
Sustainability Debt: A Metaphor to Support
Sustainability Design Decisions

Stefanie Betz∗, Christoph Becker† ‡‡, Ruzanna Chitchyan‡, Leticia Duboc§,
Steve M. Easterbrook†, Birgit Penzenstadler‖, Norbert Seyff∗∗

x
, Colin C. Venters††

∗Karlsruhe Institute of Technology, Karlsruhe, Germany, stefanie.betz@kit.edu
†University of Toronto, Toronto, Canada, {christoph.becker@utoronto.ca; sme@cs.toronto.edu}

‡Department of Computer Science, University of Leicester, UK, rc256@le.ac.uk
§State University of Rio de Janeiro, Brazil, leticia@ime.uerj.br

‖California State University Long Beach, USA, birgit.penzenstadler@csulb.edu
∗∗University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland, norbert.seyff@fhnw.ch

††University of Huddersfield, Huddersfield, UK, c.venters@hud.ac.uk
‡‡Vienna University of Technology, Austria

x
University of Zurich, Switzerland

Abstract—Sustainability, the capacity to endure, is funda-
mental for the societies on our planet. Despite its increasing
recognition in software engineering, it remains difficult to assess
the delayed systemic effects of decisions taken in requirements
engineering and systems design. To support this difficult task, this
paper introduces the concept of sustainability debt. The metaphor
helps in the discovery, documentation, and communication of
sustainability issues in requirements engineering. We build on the
existing metaphor of technical debt and extend it to four other
dimensions of sustainability to help think about sustainability-
aware software systems engineering. We highlight the meaning
of debt in each dimension and the relationships between those
dimensions. Finally, we discuss the use of the metaphor and
explore how it can help us to design sustainability-aware software
intensive systems.

Index Terms—metaphor; sustainability; debt; design decisions;
requirements

I. INTRODUCTION

Software Engineers are beginning to understand the impor-
tance of designing sustainability-aware software systems [1],
[2], and initial attempts have been made to explore the role of
sustainability in software system design (e.g. [3], [4], [5]).
Sustainability matters for all software systems, even if the
application domain of the system is not related to sustain-
ability, because any new software creates dependencies and
obligations as it becomes part of our technical infrastructure,
and its on-going use may entail new burdens on social and
ecological systems.

Sustainability design is a systemic concept, as it addresses
effects that play out in a number of different dimensions, at
different levels of a system, over multiple time scales [6].
Because of this, the design process involves trade-offs, in
which decisions that improve the perceived success of the
software on some level may reduce its overall sustainability
in other ways - for example, meeting a release deadline
might have an unacceptable impact on the well-being of the
development team, or the decision to use a cheaper technology

platform might greatly decrease the energy efficiency of a
software service. While sustainability is not necessarily in
competition with other attributes [3], if these trade-offs are
not considered explicitly during the design process, the overall
sustainability of the system may suffer. Although software
developers are increasingly aware of sustainability as an issue
to be addressed, it is currently still challenging to identify and
communicate the rationale for sustainability design, especially
because of the inherent systemic effects of design decisions.

This paper offers a step forward to support software en-
gineers in sustainability design thinking by introducing a
new metaphor: sustainability debt. We start from the idea of
technical debt, which has proved to be a powerful metaphor
for discussing technical and economic trade-offs in software
engineering [7]. However, discussion of technical debt has
been limited to the trade-offs between current design effort
and future software maintainability, which means it focuses
primarily on a potential burden for the software development
team itself, in the future. By re-framing the metaphor around
our broader obligations to society and to future generations,
we develop a way of thinking that encourages explicit consid-
eration of these obligations during the design process.

We explore what the idea of sustainability debt means, what
it entails, and how this metaphor can be used to identify and
communicate about effects of software design decisions on
sustainability. Based on that, we identify key questions around
how we incur and manage sustainability debt. Finally, we
discuss the limitations accompanying the use of a metaphor.

II. BACKGROUND

A. Sustainability Design

Sustainable development is defined by the UN World Com-
mission on Environment and Development [1987] as ”devel-
opment that meets the needs of the present without compro-
mising the ability of future generations to meet their own

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic purposes.



needs”. In identifying what those needs are, we can examine
sustainability with respect to five interdependent dimensions:
economic, social, environmental, technical, and human, with
the insight that there are both short- and long-term concerns in
each dimension [3]. Environmental sustainability is concerned
with safeguarding the ecological systems and natural resources
that enable life to flourish on planet earth. Social sustainability
is concerned with building trust and equity within society.
Economic sustainability is concerned with ensuring ongoing
prosperity. Individual sustainability is concerned with the
freedom, wellbeing and fulfillment of individuals, and finally,
technical sustainability is the long-term maintenance and of
our technical infrastructures, including software-intensive sys-
tems [4].

For software, sustainability includes, for example, the car-
bon footprint of a software-intensive system during develop-
ment and use (environmental dimension), how the software
changes the ease with which we communicate with one
another (social dimension), the level of stress a newly imposed
software system imposes on the stakeholders (individual di-
mension), the maintainability of the software itself (technical
dimension), and the health of the business relationship of
the vendor and buyer of the software system (economical
dimension).

Because of the central role that software-intensive systems
now play in society, software engineering carries a crucial
responsibility. Consequently, in addition to values like cost,
time, safety, reliability, and so on, we must add sustainability
as a goal when designing software. Sustainability has been
described as “ethics smeared out in space and time” [8].
For software engineers, sustainability design means taking
seriously our broader ethical responsibilities, not just to avoid
direct harm that might arise from our software, but also to
avoid creating systems that may harm future generations,
or degrade the environment in which they live. Thus, when
practicing sustainability design in software engineering, one
must address sustainability explicitly. To do so, we need to
raise awareness and help to understand sustainability and its
importance in and for software engineering as well as to
discuss the sustainability effects and their inter-dependencies
on multiple time-scales.

B. Systemic Effects in Software Systems Design

In the context of sustainability, it is very important to
explain and understand the different levels of effects software
systems can have on sustainability. These can be classified as:
direct effects, enabling effects, and structural effects [9], [10]:

• Direct (or ‘first order’) effects are concerned with the
immediate impacts resulting from the production, use and
disposal of software systems. This can be measured using
metrics based on performance requirements or network
bandwidth for example. The direct environmental impact
is quite often measured using the Life Cycle Assessment
(LCA) [11].

• Enabling (or ‘second order’) effects are concerned with
the benefits and impacts of ongoing use of the software

system. This might be for example how a web search
engine reduces the cost of access to information.

• Structural (or ‘third order‘) effects are concerned with
changes resulting from the use of software systems by
a very large number of people over medium to long
term, leading to substantial changes in societal structures
such as new laws, politics, or social norms, or economic
structures such as the networked economy.

Any system will exhibit such effects over multiple timescales
in each of the dimensions [3]. Thus, when designing a system
we need to take sustainability dimensions and effects into
account. These different dimensions and effects over multiple
timescales are interdependent. Changes in one dimension
frequently lead to effects over multiple timescales in the
different dimensions. Some of these effects are hidden and
may show themselves only on the long run. For example, we
might think were doing fine in one dimension - economic,
say, as we launch a software company with a sound business
plan that can make a steady profit - but often we do so only
by incurring a debt in other dimensions, perhaps harming the
environment by contributing to the mountains of e-waste, or
harming social sustainability by replacing skilled jobs with
subsistence labour. Thus, it is important to make sustainability
effects visible, and to be able to decide what is the most
effective way to make a system sustainable. For example, we
need to compare alternative actions and consider opportunity
costs in sustainability design.

However, when taking decisions in the process of require-
ments analysis and systems design, it is often very difficult to
understand the effects of these decisions. The systemic effects
are often remote and dispersed and manifest only over time.
The lack of visibility of such effects makes it very difficult to
identify the hidden impact of system design decisions in the
requirements process and in systems design. Yet, these effects
are very real, and identifying them starts with understanding
the requirements for the system: For example, the inclusion of
a particular stakeholder in the elicitation process may have far-
reaching consequences about the goals and objectives that are
identified, the types of scenarios that will be explored, and the
success criteria that will be specified. The systemic nature of
sustainability makes it challenging to identify possible risks,
trade-offs and effects, and hinders effective communication
across diverse stakeholders. This makes it difficult to discover,
document, and communicate issues of sustainability as part of
RE and throughout systems design.

C. The Metaphor Technical Debt

Debt is usually thought of as a financial tool to facilitate
economic transactions over time: For example, it enables
prospective home owners to buy property without possessing
the full funds, at a certain cost (the interest).

A more detailed definition is given by Ampatzoglu et al. [7],
who provide a glossary of terms for technical debt grounded in
financial terminology. In this more formal view, debt is “used
to describe the amount of money owed by one party (debtor or
borrower) to another party (creditor or lender). The certain



amount of money derives from a loan, which denotes that the
money has been lent by the creditor to the debtor for a specific
period of time. The obligation of the debtor is to repay a
larger sum of money to the creditor at the end of that period
[28]. The original amount of money borrowed is called the
principal, while the additional amount paid back constitutes
the interest.“ [12] Hence, financial debt implies at least the
recognized existence of a debtor, a creditor, and a contractual
obligation of the debtor to the creditor that is more or less
quantified, and (usually) an identified period of time.

This set of financial models and relationships grounds the
metaphorical use of debt in clearly defined terms and points
to a range of typical activities and transactions that arise
when handling debt. We can attempt to apply financial and
economic models such as using interest rates to quantify the
future value of a current action and furthermore, to identify,
measure, prioritize, repay, and monitor debt [13]. Finally,
we can distinguish between intentional actions of taking on
debt for strategic reasons and unintentional consequences of
careless or reckless decisions [14].

To help think about the technical sustainability of software
systems and consider opportunity costs, the metaphor of
technical debt has been introduced [15]. Originally coined in
an experience report, it is based on the idea that software
engineers sometimes intentionally or unintentionally generate
“debt” in one area (e.g. software quality) to meet the needs
of another area (e.g. a deadline) and underestimate the long-
term consequences of their decisions. Metaphors are about
“understanding and experiencing one kind of thing in terms
of another.“ [16]. They structure something that is less clearly
understood (such as time) in terms of another kind of thing
of which we have a clearer grasp (such as money). Contrary
to common thought, metaphors are fundamental cognitive
tools that we use to form the conceptual models we use for
understanding the world [16]. The technical debt metaphor
helps software engineers to understand these trade-offs and
communicate about them. Furthermore, it helps us to identify
temporal effects of designing and developing a system the
cheap and easy way, without thinking about consequences, by
thinking about a technical “loan” we take on and the “interest”
we will pay depending on the amount of that loan and the
conditions we will find ourselves in. Being able to quantify
these costs enables us, in theory, to take more conscious, well-
informed decisions based on a cost-benefit trade-off.

Technical debt has been applied and elaborated over two
decades, and a considerable amount of theory and empirical
evidence has been accumulated that stands testimony to its
usefulness as a metaphor: see, for example, the IEEE Software
Special Issue on Technical Debt [7] and the ongoing workshop
series on Managing Technical Debt (MTD) starting from
2010 [17]. Nevertheless, there is still a lack of theoretical mod-
els, methods and practical tools to identify, measure, manage,
and reason about technical debt in software engineering [7].

III. SUSTAINABILITY DEBT

A. Introducing Sustainability Debt

We propose the concept of sustainability debt as a general-
ization of technical debt, and as a metaphor for thinking about
negative effects of software systems in the five sustainability
dimensions. This metaphor re-casts what to many people is
a very difficult and abstract concept (sustainability and the
delayed effects of our design decisions) in terms of a concept
we have a clearer conceptual structure for (debt). This enables
us to bring multiple strands of thoughts together, and explore
the implications for concrete requirements activities conducted
as part of software and systems engineering.

To extend Ward Cunningham’s concept of “technical debt”
we offer the following working definition, inspired by
Kruchten [7] and Hilty [18]:

“Sustainability debt is the hidden effect of past deci-
sions about software-intensive systems that negatively affect
economic, technical, environmental, social, and individual
sustainability of the system under design. Effects in these
dimensions can manifest themselves on three different levels:
(1) the direct effects of the software system production and
use; (2) enabling effects that arise from the ongoing use of
the software system, and (3) systemic changes caused by the
use of the software system on a larger scale over time.“

B. The Five Sustainability Debts

Considering the multi-faceted nature of sustainability, we
need to take into account inter-dependencies between the
different sustainability dimensions. A change in one dimension
might have a negative hidden impact in other dimensions. At
the same time, we need to be careful not to think that we can
exchange and transfer value between dimensions at will; many
of these issues are not commensurate and cannot be compared
directly.

We therefore argue it is important to assess sustainability
debt separately in each of the five dimensions:

• Economic Sustainability Debt is the hidden effect of
decisions about a software system that negatively affect
time and cost. It is closely based on the well-known
concept of financial debt.

• Technical Sustainability Debt is the hidden effect of
decisions about software that negatively affect the soft-
ware system itself, such as the understandability and
maintainability of the code.

• Environmental Sustainability Debt is the hidden ecolog-
ical burden that arises from the lifecycle of a software
system from its creation to its disposal. This includes the
demand for resources and energy and the generation of
pollution and wastes that arise from the systemic effects
of its ongoing use.

• Social Sustainability Debt is the hidden effect of deci-
sions about software that negatively affect social justice,
equity, and fairness, or which lead to an erosion of trust
in society.



• Individual Sustainability Debt is the hidden effect of past
decisions about software that negatively affects individual
freedom and fulfillment by imposing constraints and
restrictions on individual stakeholders.

The relationships between these dimensions and how they
affect the overall sustainability debt is complex - influences
might be reinforcing or canceling each other out. Also,
incurring a debt in one dimension can have an effect on
any of the other dimensions. We know that we cannot list
and explain them in full detail, even more so as we cannot
know all of them. Nevertheless, it is important to mention
that sustainability debt is more than just the sum of the five
dimensions debts because of the inter-dependencies between
them.

We are neither claiming that is possible to measure one
overall sustainability debt nor that it is possible to express the
debt in each dimension in monetary terms. Many of the factors
in the dimensions other than financial represent externalities
in the economic system, and they are treated as externalities
because its remarkably hard to agree on how to price them:
How do you put a value on a human life? On a walk in the
forest? On freedom?

Thus, we seek appropriate measurable indicators of the level
of debt within each dimension, but we do not attempt to seek a
direct translation of the measures between dimensions. Instead,
we suggest to assess the trade-offs qualitatively, through a
participatory approach including stakeholders.

We next describe each of these debts in detail.
1) Economic Sustainability Debt: Economic debt is directly

based on financial debt - the hidden effect of past decisions
about software that negatively affects time, costs and other
economic issues. As such, it primarily focuses on assessing
financial aspects such as software development costs, and
many of these are already at the focus of decisions in software
engineering [19].

However, we consider economic debt to go beyond basic
financial aspects and to also look at broader economic aspects
and values.

Key concepts in this area include Net Present Value (NPV),
an attempt to measure the economic value of a software
product, and the Total Cost of Ownership (TCO) of a software
system. Other models help to measure trade-offs and make de-
cisions about future developments: This includes Real Options
Analysis, opportunity costs and other financial mechanisms.
Finally, Value-Based Software Engineering [20] is an attempt
to broaden the economic perspective of values in SE.

Virtually all decisions taken during software development
have an impact on the economic dimension of sustainability in
that they require effort and resources. The following example
highlights specific situations that we can conceive of as
intentionally taking on economic debt:

• In order to follow the idea of sustainability design, the
designers of a supply chain system may want to involve
a larger group of stakeholders within requirements elic-
itation, including community members, service delivery
companies and suppliers. They may also want to apply

a wider range of techniques that help to identify goals
and risks in all dimensions of sustainability, such as a
reference sustainability goal model [4]. This will increase
the immediate costs of requirements analysis for the
intended benefit of a system that is perceived as more
valuable. Other decisions will have less visible economic
effects. Identifying and uncovering these can facilitate
a more explicit documentation and conversation in the
systems design process.

2) Technical Sustainability Debt: Cunningham [15] [21] is
attributed with coining the term technical debt as a metaphor
for explaining the value of refactoring to non-technical stake-
holders: “Shipping first time code is like going into debt.
A little debt speeds development as long as it is paid back
promptly with a rewrite...The danger occurs when the debt is
not repaid. Every minute spent on not-quite-right code counts
as interest on that debt. Entire engineering organizations can
be brought to a stand-still under the debt load of an un-
consolidated implementation, object-oriented otherwise.“ [15].
Tate [22] defines technical debt as an accumulation of poor
design decisions over time which result in an inability to
develop new features due to the defect burden incurred. Mc-
Connell [23] extends this definition by proposing a technical
debt taxonomy, which distinguishes between unintentional
(Type I) and intentional (Type II) debt where the former is
the result of poor engineering practice, and the latter is a
conscious, strategic decision to optimize for the present rather
than for the future. He also distinguishes between short-term
(Type II A) and long-term (Type II B) debt where the former
is taken on tactically and reactively but is expected to be
paid off frequently, and the latter is taken on strategically
and proactively and paid off sometime in the indeterminate
future. He suggests that when technical debt is incurred for
strategic reasons, the fundamental reason is always financial
pressures. Lavalle and Robillard [24] highlight other issues
that can lead to debt. They investigated how organizational
factors such as structure and culture have an impact on the
working conditions of developers. Their observations revealed
that many decisions made under the pressure of certain orga-
nizational factors and identified ten issues that had a negative
impact on software quality including documenting complexity,
internal dependencies, external dependencies, human resource
planning, organizational politics, undue pressure from man-
agers, scope protection, budget protection, organically grown
processes, and lack of vulnerability testing. They conclude that
while none of these issues are new, any software development
project should present few of these issues and ideally none of
them.

McConnell [23] also introduces the concept of non-debt
where examples may include a features backlog, deferred fea-
tures, cut features, etc. suggesting that not all incomplete work
is debt in itself as a result of it not accruing interest payments.
This is a position supported by Fowler [14] who suggests that
it is not useful to distinguish between debt or non-debt, but
between prudent versus reckless debt, and deliberate versus



inadvertent debt i.e. technical debt quadrant. Kruchten, Nord
and Ozkaya [7] extend this stating that technical debt should
be confined to describing the invisible result of past decisions
about software that negatively affect its future.

Fowler [25] argues that the principal problem with technical
debt is the lack of quantification. To address this Kazman
et. al., [26] argue that architectural debt, hotspots within
that architecture, are the principal causes of technical debt;
architectural roots, a type of technical debt that incurs high
maintenance penalties. Based on a case study they identified
and quantified the architecture debts in a large-scale industrial
software project, and justified the refactoring of architecture
problems with an economic analysis which suggested that in
financial terms, the project could expect a 295 % return on
investment in the first year alone. This is a position supported
by Ozkaya [27] who suggest that an architecture-focused
analysis approach helps manage technical debt by enabling
software engineers to decide the best time to pay down the
technical debt.

Examples of technical debt are:
• When engineers choose to use technical workarounds, to

skip validation, or to rush testing to deliver the product
in time, they are causing architecture instability.

• Another example is a system where the energy efficiency
of algorithms is improved, but this might be making the
code more difficult to understand and modify.

3) Environmental Sustainability Debt: Guzman, Piattini
and Prez-Castillo [28] proposed the concept of ecological
debt as “the cost (in terms of resource usage) of delivering
a software system with a greenability degree under the level
of the nonfunctional requirements established by stakeholders,
plus the incurring cost required to refactor the system in the
future“. This debt can be quantified as follows:

EcologicalDebt =
∑

Cost(Resourcei) +∑
Refactor(EcologicalF lawj)
It is important to note that, ecological debt is defined in

terms of the greenability of the system, which the authors
refer to as “a software quality characteristic for measuring
the degree to which a software product has appropriate power
consumption“. Furthermore, although referring to the same
dimension, ecological debt still differs from the concept of
environmental debt, proposed in this paper. The latter refers
to a wider range of environemental impact that goes beyond
resource and energy use, such as pollution and imbalance
of the ecosystem caused by the software-intensive system
overtime.

We define environmental sustainability debt as the impact of
past decisions about software that negatively affects the natural
environment. According to Schwarz et al. [29], some of these
negative impacts are energy-intensity, expressed as a measure
of the net energy consumed to provide the power requirements
for the system, and material intensity expressed as of material
wasted [29]. The 5 metrics they propose are material intensity,
energy intensity, water consumption, toxic emissions, and
pollutant emissions. Energy-intensity can be used to track
performance of processes for which net energy consumed is

negative. The ability to measure progress over time is critical.
Schwarz et al.s’ argument for providing few measures is
that measurements that combine too many components are
less versatile and less useful for making comparisons across
products and industries. However, the reduction to energy-
intensity and material intensity only accounts for direct effects
and neglects indirect effects. We argue to also include the
(sometimes invisible) aspects of natural resources consumed
indirectly, namely greenhouse gas emissions, pollution, and
waste production of any kind caused directly or indirectly.
The direct effects of energy and resource consumption are
pretty straightforward. As soon as we switch on a piece of
hardware than runs software, energy is consumed. For indirect
effects, this might be less obvious, but here are examples
where software systems can cause environmental harm:

• An agricultural system (or oil production system) might
have a software system that manages the collection of
data from sensors over time. If that data is stored properly,
it can be analyzed later on to understand systemic effects
on soil; if not, it will have an indirect negative effect on
the environment as the effects on the soil caused by that
system will not be documented.

• A supply chain management system is part of a pro-
duction or manufacturing system. There can be a design
choice to show the environmental aspects of the produc-
tion parts or processes to choose from with respective
metrics of material and energy intensity they require, such
that the manager can make more informed choices.

• A similar sort of systems is used in oil production in
order to collect data from different depth levels of the
sea to analyse the impact of drilling and extracting oil.
Data for the system is gathered using a trawler net
that collects specimen of the fauna to analyse them
potentially causing harm to their catch but hopefully for
keeping the overall population safe.

These three examples show that environmental debt can
occur by direct and indirect effects of software systems and
should be made more visible, accessible, and traceable.

4) Individual Sustainability Debt: Individual sustainability
is concerned with the overall well-being of an individual.
From a social perspective, maintaining an environment that
supports individual sustainability requires investment in health,
education, skills, knowledge, participation and leadership, and
access to services for the individuals within a given commu-
nity.

Individual sustainability debt not only results in diminished
contributions that an individual would provide to the society
and economy of ones placement, but it is also an important
source of accumulating social debt. Historically, the notion
of “investment into human capital” has been justified by the
human “return on the investment” through increased produc-
tivity, commitment, and creativity. We prefer to frame the
notion of individual sustainability debt as the effects of design
decisions that reduce the individuals’ abilities to freely develop
to their fullest potential. This includes impingement of an
individuals freedom or privacy, reduced assess to resources



and services, and negative effects on one’s own sense of value
and fulfillment. For example, intrusions into the private sphere
of software users reduces their level of privacy and thus incur
a debt on the individual dimension. Unfortunately, this debt
is often externalized so that the users carry the effects, and
remains invisible for the most part.

As all other kinds of sustainability debt, this one too, is
often driven by financial gain, or resistance to change:

• The more customizable a software is, the more develop-
ment and testing it requires, so it is cheaper and faster to
develop a one solution that fits all users. A typical way of
reasoning would be: This software is not for the visually
impaired, so we do not need to consider text to voice.

• If we do not allow users to opt out of our information
collection plan for the sake of their privacy, we can
sell this data to others and generate more advertisement
revenues.

• If we allow flexible working arrangements, we need to
set up a system to monitor, support, and evaluate these
arrangements. It is easier to have all work from the office
from 9.00 till 17.00.

5) Social Sustainability Debt: One of the first times “social
debt“ has been mentioned was in the sociological science in
the 60s by Muir and Weinstein [30]. They claimed that humans
(especially from the western world) tend to transfer the norms
of economic behavior using creditor and debtor roles into
the social dimension and that financial debt is accompanied
with strained social relationships between creditor and debtor.
Thus, they defined social debt as strained social relationships
imposed on stakeholders that emerge as a consequence of
inequality [debtor-creditor] circumstances [30]. In software
engineering the term social debt has first been coined in by
Tamburri et al. in 2013 [31]. They did not provide an exact
definition regarding it but rather explained it as unforeseen
project costs connected to strained social relationships caused
by for example uninformed socio-technical decisions. Addi-
tionally, they stated that social debt is connected to technical
debt and that it is intertwined with technical debt.

Nevertheless, for us this understanding is too narrow. It
only covers one part of social debt in the context of software
engineering respectively sustainability design: It focus only
on development communities. In the context of sustainability
debt, we extend the focus on the social communities affected
by and related to the system under design. This can be as
wide as society as a whole. Thus, social debt is sustainability
debt in the dimension of social justice, equity, fairness for
society. Moreover, we argue to not only include the direct
effects of social debt but also indirect effects of social debt.
In the following we describe the concept of social debt using
examples:

• Consider a supply chain system that changes the control
structure from human-based control and direct commu-
nication to a mediated form, where the algorithms are in
charge and direct communication channels are discarded
in the sake of efficiency and traceability. This would

undermine social relations with suppliers.
• A globally distributed development project covering dif-

ferent time zones may for example cause a communi-
cation delay between stakeholders of the development
community leading to a development delay (direct effect)
but also to a lack of trust between stakeholders of the
development community caused by the distance between
them (indirect effects).

IV. DISCUSSION

Sustainability debt considers effects not only on software
systems, its development community, and its evolution pro-
cess, but includes all stakeholders involved and affected.

We do not seek to monetize sustainability debt providing
one financial figure. Rather, we introduce sustainability debt
as an extension of the technical debt metaphor to provide
a basis for discussion and assessment [32] of hidden effects
of decisions about software-intensive systems that negatively
affects economic, technical, environmental, social, and indi-
vidual sustainability.

Requirements Engineering plays an important role in that,
it is there that we frame our decisions that have far-reaching
effects. For example, considering only time and budget as
the projects success criteria leads to environmental and social
damage (environmental debt). On the other hand, we can incur
economic debt in investing efforts to use a wider, participatory
set of techniques to identify economic goals and the effects of
the system in the environmental dimension.

In Requirements Engineering, we identify elements of sus-
tainability debt and highlight possible effects and debts. The
metaphor supports us in identifying and documenting these
effects and facilitates communication across a broader set of
stakeholders:

• Identify: Five dimensions make the abstract concept of
sustainability more tangible and facilitate asking the
question ”Who is the creditor?”

• Communicate: Debt is well understood, adding the five
dimensions makes it tangible across a wide range of
stakeholders.

• Document: Ways of documenting and visualization can
be developed to facilitate understanding.

The metaphor of sustainability debt encourages require-
ments engineers to assess the effects on the sustainability of
the system under design, and it raises questions such as:

• What can requirements engineers do to identify causes
of sustainability debt? The causes of sustainability debt
are not necessarily different from the causes of technical
debt such as schedule and budget constraints, lack of
vision, plan strategy, unclear requirements, bad assump-
tions etc. [33]. However, these are very high-level causes.
Can we provide more specific causes and understand
the underlying perceptions and assumptions behind the
decisions that cause debt? How is reckless sustainability
debt different from other situations?

• Debt implies something quantifiable. Can sustainability
debt be quantified in requirements engineering? We argue



it is not reducible to a single indicator. But, we argue that
should be possible to develop meaningful indicators for
the different dimensions, and that we need to develop
mechanisms to qualitatively assess trade-offs.

• This leads directly to the discussion to intentionally take
a debt as strategic decision, for example to shorten
time to market. Can sustainability debt be used in a
similar intentional way? For example, in the dimension
of individual debt, this can simply refer to imposing
additional stress on developers to speed up development
time. But does this also work for the overall sustainability
debt? Do we want that?

These questions are pointing to the limitations of a metaphor
highlighting some effects and masking others: A debt usually
implies a quantifiable contract between debtor and creditor.
In sustainability debt, this is not necessarily the case: We are
only able to quantify the debt to some extent (if at all), and the
creditor is quite often quite generic and removed in space and
time – in the extrem case, future society as a whole – or only
represented by surrogate stakeholders. Hence, no mechanism
of repaying debt may be known when incurring the debt.
This raises the question whether sustainability debt is the right
metaphor to use at all. Consider that some debt can never be
paid back, such as irreversible environmental degradation, or
that the consequences of debt in one dimension can result in
irreversible debt in a different dimension, e.g. environmental
debt can lead to individual losses in health.

Despite these limitations, it is important to highlight that
it is only based on this metaphorical thinking that we are
enabled to raise these particular questions. By emphasizing the
notion of incurring debt, these invisible effects of decisions are
made visible and the notions of interest and repayment surface.
Further consequences of the concept have yet to be explored.

V. RELATED WORK

We were not the first to use the metaphor of debt to
discuss how past decisions about software-intensive systems
may have a negative effect on sustainability. However, we are
the first ones defining and discussing sustainability debt for the
different dimensions, including the different levels of effects
and their interrelations.

Ojameruaye and Bahsoon also use in their white papers
[34], [35] the concept of sustainability debt to describe
another form of technical debt, which provides a metric and
quantifies the gap between the level of sustainability that
will be achieved with a specific architecture and an ideal
environment where the sustainability requirements are com-
pletely achieved. To deal with this debt, the authors propose
an economic-driven architectural evaluation method that helps
identifying decisions that minimize costs and risks, while
maximizing value on the five sustainability dimensions. In
their method, the impact of alternative architectural strate-
gies on sustainability is determined using a set of value
indicators along four perspectives [36]: financial, customer,
internal process, innovation and learning. These perspectives
are mapped to the sustainability dimensions using indicators.

The indicators include maintainability, total development and
implementation costs, and perceived value, among others.
Some of the indicators are taken from [36], while others have
been added, such as environmental impact due to energy usage
and CO2 emissions. However, it remains unclear whether
additional indicators are needed to measure sustainability in
each of the different dimensions.

Their approach is quantitative: they assign integer values
from 1 to 5 to represent the impact of architecture parameters
(e.g., location finding technology, connectivity technology and
database) on the selected value indicators. The same value
scale is applied to quantify the risk of each impact, based on
criticality and likelihood. These values are subsequently used
to rank the candidate architectures, through CBAM [37] and
portfolio theory [38]. Finally, the debt is calculated as the gap
between the ideal architecture where all goals are achieved and
what can be achieved within the given context for the different
ranked architectures.

While using the same metaphor, Bendra and Bahsoons
aim and understanding of sustainability debt are different
and narrower than ours. Their aim is to develop a decision-
support framework for choosing the best software architecture
with respect to sustainability. The concept they introduce as
sustainability debt is an extension of the technical debt with
different dimensions. They do not attempt to provide a clear
definition for the different types of debts. They also argue
that this debt is quantifiable as the gap between the ideal
architecture and what actually can be achieved given the
available resources. Finally, they do not consider the different
levels of effects into the sustainability dimensions as part of
the debt.

Our work, in contrast, defines the concept of debt for
each sustainability dimension, taking into account the different
orders of effect. Technical debt is therefore related to one of
the dimensions of the sustainability debt. Most importantly,
our aim is a more philosophical one: to define and discuss how
the metaphor can be used in each dimension of sustainability
and, by doing so, to provide a mental framework for software
engineers to think about sustainability during the software
development activities. Additionally, we do not claim that
sustainability debt can be quantified. Moreover, we think it
is arguable to express the debt in each dimension in financial
terms or to calculate one overall sustainability debt. Instead we
provide a theoretical framework to uncover, represent, commu-
nicate, and enable sustainability within software engineering.

VI. CONCLUSION

We presented the metaphor of sustainability debt as a mental
tool to uncover, represent and communicate issues related
to sustainability within software engineering. Sustainability
debt is the hidden impact of past decisions about software-
intensive systems that negatively affects economic, technical,
environmental, social and individual sustainability on the sys-
tems under design. We foresee that using the sustainability
debt metaphor in sustainability design decisions can support
practitioners in making the abstract concept of sustainability



more tangible. This can help them to better envision the
systemic effects of their design decisions. We have started to
discuss the relationships between the presented sustainability
debt dimensions here as a first step towards elaborating and
measuring sustainability debt.

We envision a taxonomy of sustainability debt as an im-
portant step in elaborating on the definition and the structure
of the metaphor. Another course of action in the area of
measurement and prioritization is to identify and develop
appropriate indicators to measure the debt of each dimension
such as the Composite Sustainable Development Index [39] or
the Schwartz’s metrics [29] for environmental debt. Following
this, a mechanism needs to be developed and established
to enable a joint assessment of trade-offs including relevant
stakeholders. Additionally, we propose to investigate the usage
of simulation models such as system dynamics to support the
understanding of systemic effects. Currently we are working
on visualization and communication of the systemic effects of
design decisions.

ACKNOWLEDGMENTS

This work is supported by the DFG EnviroSiSE project un-
der grant number PE2044/1-1, by FAPERJ (APQ1), by CNPQ
(No 14/2014), by NSERC (RGPIN-2014-06638) by WWTF
through project BenchmarkDP (ICT2012-46), by the European
Social Fund, and by the Ministry of Science, Research and the
Arts Baden-Wuerttemberg.

REFERENCES

[1] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch, “Sustainability
in software engineering: a systematic literature review,” 16th
International Conference on Evaluation & Assessment in Software
Engineering (EASE 2012), pp. 32–41, 2012. [Online]. Available: http:
//digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004

[2] J. Mankoff, R. Kravets, and E. Blevis, “Some computer science issues
in creating a sustainable world,” Computer, vol. 41, no. 8, pp. 102–105,
Aug 2008.

[3] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux,
B. Penzenstadler, G. Rodrı́guez-Navas, C. Salinesi, N. Seyff, C. C.
Venters, C. Calero, S. A. Koçak, and S. Betz, “The Karlskrona
manifesto for sustainability design,” CoRR, vol. abs/1410.6968, 2014.
[Online]. Available: http://arxiv.org/abs/1410.6968

[4] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process-and product-specific instances,” in Proceedings of the 2013
workshop on Green in/by software engineering. ACM, 2013, pp. 3–8.

[5] S. M. Easterbrook, “From computational thinking to systems thinking:
A conceptual toolkit for sustainability computing,” in ICT for
Sustainability 2014 (ICT4S-14), Stockholm, Sweden, August 25, 2014.,
2014. [Online]. Available: http://dx.doi.org/10.2991/ict4s-14.2014.28

[6] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler,
N. Seyff, and C. C. Venters, “Sustainability Design and Software:
The Karlskrona Manifesto,” in Proc. of the Int. Conf. on Software
Engineering, 2015.

[7] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21,
November 2012.

[8] J. Garvey, The ethics of climate change: right and wrong in a warming
world. Continuum International Publishing, 2008. [Online]. Available:
http://books.google.ca/books?id=Ng5Nn3Kn3xwC

[9] F. Berkhout and J. Hertin, “Impacts of information and communi-
cation technologies on environmental sustainability: Speculations and
evidence,” Report to the OECD, Brighton, vol. 21, 2001.

[10] L. M. Hilty and B. Aebischer, “Ict for sustainability: An emerging
research field,” in ICT Innovations for Sustainability. Springer, 2015,
pp. 3–36.

[11] U. E. P. Agency, “Defining Life cycle Assessment,” 2010. [Online].
Available: http://www.gdrc.org/uem/lca/lca-define.html

[12] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Information and Software Technology, vol. 64, pp. 52–73, 2015.

[13] Z. Li, P. Liang, and P. Avgeriou, “Architectural debt management in
value-oriented architecting,” Economics-Driven Software Architecture,
Elsevier, pp. 183–204, 2014.

[14] M. Fowler, “Technical debt quadrant,” http://martinfowler.com/bliki/
TechnicalDebtQuadrant.html. [Online]. Available: http://martinfowler.
com/bliki/TechnicalDebtQuadrant.html

[15] W. Cunningham, “The wycash portfolio management system,” in OOP-
SLA’92: Proceedings of Seventh Annual Conferenceon Object-Oriented
Programming Systems, Languages, and Applications, 1992.

[16] G. Lakoff and J. M., “Metaphors we live by,” Chicago/London, 1980.
[17] S. CMU, “Technical debt workshop series,” http://www.sei.cmu.edu/

community/td2012/previous/?location=secondary-nav&source=655951.
[Online]. Available: http://www.sei.cmu.edu/community/td2012/
previous/?location=secondary-nav&source=655951

[18] L. M. Hilty and B. Aebischer, “Ict for sustainability: An emerging
research field,” in ICT Innovations for Sustainability, L. M. Hilty and
B. Aebischer, Eds. springer., 2015.

[19] B. Boehm, Software Engineering Economics. Prentice-Hall, 1981.
[20] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, Value-

based software engineering. Springer Science & Business Media, 2006.
[21] W. Cunningham, “Debt metaphor,” https://www.youtube.com/watch?v=

pqeJFYwnkjE. [Online]. Available: https://www.youtube.com/watch?v=
pqeJFYwnkjE

[22] K. Tate, Sustainable Software Development: An Agile Perspective.
Addison Wesley, 2006.

[23] S. McConnell, “Technical debt,” http://www.construx.com/10x
Software Development/Technical Debt/. [Online]. Available: http:
//www.construx.com/10x Software Development/Technical Debt/

[24] M. Lavallee and P. N. Robillard, “Why good developers write bad code:
An observational case study of the impacts of organizational factors
on software quality,” in ICSE’15: Proceedings of the International
Conference on Software Engineering, 2015.

[25] M. Fowler, “Technical debt,” http://martinfowler.com/bliki/
TechnicalDebt.html. [Online]. Available: http://martinfowler.com/bliki/
TechnicalDebt.html

[26] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka, “A case study in locating the architectural roots of
technical debt,” in Proceedings of 37th IEEE International Conference
on Software Engineering (ICSE15), 2015.

[27] I. Ozkaya, “Developing an architecture-focused measurement framework
for managing technical debt,” 2015-06-15.

[28] I.-R. de Guzmn, M. Piattini, and R. Prez-Castillo, “Green software
maintenance,” in Green in Software Engineering, C. Calero and
M. Piattini, Eds. Springer International Publishing, 2015, pp. 205–229.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-08581-4 9

[29] J. Schwarz, B. Beloff, and E. Beaver, “Use sustainability metrics to
guide decision-making,” Chemical Engineering Progress, vol. 98, no. 7,
pp. 58–63, 2002.

[30] D. E. Muir and E. A. Weinstein, “The social debt: An investigation
of lower-class and middle-class norms of social obligation,” American
Sociological Review, pp. 532–539, 1962.

[31] D. Tamburri, P. Kruchten, P. Lago, H. Van Vliet et al., “What is social
debt in software engineering?” in Cooperative and Human Aspects of
Software Engineering (CHASE), 2013 6th International Workshop on.
IEEE, 2013, pp. 93–96.

[32] I. Ozkaya, P. Kruchten, R. L. Nord, and N. Brown, “Managing
technical debt in software development: Report on the 2nd international
workshop on managing technical debt, held at icse 2011,” SIGSOFT
Softw. Eng. Notes, vol. 36, no. 5, pp. 33–35, Sep. 2011. [Online].
Available: http://doi.acm.org/10.1145/2020976.2020979

[33] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software
practitioners have to say about technical debt,” Software, IEEE, vol. 29,
no. 6, pp. 22–27, Nov 2012.

[34] B. Ojameruaye and R. Bahsoon, “A portfolio-based approach for evaluat-
ing sustainability requirements and their debts in architectures,” School
of Computer Science, University of Birmingham, UK, Tech. Rep. 2,
2015.

[35] B. Ojameruaye and R. Bahsoon, “Sustainability debt: An economics
driven approach for using technical debt analysis in decision making

http://digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004
http://digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004
http://arxiv.org/abs/1410.6968
http://dx.doi.org/10.2991/ict4s-14.2014.28
http://books.google.ca/books?id=Ng5Nn3Kn3xwC
http://www.gdrc.org/uem/lca/lca-define.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://dx.doi.org/10.1007/978-3-319-08581-4_9
http://doi.acm.org/10.1145/2020976.2020979


for sustainable requirements,” School of Computer Science, University
of Birmingham, UK, Tech. Rep. 3, 2015.

[36] M. Khurum, T. Gorschek, and M. Wilson, “The software value
map - an exhaustive collection of value aspects for the development
of software intensive products,” Journal of Software: Evolution and
Process, vol. 25, no. 7, pp. 711–741, 2013. [Online]. Available:
http://dx.doi.org/10.1002/smr.1560

[37] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and benefits
of architectural decisions,” in Software Engineering, 2001. ICSE 2001.
Proceedings of the 23rd International Conference on, May 2001, pp.
297–306.

[38] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7,
no. 1, pp. 77–91, 1952. [Online]. Available: http://www.jstor.org/stable/
2975974

[39] D. Krajnc and P. Glavi, “How to compare companies on relevant
dimensions of sustainability,” Ecological Economics, vol. 55, no. 4, pp.
551 – 563, 2005. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921800904004513

http://dx.doi.org/10.1002/smr.1560
http://www.jstor.org/stable/2975974
http://www.jstor.org/stable/2975974
http://www.sciencedirect.com/science/article/pii/S0921800904004513
http://www.sciencedirect.com/science/article/pii/S0921800904004513

	Introduction
	Background
	Sustainability Design
	Systemic Effects in Software Systems Design
	The Metaphor Technical Debt

	Sustainability debt
	Introducing Sustainability Debt
	The Five Sustainability Debts
	Economic Sustainability Debt
	Technical Sustainability Debt
	Environmental Sustainability Debt
	Individual Sustainability Debt
	Social Sustainability Debt


	Discussion
	Related Work
	Conclusion
	References

