice). Associations 
between aspects and core elements are visualized dynamically, that is to say, the user 
controls what aspect-to-base associations are visible in a diagram. DAD’s are 
generated from AspectJ code. 
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AOP-to-UML is another code driven modelling approach described in [184]. In this 
approach UML extension mechanisms are used to create models based on AspectJ 
code.   

5.4.17.2 Implementation Driven Aspect Modelling Artefacts 

5.4.17.2.1 Implementation Driven Aspect Modelling AOD Language 
DAD’s are loosely based on UML class diagrams. UML constructs are modified rather 
than extended.  

5.4.17.2.2 Specification of crosscutting 
The DAD’s specification of crosscutting is based on AspectJ. The crosscutting 
structure is integrated directly into the core model and is not specified in DAD’s. 
Crosscutting behaviour is specified in an advice design element. Crosscutting 
behaviour and structure is encapsulated in an aspect. These design elements are 
representations of the AspectJ language constructs and share the semantic value of 
these constructs.  

5.4.17.2.3 Specification of aspects 
An aspect classifier is introduced to represent aspects. It is similar to the class classifier 
except that it encapsulates AspectJ member types and relationships. An aspect supports 
two relationships not specified in the UML. The “advises” relationship (Figure 5-31) 
associates an advice body with a point in the cores structure.  A call relationship 
indicates a method call. It is represented by a specialization of the UML association 
relationship.  

5.4.17.2.4 Integration specification 
Integration specification is illustrated by an icon. This icon, seen in Figure 5-31, is an 
arrow enclosed in a circle and indicates the presence of a crosscutting relationship. The 
“advises” relationship specifies that integration of an aspect and core classes. The icons 
indicate where integration will occur.   
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Figure 5-31 Dynamic aspect diagram [183] 

 

5.4.17.2.5 Composition semantics  
Structural composition semantics are the same as AspectJ. Crosscutting behaviour is 
executed after (as opposed to before) an integration point in the base program’s 
execution. This is indicated with the arrow icon.  

5.4.17.3 AOP-to-UML  Artefacts 

5.4.17.3.1 AOP-to-UML AOD Language 
The AOP-to-UML design approach is based on the observation that logging behaviour, 
encapsulated as advice in AspectJ, crosscuts classes based on method signatures, 
expressed in the pointcuts associated with that advice.  A method invocation is 
represented as a message in UML collaboration diagrams. A message connects two 
types, the type that invokes the method and the type that exposes the method. A 
connection point is a point of association between a type and a message. A message 
between two collaborating types has two connection points. An incoming connection 
point is where the message originates and an outgoing connection point is where the 
message is handled. An aspect can introduce extra behaviour in between incoming and 
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outgoing connection points. This increases the number of connection points that can be 
related to a message. A call pointcut identifies an incoming connection point. Advice 
associated with the pointcut is introduced at the incoming connection point and 
introduces second outgoing connection point related to the coming connection point.  

This approach is based on extending the UML to introduce representations of 
connection points as well as introducing design elements to represent AspectJ 
constructs.    

 
Figure 5-32 Logging Aspect  [184] 

5.4.17.3.2 Specification of crosscutting 
Figure 5-32 illustrates the design of a crosscutting logging behaviour. The logging 
behaviour is encapsulated in the Log class. The Log class has its own structure and 
also behaviour. Crosscutting behaviour is represented in methods signatures as in  
normal  UML. An outgoing connection point specifies that these methods are 
crosscutting. Connection points are represented as circles. The colour indicates 
whether it is incoming or outgoing. Black designates an outgoing connection and white 
indicates an incoming connection.  

LogInterface represents an outgoing connection point and specifies two operations in 
the Log class that are crosscutting. This representation is similar to the representation 
of an interface. There are two significant differences between connection points and 
interfaces. The first is that connection points can be instantiated. The second is that 
connection points specify invocations to operations that they specified as corsscutting.  

The relationhip between this specification and the Log class is represented through a 
<<binding>> relationship.  

5.4.17.3.3 Integration specification 
Behvaioral integration is specified in AspectJ style pointcuts. This apporach represents 
pointcuts in terms of connection points. The example presented in Figure 5-32 shows a 
pointcut representation. A pointcut is a classifier stereotyped as a <<pointcut>>. The 
classifier is represented as a compartmentalised structure. The top compartment holds 
the two types to indicate the two connection end points. The connection points are 
illustrated as connected white and black circles. The bottom compartment represents 
the actual integration specification. Pointcuts are represented as a signature like 
construct that is identical to the AspectJ pointcut language.  

5.4.17.3.4 Specification of aspects 
As illustrated in Figure 5-32, aspects are classifiers identified as an aspect through the 
<<aspect>> stereotype. The aspect representation includes connection points 
connected via dotted lines. This indicates that this is where two types are connecting 
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and this is where advice is to be invoked. The aspect design element is 
compartmentalised. In the bottom compartment the advice and pointcut are associated. 
In the top compartments structurally crosscutting is represented. 

5.4.17.3.5 Composition semantics  
This representation is based on AspectJ. As such the composition semantics are similar 
to AspectJ.  
 

5.4.18 Meta-models 

5.4.18.1 Meta-models Method 
Attempts have been made to extend the UML meta-model to support an AOD meta-
model. We have categorised approaches based on the levels of abstraction that they 
support and the levels of concern separation that they facilitate. Here we discuss three 
approaches that alter the UML meta-model to support AOD.  

5.4.18.2 Meta-models Artefacts 

5.4.18.2.1 Meta-models AOD Language 
Here we will describe each of the meta-models.  

5.4.18.2.2 Specification of aspects 
In [185, 186]a generic meta-model is described to support structural AO modelling. 
This meta-model is built around a set of core abstract elements and relationships. The 
core elements are crosscutting and base elements. The core relationship between these 
elements is a crosscutting relationship. The abstract crosscutting element describes the 
base semantics of the elements that are related to the asymmetric AOD model that this 
approach supports. Aspects are specified as specialized from crosscutting elements. 

In the AspectJ meta-model [187] aspects are specified as an extension of a Java class. 
The meta-model is a precise model of the AspectJ language. Aspects model the same 
structure and behaviour as AspectJ aspects. The elements that compose aspects 
(pointcuts and advice) are represented as parts.  

In the Hyper/J [188] aspects are specified as hyperslices. These hyperslices are 
represented as specialised java packages. Following the Hyper/J model, these packages 
contain a declaratively complete class structure.  

5.4.18.2.3 Specification of crosscutting 
In the generic meta-model a feature represents an operation or attribute. A crosscutting 
feature is a model element that describes a feature to be composed with one or more 
base elements. A crosscutting element specifies a design element in which crosscutting 
can be specified.  

In the AspectJ and Hyper/J meta-models the specification of crosscutting reflects the 
AspectJ and HyperJ languages. 
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5.4.18.2.4 Integration specification 
The generic meta-model specification of integration is modelled as a relationship that 
links crosscutting elements and base elements. This crosscutting or integration 
relationship is specified by the crosscutting interface, which models join points. 

In the AspectJ meta-model integration, is specified through a pointcut model. The 
UML expression of a pointcut is similar to that of the pointcut construct in the AspectJ 
language. 

In the Hyper/J meta-model, integration is specified in a hypermodule. A hypermodule 
is modelled as a specialisation of hyperslice that is related to a concern through an 
integration relationship.  

5.4.18.2.5 Composition semantics 
The composition semantics for a generic AOD meta-model are undefined. The 
composition semantics for the language specific AOD meta-models are similar to the 
languages that they model. 

 

5.4.19 Aspect Oriented Software Development with Use Cases (AOSD\UC) 

5.4.19.1 Aspect Oriented Software Development with Use Cases 
Method 

Aspect Oriented Software Development with Use Cases (AOSDUC) is a use case 
driven software development method [38]. Use case diagrams represent concerns 
separately. This method provides a systematic process through which the concern 
separation inherent to use case diagrams is maintained through the software 
development lifecycle. 

5.4.19.2 AOSD\UC Artefacts 

5.4.19.2.1 AOSD\UC AOD Language 
ASODUC represents a complete design method, that includes supports a transition 
from requirements to high level design to low level design and finally, implementation. 
To support all these phases AOSDUC provide a comprehensive design language.  

5.4.19.2.2 Specification of aspects 
At a high level of design, aspects are specified as use cases that extend other use cases. 
In more detailed design use cases are specified as packages. Within these packages use 
case design is represented.  

Crosscutting use cases contain aspects. An aspect is a classifier that is identified 
through an <<aspect>> stereotype. An aspect classifier is graphically represented as a 
box that has two internal compartments. One of which contains pointcut declarations 
and the other contains class extensions.  

Reusable aspects or utility use cases are specified as parameterised template packages. 
Parameters of the template are named and described within a box with a dotted edge on 
the top right hand side of a template package. 
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5.4.19.2.3 Specification of crosscutting 
At a high level Use case specifications describe the extension flows that the flows 
specified for other use cases.  

At a lower level of design crosscutting is specified in the class extension compartment 
of an aspect classifier at design.   

Structural crosscutting is specified by declaring the class as in the class extensions 
compartment of an aspect classifier.   

Behavioural crosscutting is specified by declaring an operation within a class, declared 
as a class extension. The signature of the operation is similar to that of an AspectJ 
advice signature. The operation names a pointcut that identifies where the behaviour 
crosscuts other use case slices. The type of advice is identified and the corresponding 
behaviour to be identified is also named.  

5.4.19.2.4 Integration specification 
Integration is specified at a high level in use case diagrams as an extends relationship.  

Use case specification diagrams also describe the set of events at which integration of 
use cases can be specified and the flows that can be integrated at those points.  

At lower level design, points of integration are specified through pointcuts. The 
pointcuts are similar to the pointcut construct in the AspectJ language both 
syntactically and semantically.  

Integration is also specified in behavioural diagrams, including sequence diagrams, 
collaboration (or communication) diagrams and state chart diagrams.  In sequence and 
collaboration diagrams the points at which the sequences should integrate is described. 
In state diagrams, state based integration is modelled.   

5.4.19.2.5 Composition semantics  
Composition semantics are based on AspectJ composition semantics. 

5.4.19.3 AOSDUC Process 
The AOSDUC process is a model driven iterative process. 

During analysis, use case diagrams and use case specifications are defined and refined 
to provide an overview of the concerns in a system and the relationship between these 
concerns. The use case diagrams provide a high level view of the entire system and the 
specifications associated with each use case provide a detailed description of the 
behaviours that a use case represents, and where appropriate, the crosscutting nature of 
that behaviour.  

The use case models contain actors, use cases and relationships between them. Actors 
represent a client of a system. Actors are associated with use cases. Use cases represent 
concerns. Include, generalisation and extend are the types of associations between use 
cases, described in use case diagrams. Include allows factoring out of common 
behaviours between use cases. Generalisation is an abstraction relationship between 
use cases similar to inheritance. The extension relationship indicates that the behaviour 
represented by an extending use case crosscuts a use case being extended. Use case 
diagrams are used to represent and characterise concerns that are found in 
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requirements. In use case diagrams the use cases are modelled separately and the 
relationships between use cases are modelled.  

The use case technique facilitates behavioural specification. The flow through a use 
case can be captured in a use case scenario. Use case scenarios are specified in a use 
case specification. A use case specification is a textual description of one or more 
event flows that occur when a use case is instantiated by an actor. These flows can be 
full or partial flows through the use case. Flows can be described as basic flows, 
alternate flows and sub-flows. Basic flows are the general case. Alternate flows are 
contingencies for when the general case does not apply. Sub-flows are event sequences 
that appear repetitively and are described in one place and referenced there after.    

Use cases can be extended or can be used to extend other use cases. Extension points 
describe an event where use case behaviour is crosscut. Extension flows describe the 
flow that crosscut that event. Extension points and extension flows are specified in the 
use case specification.   

Use case diagrams and use case behavioural specifications are defined separately. Use 
case diagrams are graphical representations that provide a visualisation of concerns and 
the inter-relationship between concerns. Use case scenarios are textual in nature and 
are used to describe the behaviour associated with use cases. To visualise the 
connection between the use case and the use case specification, use cases are depicted 
as a classifier in a box, with an ellipse in the top right hand corner of the box. Within 
this box the flows through the use case are named and the type for each flow is 
provided. Where the use cases are part of an extends relationship, the use case being 
extended can contain a description of the extension points at which it is extended. The 
extending use case can contain a description of the extension flows. Extension flows 
are named and described. The description of an extension flow contains the name of 
the extension point that it is to crosscut, how the extension flow is to affect the 
extension point and a description of the results that can occur after the execution of the 
extension flow.  

During analysis a use case diagram is created to represent the entire system. From 
there, both the base and crosscutting behaviour is specified in use case specifications. 
Both the use case diagrams and associated specifications are defined and refined in an 
iterative process. Use cases represent slices of an application that can be developed 
separately and incrementally. In analysis, a set of domain concepts are identified for 
each use case. High level sequence and collaboration diagrams are used to model the 
sequence of interaction between domain concepts. These behavioural diagrams are 
based on use case specifications.  

Once use cases, use case specifications, the domain concepts and high level sequence 
interactions are identified in analysis, design begins. Design is based on analysis. Use 
cases represent slices that can be designed separately. This approach supports a 
symmetric approach to AOD. For each use case or slice, a separate design model is 
constructed. The analysis phase in AOSDUC produces a high level design. In this 
approach once analysis is complete a platform specific design follows. Design as a 
process is specialised for the designing base use cases, crosscutting use cases and non-
functional use cases. 

To design base use cases, the designer begins by identifying components and 
component interfaces. Components correspond to domain concepts identified in 
analysis. In design, domain concepts may be designed as a class or design may require 
a number of platform specific classes to provide a design that can be implemented. 
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Each component exposes required and provided interfaces. Through creating a 
component diagram for a slice or use case, the high level design concepts can be 
expressed and the relationships between these design concepts can be captured as inter-
component relationships. Once this high level view is provided, the use case can be 
depicted as packages that explicitly reference the use case being realised by name. Use 
case packages contain diagrams that provide detailed component specification. Class 
diagrams provide a structural design of the use case slice components. Each class 
represents some part of a component or a component itself. Sequence diagrams are 
used to model the interaction between the classes. Sequence and communication 
(formerly collaboration) diagrams are used to describe the flow of behaviour between 
classes and objects. The flow, in these diagrams, is based on the flows described in the 
use case specifications and high level interaction diagrams created during analysis.  

Designing crosscutting use cases is similar to designing base use cases except that 
aspects also need to be modelled. Aspects are represented as classifiers, demarked with 
an <<aspect >> stereotype. Aspects are contained in the use case package. This 
classifier describes the crosscutting behaviour and structure associated with the use 
case. An aspect is a named classifier that contains pointcut declarations and class 
extensions. Pointcut declarations are based on the AspectJ pointcut model and 
language.  Class extensions are depicted as class diagrams. The classes that are class 
extensions specify crosscutting behaviour and structure. Crosscutting behaviour or 
advice is depicted as an operation that is similar to the AspectJ advice model. To 
design an aspect the classes that specify crosscutting behaviour and structure are 
identified and crosscutting is be specified. Pointcuts that ensure the correct extension 
of related use cases are identified. Sequence diagrams that illustrate how behaviour is 
crosscut are created, to illustrate crosscutting behaviour.   

Non-functional use cases are designed through the specialisation of utility use cases. A 
utility use case represents a non-functional concern that is crosscutting. To support 
reuse of non-functional crosscutting concerns, parameterised template packages can be 
used to represent utility use cases. Designing non-functional or utility use cases is 
similar to designing an aspect. To create a concrete aspect the template parameters are 
replaced arguments that are specific to the application. To reuse utility use cases, the 
designer must choose a utility use case that meets the non functional requirements and 
using arguments to create a concrete aspect.   

Composition is modelled or specified at a high level in the use case diagrams, through 
include, generalise and extends relationships. Separate design models are specified 
during the design phase. The composition of design models is relative to those models 
being composed.  

When design of a use case is complete, both the structural and behavioural diagrams 
created during design are used to implement the concern represented by the use case. 

 

5.4.20 UMLAUT 

5.4.20.1 UMLAUT Method 
The UMLAUT framework [183] is a model transformation tool. From the point of 
view of Aspect Oriented Software Development, UMLAUT can be seen as a 
framework for building application specific weavers to weave multi-dimensional high 
level UML design models (functional, dynamic, deployment, and static aspects 
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annotated with design pattern occurrences, stereotypes and tag values) into detailed 
design models suitable for either implementation, simulation or validation. 

In addition to the manipulation of UML models, UMLAUT is able to manipulate any 
kind of models on any kind of repositories. A transformation can be run on any 
repository that has compatible meta models. The meta models are defined using the 
MOF (Meta Object Facility).  UMLAUT is composed of a transformation language 
compiler and a framework of transformations written in this language.  It allows 
complex model transformations far beyond MDA classical PIM to PSM mappings. A 
major idea that drove UMLAUT evolution is that a transformation is a kind of program 
so it must be possible to apply the MDA approach to itself.  Experience shows that 
aspect oriented techniques are also useful to design transformations themselves, which 
are complex entities managing various concerns 

Since 1998, UMLAUT has been used in the UML context to demonstrate several 
concepts, such as weaving design patterns, supporting the design by contract approach 
[185], weaving model aspects, generating code, generating test cases and interfacing 
with validation tools on the model. 

UMLAUT transformation operations are written in the MTL transformation language. 

5.4.20.2 UMLAUT Artefacts: 

5.4.20.2.1 AOD language 
UMLAUT supports aspect oriented design with libraries of reusable transformation 
operations. These operations include user-defined algorithms for identifying pointcuts 
in models and then applying modifications to the model. Specific AOD languages can 
thus be defined by building a specific framework, organized with design patterns 
(which are really design patterns at a meta model level). 

UMLAUT includes some prototypes of AOD languages. A first prototype was 
designed within the QCCS European project (www.qccs.org). Pointcuts are defined 
using an UML extended template notation. The general weaving algorithm uses 
extended template parameter bindings to match model fragments. Specific state charts 
bound to model items such as operations provide advices for the weaving of the 
various behaviours gathered from the models fragments. 

Because of its high degree of separation between model fragments and weaving advice, 
this AOD technique is symmetric in nature. 

A graphically oriented technique for specifying pointcuts and advices was produced 
from QCCS' results [184]. UMLAUT supports another protocol oriented AOD 
technique.  The associated AOD notation aims at formally defining the behaviour of a 
set of model fragments. 

Each fragment's behaviour is defined by HMSC (hierarchical message sequence charts: 
automata of partially ordered event sets). HMSC makes it possible to specify model 
behaviours at any level of abstraction while retaining a clear semantics. 

The weaver merges model fragments using a set of HMSC that build correspondences  
between events from the fragments' HMSC [186]. This technique provides 
compositions that have well-defined behaviours [187]. It is therefore suited to designs 
with fairly complex protocols between items, such as distributed architectures. 
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5.4.20.3 AOD process 
Apart from the two AOD languages mentioned above, UMLAUT aims at supporting 
research and experiments on AOD languages and frameworks. 

Through metamodel extensions and libraries of transformation operations, specialized 
designers can build domain specific aspect notations and weaving algorithms. 
Therefore the underlying AOD process identifies various designer roles and activities: 
users of aspects, designers of aspects, designers of weavers and aspect languages. 

 

5.5 Comparison 
 

5.5.1 Level of abstraction 
 

Approach Level of abstraction 
Theme  Middle 
AODM Low-Middle 
AAM Middle-High 
CoCompose Middle-High 
SUP Middle 
AML Low-Middle 
TranSAT Low-High 
AOCE Low-High 
UFA Middle & High 
ADT Low-Middle 
UXF Middle 
IDAM Low 
AVA Middle-High 
Component Views Middle-High 
Meta Models  Low 
AOSDUC Low-High  
CAM/DAOP Low-Middle 
Activity Middle 
UMLAUT Low-High 

Table 5-7: level of abstraction 

AODM identifies commonality between AOP approaches and use this as a basis for an 
AOD language design. Figure 5-2 taken from [153], illustrates the similarities between 
the AspectJ, Hyper/J and DemeterJ approaches to the separation of concerns. At Figure 
5-2 A, we see the common specification of the crosscutting elements. Figure 5-2 C 
depicts the modularisation of the crosscutting elements. Figure 5-2 D depicts the 
common specification of integration. Figure 5-2 E shows that in all approaches the 
result is a composition. Finally, from Figure 5-2 F depicts the implementation of 
design. We consider AODM to be at the low-middle level of abstraction. This is 
because the AODM is abstracted over implementation but is not representative of 
architecture or requirements. 
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Theme is an analysis and design approach. The analysis part of Theme, called 
Theme/DOC, is based on requirements engineering and identifying requirements such 
that they can be designed using Theme/UML. Theme/UML is the design part of 
Theme. We have determined that Theme/UML sits at a middle level of abstraction. 
This is because Theme/UML focuses on the design view, allowing its mapping to 
Theme/Doc views to present the corresponding requirements view.  Theme is also 
abstract enough to be independent of platform specific AOP. It has been shown that 
Theme/UML designs can be implemented on various AO platforms [160].  

SUP supports a middle level of abstraction in that it is not based on any 
implementation platform. This approach suggests a set of stereotypes and does 
illustrate the use of state charts for aspect identification and aspect modelling. It does 
not provide a high level view of a system. It focuses on facilitating the separation of 
aspects concerns that crosscut one main base concern [165].  

AAM supports high and middle levels of abstraction.  

Firstly, aspects are described at a high level as “concern solutions”. A concern solution 
is an abstract aspect that can be applied to a model to introduce behaviour and structure 
that realize or reuse the concern in a specific application or system. These high level 
aspects crosscut application or system boundaries because they are “context free”. 
Context free refers to the fact that aspects, described at this level are not coupled with 
any one application. They can be applied to many applications. In other words, context 
free aspects don’t crosscut an application, they crosscut an application domain.  

Secondly, aspects are described at a middle design level. Middle level or “context 
sensitive” aspects are specializations of high level aspects. Context sensitive refers to 
the fact that the context of the system, to which the high level aspect is applied, is used 
to realize the high level aspect at a middle level design.   

Concern modelling represents the highest level of abstraction that we have surveyed. 
Concerns in this approach are viewed as conceptual entities. No structural or 
behavioural specifications are offered in this approach to support AOD modelling. 
Concern modelling provides a concern taxonomy with which concerns can be 
described.  

We classify CoCompose as a middle-to-high level design approach. CoCompose 
support the description of abstract aspects that can be applied to concrete designs. 

UFA allows modelling of high level aspect that crosscut application boundaries. To 
reuse high level aspect models at middle level design the aspect is specialized to an 
application based on the application context. Our middle-to-high level classification of 
UFA is based on this.  

We classify UXF as middle level design because it is independent of implementation 
platforms, but does not address high level design issues.   

We characterise AVA as a middle-to-high level design approach. This characterisation 
is based on the fact that inter-aspect dependencies are considered a high level 
relationship. This approach supports modelling inter-aspect dependencies and also 
supports aspect design. The aspect design is platform independent and is supportive of 
middle level design.  

As AML is coupled with AspectJ we consider the level of abstraction supported by 
AML to be low-middle.   
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ADT is a middle level design approach. This approach is independent of language but 
the approach allows the separation of only one type of concern.  

AOCE is a low-to-high level AOD design approach. This is because the AOD 
supported in AOCE is not platform independent. AOCE also supports high level 
analysis. 

TranSAT approach is a composition of individual approaches that are highly related, 
in that they have been developed by the same group, and follow from one another. At a 
high level there is the TranSAT (described in Sections 15.1 and 15.2) framework to 
support software architecture evolution. At a low level there is a UML notation to 
support design for the JAC AOP platform (described in Sections 15.1 & 15.3). As such 
we regard this work as a high and low level approach.  

Component Views approach supports a middle-high level of abstraction. We consider 
this approach to be of a middle-high level of abstraction due to the focus on concern 
reuse across system boundaries.  

Activity diagrams can be used at various levels of abstraction. Here they are being 
used to model crosscutting behaviour at a middle level of design. 

The CAM/DAOP approaches use of MDA provides a potentially high level of 
abstraction. In [182] a methodology that stems form a middle level design to low level 
design is illustrated. MDA can be used to define concerns at high levels of abstraction.  

Model Driven Architectures [189] have been proposed as a solution to this conflict 
between the need to provide high level and low level design [148]. The MDA 
framework has been used to separate AOD into a stepwise process in which design is 
expressed at different levels of abstraction in a hierarchy of languages that capture an 
abstract design and provide means for transformations to more concrete and detailed 
design [182]. Transformations between AOD languages have been investigated in 
[171] and in the MDA context in [190].  

The level of separation supported by IDAM approaches is at the lower design levels. 
The approaches that we have surveyed here are both AspectJ centric.  

Meta-model The first approach is a language independent meta-model which supports 
middle level design [185, 186]. The second meta-model supports, AspectJ centric, low 
level design [187]. The third, and final, meta-model supports low level, Hyper/J 
centric, design [188]. 

AOSDUC [38] recognises the problem of conflicting needs between high and low 
level of design, and provides a multi-level and model-driven view of design as a 
solution. Concerns and concern relations can be expressed at a high level of abstraction 
mitigating detail. Concerns and concern relations can also be expressed at a low level 
of abstraction with the high degree of detail required for design implementation. 
AOSD\UC primarily represents concerns and concern relationships in Use Case 
Diagrams. As such, we consider this approach to be a high level design method 

UMLAUT [181] is based a framework for model-driven transformation, and therefore 
(like the CAM/DAOP approach) provides a potentially high and low level of 
abstraction.  
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5.5.2 Level of crosscutting 
 

Approach Level of concern separation 
Theme  Symmetric 
Aspect-Oriented Design 
Modelling (AODM)  Asymmetric 
Aspect-Oriented 
Architecture Modelling 
(AAM) Asymmetric 
CoCompose Symmetric 
State charts and UML 
Profile (SUP) Symmetric 
Aspect Modelling 
Language (AML) Asymmetric 
TranSAT Asymmetric 
Aspect Oriented 
Component Engineering 
(AOCE) Symmetric 
UML for Aspects (UFA) Symmetric 
Aspects at Design Time 
(ADT) Asymmetric 
UML exchange Format 
(UXF)  Asymmetric 
Implementation Driven 
Aspects (IDAM) Asymmetric 
Architectural Views of 
Aspects (AVA) Symmetric 
Component Views Symmetric 
Meta Models  Symmetric & Asymmetric 
Aspect-Oriented 
Software Development 
with Use Cases 
(AOSDUC) Symmetric 
CAM/DAOP Symmetric 
Activity Symmetric 
UMLAUT Symmetric 

Table 5-8: level of concern separation 

AODM supports an asymmetric AOD approach. AODM was originally AspectJ based, 
the AODM design model mimics the AspectJ programming language and composition 
model. 

Theme constructs are more general than aspects, and more closely encompass 
concerns with relation to subject-oriented programming, a symmetric approach to 
separation at the code level [156]. Originally modelled on SOP, Theme also supports 
symmetric AOD. Crosscutting themes are characterized as “aspect themes”. Themes 
that are not crosscutting are termed “base themes”.  

SUP supports the symmetric separation of concerns. Specifications for the separation 
and integration of base and aspect concerns are supported in the SUP approach. 

AAM supports asymmetric separation of concerns. AAM models or concern solution 
models are described as orthogonal to a primary model. Using the concepts and 
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mechanisms embodied in the AAM approach in a symmetric model is described in 
[191].  

This view of concerns in Concern modelling is conceptual. We classify this approach 
to be symmetric as it is describes all concerns in as separate entities. 

We characterise CoCompose as supporting a symmetric approach to AOD. This is due 
to the potential for the separation of both crosscutting and non-crosscutting concerns as 
features.  

The ACM model is a symmetric model of AOD. UFA, AOCE, Component Views 
and CAM/DAOP are based on the ACM model facilitates symmetric modelling.  

UXF: An aspect is considered to be a new classifier on the conceptual same level as a 
class. Crosscutting relationships between an aspect and class are also defined. This 
indicates that this approach is an asymmetric approach.   

AVA Aspects can be crosscut by aspects on which they depend. Therefore, this 
approach supports symmetric AOD modelling. 

The AML, IDAM and ADT approaches are based on the AspectJ language. As such, 
it supports an asymmetric model of AOD.  

TrancSAT At a high level this approach supports a symmetric approach, while at the 
lower design level the UML notation supports an asymmetric model. 

Aspects are represented as activity diagrams that can be used to model symmetric 
AOP.  

Meta-models The language independent meta-model and AspectJ meta-models are 
both asymmetric models. In contrast, the Hyper/J meta-model is symmetric.  

Although linked with an asymmetric implementation, the AOSD\UC approach 
supports symmetric modelling. 

UMLAUT is a framework that enables design model transformation and composition.  
The AO transformations that the UMLAUT supports are based on UML extensions 
that describe the crosscutting nature of the design elements expressed in UML.  Where 
UML extensions describe a symmetric model then symmetric composition is possible 
under UMLAUT. 

 

5.5.3 Traceability 
Some AOD processes that we have explored create and refine design models that 
represent requirements models and architecture models derived earlier in the software 
development lifecycle. Fully refined design models are those that include the detail 
required to directly implement designs on a particular platform. 

Traceability is a property of a relationship between two models where one model is a 
refinement of another. Traceability is a measurement of the transparency or clarity of 
the refinement process.  

The measures of traceability we can take when comparing AOD approaches are 
external and internal.  

The external measure is one where we look at AOD models in relation to the full 
software development life cycle. External traceability is a measure of the transparency 
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or clarity of refinement that an AOD approach provides between requirements or 
architecture models to design implementations.  

Internal traceability is relevant where there are various phases within an AOD process. 
The design process consumes the models created during the requirements engineering 
and architecture development phases of the software development life cycle. These 
models are abstract and lack the detail required for the confident and unambiguous 
realisation of an implementation that meets requirements models and conforms to the 
architecture models. The internal phases of an AOD process systematically refine more 
abstract design models into design models that contain the detail required during 
implementation. Internal traceability is a measure of the transparency or clarity of 
refinement that an AOD approach provides between the phases of an AOD process.  

Although we describe traceability as a measurable property it is difficult to measure as 
a statistical value due to the large disparity between the AOD approaches that are 
identified and described in this document. If all approaches were used in a common 
and unbiased design focused and detailed case study then a statistical comparison 
between approaches may be possible. However, in the absence of such a case study we 
will describe the potential for traceability facilitated in each approach.   

Table 5-9 lists the approaches and briefly describes the external and internal 
traceability provided by each approach.  

 

Approach Traceability 
 External Internal 

Theme  

Traceability from 
requirements to design and 
also design to 
implementation  

Themes can be refined from 
abstract themes level to a 
class and method level 
design 

AODM 
Traceability from design to 
implementation 

Traceability from system level 
design to specific constructs 
such as pointcuts 

AAM 
Traceability from 
architecture to design N/A 

CoCompose 
Traceability from design to 
implementation N/A 

SUP 
Traceability from 
requirements to design  N/A 

AML 
Traceability from design to 
implementation  N/A 

TranSAT 

Traceability from 
architecture to design and 
design to implementation  N/A 

AOCE 

Traceability from 
requirements to design and 
also design to 
implementation 

Traceability from component 
level to class and method 
level 

UFA 

Traceability from 
architecture to design and 
design to implementation  

Traceability from packages 
level to class and method 
level 

ADT  
Traceability scope limited to 
synchronisation  N/A 

UXF/a  
Traceability from design to 
implementation N/A 

IDAM 
Traceability from design to 
implementation  



 220

AVA N/A 
Traceability between sub-
aspects and aspects 

Component Views 
Traceability from 
architecture to design 

Traceability from component 
level to  sub-component level 

Meta Models  
Traceability from design to 
implementation N\A 

AOSDUC 
Traceability requirements to 
implementation 

Traceability from use cases 
implementation focused 
design 

CAM/DAOP 
Traceability from design to 
implementation 

Traceability derived through 
MDA transformations 

Activity N/A Traceability of composition 

UMLAUT 
 Traceability from design to 
implementation 

Traceability derived through 
model transformations 

Table 5-9 Traceability 

 

Most of the AOD approaches that we have surveyed in this document are based on the 
UML. The UML provides a set of diagrams with well defined semantics. Each of these 
diagrams provides a view of a design model. There is a level of traceability between 
each of the system views presented in the UML diagrams. The approaches that are 
UML based all have this traceability inherently. It is where the UML  is extended, 
either through the use of profiles or meta-model extensions, that the standard 
traceability facilitated by the UML is altered.    

The Theme approach supports traceability throughout the software development 
lifecycle.  Themes, identified during requirements engineering, can be traced across the 
software development life cycle to theme implementation.  

Theme/Doc provides a process through which themes are identified in requirements. 
Theme/UML provides a means for separately refining theme requirements into UML 
diagrams that capture both the structure and behaviour of the themes.  Theme/UML 
also provides semantics and mechanisms for describing how themes are to be 
composed.  

Themes can be composed into composite themes. Composed themes represent a woven 
system. The composite can be traced back to the themes that have been used to create 
the composition. This is possible due to the well defined composition semantics 
defined in the Theme approach. 

The Theme approach provides a series of guidelines for implementing themes on 
various AO implementation platforms. It is conceivable that these guidelines provide a 
certain degree of traceability from design to implementation and vice-versa.  

In terms of internal traceability, the theme approach follows a process of continual 
refinement. Themes are initially represented as packages. Theme packages are 
decomposed into classes and that contain methods.  

Themes are described in terms of their behaviour and objects in Theme/Doc. Theme 
designs are based refining these high-level requirements based descriptions. This 
process is a refinement process where by the high level descriptions are informally 
presented in loosely defined UML diagrams. These UML diagrams are them 
specialised, with additional detail until the themes come to the point that they can be 
implemented by the developer. The composition rules that designate how themes are to 
be composed are also refined in a similar way. As such the refinement process provides 
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traceability from more abstract theme designs to more concrete and implementation 
focused design.  

AODM supports external traceability from design to implementation. AODM was 
originally developed to support the representation of designs that targeted the AspectJ 
platform. The UML constructs provided by AODM are similar to AspectJ language 
constructs. As such, AODM supports traceability from design to an AspectJ 
implementation due to the direct association between the constructs available in both 
design and implementation languages.  

Joinpoint designation diagrams are an extension of the original AODM approach. They 
provide a degree of independence from the AspectJ language constructs, in that they 
provide an AOP neutral way to represent pointcuts. These representations have been 
shown to be generic and provide a degree of traceability between the AODM approach 
and other AO implementation platforms beyond AspectJ. 

Internal traceability is supported in AODM. AODM allows the designer to represent 
aspects, classes and the crosscutting association between the two. An aspect may have 
an affect on many heterogeneous classes at many different joinpoint shadows. To avoid 
clutter in the UML diagrams the associations between aspects and classes is expressed 
as a pointcut designator. The designer cannot easily determine from this representation, 
where exactly the joinpoints shadows exist, from inspecting the aspect or classes. 
AOSD provides a facility to model these joinpoint shadows. As such, there is 
traceability from declarations of potential crosscutting between aspects and classes. 

AAM supports external traceability from architecture to design. In AAM aspects are 
defined at the architecture level. The behaviour, structure and crosscutting 
characteristics of the aspect is described free of application specific details. When 
designing an application the designer may decide that an aspect is required. The 
designer can then specialise the aspect into a design that can be applied to the specific 
application. There are a series of relationships that are used to specialise the 
architectural aspect. These relationships provide a basis on which the aspects usage can 
be traced from architecture to design. 

CoCompose provides a design approach that automates the transformation from 
design to implementation. As such, this approach provides traceability between  design 
and implementation. This is a non-UML based approach and does not support the 
internal traceability that the UML provides. 

SUP provides guidelines for modelling crosscutting behaviour in state chart diagrams.  
SUP also proposes a UML profile that supports the use of specialised AO UML 
diagrams to model the crosscutting behaviour within aspects. The guidelines on how 
crosscutting behaviour should be modelled in design offers traceability between 
requirements and design.   

The focus of AML is the automated generation of aspect source code based on UML 
diagrams. As such, AML supports traceability between design and implementation.     

TranSAT provides traceability between architecture and design.  Like the AAM 
approach, TranSAT supports the use of aspects expressed at the architecture level in 
design through specialising the aspect to the application context in which it is to apply. 

AOCE supports both external and internal traceability. AOCE provides guidelines on 
how to take requirements and engineer the requirements for AOD. AOCE provides 
guidelines on how to realise these requirements in design also describes how the design 
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is implemented. From these guidelines, a certain degree of traceability is possible from 
requirements to implementation.  

AOCE is a component and aspect based approach. The design of components and the 
relationship between components are described. Components may be further 
decomposed into classes. This decomposition is based on satisfying the component 
interface and follows the standards associated with component-based design. There is 
potential for traceability in this decomposition.  

UFA provides support for traceability from architecture level aspects being used in 
application specific design. Like TranSAT and AAM, UFA supports the expression of 
application independent aspects that can be specialised in design to specific 
applications. UFA targets LAC as an implementation platform and as such maintains a 
traceable relationship between UFA and LAC. 

UFA, like the Theme approach, uses packages to encapsulate concern representations. 
These packages contain the diagrams that represent the structure and behaviour that 
describe aspects. Traceability exists from the higher level expressions of the aspect at 
the package level to the lower class level representations.  

ADT is an early approach to representing aspects in design. The approach describes 
how synchronization as a crosscutting concern is separated at design in UML. Due to 
this constraint it is not possible to trace crosscutting concerns in the software 
development process outside of the synchronization concern. 

UXF is another early approach to AOD. UXF prescribes a process of refinement for 
aspects where AO designs are implemented, executed and then tested. Based on the 
outcome the design is changed and the cycle begins again. Traceability is possible 
through the refinement process. The process is not well defined but does have potential 
for traceability. 

The IDAM approaches facilitate traceability from AOD to AO source code. The 
IDAM approaches are AspectJ based and propose design approaches based on the 
AspectJ language. Because of the associations between the design language and the 
implementation language, potential for traceability between the two exists. 

The AVA approach focuses on providing a means for describing dependencies 
between aspects during design. AVA provides a means to model the trace between 
dependant aspects. 

Some AOD approaches are based on an implementation languages Meta Model. As 
such, the traceability that exists between design and implementation is increased.  This 
is because there is a direct correspondence between the AOD and AOP languages.   

Component Views support traceability from architecture to design. Like the AAM and 
TranSAT approaches, Component Views support the use (or reuse) of aspects 
expressed at the architecture level in design. This is achieved through specialising the 
aspect to the application context in which it is to apply. Aspects here represent reusable 
architecture. These aspects are re-used during application specific design. As such, the 
aspects can be traced from architecture to design. 

The AOSDUC approach is a comprehensive approach to AOD. This approach 
promotes traceability in that the approach is use case driven. Use cases represent 
concerns that are designed and implemented separately. All artefacts that are related to 
use case can be traced back to a specific use case. Use cases are described by use case 
specifications derived from requirements. This gives traceability between design and 
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requirements. The design can be refined from high-level component diagrams to 
package diagrams that express aspects as specialised classifiers. The approach provides 
guidelines for moving from the higher level component diagrams to the lower level 
package encapsulated diagrams.  These guidelines provide a basis on which 
traceability, from higher level design representations to lower level design 
representations, can be derived. The design language that AOSDUC uses is AspectJ 
focused, sharing many constructs. Because of the symmetry between these AOD and 
AOP languages, traceability between the design representations and implementation is 
improved. 

CAM\DAOP is an approach where traceability is well defined and well supported 
through the MDA transformations between models. The design models are refined 
from abstract models to implementation focused though a series of model 
transformations. A final transformation from design model to implementation is 
possible. As such, traceability from design to implementation is possible. 

The Activity approach allows the modelling of crosscutting behaviour. Activity 
diagrams have changed in UML 2.0 to be more supportive of complex systems. 
Activity diagrams allow the modelling of complex concurrent behaviour. This 
approach provides a means for composing behaviours specified in activity diagrams. 
The composition of activity diagrams many be traced.  

UMLAUT is based on model transformations, and provides traceability through 
transformations between models. Well defined transformation policies ensure that the 
output from a transformation can be traced back to the designs transformation input.  

 

5.5.4 Composability 
Composability is described in Section 2 as the ability to compose artefacts and 
consequently to view and understand the complete set of artefacts and their 
interrelationships, as well as to perceive the system as a whole from the associated 
artefacts.  

The level of composability that an AOD approach supports has its basis on the level of 
concern separation supported by the approach. Section 5.5.2 describes characterises 
approaches as either supporting symmetric or asymmetric concern separation.  

When concerns are represented in separated design modules, these designs may be 
composed into a unified design. Otherwise composition is deferred until 
implementation.  

In most of the approaches we have looked at, UML extensions have been made to 
allow the designer to specify how models are to be composed. The extent to which 
models can be composed is based on the composition model supported by the AOD 
approach and composition semantics described for the approach.  

Table 5-10 lists the approaches and briefly describes the composition specifications  
and the composition provided by each approach.  

 
Approach Composability  
 Composition Specification Composition  

Theme  

Supports merge and override 
composition specification, together 
with binding of base elements to 

Themes are composed into 
composite themes. A 
system is a composition of 
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aspect templates. Theme has a well 
defined set of composition 
semantics that describe 
composition.  

themes.  

AODM 

AODM is based on AspectJ and 
supports AspectJ specific 
composition specifications. 
Joinpoint designation diagrams 
extend AODM to support AOP 
neutral composition specifications. 
In both cases the composition 
semantics are influenced by the 
AspectJ composition semantics. 

Composition is deferred until 
implementation. Join point 
indication diagrams and Join 
point composition diagrams 
for representing individual 
compositions.  

AAM 

Supports composition specifications 
that are similar to the Theme 
approach. Composition semantics 
are defined for the composition 
specification. 

Composition of the aspect 
and core (or primary) model 
results in standard OO UML. 

CoCompose 

Composition specification and 
composition semantics are defined 
as implementation alternatives 
chosen through design algebra. 

Composition is illustrated in 
a solution pattern but is 
deferred until 
implementation. 

SUP 

Composition is based on matching 
events that exist in independent 
state chart diagrams. Composition 
semantics are not well defined. 

A composed system is not 
visualised 

AML 

Composition is specified in a 
connector model. The composition 
semantics are based on AspectJ. 

Composition is deferred until 
implementation. 

TranSAT 

TranSAT is a framework in which 
composition specifications and 
composition semantics can be 
defined.  N/A 

AOCE 

Composition specification is done at 
the component level, composition 
semantics are not well defined.  

Composition occurs at 
runtime and is visualised in 
collaboration diagrams.  

UFA 

Composition is specified in a 
connector model. The composition 
semantics are not well defined. 

Composition results in 
standard OO UML. 

ADT  

Limited composition specification 
scope. Composition semantics are 
limited.  

Composition in this 
approach is deferred until 
implementation. 

UXF/a  

Primitive composition specification. 
Composition semantics are not well 
defined.  

Composition is not well 
defined.   

IDAM 

Composition specification and 
composition semantics are AspectJ 
based.  

Composition in these 
approaches is deferred until 
implementation. 

AVA 
Allows composition dependency to 
be specified. 

Composed AVA designs can 
be represented as standard 
OO UML diagrams. 

Component 
Views 

Provides a meta model which 
defines design elements to specify 
composition relationships. 

Representation of 
composition is unclear.  

Meta Models 

The composition semantics of 
platform specific meta models are 
based on the platform on which 
they are based. Abstract meta-
model does not provide strong 
composition specifications or 

In the platform specific 
meta-models composition is 
deferred until 
implementation. In the more 
abstract meta model are not 
well defined. 
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composition semantics.   

AOSDUC 

Component based composition &  
AspectJ base composition 
specification and composition 
semantics.  

Composition deferred until 
implementation. 

CAM/DAOP 

Multi design modal within an MDA 
framework. As design is specialised 
composition specifications become 
stronger, as do composition 
semantics. 

Composition deferred until 
implementation. 

Activity 

Composition specified between 
behaviour expressed in activity 
diagrams.  

Result is a new composite 
activity diagram. 

UMLAUT 
Multiple composition specifications 
can be used within the framework. 

The result of a UMLAUT 
transformation is a woven 
set of designs.  

Table 5-10: Composability 

 

The Theme approach supports two forms of composition specifications, merge and 
override.  Where an aspect theme is merged, base elements are bound to aspect 
template elements. The Theme approach provides a detailed set of composition 
semantics. The composition semantics describe how design artefacts are to be 
composed in accordance with the composition specifications.  Override composition 
allows design elements in one theme to override (similar to the programmatic override) 
design elements in another theme. Merge composition supports the union of themes. 
Where conflicts exist in the composition of themes, resolutions of the conflicts can be 
specified. Themes can be composed into composite themes. Systems can be designed 
by designing themes that represent the systems concerns and composing the themes.  

The composability provided by the AODM approach is based on AspectJ. As such the 
expression of composition specification design is based on the AspectJ language. The 
composition semantics associated with this model is also AspectJ based. AODM has 
been extended with joinpoint designation diagrams, which have increased the 
neutrality of the composition specification.  The composition semantics for these 
diagrams are not provided in literature but it seems that the composition semantics are 
similar to those of AspectJ. Composition of the systems and the aspects that crosscut 
the system is not visualised in the AODM approach. AODM does however provide 
joinpoint indication diagrams. These diagrams allow the points designated by the 
composition specification to be represented diagrammatically. AODM also provides 
join point composition diagrams as a means of modelling composition of aspect advice 
and core design elements at joinpoint shadows.    

The AAM model requires two levels of composability. The first is aimed at the 
contextualising aspects and the second is the actual composition specification. AAM 
supports the description of generic aspects in design. To apply the aspects to a specific 
design, the (abstract) aspect is made concrete by binding concrete application specific 
elements to the abstract aspect design elements.  The concrete aspect or “context-
specific aspect” can be composed with the primary or core model. The composition 
specifications are similar to those of Theme. Composition semantics are also defined 
for the composition specifications. In AAM, the result of composition is an OO UML 
diagram.  
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The CoCompose is a non UML approach, similar in concept to the AAM model. 
CoCompose supports the description of features. Features are similar to generic aspects 
that are firstly contextualised to a specific application design. The detail of how the 
concepts are to be composed is specified in implementation patterns. Implementation 
patterns specify how the features will be composed in an implementation. 
Implementation patterns are chosen through design algebra. The composition 
semantics are not well defined for CoCompose. Composition can be viewed in a 
solution pattern.  

Composition specification in the SUP approach is based on matching event names in 
diagrams state chart diagrams. Composition is based on transmitting or broadcasting 
events between state chart diagrams.  The composition semantics of this approach are 
not well defined.  

The AML and UFA approaches support a connector model, where the composition 
specifications of designs are represented within a connector package. The composition 
semantics for AML are based on the AspectJ platform. The composition semantics for 
UFA are not well defined. Composition is deferred in AML until implementation 
(AML seeks to auto-generate AspectJ code from AML designs), while in UFA the 
composed model is standard OO UML. 

The TransSAT approach is a framework to support composition. TranSAT does not 
provide composition specifications or composition semantics, allowing the designer to 
provide these when designing a system.   

The AOCE approach is an aspect and component oriented approach where 
components specify the other components that they crosscut and how the component 
itself is to be crosscut. The composition semantics are not well defined and are 
dependant on the framework on which the components are implemented and deployed. 
Composition in component based systems is done at runtime. Composition is 
visualised in collaboration diagrams.   

The ADT approach is limited to specifying the composition of synchronisation 
concerns. The composition semantics are also limited. Composition in this approach is 
deferred until implementation. 

The UXF approach provides a primitive composition specification. Composition 
semantics are not well defined. Composition representation is not well defined.   

The IDAM approach is based on AspectJ. The composition specification and 
composition semantics are based on the AspectJ platform. Composition is deferred 
until implementation. 

The composition specification provided by the AVA approach is similar to that of the 
Theme approach. The AVA approach differs in that it provides a notation for 
specifying the order for the composition of designs representing crosscutting concerns. 
Basic composition semantics are provided by the AVA approach. Composed AVA 
designs may be represented as standard OO UML diagrams.  

The Component Views approach provides a meta-model, the elements of which 
enable composition specification. The composition semantics are defined within this 
meta-model. It is unclear how composition is represented. 

The Meta Models approach consists of three attempts to provide meta-models for 
aspect-oriented programming. Two of these meta models are platform specific - 
AspectJ and Hyper/J, the other is platform independent. For the platform specific 
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models the composition specification and composition semantics are based on the 
underlying AOP platform. The platform independent meta-model provides an abstract 
“crosscutting element” within the meta model. Although the meta model provides a 
basis for describing the composition of design elements, composition specification is 
not well defined. The composition semantics for the generic model are not well 
defined.  

The AOSDUC approach provides a means for specifying composition at a number of 
levels; the use case level, component level and sub-component level. The use case 
level is concerned with analysis. The component level design is based on the 
component composition specification and composition semantics of component based 
design. Sub-component level design is based on the AspectJ model. Due to the close 
tie between the design language and the AspectJ language it is our intuition that they 
share similar composition semantics. Composition in this approach is deferred until 
implementation. 

The CAM/DAOP approach is an aspect and component oriented approach. This 
approach provides an MDA framework in which design models are specialised from 
abstract design representations. Each model provides a means for specifying 
component – aspect composition. On each model transformation a more specialised 
model is created. This model is more detailed and provides a greater level of detail for 
specifying composition. Abstract models contain weak composition semantics. As the 
model becomes more specialised and platform specific, the composition semantics 
become stronger. The models target a DAOP framework, on which designs are 
implemented. Composition is deferred until runtime within the DAOP framework. 

The Activity approach is based on representing behaviour in design as Activity 
Diagrams. Activity diagrams are sequences of activities. Activity diagrams 
composition specification allows the addition or removal of activities from activity 
diagrams, as well as to join the activity sequences defined in separate activity 
diagrams. Composition can be represented in a new activity diagram that is based on 
the composed activity diagrams and the composition specification.  

UMLAUT is a framework for model composition through model transformations. As a 
framework, UMLAUT allows for many different types of model transformations. As 
such, UMLAUT facilitates many different types of composition specifications to 
describe composition. The transformation of design models results in a woven design 
that is a composite of the designs that are integrated during transformation.  

 

5.5.5 Evolvability 
In Section 2, evolvability is described as the ease of changing artefacts in an existing 
design or the ease of addition or removal of artefacts.  
 
The phrase “ease of changing artefacts in an existing design” covers a broad number of 
changes that can occur during design.  Design is based on the outputs from the 
requirements and architecture phases of software development. Changes in these 
outputs may affect the design.  
 
Design is also a specification for implementation. AOD approaches may be intended to 
be applicable to a number of implementation platforms or may target a specific 
platform. The degree to which an approach supports evolution may be significantly 
affected by the level of abstraction from the implementation platform that the approach 
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supports. We have described the level of abstraction for each approach in Section 
5.5.1. It is our intuition that AOD approaches that support higher levels of abstractions 
are more evolvable as they are less constrained by the restrictions that are enforced by 
AOD approaches that are platform specific.  
 
The level of concern separation may also have a significant affect on the evolvability 
of an approach. AOD approaches that facilitate symmetric concern separation, 
encapsulate all concerns within separate design modules. The affects of change are 
localised to that particular module. In addition, the composition specification 
describing how concerns are to be integrated may be affected by a change to a concern. 
The composition specification is based on integrating concern designs and resolving 
any conflicts that exist between these designs. Where the design of one concern is 
altered, this may have an impact on the composition specifications that are dependant 
on the areas of the design that are altered. Where all concerns are separated, addition or 
removal of concerns is also relatively straightforward, requiring corresponding change 
to the composition specification.   
 
Those AOD approaches that facilitate asymmetric concern separation, encapsulate 
crosscutting concerns within separate design modules, or aspects. Non-crosscutting 
concerns are not designed separately. Instead there is one core design and aspects are 
designed relative to the core. Within the core, non-crosscutting concerns are scattered 
and tangled, with corresponding evolution difficulties. Composition specifications 
describe how aspects are composed with the core. Significant changes to the core 
design may affect the aspects’ composition specifications. Changes in aspect design 
are not as likely to require changes to the core. Addition or removal of aspects is 
straightforward. Addition or removal of core concerns requires invasive changes of the 
existing core. 
 

Table 5-11 lists the approaches and briefly describes how each approach deals with 
changes in design and additions or removals from designs.  
 

Approach Evolvability 
 Change Addition - Removal 

Theme  

Change to a theme may require 
composition rules and related 
themes to change.  

Themes may be added or 
removed separately, requiring 
updates to the composition 
specification.  

AODM 

Changes in the core model may 
require changes in any aspect 
that are dependant on the points 
of change. Change is limited by 
the constraints of AspectJ. 

Aspects can be added or 
removed without altering the 
core. 

AAM 

Changes in an application may 
require a change in the contextual 
relationship between context free 
aspects and applications. 

Architectural aspects can be 
contextualised and added or 
aspects can be removed from 
the design.  

CoCompose 

Change in design can cause a 
need for a new implementation 
strategy. 

Features can be added or 
removed. 

SUP 

Changes to state charts events 
may require changes to any 
behaviour that was triggered by 
those events. 

Addition or removal of state 
charts can be done without 
affecting the other state charts 
that represent the remainder 
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of the system. 

AML 

Changes in either the core or 
aspect are caught in a connector 
and limited by the  constraints of 
AspectJ. 

Addition or removal of aspects 
means that the relevant 
connector must also be added 
or removed. 

TranSAT 

Changes in an application may 
require a change in the contextual 
relationship between context free 
aspects and applications. 

Architectural aspects can be 
contextualised and added or 
aspects can be removed from 
the design. 

AOCE 

Aspects are represented as 
components, change is localised 
within component. 

Components are atomic 
modules that can be added or 
removed from the design. 

UFA 
Changes in either the core or 
aspect are caught in a connector. 

Addition or removal of aspects 
means that the relevant 
connector must also be added 
or removed. 

ADT  
Change limited to 
synchronisation. 

Addition and removal limited to 
synchronisation concerns. 

UXF/a  
Changes can be made to design 
in a distributed manner. 

Additions to and removals 
from designs can be made in a 
distributed manner. 

IDAM Change is platform constrained. 
Addition and removal are 
platform constrained. 

AVA 
Sub-aspect decomposition 
reduces evolution restrictions. 

Sub-aspects that have no 
dependant aspects can be 
added or removed. 

Component 
Views 

Changes must be within the 
feasible View Components Meta-
model. 

Views can be added or 
removed. 

Meta Models 

Changes must be feasible within 
the (Open/AspectJ/HyperJ) Meta-
models.  

Addition or removal is based 
on the platform the meta 
model covers.  

AOSDUC 
Design is use case drive and 
change is isolated per use case. 

Use case designs can be 
added ore removed from the 
design. 

CAM/DAOP 
Change is supported  within the 
MDA models and transformations.

Additions can be made within 
the MDA models and 
transformations. 

Activity 

Changes in activity diagrams 
affect the activity diagrams that 
crosscut the activity diagram. 

Activity Diagrams can be 
added and removed. 

UMLAUT 

 UMLAUT allows automated 
design weaving. Changes in 
concern designs can be made 
and rewoven.  

Concern designs can be 
added and removed. Designs 
can be rewoven to reflect the 
change. 

Table 5-11: Evolvability 

The Theme approach supports the symmetric and AOP platform independent design of 
concerns identified in requirements. A theme encapsulates the design related to a 
concern. Theme composition is described through composition relationships between 
themes. The affects of change to a concerns design are localised within a theme. This 
change may or may not affect the composition relationships between the theme and 
other themes with which it will be composed.  

Themes are not dependant on one another. They are atomic representations of a 
concern in design. Because themes have no interdependence, themes can be added or 
removed without affecting other themes. Composition relationships are likely to 
change to incorporate the additions or removals. 
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The AODM was originally based on the AspectJ AOP language. Because of the close 
link between AODM and AspectJ, evolution of AODM designs may be restricted by 
the constraints imposed when mirroring the AspectJ language in design. Joinpoint 
designation diagrams have significantly weakened the association between the AODM 
and AspectJ, through providing a language independent way to model AspectJ 
pointcuts. This however does not represent a full abstraction and, as such, means that 
AODM as an approach is inherently evolutionary constrained because of its platform 
focus. 

AODM supports an asymmetric model of design. Aspects can be changed, added or 
removed from the design with minimal affect on the core design. Aspects represent 
crosscutting concerns in design. The non-crosscutting concerns are represented in the 
core design. In the core concern design is scattered and tangled making change, 
addition and removal of concerns difficult.  

The AAM asymmetric approach to AOD supports aspects designed independently of 
application context to be utilised in design. In this approach evolution is eased as pre-
existing application-independent aspects can be contextualised for a specific 
application being designed.  AAM does not focus on any particular platform and is not 
constrained to conform to any specific platform constraints.  

CoCompose is a non-UML platform neutral, symmetric and high-level approach to 
AOD.  CoCompose allows design to contain alternate implementation specifications at 
design. The design as such can evolve without platform constraints. Design elements 
that represent concerns can be added or removed with relative ease. 

SUP is a symmetric, platform neutral, state chart driven approach to AOD. Separate 
state charts are created to model the state and behaviour of concerns. Events that 
trigger a state transition in one state chart are relevant to the state charts crosscut by 
that state chart. As concern behaviour is modularised within the state chart, change is 
localised within the state chart. Crosscutting events are matched by name. The 
changing of equivalent event names must be uniform across the state charts that 
describe a system to ensure consistency during evolution. State charts can be added or 
removed from the design without affecting the other state charts.  

 In AML and UFA, the core system design and aspect design are represented 
separately. The rules for the integration of the core and aspect are defined in a design 
module separate to that of the core and aspect design modules. As such both the core 
and aspects can be changed independently of one another. The change in either must be 
reflected in the connector, which acts as a level of indirection that shields both the core 
and aspects from changes in one another. The drawback is that any change that occurs 
in either the aspect or the core system must also be reflected in the connector. AML 
specialises the UFA approach toward the AspectJ platform, with corresponding 
constraints on evolution.  

The TranSAT approach allows the addition and removal of crosscutting concerns in 
design. Like the AAM approach, application independent aspect designs can be 
integrated into core designs contextualising the concern. Aspects are removed by 
excluding an aspect design from the weaving instructions. 

AOCE is a component-based approach. Components encapsulate concerns and may be 
crosscutting or non-crosscutting.  Change is localised to a component. The addition 
and removal of components from design is facilitated.  



 231

The ADT approach is an early approach that is focused on representing 
synchronisation as an aspect in design. In this approach change, addition or removal of 
the design artefacts relating to the synchronisation concern are possible. 

The UXF approach provides a model for AO UML transfer between repositories. This 
transfer facility provides a means through which designs can be changed, artefacts can 
be added to the design and artefacts can be removed from the design in a distributed 
manner.   

IDAM approaches facilitate platform specific designs. These approaches are AspectJ 
centric and as such do not permit change outside of the AspectJ constraints.  

The AVA approach is a symmetric, platform-neutral approach to AOD. This approach 
recognises that aspects are not completely independent of one another, providing  a 
notation for expressing the dependencies between aspects. Evolution is supported, in 
that the designer can decompose aspects into sub-aspects.  Sub-aspects can be 
composed into aspects that represent a crosscutting concern. Sub-aspects localise 
changes beyond the aspect making change in crosscutting concerns easier to handle. 
The AVA approach provides a notation to describe aspectual dependency. This 
notation allows the designer to inspect aspectual dependencies. From this, the designer 
can decide what course of action to take when removing an aspect from a design or 
when adding an aspect to the design.  

The Component Views approach brings together components and viewpoints in a 
language neutral AOD approach.  Like the AAM and TranSAT approaches the 
Component Views approach allows the reuse of application independent components   
in the design of an application. The approach facilitates application evolution through 
adding behaviour and properties to application components. 

In Meta models, one meta model focuses on reflecting AspectJ and another focuses on 
reflecting Hyper/J . An abstract model provides a model for AOD that is not well 
defined and does not constrain evolution outside the scope of an implementation 
platform. In contrast, the AspectJ and Hyper/J approaches are constrained in the 
evolution that they can support as they are constrained by the AspectJ and Hyper/J 
platforms.  

The AOSDUC approach is a use case driven approach in which each use case is 
designed and implemented as a separate slice of the system. Because of this use case 
driven separation, change within the specification of a use case is localised with the 
design associated with that use case. Use cases can be added or removed from the 
system design without affecting the system design.  

The CAM/DAOP MDA driven approach provides a well-defined set of component 
based models organised in a specialisation hierarchy. There are well-defined rules for 
transforming the abstract models to concrete models. Evolutionary changes (including 
adding and removing design artefacts) can be made in abstract models and these 
models can be quickly and unambiguously transformed into more platform specific 
models.  

The Activity approach allows the symmetric modelling of behaviour modelled in 
separate activity diagrams. In this model, changes to a concern’s behaviour is localised 
within activity diagrams. New behaviour can be added to the design through the 
addition of a new activity diagram. Existing behaviours can be removed by excluding 
the corresponding activity diagram from an activity diagram composition.  
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UMLAUT supports design evolution, in that it provides a means to automate design 
composition or weaving. Concern designs can be altered, added or removed. The 
change in the design can be addressed by re-composing the concerns designs.  
 

5.5.6 Scalability 
Scalability is an important feature of any approach to design, indicating its ability to 
deal with designing large systems, as well as designing small systems.  

UML is the standard language for object-oriented design. UML is also the basis for 
most of the AOD approaches discussed in this report. Most of the AOD approaches 
that are based on the UML describe extensions to the UML to handle aspect-oriented 
design. While the UML does provide useful separation capabilities (for example, the 
designer can separate various structural views from behaviour views), it was not 
designed to handle the kinds of concern separation that are the focus of AOSD. 
Standard UML designs therefore exhibit considerable crosscutting and tangling 
properties that AOSD is designed to avoid. As designs scale, crosscutting and tangling 
gets worse, negatively affecting evolution. 

Component based design (CBD) helps reduce the size of a system’s design. CBD 
supports the system design to be decomposed into components that isolate and 
encapsulate parts of a system.  Components expose interfaces, through which the 
component can be used within the system. UML provides component diagrams to 
model components in design. Componentisation reduces the size of the core design by 
encapsulating the design within a component module usable within the core design..  
Crosscutting concerns are not modularised with CBD. 

In this report, we have characterised each AOD approach as being either symmetric or 
asymmetric. Asymmetric approaches facilitate separation of crosscutting concerns. 
Symmetric approaches facilitate separation of crosscutting concerns and non-
crosscutting concerns.  Separating concerns in design allows concerns to be modelled 
separately, with corresponding scalability benefits. 

We have further characterised each approach in terms of the levels of abstraction the 
approach supports. Although designing concerns separately avoids the problems of 
scattering and tangling,  it may be necessary to view the system as a whole, for 
verification purposes (for example).  Some design approaches provide high-level views 
of the concerns separated in design and descriptions of how concerns will be 
composed. Low-level design is detailed and does not facilitate the designer achieving a 
holistic view of the system. Low-level design is necessary to provide a guide for 
developers during design implementation.  Scaleable AOD approaches provide high-
level views of system design as well as the low level views.  

Table 5-12 lists the AOD approaches that we have investigated and briefly describes 
the scalability of the approach and also notes the proven usage of the approach in non-
trivial cases. 
 

Approach Scalability 
 General Proven usage 

Theme  

Theme allows a high level view 
of the system at a package level, 
themes are specialised 
separately. 

Scalability illustrated in the 
design of a decentralised, 
mobile, multiplayer game.  
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AODM 

Low-level AspectJ designs 
supported. Join point 
designation and indication 
diagrams provide higher level 
views. System level views are 
not provided. Scalability unproven.  

AAM 
Provides a high level package 
view of the system.  Scalability unproven. 

CoCompose 
Allows solution patterns be 
applied to augment systems.     Scalability unproven. 

SUP 

Provides a means of 
representing aspects in relation 
to objects. 

Bounded buffer example 
shows that scalability is 
limited. 

AML 

AML provides an AspectJ 
focused, connector model and 
allows integration of concerns to 
be specified within a connector.  Scalability unproven. 

TranSAT 
Provides a framework that 
promotes scalability. N/A 

AOCE Component and aspect model. 

Proven in the development of 
Serendipity-II, a large process 
management system.  

UFA 

Connector model that allows 
integration of concerns to be 
specified within a connector. Scalability unproven. 

ADT  
Limited separation of 
synchronisation concern. Not scaleable. 

UXF/a  Focused on UML interchange.  Unknown. 

IDAM 

Provides low-level design and 
does not provide a high-level 
design perspective.  Scalability unproven. 

AVA 

Provides a means for modelling 
crosscutting concerns as 
multiple aspects in design.  

Improves potential for 
scalability as aspects can be 
decomposed into sub-
aspects. 

Component 
Views 

Component views provide high-
level of the system at the 
package level. Scalability unproven. 

Meta Models  
Language neutral and language 
specific meta models.  Scalability unproven. 

AOSDUC 

Provides a holistic view of the 
system with case modules. Use 
case modules contain lower 
level designs.  

Scalability demonstrated in 
the design of a hotel 
management system. 

CAM/DAOP 
Scalability supported through a 
multi layer model of abstraction. 

Scalability demonstrated in a 
the design of a virtual office 
application.  

Activity Limited to modelling behaviour.  Scalability unproven. 

UMLAUT 
 Scalability supported through a 
multi-layer model of abstraction. 

UMLAUT has been used 
since 1998 to perform a 
variety of composition styles. 

Table 5-12: Level of Scalability 

 

The Theme approach has illustrated its scalability in the design of a large-scale 
system. As described in [152], Theme was used to design a decentralised, mobile, 
multiplayer game, of large size. Each concern (non-crosscutting or crosscutting) was 
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developed separately. Designs are composable into OO designs or can be implemented 
on AO platforms. Themes can be viewed at a high level as packages that are related 
through composition relationships. This view allows the designer to see how each 
theme contributes to the overall system.  

The AODM approach is asymmetric and supports a lower level design based on the 
AspectJ platform. It also provides views with a higher-level perspective, in the form of 
joinpoint designation and joinpoint indication diagrams. AODM does not support high-
level views that give a view of the overall system.  AODM is illustrated through 
relatively trivial examples [145,147,148].  

AAM, CoCompose and Component Views are design-focused approaches that allow 
application independent concerns to be expressed in design, and used in application 
specific scenarios. Although these approaches provide high-level views of how aspects 
are contextualised and integrated into design, they remain unproven in terms of being 
used in a large-scale project. 

The TranSAT approaches a framework with a UML notation based on JAC. It 
promotes scalability by providing a means to represent and integrated concerns a high 
level.  

SUP is a state chart driven approach to Aspect modelling in design, which is supported 
by a UML profile. This approach focuses on extracting aspects from core objects, 
illustrated with a bounded buffer example. SUP provides means to separate low-level 
behaviours. There is no higher-level system view provided. There is no evidence that 
this could be used in a large-scale project.  

AML and UFA use a connector model where the integration between design models is 
specified in a connector. These approaches support a package level view where the 
concerns and their associated concerns are represented in packages. This provides a 
high-level view of the system, hiding the lower level details. UFA is a symmetric 
approach. The AML approach applies the UFA approach to the AspectJ platform. 
AML and UFA have not been used in a large-scale project. 

The AOCE approach has illustrated its scalability in the design of a non-trivial process 
management tool, Serendipity-II [170]. The approach separates concerns into 
components and systemic components. These components and their interrelations are 
described at high component levels. Low-level component designs may be created 
separately. 

The ADT approach is limited to separating synchronisation concerns during design. As 
such, the ADT approach is not scaleable. 

The UXF approach is focused on the transfer of AO UML repositories between tools. 
This approach provides an AO meta-model. Non-trivial examples of the meta-model 
being used to create a design are not illustrated, and so Scalability cannot be 
determined. 

IDAM and the AspectJ and Hyper/J Meta-models are low-level designs. These 
approaches do not provide high-level design models, and  remain unproven in a large 
scale project.    

The AVA approach provides a high level package based view of design, where the 
entire system can be viewed. This is similar to Theme but recognises that crosscutting 
concerns can be decomposed during design into sub-aspects. This approach provides a 
scaleable means for viewing crosscutting concerns in terms of the separate designs that 
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represent the crosscutting concern and the composition dependencies that exist 
between these. 

The AOSDUC approach has illustrated its scalability in the design of a non-trivial case 
study based on a hotel management system. This approach provides a means of 
presenting a holistic view of a system in use case modules diagrams. These use case 
module diagrams are specialised into separate designs that represent the structure and 
behaviour related to that use case.  

The CAM/DAOP approach supports scalability by allowing the designer to specify 
design at various levels of abstraction. The CAM model is a high level view of the 
design that can be transformed into lower level designs that are closer to 
implementation. The approach has illustrated its scalability in the design of a large 
Virtual Office application.  

The Activity approach is demonstrated through relatively trivial examples, one of 
which is an order processing system [143]. The activity approach supports behavioural 
models, but not structural modelling. As such, it does not allow the designer to view 
how changes in behaviour may alter system structure.    

Like the CAM/DAOP approach, the UMLAUT approach focuses on model 
transformations as a means to compose concern designs. Through defining a layered 
model for transformations it is possible to support multiple levels of abstraction. 
Layering promotes scalability as high-level designs can represent a holistic view of the 
system to the designer hiding the more detailed designs. Where detail is required by the 
designer he or she can use one of the lower level design views. UMLAUT can 
potentially providing a multi-layered transformation framework for AOD.  

UMLAUT has been used since 1998 and it has been proven through its usage in 
weaving design patterns, supporting the design by contract approach, weaving model 
aspects, generating code, generating test cases and interfacing with validation tools on 
the model.  
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6. Main Contributions of AO Analysis and Design 

Having discussed and evaluated the contemporary non-AO and AO approaches to 
analysis and design, we have attempted to reveal their individual comparative strengths 
and weaknesses. Abstracting from the analysis of the individual approaches, we now 
attempt to provide a broader picture of the contributions that the aspect-oriented 
approaches provide for analysis and design. 

6.1 Contributions of Aspect-Oriented Requirements Engineering 
As it has been demonstrated in the discussion in section 3.3, the contemporary non-
aspect-oriented requirements engineering approaches have been developed to primarily 
deal with one type of concerns. For instance, PREview (section 3.3.1.1) and NFRF 
(section 3.3.2.1) have underlined the importance of non-functional concerns and 
proposed means to ensure their fulfilment in a system. Problem Frames (section 3.3.3) 
and Use Cases (section 3.3.4), on the other hand, have focused on ensuring the 
required functionality of the system.  

Aspect-Oriented approaches, such as Concern Modelling with Cosmos (section 
3.4.4.1), and CORE (section 3.4.4.2), in contrast propagate the idea that all types of 
concerns are equally important and should be treated consistently, and non-
discriminatively. Thus, the first contribution of AORE is recognition of the need for 
equal treatment of functional and non-functional concerns. 

Further on, while some contemporary non-AO approaches (e.g. NFRF, PREview) have 
recognised that non-functional requirements are characterised by their broad influence 
on other requirements, they do not consider the similar broad influence of some 
functional requirements. Aspect-Oriented approaches (e.g., Theme/Doc, section 
3.5.2.1, and CORE, section 3.4.4.2) have brought this fact to notice. The second 
contribution of the AORE is the recognition that both functional and non-functional 
requirements can have a broad crosscutting influence on other requirements. 

Having acknowledged the importance of functional and non-functional crosscutting 
and non-crosscutting concerns, the AORE work has adopted the early separation of 
concerns principle: it should be possible to study each concern/requirement separately, 
on its own. In AORE the separation principle is complemented by the composition 
principle: it should be possible to compose each concern/requirement with the rest of 
the concerns/requirements of the system under construction to understand interactions 
and trade-offs among concerns.  

Though most non-AO approaches have recognised that requirements have influence on 
each other, the issue of Requirements-Level Composition had not been investigated 
before AO. Composability – the support for combining individual requirements into 
coarser-grained requirements (as provided, for instance, by AORE with Arcade, 
section 3.4.1.1) – is the central notion of AORE. Using the AO terminology, this 
support should include a well defined joinpoint model and composition semantics. The 
joinpoint model exposes structured points through which requirements can be 
composed. The composition semantics provide systematic meaning to the composition.    

Composability allows not only reviewing the requirements in their entirety, but also 
detection of potential conflicts very early on in order to either take corrective measures 
or appropriate decisions for the next development step. The composed requirements 
also become valuable sources of validation for the complete system [57]. Thus, the 
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third contribution of AORE is that of the notion and mechanism for requirement 
composability. 

A contribution related to the composition support is that of trade-off resolution in cases 
of conflicts and inconsistencies. This is not a new property in requirements engineering 
(for instance this is addressed as risk vs. cost analysis in the Viewpoints and 
Inconsistency Management approach, section 3.3.1.2). Nevertheless, AORE has 
highlighted the possibility of trade-off  identification though composition,  the need for 
trade-off resolution and decision support, and underlined the importance of its 
systematic and traceable treatment; this is the fourth contribution of AORE. 
Another contribution of AORE is the provision of mapping and influence detection 
support of the requirement-level concerns to the concerns at later lifecycle stages. This 
again, is not a new concept in requirements engineering, but AO has revealed a new 
dimension here as well, by providing support for decisions as to if a requirement will 
map to another crosscutting artefact at the later stages, or will be absorbed by a 
decision, or turned into a local method/function, etc.  

6.2 Contributions of Aspect-Oriented Architecture Design 
 Although the number of aspect-oriented architecture design approaches is limited, we 
can still infer several important contributions of aspect-oriented concepts at the 
architecture level. First of all, DAOP-ADL has shown the feasibility of using an 
aspect-oriented ADL. More importantly, the DAOP-ADL architecture descriptions can 
be reified for runtime manipulation hence supporting traceability of architectural 
choice to implementation aspects. The Perspectival concern space framework has 
demonstrated that multidimensional separation of concerns can provide additional 
support for evaluating software architectures. AOGA has shown how to identify 
aspects in the domain model and map these to architecture artefacts. In particular 
identifying aspects using feature diagrams might be of interest for designing aspect-
oriented product line architectures. It should be noted that the software architecture 
design community has now an increasing consensus on the separation of the various 
architectural views. The represented aspect-oriented architecture design approaches 
could be used to enhance the different architectural design views with an aspectual 
view for representing the aspects.  

There is still some work to do on the process level. The approaches that have been 
considered define a particular process but it is not clear yet how to generalise these 
altogether. However, the process provided in AOGA integrates generative and aspect-
oriented approaches and could be of interest for product line engineering or even 
model-driven architecture design approaches.  

There are no aspect-oriented architecture analysis approaches except ASAAM. 
ASAAM uses scenario-based approach to identify aspects during architecture design 
and could be adopted for an architecture redesign or refactoring process. ASAAM 
could also be applied to analyse the quality of an aspect-oriented architecture. 

 

6.3 Contributions of Aspect-Oriented Design 
As with systems in any programming paradigm, aspect-oriented systems need to be 
designed with good software engineering practices in mind. The design of a system is 
at least as important as the implementation itself, indeed, perhaps even more important. 
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As described previously in this document and elsewhere, systems that are not designed 
using aspect principles exhibit scattering and tangling properties that have considerable 
negative impact on good software engineering practices. These properties are manifest 
in many, if not all, stages of the development lifecycle. In particular for this section, 
significant benefits can be derived from applying aspect-oriented techniques to design 
artefacts.  

In the infancy of aspect orientation, developers simply used object-oriented methods 
and languages (such as standard UML) for designing their aspects. This proved 
difficult, as standard UML was not designed to provide constructs to describe aspects: 
Trying to design aspects using object-oriented modelling techniques proved as 
problematic as trying to implement aspects using objects. Without the design 
constructs to separate crosscutting functionality, similar difficulties in modularizing the 
designs occur, with similar maintenance and evolution headaches. At a high level, the 
main contribution of aspect-oriented design has been to provide designers with explicit 
means to model aspect-oriented systems, deriving software engineering quality 
properties as a result. 

In particular, this breaks down into a number of sub-contributions. Aspect-oriented 
design provides a means for the designer to reason about concerns (whether they are 
crosscutting or not) separately, and to capture concern design specifications 
modularly.  In so doing, the system’s design does not exhibit scattering and tangling 
properties that contradict software engineering quality principles. Where there is 
modularisation, there must also be a means to specify how those modules should be 
composed into the full system design. Aspect-oriented design provides a means to 
specify how concern modules should be composed. This includes both a means to 
specify how to compose concerns at a later stage of the development cycle, and also a 
means to compose concern design artefacts. In this manner, the designers can choose 
whether to move to an object-oriented or an aspect-oriented programming paradigm. 
When composing concern designs, or specifying how concerns should be composed at 
a later stage of the development lifecycle, it is likely that there are points of conflict or 
cooperation between some concerns to be composed. Aspect-oriented design provides 
a means to specify how to resolve conflicts between concerns and to specify how 
concerns cooperate.  Such conflict or cooperation specifications will guide the 
composition process.  

The design task of the development process supports and is supported by other tasks in 
the development process, such as requirements analysis, architecture design and 
implementation. As such, it is important that it is clear where design artefacts fit into 
this support structure. A significant contribution of aspect-oriented design is the extent 
to which there is traceability of concerns to lifecycle stages both preceding design, and 
post design. Such traceability increases the comprehensibility and maintainability of 
the system. In addition to traceability of concerns, aspect-oriented design provides a 
mapping of the constructs used in design to those used by lifecycle stages both 
preceding design and post design, further enhancing the traceability.  
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7. Emerging AO Analysis & Design Processes  

The main purpose of this document is to carry out a survey of the current state of the 
art in the AO analysis and design (as presented in the earlier sections). However, this 
document is also intended as the basis for further work on development of an 
integrated AO analysis and design approach, synthesising the work of AOSD-Europe 
project partners. This section outlines the initial process models, for each stage of 
analysis and design, that have emerged from the discussion and comparisons earlier in 
this report.  

7.1 Emerging Requirements Engineering Process: 
As a necessary minimum, the future emergent requirements process must provide the 
most important features of Aspect-Oriented Requirements Engineering, as discussed in 
section 6.1, i.e.: 

• Equal treatment of functional and non-functional requirements (or, more 
precisely all concerns); 

• Identification and treatment of crosscutting requirements of both functional and 
non-functional type; 

• Good support for requirement composition and trade-off resolution; 
• Support for mapping and traceability to artefacts at later development stages. 

 
An initial outline of such a process is presented in Figure 7-1. 
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Figure 7-1 : The Emerging Aspect-Oriented Requirements Engineering Process. 

The process commences with the Concern Elicitation step, where the requirements 
engineer establishes what are the issues of interest to the stakeholders, i.e. their 
concerns with respect to a given software system. This can be done through 
discussions with the stakeholders, interviews, ethnographic observation, etc. and 
complemented by guidelines such as the meta concern space described in section 
3.4.4.2.  The outcome of this stage is an initial list of broad stakeholder concerns (e.g., 
data retrieval, security, etc.). 
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This is followed by Concern Identification where the elicited concerns are elaborated 
(e.g., by using NFR catalogues we can define what does security concern imply, etc.). 
Tool support, e.g., the NLP-based concern identification tool or Theme/Doc (described 
in sections 3.4.1.1 and 3.5.2.1 respectively) can be very helpful in this regard. The 
identified concerns are represented at the Concern Representation stage (e.g., as goal 
and softgoal graphs, or viewpoints, themes, etc.). 

Simultaneously the concerns are refined and further elicited, identified and represented 
iteratively. When sufficient concerns are represented, the Composition stage gets 
initialised. At this stage concerns are composed and the outcome of the composition 
serves as the basis to identify conflicts between them. These conflicts are resolved 
through the Trade-Off Resolution stage, with the iteration cycle of refinement, 
elicitation, identification, and representation continuing all the while.  

When a relatively stable set of requirement representations and compositions is 
achieved, the Requirement Mapping stage commences, where a set of guidelines is 
applied to help to turn requirements into architectural and design representations. The 
mapping onto architectural decisions should begin as requirements start to become 
clearer e.g., as in the TwinPeaks model [192] to ensure that the architectural choices 
reflect the stakeholders’ concerns. This is essential because, as discussed in section 
3.4.4.2, the concerns at the requirements level and their compositions drive the 
architectural choices pulling the architecture in various directions. It is essential that 
the final chosen architecture is at an optimal point with regards to the stakeholders’ 
concerns. 

 

7.2 Emerging Architecture Design Process 
From the discussion of architecture approaches, we can observe an outline aspect-
oriented architecture design process emerging. This process (shown in Figure 7-2) 
mainly draws upon AOGA, TranSAT and ASAAM. More specifically, the process: 
• takes as input the requirements specification, requirements-level aspects and 

associated trade-offs as input; 
• identifies additional architectural aspects (or refining existing requirements level 

aspects) via domain analysis;  
• model the architecture, e.g., by using an approach such as DAOP-ADL, AOGA or 

TransSAT; 
• utilises architecture evaluation, e.g., as in ASAAM, to identify additional aspects 

and undertake refactoring if needed; 
• continuous re-evaluation and composition of new architecture plans based on 

previous architecture analysis and evaluation steps, e.g., as in TranSAT; 
• mapping of the architectural decisions to design and implementation, e.g., as in 

methods such as AOGA and DAOP-ADL. 
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Requirements-level concerns, trade-offs and decisions

Refine RE-level concerns 
(aspectual and non-aspectual)

Identify additional architectural concerns
(aspectual and non-aspectual)

Domain Analysis

Model architectural concerns

Architecture evaluation

Architectural Refactoring
Re-evaluation and composition
of Architectural Plans

Mapping to Design and Implementation
 

Figure 7-2: The Emerging Aspect-oriented Architecture Process. 

 

7.3 Emerging Design Process 
As discussed in the AO Approaches section, some of the AOD design processes break 
design into separate tasks. For instance, the UFA and AML models separate design and 
specification, etc. Other approaches break design process into a number of phases. The 
best example of this is the CAM/DAOP approach. Here the high level design is 
elaborated into low level designs that can be implemented. Because  with CAM/DAOP 
the design process is staged, there is an opportunity to specialise the design toward 
different implementation platforms.  

Besides, we noted that some approaches separate design from composition (e.g., 
Theme/UML) while others do not support design model composition, and instead defer 
the composition until the implementation phase. We have also discussed that 
separating the design and composition into two tasks promotes reuse and provides the 
designer with a clearer view on the effects of composition. 

With the knowledge of the above, we envisage an AOD process that separates the 
design process into tasks and phases, as well as allowing the designer to test their 
composition specifications through design-time composition. Our emerging design is 
described in Figure 7-3. 
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Figure 7-3: The Emerging Design Process. 

Our process begins with refining the architecture into a high level design.  There are 
three design phases - high, middle and low. High level designs are abstract and without 
detail, middle level designs are more detailed but platform independent, while low 
level designs are platform specific. During each design phase there are three things a 
designer needs to model – components, aspects and composition specifications. 
Components model concerns that are not crosscutting, and aspects model crosscutting 
concerns. Composition specifications describe how components and aspects are to be 
composed. 

The design process is then a process of refinement between defined models of different 
levels. This process is intended as a “skeleton process” which can be specialised or 
extended to support different design models. Figure 7-4 illustrates how using the 
variations on the same process, different design models can be supported by our design 
process. 
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Figure 7-4: The Emerging Design Process. 
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8. Research Agenda to Be Addressed via Integration of 

Techniques 

In the above section on Emerging AO Analysis & Design Process we have provided an 
outline of our initial integrated process. But what are the issues of immediate 
importance that we need to address in order to realise that process? It is this question 
that we address in the present section.  

8.1 Outline of the Road to Integration – Requirements Engineering 
It is fortunate that the main AO approaches to be integrated (namely Theme/Doc, 
AORE with Arcade, CORE) are complementary in a number of ways. While AORE 
with Arcade mainly focuses on broadly scoped (seemingly) non-functional concern 
treatment, Theme/Doc concentrates on behavioural (thus mainly functional) concern 
treatment. Besides, the latter approach applies after the requirements specification 
document is produced, while the former one can assist in its production. CORE, on the 
other hand, is focused on developing powerful composition and trade-off analysis 
mechanisms from a multi-dimensional perspective. The concern projection 
mechanisms in CORE as well as the guidelines on driving architectural choices from 
the projections and associated trade-off analysis can complement the treatment of non-
functional and functional concerns in AORE with Arcade and Theme/Doc respectively. 

An important question to be addressed by the integrated approach is: can aspects help 
in requirement discovery from the very beginning of the RE process? This question can 
be addressed through integration and use of the semantic analysis-based natural 
language processing work [59], which is based on AORE with Arcade, as well as the 
use of the meta concern space in CORE for eliciting concerns. 

Following requirements discovery, the AORE with Arcade approach can be used to 
deal with requirements elaboration and non-functional crosscutting concern treatment 
(including composition and tradeoffs support). Possibilities of functional concern 
treatment with AORE with Arcade should also be investigated. Interesting insights can 
be provided here from the work on CORE; recall that CORE treats both functional and 
non-functional concerns in a uniform fashion and has powerful concern influence 
projection and trade-off analysis mechanisms. Following this, the first draft 
requirements specification document should emerge. 

At this stage the Theme/Doc approach can be applied to identify any further 
crosscutting functional requirements and to improve the structure of the specification 
document. Theme/Doc also possesses visual modelling capabilities for requirements 
level aspects which can form a useful mechanism within an integrated AORE 
approach. 

Once the requirements have been effectively represented, AORE with Arcade approach 
and CORE could be used again for making decisions about mapping crosscutting 
concerns to decisions, functions or aspects. Finally, the appropriate mapping to design 
can be done, producing either Theme-style, or other AO style designs. 

We can observe from the above discussion that there are a range of complementary 
capabilities in the three main AORE approaches to be integrated. At the same time 
there are significant challenges in terms of the underlying models, e.g., multi-
dimensional modelling in CORE compared to the two-dimensional base-aspect models 
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in Theme/Doc and AORE with Arcade. Furthermore, though AORE with Arcade and 
CORE have similar composition mechanisms, the composition models differ greatly. 
The former is based on composing aspects with reference to a set of base viewpoints 
while the latter composes concerns in a multi-dimensional concern space. Theme/Doc, 
n the other hand, chooses to delay composition till the design stage. Traceability and 
mapping of the concerns within a requirements engineering process is also an 
interesting challenge due to the differing perspectives, foci and underlying 
representations used by the three approaches.  

In summary, though we can observe some complementarities amongst the approaches 
to be integrated, there are also a range of interesting and challenging research issues to 
be addressed for such an integration to be effective. These research challenges will be 
one element of our future work (other elements being similar research challenges in 
integrating the AO architecture and design approaches) in the AOSD-Europe Analysis 
and Design lab. 
 

8.2 Outline of the Road to Integration – Architecture Design 
We can observe from the emerging aspect-oriented architecture design process in 
Section 7.2 that the various approaches from AOSD-Europe partners to be integrated, 
namely, DAOP-ADL, TranSAT, AOGA and ASAAM have a number of 
complementary features. For instance, AOGA and TranSAT can be employed for 
identifying architectural concerns and refining requirements-level concerns. DAOP-
ADL, TranSAT and AOGA can all be used for architectural modelling. ASAAM and 
TranSAT can be used for architectural evaluation and informing refactoring decisions. 
Finally, AOGA and DAOP-ADL can be used to map architectures to detailed design 
and implementation and maintain traceability of architectural choices and decisions to 
the final system implementation. Similarly, some approaches, e.g., ASAAM and 
AOGA have Eclipse-based tool support. 
At the same time, there are a number of interesting integration challenges. For 
instance, DAOP-ADL, TranSAT and AOGA each offer different architecture 
modelling mechanisms. Integration of these different modelling techniques is a 
significant challenge. It is helped by the fact that the modelling approaches are based 
on UML or its extensions. Nevertheless the different modelling abstractions employed 
pose significant integration bottlenecks to be addressed in the development of the 
integrated aspect-oriented architecture design approach in the AOSD-Europe Analysis 
and Design Lab. Similarly, ASAAM provides architecture evaluation capabilities but 
these are poorly related to the earlier architectural activities of concern identification 
and architecture modelling. The architecture composition mechanisms in the various 
approaches also differ considerably to pose interesting research issues during the 
development of the architecture composition mechanism for the integrated approach. 

8.3 Outline of the Road to Integration – Design 
As described in this document, there are many emerging approaches to aspect-oriented 
design, at varying stages of maturity. In general, they can be categorised as approaches 
that complement each other (i.e., provide for different requirements of aspect-oriented 
design), or approaches that overlap (i.e., provide for broadly similar requirements of 
aspect-oriented design in a different manner). In recognition of the emerging 
requirements for an overall aspect-oriented development methodology, integration of 
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design methods must maintain a degree of flexibility as to the level of support for an 
aspect designer in the use of any available design method. 

The road to integration should therefore include an investigation of the points of 
complement and overlap of each of the design approaches. Where there is complement, 
integration involves specification of heuristics and guidelines for combined usage to 
cover a maximum set of requirements for aspect-oriented design. Where there is 
overlap, integration involves specification of recommendations for further research 
into potential merging of approaches, together with guidelines for flexible usage of 
different approaches, as required by the aspect-oriented development methodology. 
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9. Conclusion 

In this report we have surveyed a range of representative contemporary non-AO 
approaches to analysis and design and a comprehensive set of the significant AO 
approaches. We have discussed that, in many cases, the AO approaches have built on 
the strength of the non-AO approaches, but also aimed to address the previously 
overlooked issues of modularising crosscutting concerns. 

We have discussed each presented approach based on a set of general criteria that 
reflects desirable properties of any software engineering approach, namely: 
traceability, composability, evolvability and scalability. From this we can conclude that 
generally traceability is improved due to modular representation of crosscutting 
concerns, and so are evolvability and scalability. The composability criterion, on the 
other hand, requires additional composition operators and procedures (e.g., design 
artefacts) when used with modularised crosscutting concerns, but also brings to light 
previously unexplored issues e.g., composition of requirements-level and architectural 
concerns and conflict detection through composition. 

Further on, from the discussion of non-AO and AO approaches we have distilled the 
main contributions of the AO paradigm in the areas of requirements engineering, 
architecture design and detailed design.  

For requirements engineering the main contributions are the equal treatment of 
functional and non-functional concerns, identification and treatment of crosscutting 
requirements of both functional and non-functional nature, provision of support for 
requirement composition and subsequent conflict detection and trade-off resolution, as 
well as support for mapping and traceability to artefacts at later development stages. 

For architecture design the main contribution is the explicit treatment of crosscutting 
concerns during architecture modelling and evaluation, hence resulting in architectural 
choices that better reflect the stakeholders’ decisions during requirements engineering 
and mapping and traceability of these choices to the detailed system design and 
implementation.  

For detailed design these contributions mainly relate to support for modular 
representation of multiple types of concerns (e.g., non-functional, functional, 
crosscutting) and their composition, thus advancing such quality factors as traceability, 
understandability, maintainability, etc.  

From this survey already some initial AO processes have emerged for requirements 
engineering, architecture design and detailed design stages of the software lifecycle. 
These are presented in section 7, yet it is clear that further research is needed into 
unification and integration of these processes into a complete AO analysis and design 
process. Such an integrated process will also form a valuable input into the integrated 
AOSD methodology to be developed as part of the Atelier for AOSD within AOSD-
EUROPE. 

We have also gained some initial insight into the challenges of integrating the work of 
our project partners. Some of such key challenges are reconciliation of differences 
between symmetric and asymmetric approaches, preservation of traceability within and 
across development stages and integration of multi-dimensional and two-dimensional 
approaches.  These, along with other challenges, discussed in section 8 of this report 
will form the basis of our further work within the AOSD-Europe Analysis and Design 
Lab. 
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