
3rd International Workshop on
Software Evolution through

Transformations:
Embracing Change

Proceedings

Editors:

Jean-Marie Favré
Institut d’Informatique et Mathmatiques Appliques

Universite Grenoble 1, France

Reiko Heckel
Department of Computer Science, University of Leicester, UK

Tom Mens
Software Engineering Lab, Université de Mons-Hainaut, Belgium

Natal - Brazil

September 17-22, 2006

Foreword

Since its birth as a discipline in the late 60ies Software Engineering had to cope with the
breakdown of many of its original assumptions. Today we know that

• it is impossible to fix requirements up front;

• the design of the system is changing while it is being developed;

• the distinction between design time and run-time is increasingly blurred;

• a system’s architecture will change or degrade while it is in use;

• technology will change more rapidly than it is possible to re-implement critical
applications;

This recognition of lack of stability in software means that we have to cope with
change, rather than defending against it. Processes, methods, languages, and tools have
to be geared towards making change possible and cheap.

Transformations of development artifacts like specifications, designs, code, or run-time
architectures are at the heart of many software engineering activities. Their systematic
specification and implementation are the basis for a wide range of tools, from compilers
and refactoring tools to model-driven CASE tools and formal verification environments.
The workshop provides a forum for the discussion transformation-based techniques in
software evolution.

Topics

Submissions to the workshop are based on a wide range of transformation formalisms like

• program transformation (over Java, C, or C++, etc.);

• model transformation (over UML and other visual languages);

• graph transformation;

• term rewriting;

• category theory, algebra, and logic;

discussing their application to software evolution activities like

• model-driven development;

• model and code refactoring, redesign and code optimisation;

• requirements evolution;

• reverse engineering, pattern detection, architecture recovery;

• architectural reconfiguration, self-organising or self-healing systems, service-oriented
architectures;

• consistency management, co-evolution of models and code;

• merging of models, specifications, ontologies, etc;

i

Program Committee

The following program committee is responsible for the selection of papers.

• Luciano Baresi, Politecnico di Milano, Italy

• Tháıs Batista, Federal University of Rio Grande do Norte, Brazil

• Paulo Borba, Universidade Federal de Pernambuco, Recife, Brazil

• Artur Boronat, Universidad Politécnica de Valencia, Spain

• Christiano de Oliveira Braga, Universidad Complutense de Madrid, Spain

• Andrea Corradini, Università di Pisa, Italy

• Mohammad El-Ramly, University of Leicester, UK

• Jean-Marie Favre, Universite Grenoble 1, France [co-chair]

• Reiko Heckel, University of Leicester, UK [co-chair]

• Dirk Janssens, University of Antwerp, Belgium

• Tom Mens, Université de Mons-Hainaut, Belgium [co-chair]

• Anamaria Martins Moreira, Universidade Federal do Rio Grande do Norte, Natal,
Brazil

• Leila Silva, Universidade Federal de Segipe, Brazil

• German Vega, Universite Grenoble 1, France

Acknowledgement

The workshop is supported by the European Research Training Network SegraVis on Syn-
tactic and Semantic Integration of Visual Modelling Techniques, the Integrated Project
Sensoria on Software Engineering for Service-Oriented Overlay Computers, and the ERCIM
Working Group on Software Evolution.

ii

Contributed Papers

Optimizing Pattern Matching Compilation By Program Transformation,
Emilie Balland and Pierre-Etienne Moreau . 1

Towards Distributed BPEL Orchestrations,
Luciano Baresi, Andrea Maurino, and Stefano Modafferi . 15

EMF Model Refactoring based on Graph Transformation Concepts,
Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns,
Gabriele Taentzer, and Eduard Weiss . 29

Exogenous Model Merging by means of Model Management Operators,
Artur Boronat, Jose A. Carsi, and Isidro Ramos . 43

An Algorithm for Detecting and Removing Clones in Java Code,
Nicolas Juillerat and Beat Hirsbrunner .63

Refactoring Information Systems: Handling Partial Compositions,
Michael Löwe, Harald König, Michael Peters, and Christoph Schulz 75

An Approach to Invariant-based Program Refactoring,
Tiago Massoni, Rohit Gheyi, and Paulo Borba . 91

Generating Requirements Views: A Transformation-Driven Approach,
Lyrene Fernandes da Silva and Julio Cesar Sampaio do Prado Leite103

A MDE-Based Approach for Developing Multi-Agent Systems,
Viviane Silva, Beatriz de Maria, and Carlos Lucena . 115

From C++ Refactorings to Graph Transformations,
László Vidács, Martin Gogolla, and Rudolf Ferenc . 127

Selected contributions will appear in the Electronic Communications of EASST, the Euro-
pean Association of Software Science and Technology, under http://tfs.cs.tu-berlin.
de/ec-easst/.

iii

ELECTRONIC COMMUNICATIONS OF EASST

Optimizing Pattern Matching Compilation
By Program Transformation

Emilie Balland *and Pierre-Etienne Moreau *
*UHP & LORIA, INRIA & LORIA,

email: {Emilie.Balland,Pierre-Etienne.Moreau}@loria.fr

Abstract. Motivated by the promotion of rewriting techniques and their use in major industrial
applications, we have designed Tom: a pattern matching layer on top of conventional pro-
gramming languages. The main originality is to support pattern matching against native data-
structures like objects or records. While crucial to the efficient implementation of functional
languages as well as rewrite rule based languages, in our case, this combination of algebraic
constructs with arbitrary native data-structures makes the pattern matching algorithm more dif-
ficult to compile. In particular, well-known many-to-one automaton-based techniques cannot be
used. We present a two-stages approach which first compiles pattern matching constructs in a
naive way, and then optimize the resulting code by program transformation using rewriting. As a
benefit, the compilation algorithm is simpler, easier to extend, and the resulting pattern matching
code is almost as efficient as best known implementations.

1 Introduction to Tom

Pattern matching is an elegant high-level construct which appears in many programming languages.
Similarly to method dispatching in object oriented languages, it is essential in functional languages like
Caml, Haskell, or SML. It is part of the main execution mechanism in rewrite rule based languages like
ASF+SDF, ELAN, Maude, or Stratego.

In this paper, we present Tom1 whose goal, similarly to Prop [9] or Pizza [11], is to integrate the notion
of pattern matching into classical languages such as C and Java. Following the first ideas presented
in [10], illustrated in Figure 1, a Tom program is a program written in a host language and extended
by some new instructions like the %match construct. Therefore, a program can be seen as a list of
Tom constructs interleaved with some sequences of characters. During the compilation process, all Tom
constructs are dissolved and replaced by instructions of the host-language, as it is usually done by a
preprocessor.

In order to understand the choices we have made when designing the pattern matching algorithm, it is
important to consider Tom as a generic and partial compiler (like a pre-processor) which does not have
any information about the host-language. In [2], Tom programs are described as islands anchored in

1http://tom.loria.fr

VOLUME 3 1

Page 1

ELECTRONIC COMMUNICATIONS OF EASST

Definition of the data-structure

public class PeanoExample {
...

Term plus(Term t1, Term t2) {
%match(t1, t2) {
x,zero -> { return x; }
x,suc(y) -> { return suc(plus(x,y)); }

}
}
void run() {
System.out.println("plus(1,2) = " +

plus(suc(zero),suc(suc(zero))));

}
}

Parser Backend Output Program

Compiler Optimizer

Tom Compiler

PIL

PIL

Input Program

Figure 1: General architecture of Tom: the compiler generates an intermediate PIL program which is
optimized before being pretty-printed by the back-end into the host-language.

host programs and the link between the two languages is formally defined in a generalized framework.
In particular, the data-structure, against which the pattern matching is performed, is not fixed. In some
sense, the data-structure is a parameter of the pattern matching, see [8] for more details. In practice, this
means that a description of the data-structure (a mapping) has to be given to explain Tom how to access
subterms for example.

In this paper, we present how the introduced pattern matching construct is compiled, using a program
transformation approach. There exists several methods [4, 1, 6, 5] to efficiently compile pattern match-
ing. The simplest ones, called one-to-one, inspect and compile each pattern independently. A more
efficient approach consists in considering the system globally and building a discrimination network.
These methods are called many-to-one, and they usually consist of three phases: constructing an au-
tomaton, optimizing it, and finally generating the implementation code. There are two main approaches
to construct a matching automaton: one based on decision trees [4, 6] and the other on backtracking au-
tomata [1]. These two approaches emphasize the unavoidable compromise between speed and memory
space [13].

In our case, we cannot assume that a function symbol (i.e. a node of a tree) is represented by an
integer, like it is commonly done in other implementations of pattern matching. Therefore, the classical
switch/case instruction can no longer be used to perform the discrimination. Since Tom supports
several languages, it is also not possible to use an exception mechanism or a jump statement, like it can
be done in ML compilers [7].

The approach chosen in Tom is to keep the optimization phase separated from the one-to-one compila-
tion phase. This allows us to design algorithms which are generic, simpler to implement, easier to extend
and maintain, and that can be formally certified [8]. In addition, this work allows to generate efficient
implementations. In Section 2, we present the compilation algorithm and its intermediate language PIL.
In Section 3, we introduce a set of rules which describes the optimizer and a strategy to efficiently apply
them. In Section 4 we show that the optimizations are correct and improve the program in execution
and size. Finally, in Section 5, some experimental results are given for several revealing examples. This

VOLUME 3 2

Page 2

ELECTRONIC COMMUNICATIONS OF EASST

paper assumes some familiarity with term rewriting notations introduced in [3].

2 Compilation

To be data-structure independent and support several host-languages, Tom instructions, like %match,
are compiled into an intermediate language code, called PIL, before being translated into the selected
host-language. To compile the %match construct, we consider each rule independently.

Contrary to many-to-one algorithms which construct decision trees or pattern automata, given a pattern,
it is traversed top-down and left-to-right. Nested if-then-else constructs are generated to ensure that con-
structors of the pattern effectively occur in the subject at a correct position. This technique is inefficient
because, for a set of rules, identical tests may be repeatedly performed. The worst-case complexity is
thus the product of the number of rules and the size of the subject.

The nested if-then-else are expressed in an intermediate language called PIL, whose syntax is given
in Figure 2. Note that PIL has both functional and imperative flavors: the assignment instruction
let(variable, 〈term〉, 〈instr〉) defines a scoped unmodifiable variable, whereas the sequence instruc-
tion 〈instr〉 ; 〈instr〉 comes from imperative languages. A last particularity of PIL comes from the
hostcode(. . .) instruction which is used to abstract part of code written in the underlying host-language.
This instruction is parameterized by a list of PIL-variables which are used in this part of host-code.

PIL ::= 〈instr〉
symbol ::= f ∈ F
variable ::= x ∈ X
〈term〉 ::= t ∈ T (F ,X)

| subtermf (〈term〉, n)
(f ∈ F ∧ n ∈ N)

〈expr〉 ::= true | false
| eq(〈term〉, 〈term〉)
| is fsym(〈term〉, symbol)

〈instr〉 ::= let(variable, 〈term〉, 〈instr〉)
| if(〈expr〉, 〈instr〉, 〈instr〉)
| 〈instr〉; 〈instr〉
| hostcode(variable∗)
| nop

Figure 2: PIL syntax

Similarly to functional programming languages, given a signature F and a set of variables X , the con-
sidered PIL language can directly handle terms, boolean values (true, false), and perform operations
like checking that a given term t is rooted by a symbol f (is fsym(t, f)), accessing to the n-th child of a
term t (subtermf (t, n)), or comparing two terms (eq(t1, t2)). The implementation of subtermf , eq and
is fsym is given by the mapping which describes data-structures. To support the intuition, examples of
Tom and PIL code are given in Figure 3.

We define PIL semantics as in [8] by a big-step semantics à la Kahn. To represent a substitution,
we model an environment by a stack of assignments of terms to variables. The set of environments is
noted Env. The reduction relation of the big-step semantics is expressed on tuples 〈ε, δ, i〉 where ε is
an environment, δ is a list of pairs (environment, host-code), and i is an instruction. Thanks to δ, we
can keep track of the executed host-code blocks within their environment: the environment associated
to each host-code construct gives the instances of all variables which appear in the block. A complete

VOLUME 3 3

Page 3

ELECTRONIC COMMUNICATIONS OF EASST

Tom code:

. . . Java code . . .

. . .
%match(Term t) {

f(a) ⇒ { print(. . .); }
g(x)⇒ { print(. . . x. . .); }
f(b)⇒ { print(. . .); }

}
. . .
. . . Java code . . .

Generated PIL code:

hostcode(. . .) ;
if(is fsym (t,f), let(t1, subtermf(t, 1),

if(is fsym(t1, a), hostcode(), nop)),
nop) ;

if(is fsym (t,g), let(t1, subtermg(t, 1),
let(x, t1, hostcode(x)))
nop) ;

if(is fsym (t,f), let(t1, subtermf(t, 1),
if(is fsym(t1, b), hostcode(), nop)),
nop) ;

hostcode(. . .) ;

Figure 3: The left column shows a Tom program which contains three patterns: f(a), g(x), and f(b),
where x is a variable. As an example, when the second pattern matches t, this means that t is rooted
by the symbol g, and the variable x is instantiated by its immediate subterm. The right column shows
the corresponding PIL code generated by Tom. We can notice that this code is not optimal, but will
hopefully be optimized by transformation rules afterwards.

definition of the semantics can be found in [3].

〈ε, δ, i〉 7→bs δ′, with ε ∈ Env, δ, δ′ ∈ [Env, 〈instr〉]∗, and i ∈ 〈instr〉

As PIL programs are predominantly constituted of if-then-else statements, the optimization rules will
depend of the evaluation of expressions e ∈ 〈expr〉. In the following we introduce the notions of
equivalence and incompatibility for expressions, and we consider two functions eval and Φ. eval is
a function which given an environment ε and an expression e evaluates e in ε to obtain a value (i.e true
for true or false for false). Given an environment ε and a host-code list δ, the evaluation of a program
π ∈ PIL results in a host-code list: 〈ε, δ, π〉 7→bs δ′. During this evaluation, expressions e, subterm
of π, are evaluated in environments ε′. We call Φ the function that associates such an environment ε′ to
a sub-expression e of π: ε′ = Φ(π, e, ε, δ). More formal definitions can be found in [3].

Definition 1 Given a program π, two expressions e1 and e2 are said π-equivalent, and noted e1 ∼π e2,
if for all starting environment ε, δ, eval(ε1, e1) = eval(ε2, e2) where ε1 = Φ(π, e1, ε, δ) and ε2 =
Φ(π, e2, ε, δ).

Definition 2 Given a program π, two expressions e1 and e2 are said π-incompatible, and noted e1 ⊥π

e2, if for all starting environment ε, δ, eval(ε1, e1) 6= eval(ε4, e2) where ε1 = Φ(π, e1, ε, δ) and
ε2 = Φ(π, e2, ε, δ).

We can now define two conditions which are sufficient to determine whether two expressions are π-
equivalent or π-incompatible. Propositions 1 and 2 are interesting because the problem is generally
undecidable [12], but here, conditions can be easily used in practice. Indeed cond1 which ensures that

VOLUME 3 4

Page 4

ELECTRONIC COMMUNICATIONS OF EASST

the two expressions are evaluated in the same environment is easy to be checked because of PIL language
restrictions and cond2 is a purely syntactic condition. Proofs of these propositions are in [3].

Proposition 1 Given a program π and two expressions e1, e2 ∈ 〈expr〉 at different positions in, we have
e1 ∼π e2 if: ∀ε, δ, Φ(π, e1, ε, δ) = Φ(π, e2, ε, δ) (cond1) and e1 = e2 (cond2).

The equality = correspond to syntactic equality and the two considered expressions are in a different
position in the program so the two environments of evaluation are not trivially equal.

Proposition 2 Given a program π and two expressions e1, e2 ∈ 〈expr〉, we have e1 ⊥π e2 if: ∀ε, δ,
Φ(π, e1, ε, δ) = Φ(π, e2, ε, δ) (cond1) and incompatible(e1, e2) (cond2), where incompatible is
defined as follows:

incompatible(e1, e2) = match e1, e2 with
| false, true → >
| true, false → >
| is fsym(t, f1), is fsym(t, f2) → > if f1 6= f2

| , → ⊥

3 Optimization

An optimization is a transformation which reduces the size of code (space optimization) or the execu-
tion time (time optimization). In the case of PIL, the presented optimizations reduce the number of
assignments (let) and tests (if) that are executed at run time. When manipulating abstract syntax trees,
an optimization can easily be described by a rewriting system. Its application consists in rewriting an
instruction into an equivalent one, using a conditional rewrite rule of the form i1 → i2 IF c.

Definition 3 An optimization rule i1 → i2 IF c rewrites a program π into a program π′ if there exists a
position ω and a substitution σ such that σ(i1) = π|ω, π′ = π[σ(i2)]ω and σ(c) is verified. If c = e1 ∼ e2

(resp. c = e1 ⊥ e2), we say that σ(c) is verified when σ(e1) ∼π|ω σ(e2) (resp. σ(e1) ⊥π|ω σ(e2)).

3.1 Reducing the number of assignments

This kind of optimization is standard, but useful to eliminate useless assignments. In the context of
pattern matching, this improves the construction of substitutions, when a variable from the left-hand side
is not used in the right-hand side for example.

3.1.1 Constant propagation.

This first optimization removes the assignment of a variable defined as a constant. Since no side-effect
can occur in a PIL program, it is possible to replace all occurrences of the variable by the constant
(written i[v/t]).

ConstProp: let(v, t, i) → i[v/t] IF t ∈ T (F)

VOLUME 3 5

Page 5

ELECTRONIC COMMUNICATIONS OF EASST

3.1.2 Dead variable elimination and Inlining.

Using a simple static analysis, these optimizations eliminate useless assignments:

DeadVarElim: let(v, t, i) → i IF use(v, i) = 0
Inlining: let(v, t, i) → i[v/t] IF use(v, i) = 1

where use(v, i) is a function that computes an upper bound on the number of occurences of a variable v
in an instruction i.

3.1.3 Fusion.

The following rule merges two successive let which assign the same value to two different variables.
This kind of optimization rarely applies on human written code, but in the context of pattern matching
compilation (see Figure 3), this case often occurs. By merging the bodies, this allows to recursively
perform some optimizations on subterms.

LetFusion: let(v1, t1, i1); let(v2, t2, i2) → let(v1, t2, i1; i2[v2/v1]) IF t1 ∼ t2

Note that the terms t1 and t2 must be compatible to ensure that values of v1 and v2 are the same at run
time. We also suppose that use(v1, i2) = 0. Otherwise, it would require to replace v1 by a fresh variable
in i2.

3.2 Reducing the number of tests

The key technique to optimize pattern matching consists in merging branches, and thus tests that cor-
respond to patterns with identical prefix. Usually, the discrimination between branches is performed
by a switch/case instruction. In Tom, since the data-structure is not fixed, we cannot assume that
a symbol is represented by an integer, and thus, contrary to standard approaches, we have to use an
if statement instead. This restriction prevents us from selecting a branch in constant time. The two
following rules define the fusion and the interleaving of conditional blocks.

3.2.1 Fusion.

The fusion of two conditional adjacent blocks reduces the number of tests. This fusion is possible only
when the two conditions are π-equivalent. Remind that the notion of π-equivalence means that the
evaluation of the two conditions in a given program are the same (see Definition 1):

IfFusion: if(c1, i1, i
′
1); if(c2, i2, i

′
2) → if(c1, i1; i2, i′1; i

′
2) IF c1 ∼ c2

To evaluate c1 ∼ c2 (i.e. c1 ∼π c2 with π the redex of the rule), we use Proposition 1. The condi-
tion Φ(π, ε, δ, e1) = Φ(π, ε, δ, e2) (cond1) is trivially verified because the semantics of the sequence
instruction preserves the environment (∀δ, ε, Φ(π, ε, δ, i1; i2) = Φ(π, ε, δ, i1) = Φ(π, ε, δ, i2)) and then
∀δ, ε, Φ(π, ε, δ, σ(c1)) = Φ(π, ε, δ, σ(c2)). We just have to verify that e1 = e2 (cond2), which is easy.

VOLUME 3 6

Page 6

ELECTRONIC COMMUNICATIONS OF EASST

3.2.2 Interleaving.

As matching code consists of a sequence of conditional blocks, we would like to optimize blocks with
π-incompatible conditions (see Definition 2). Some parts of the code cannot be both executed in a given
environment, so swapping statically their order does not change the program behavior.

As we want to keep only one of the conditional block, we determine what instructions must be executed
in case of success or failure of the condition and we obtain the two following transformation rules:

if(c1, i1, i
′
1); if(c2, i2, i

′
2) → if(c1, i1; i′2, i

′
1; if(c2, i2, i

′
2)) IF c1 ⊥ c2

if(c1, i1, i
′
1); if(c2, i2, i

′
2) → if(c2, i

′
1; i2, if(c1, i1, i

′
1); i

′
2) IF c1 ⊥ c2

As for the equivalence in the IfFusion rule, to evaluate c1 ⊥ c2, we just have to verify that e1 and e2

are incompatible (cond2). Note that the two presented rules are not right-linear, therefore some code is
duplicated (i′2 in the first rule, and i′1 in the second one). As we want to maintain linear the size of the
code, we consider specialized instances of these rules with respectively i′2 and i′1 equal to nop.

IfInterleaving: if(c1, i1, i
′
1); if(c2, i2, nop) → if(c1, i1, i

′
1; if(c2, i2, nop)) IF c1 ⊥ c2

if(c1, i1, nop); if(c2, i2, i
′
2) → if(c2, i2, if(c1, i1, nop); i′2) IF c1 ⊥ c2

These two rules reduce the number of tests at run time because one of the tests is moved into the “else”
branch of the other. In practice, we only use the first one labelled by IfInterleaving. The second
rule can be instantiated and used to swap blocks. When i′1 and i′2 are reduced to the instruction nop, the
second rule can be simplified into:

if(c1, i1, nop); if(c2, i2, nop) → if(c2, i2, if(c1, i1, nop)) IF c1 ⊥ c2

As c1 and c2 are π-incompatible, we have the following equivalence:

if(c2, i2, if(c1, i1, nop)) ≡ if(c2, i2, nop); if(c1, i1, nop)

After all, we obtain the following rule corresponding to the swapping of two conditional adjacent
blocks. This rule does not optimize the number of tests but is useful to bring closer blocks subject
to be merged thanks to the strategy presented in the next section.

IfSwapping: if(c1, i1, nop); if(c2, i2, nop) → if(c2, i2, nop); if(c1, i1, nop) IF c1 ⊥ c2

3.3 Application strategy

From the rules presented in Section 3.1 and 3.2, we define a rewrite system. Without strategy, this
system is clearly not confluent and not terminating. For example, the IfSwapping rule can be applied
indefinitely because of the symmetry of incompatibility. The confluence of the system is not necessary
as long as the programs obtained are semantically equivalent to the source program but the termination
is an essential criterion. Moreover, the strategy should apply the rules to obtain a program as efficient as
possible. Let us consider again the program given in Figure 3, and let us suppose that we interleave the
last two patterns. This would result in the following sub-optimal program:

VOLUME 3 7

Page 7

ELECTRONIC COMMUNICATIONS OF EASST

if(is fsym(t, f), let(t1, subtermf(t, 1), if(is fsym(t1, a), hostcode(), nop)), nop) ;
if(is fsym(t, g), let(t1, subtermg(t, 1), let(x, t1, hostcode(x)))

if(is fsym(t, f), let(t1, subtermf(t, 1), if(is fsym(t1, b), hostcode(), nop)), nop)

The IfSwapping and IfFusion rules can no longer be applied to share the is fsym(t, f) tests.
This order of application is not optimal. As we want to grant IfFusion, the interleaving rule must be
applied afterward, when no more optimization is possible.

The second matter is to ensure termination. The IfSwapping rule is the only rule that does not
decrease the size or the number of assignments of a program. To limit its application to interesting
cases, we define a condition which ensures that a swapping is performed only if it enables a fusion.
This condition can be implemented in two ways, either in using a context, or in defining a total order
on conditions noted < (a lexicographic order for example). The second approach is more efficient:
similarly to a swap-sort algorithm it ensures the termination of the algorithm. In this way, we obtain a
new IfSwapping rule:

if(c1, i1, nop); if(c2, i2, nop) → if(c2, i2, nop); if(c1, i1, nop) IF c1 ⊥ c2 ∧ c1 < c2

Using basic strategy operators such as Innermost(s) (which applies s as many times as possible,
starting from the leaves), s1 | s2 (which applies s1 or s2 indifferently), repeat(s) (which applies s as
many times as possible, returning the last unfailing result), and s1 ; s2 (which applies s1, and then s2 if
s1 did not fail), we can define a strategy which describes how the considered rewrite system should be
applied to normalize a PIL program:

Innermost(
repeat(ConstProp | DeadVarElim | Inlining | LetFusion | IfFusion | IfSwapping) ;
repeat(IfInterleaving)

)

Starting from the program given in Figure 3, we can apply the rule IfSwapping, followed by a step
of IfFusion, and we obtain:

if(is fsym(t, f), let(t1, subtermf(t, 1), if(is fsym(t1, a), hostcode(), nop))
; let(t1, subtermf(t, 1), if(is fsym(t1, b), hostcode(), nop)), nop) ;

if(is fsym(t, g), let(t1, subtermg(t, 1), let(x, t1, hostcode(x))), nop)

Then, we can apply a step of Inlining to remove the second instance of t1, a step of LetFusion,
and a step of Interleaving (is fsym(t1, a) and is fsym(t1, b) are π-incompatible). This results in
the following program:

if(is fsym(t, f), let(t1, subtermf(t, 1),
if(is fsym(t1, a), hostcode(), if(is fsym(t1, b), hostcode(), nop))), nop) ;

if(is fsym(t, g), let(x, subtermg(t, 1), hostcode(x)), nop)

Since is fsym(t, f) and is fsym(t, g) are π-incompatible, we can apply a step of IfInterleaving,
and get the irreducible following program:

VOLUME 3 8

Page 8

ELECTRONIC COMMUNICATIONS OF EASST

if(is fsym(t, f),
let(t1, subtermf(t, 1), if(is fsym(t1, a), hostcode(), if(is fsym(t1, b), hostcode(), nop))),
if(is fsym(t, g), let(x, subtermg(t, 1), hostcode(x)), nop)

4 Properties

When performing optimization by program transformation, it is important to ensure that the generated
code has some expected properties. The use of formal methods to describe our optimization algorithm
allows us to give proofs. In this section we show that each transformation rule is correct, in the sense
that the the optimized program has the same observational behavior as the original. We also show that
the optimized code is both more efficient, and smaller than the initial program.

4.1 Correction

Definition 4 Given π1 and π2 two well-formed PIL programs, they are semantically equivalent, noted
π1 ∼ π2, when:

∀ε, δ,∃δ′ s.t. 〈ε, δ, π1〉 7→bs δ′ and 〈ε, δ, π2〉 7→bs δ′

Definition 5 A transformation rule r is correct if for all well-formed program π, r rewrites π in π′

(Definition 3) implies that π ∼ π′ (Definition 4).

From this definition, we prove that every rule given in Section 3 is correct. For that, two conditions
have to be verified:

1. π′ is well-formed,

2. ∀ε, δ, the derivations of π and π′ lead to the same result δ′.

The first condition is quite easy to verify. The second one is more interesting: we consider a program π,
a rule l → r IF c, a position ω, and a substitution σ such that σ(l) = π|ω. We have π′ = π[σ(r)]ω. We
have to compare the derivations of π and π′ in the context ε, δ.

• when ω is the empty position (which corresponds to the root), we have to compare the derivation
tree of π = σ(l) and π′ = σ(r),

• otherwise, we consider the derivation of π (resp. π′): there is a step which needs in premise the
derivation of π|ω (resp. π[σ(r)]ω). This is the only difference between the two trees.

In both cases, we have to verify that π|ω = σ(l) and σ(r) have the same derivation in a given context:

• equal to ε, δ when ω is the empty position,

VOLUME 3 9

Page 9

ELECTRONIC COMMUNICATIONS OF EASST

• otherwise, we have to consider the instruction i which immediately contains σ(l) (resp. σ(r)). The
context is defined by the context in which i is evaluated in the derivation tree of π (resp. π′).

In the following, we give one representative proof of correction: IfSwapping2. To simplify the proof
we consider l, r and c instead of σ(l), σ(r) and σ(c). In this rule, l = if(c1, i1, nop); if(c2, i2, nop) and
r = if(c2, i2, nop); if(c1, i1, nop). To prove that π ∼ π′, we have to verify that for a given ε, δ, l and r
have the same derivation. Since c1 and c2 are π-incompatible, three cases have to be studied:

Case 1: eval(ε, c1) = true and eval(ε, c2) = false

〈ε, δ, i1〉 7→bs δ′ eval(ε, c1) = true

〈ε, δ, if(c1, i1, nop)〉 7→bs δ′
〈ε, δ′, nop〉 7→bs δ′ eval(ε, c2) = false

〈ε, δ′, if(c2, i2, nop)〉 7→bs δ′

〈ε, δ, if(c1, i1, nop); if(c2, i2, nop)〉 7→bs δ′

We now consider the program if(c2, i2, nop); if(c1, i1, nop).
Starting from the same environment ε and δ, we show that the derivation leads to the same state δ′, and

thus prove that if(c1, i1, nop); if(c2, i2, nop) and if(c2, s2, nop); if(c1, s1, nop) are equivalent:

〈ε, δ, nop〉 7→bs δ eval(ε, c2) = false

〈ε, δ, if(c2, i2, nop)〉 7→bs δ

〈ε, δ, i1〉 7→bs δ′ eval(ε, c1) = true

〈ε, δ, if(c1, i1, nop)〉 7→bs δ′

〈ε, δ, if(c2, i2, nop); if(c1, i1, nop)〉 7→bs δ′

Since π and π′ are well-formed, their derivation in a given context are unique (see [3]). 〈ε, δ, i1〉 7→bs δ′

is part of these derivation trees, so it is unique, and δ′ is identical in both derivations.

Case 2: eval(ε, c1) = false and eval(ε, c2) = true, the proof is similar.

Case 3: eval(ε, c1) = false and eval(ε, c2)false, the proof is similar.

4.2 Time and space reduction

To show that the optimized code is both more efficient, and smaller than the initial program, we consider
two measures:

• the size of a program π is the number of instructions which constitute the program,

• the efficiency of a program π is determined by the number of tests and assignments which are
performed at run time.

2The other proofs can be found in [3]

VOLUME 3 10

Page 10

ELECTRONIC COMMUNICATIONS OF EASST

It is quite easy to verify that each transformation rule does not increase the size of the program:
DeadVarElim, ConstProp, Inlining, and LetFusion decrease the size of a program, whereas
IfFusion, IfInterleaving and IfSwapping maintain the size of the transformed program.

It is also clear that no transformation can reduce the efficiency of a given program:

• each application of DeadVarElim, ConstProp, and Inlining reduces by one the number
of assignment that can be performed at run time,

• IfFusion reduces by one the number of tests,

• IfInterleaving also decreases the number of tests when the first alternative is chosen. Oth-
erwise, there is no optimization,

• IfSwapping does not modify the efficiency of a program.

The program transformation presented in Section 3 is an optimization which improves the efficiency
of a given program, without increasing its size. Similarly to [5], this result is interesting since it allows
to generate efficient pattern matching implementations whose size is linear in the number and size of
patterns.

5 Experimental Results

The Tom compiler is written in Tom and Java. Therefore, the presented algorithm described using rules
and strategies, has been implemented in Tom. As illustrated Figure 1, the optimizer is just an extra phase
of the compiler, which is now integrated into the main distribution using the strategy given in Section 3.3.
In order to illustrate the efficiency of the compiler we have selected several representative programs and
measured the effect of optimization in practice:

Fibonnacci Eratosthene Langton Gomoku Nspk Structure

Tom Java 21.3 s 174.0 s 15.7 s 70.0 s 1.7 s 12.3 s

Tom Java Optimized 20.0 s 2.8 s 1.4 s 30.4 s 1.2 s 11.3 s

- Fibonacci computes 500 times the 18th Fibonacci number, using a Peano representation. On this
example, the optimizer has a small impact because the time spent in matching is smaller than the time
spent in allocating successors and managing the memory.
- Eratosthene computes prime numbers up to 1000, using associative list matching. The improve-
ment comes from the Inlining rules which avoids computing a substitution unless the rule applies
(i.e. the conditions are verified).
- Langton is a program which computes the 1000th iteration of a cellular automaton, using pattern
matching to implement the transition function. This example is interesting because it contains more
than 100 (ground) patterns. Starting from a simple one-to-one pattern matching algorithm, the optimizer
performs program transformations such that a pair (position,symbol) is never tested more than once. This

VOLUME 3 11

Page 11

ELECTRONIC COMMUNICATIONS OF EASST

interesting property, which characterizes deterministic automata based approaches, can unfortunately not
be generalized to any program.
- Gomoku looks for five pawn on a go board, using list matching. This example contains more than 40
patterns and illustrates the interest of test-sharing.
- Nspk implements the verification of the Needham-Schroeder Public-Key Protocol.
- Structure is a prover for the Calculus of Structures where the inference is performed by pattern
matching and rewriting.

The following table gives some comparisons with other well known implementations.

Fibonnacci Eratosthene Langton

Tom Java Optimized 20.0 s 2.8 s 1.4 s

Tom C Optimized 0.95 s 0.36 s 0.84 s

OCaml 0.44 s 0.7 s 1.36 s

ELAN 0.77 s 0.8 s 1.26 s

All these examples are available on the Tom web page. The measures have been done on a Pow-
erMac 2 GHz, using Java 1.4.2, gcc 4.0, and Ocaml 3.09. They show that the proposed approach is
effective in practice and allows Tom to become competitive with state of the art implementations such
as OCaml. We should remind that Tom is not dedicated to a unique language. In particular, the fact that
data-structure can be user-defined contrary to functional languages prevents us from using exception,
goto, and switch constructs and thus optimizations like those presented in [5].

6 Conclusion

In this paper, we have presented a new approach to compile pattern matching. This method is based on
well-attested program optimization methods. Separating compilation and optimization in order to keep
modularity, and to facilitate extensions is long-established in the compiler construction community. Us-
ing a program transformation and a formal method approach is an elegant way to describe, implement,
and certify the proposed optimizations. This work is closed to Sestoft approach [14] which compiles
naively ML-style pattern matches and by partial evaluation removes redundant cases instead of con-
structing directly the decision tree. Moreover, this two-stage pattern compilation is directly implemented
in Tom and shows how Tom language is well-adapted for program analysis-transformation.

We have only be interested in optimizing syntactic matching and thus considered a subset of PIL lan-
guage. As Tom already manages associativity, a future work will consist in developing new transforma-
tion rules adapted to this theory, without having to change the rules relative to syntactic one. However,
note that the presented rules remain correct when considering an extension of PIL.

This paper shows that using program transformation rules to optimize pattern matching is an efficient
solution, with respect to algorithms based on automata. The implementation of this work combined with
the formal validation of pattern matching [8] is another step towards the construction of certified/certify-
ing optimizing compilers.

VOLUME 3 12

Page 12

ELECTRONIC COMMUNICATIONS OF EASST

References

[1] Lennart Augustsson. Compiling pattern matching. In Proceedings of the conference on Functional
Programming Languages and Computer Architecture, pages 368–381. Springer-Verlag, 1985.

[2] Emilie Balland, Claude Kirchner, and Pierre-Etienne Moreau. Formal islands. In M. Johnson and
V. Vene, editors, Proceedings of the 11th international conference on Algebraic Methodology and
Software Technology, volume 4019 of LNCS, pages 51–65. Springer-Verlag, 2006.

[3] Emilie Balland and Pierre-Etienne Moreau. Optimizing pattern matching by program transforma-
tion. Technical report, INRIA-LORIA, 2005. http://hal.inria.fr/inria-00000763.

[4] Luca Cardelli. Compiling a functional language. In Proceedings of the ACM Symposium on LISP
and Functional Programming, pages 208–217, 1984.

[5] Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In Proceedings of the sixth
International Conference on Functional Programming, pages 26–37. ACM Press, 2001.

[6] Albert Gräf. Left-to-right tree pattern matching. In Proceedings of the 4th international conference
on Rewriting Techniques and Applications, volume 488 of LNCS, pages 323–334. Springer-Verlag,
1991.

[7] Simon L. Peyton Jones. The Implementation of Functional Programming Languages (Prentice-
Hall International Series in Computer Science). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1987.

[8] Claude Kirchner, Pierre-Etienne Moreau, and Antoine Reilles. Formal validation of pattern match-
ing code. In P. Barahone and A. Felty, editors, Proceedings of the 7th international conference on
Principles and Practice of Declarative Programming, pages 187–197. ACM, July 2005.

[9] Allen Leung. C++-based pattern matching language, 1996.

[10] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A Pattern Matching Compiler
for Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler Construction,
volume 2622 of LNCS, pages 61–76. Springer-Verlag, May 2003.

[11] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice. In Proceedings
of the 24th ACM Symposium on Principles of Programming Languages, pages 146–159. ACM
Press, USA, 1997.

[12] Oliver Rüthing, Jens Knoop, and Bernhard Steffen. Detecting equalities of variables: Combining
efficiency with precision. In A. Cortesi and G. Filé, editors, SAS, volume 1694 of LNCS, pages
232–247. Springer-Verlag, 1999.

[13] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching. SIAM Journal on
Computing, 24(6):1207–1234, 1995.

VOLUME 3 13

Page 13

ELECTRONIC COMMUNICATIONS OF EASST

[14] Peter Sestoft. ML pattern match compilation and partial evaluation. In O. Danvy, R. Glück, and
P. Thiemann, editors, Dagstuhl Seminar on Partial Evaluation, volume 1110 of LNCS, pages 446–
464. Springer-Verlag, 1996.

VOLUME 3 14

Page 14

ELECTRONIC COMMUNICATIONS OF THE EASST

Towards Distributed BPEL Orchestrations

Luciano Baresi *, Andrea Maurino **, and Stefano Modafferi *
*Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza L. da Vinci 32, I-20133 Milano, Italy

**Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano - Bicocca

Via Bicocca degli Arcimboldi 8, I-20126 - Milano, Italy

Abstract. Web services are imposing as the technology to integrate highly heterogeneous sys-
tems. BPEL, the standard technology to compose services, assumes a single ”orchestrator” that
controls the execution flow and coordinates the interactions with selected services. This cen-
tralized approach simplifies the coordination among components, but it is also a too heavy con-
straint. To this end, the paper introduces the idea of distributed orchestrations and presents a pro-
posal to couple BPEL and distributed execution in mobile settings. The approach —exemplified
on a simple case study— transforms a centralized BPEL process into a set of coordinated pro-
cesses. An explicit meta-model and graph transformation supply the formal grounding to obtain
a set of related processes, and to add the communication infrastructure among the newly created
processes. The paper also presents a communication infrastructure based on tuple spaces to
make the different orchestrators interact in mobile contexts.

Keywords: WS-BPEL, Graph transformation, Distributed system

1 Introduction

Web services are a well-known technology to implement and deploy service-oriented systems. Their
flexibility is playing a key role to integrate highly heterogeneous systems. Specific technologies are hid-
den behind simple XML interfaces written in WSDL (Web Services Description Language [CCMW01])
and services interact by means of SOAP (Simple Object Access Protocol) messages —another XML-
based technology. The same ease and freedom do not apply to the paradigms with which services can
be composed to support business processes. WS-BPEL (Web Services Business Process Execution Lan-
guage [BEA03]), the most prominent standard technology to compose Web services, only allows for a
”strict” centralized approach to composition, where a single orchestrator controls the execution flow and

VOLUME 3 1

Page 15

TOWARDS DISTRIBUTED BPEL ORCHESTRATIONS

coordinates the interactions with selected services.
This centralized approach to execution helps simplify the coordination among components, but it is

also a too heavy constraint for those systems that have a distributed nature and imply the cooperation of
decentralized (maybe nomadic) actors. The Web services community is already pushing more decentral-
ized approaches to composition. Choreographies (WS-CDL, Web Services Choreography Description
Language [Nic04]) —instead of orchestrations— support peer-to-peer interactions among services, and
event-based architectures, with WS-Notification [Aka04] as one of the emerging standards in this direc-
tion, support even looser cooperations among Web services, where the interaction is limited to reacting
to events generated within the composition. Unfortunately, available technology is still limited and it is
not as widely accepted as WS-BPEL.

Even if we stick to a workflow-like view of the Web services composition, in many cases, the centralized
process needs to be deployed in a distributed setting. The ”conceptual” monolithic process must be
partitioned into a well-organized set of sub-processes, and the implied coordination and synchronization
actions among the parts must be suitably designed and implemented. This is the case, for example,
of cross-departments business processes, where each division is in charge of a particular fragment of
the process, and they all concur to the success of the global process. Nowadays, we can also envisage
another, completely different, scenario with the centralized model split because it has to be executed by
a set of federated mobile devices. No single device has the capability of executing the whole process, but
they all can contribute with the execution of a dedicated portion. The scenario might become even bolder
if we thought of moving the partitioning process at runtime to dynamically select and allocate the pieces
of a process to the devices that are available, and have enough resources, at a given moment. Nomadic
users are supposed to move with their devices, and thus the set of cooperating devices can change. This
scenario could be useful for disaster recovery situations, and more in general in all those cases where a
stable and reliable network is not available, but the process must rely on a mobile ad-hoc network.

Given the wide diffusion of WS-BPEL, and the good set of supporting tools, the paper tackles the
problem of decentralizing the execution of WS-BPEL processes by fostering the idea of decentralized
orchestration. It proposes an automatic and formal approach to partition WS-BPEL processes, and to
add the necessary synchronization and coordination stuff. The approach transforms a centralized WS-
BPEL process into a set of coordinated processes. An explicit and precise meta-model [Obj02] and graph
transformation systems [BH02] supply the formal grounding to slice a single WS-BPEL process, obtain a
set of related processes, and add the communication infrastructure among the newly created processes to
both exchange data and propagate the execution flow. The paper demonstrates the approach on a simple
case study.

The approach is supported by two different families of tools, which are currently under development.
We are working on a CASE tool, based on AGG (Attributed Graph Grammar [Bey92]), that implements
partitioning rules and automatize the whole ”slicing” process. We are also working on the infrastructure
to execute such federated WS-BPEL processes.

The results presented in this paper are an evolution of those presented in [BMM04]. More specifically,
the novel contributions of this paper are: (1) an explicit meta-model for WS-BPEL specifications, (2)
partitioning rules that address the information exchange among cooperating processes, (3) partitioning
rules for fault, compensation, and event handlers, and (4) a more complete example application.

The rest of the paper is organized as follows. Section 2 introduces the formal ingredients, that is, the

2

Page 16

ELECTRONIC COMMUNICATIONS OF THE EASST

meta-model and partitioning rules. Section 3 discusses the approach on an example application. Section
4 surveys related approaches, and Section 5 concludes the paper.

2 Partitioning rules

This section introduces the approach to transform a WS-BPEL model into a set of federated models.
The first part of the section introduces the meta-model, specified to render the key elements of WS-
BPEL, and graph transformation systems. The second part presents partitioning rules. It describes one
rule thoroughly, and concentrates on the key aspects for the others. Lack of space does not allow us to
present all rules in detail, but interested readers can refer to [BMM05] for the whole graph transformation
system.

2.1 Meta-model

Even if WS-BPEL is a complex workflow language for describing Web services compositions, Figure 1
only comprises those elements that are used by our approach, that is, that are handled within partitioning
rules. The meta-model presented here borrows some concepts from the work presented in [Ga03], but
we explicitly decided to get rid of all those elements that, even if are part of the WS-BPEL specification,
and thus should be part of a complete meta-model, are not considered by the partitioning process.

Figure 1: Dedicated WS-BPEL metamodel

Straightforwardly, a BPEL Process comprises several Basic Nodes. This class is the key compo-
nent of the whole meta-model. Basic Nodes correspond to the basic activities that can be performed
by a WS-BPEL process, like invoke and receive. Structured Nodes, which are a special-
ization of the first ones, correspond to the typical constructs of workflow languages supposed by WS-
BPEL, like switch, flow, sequence, and pick. We treat each Structured Node by means of
two Basic Nodes to identify the first and the last element of the composed statement. Scopes and
Handlers are seen as special-purpose Structured Nodes since they both embed a set of Basic

VOLUME 3 3

Page 17

TOWARDS DISTRIBUTED BPEL ORCHESTRATIONS

Nodes. We do not use containment relations to render the embedding of some nodes into others, but we
exploit associations begin and end to identify the scope of each structured construct.

Nodes are characterized by the orchestrator that is in charge of their execution and are con-
nected through Flows. These, in turn, can be FlowLinks, to render order of execution among nodes,
DataLinks, to define data dependencies among nodes, and Dependences, to relate the pairs of
invoke/receive Basic Nodes added to synchronize components that have to be executed by two
different executors (orchestrators).

This is not a ”complete” and constrained meta-model. This means that we cannot be used to probe the
consistency of WS-BPEL specifications. The meta-model is simple and ”unprecise” since we assume
that initial WS-BPEL models are correct and that the partitioning rules, that is, the graph transformation
rules, only produce correct models1.

2.2 Partitioning rules

Partitioning rules must be precise enough to allow for correct and automatic transformations and are
supposed to work on the graph structure (i.e., an instance of the meta-model) that is behind any WS-
BPEL process. These two requirements led us to consider graph transformation systems [BH02], along
with the tool support they offer, as the right means to specify them.

Partitioning rules are introduced here incrementally. We start introducing the rules to control the ex-
ecution flow, already presented in [BMM04], then we move to those that oversee data exchange and
manage handlers. Since all rules are ”similar”, here we only describe one rule in detail and we invite
readers to refer to [BMM05] for the complete set. All the other rules are presented by concentrating on
the problems behind them, instead of showing how the different instances of meta-model elements are
created, deleted, and modified.

In this paper, we introduce partitioning rules for controlling the execution flow by means of the exam-
ple of Figure 2, which shows the meta-model of a simple WS-BPEL Switch statement with a Basic
Node in each branch. The figure also shows that different nodes are associated with different orchestra-
tors: this means that the designer has already decided how to split the process, that is, how to allocate the
different sub-processes on available executors.

To partition the simple example process of Figure 2, we start by setting links to state the dependence, in
terms of execution flow, between two WS-BPEL activities that are controlled by different orchestrators.
Figure 3 shows the rule. The left-hand side describes when the rule can be applied, while the right-hand
side shows the final result. The rule starts with two nodes that are associated with different orchestrators
and introduces two new Basic Nodes to synchronize the execution of the first part with the execution
of the second part. These two nodes are a pair of invoke/receive activities to forbid the second
activity to start before the completion of the first one.

The partitioning process continues by identifying all the other pairs of nodes that must be synchronized
and by adding special-purpose Basic Nodes to notify the branch followed by the Switch to all
involved orchestrators.

1This is not explicitly demonstrated in this paper, but readers can refer to [BMM04] for a first informal demonstration
limited to the rules that deal with the execution flow.

4

Page 18

ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 2: Example meta-model of a simple Switch construct

Figure 3: Rule AddDependence

VOLUME 3 5

Page 19

TOWARDS DISTRIBUTED BPEL ORCHESTRATIONS

The partitioning process also takes into account data distribution. According to the WS-BPEL speci-
fication, the scope of variables can be global (all activities can use them) or local (e.g., constrained in
a given handler or scope). After partitioning, the result is a set of variables (both local and global) that
are accessible by their local orchestrators, and a way to propagate their values to the other orchestrators.
To cope with this, we added data-dependence graphs to our approach. As discussed in the literature for
liveness analysis, in some configurations it is not possible to detect, at design time, suitable data de-
pendencies between producers and consumers2. In such situations, the original WS-BPEL description,
with that specific assignment of activities to orchestrators, cannot be partitioned. Thus, we also added an
analysis phase, before starting the partitioning process, to understand if the approach is applicable.

Since execution and data flows are similar, it is possible to use the same rules defined for partitioning
functional dependencies also for building a distributed data dependence graph. Nevertheless, in a data
dependence graph, a node can be reached by several nodes if producers belong to structured activities.

For example, if we considered a Flow statement and we suppose that two nodes A and B are executed
in parallel and produce the same variable v for node C, in a centralized environment the last activity
executed would set the value for v. To preserve such a behavior, we need to add before the consumer
node a Pick Structured Node with two branches: the first to receive the datum from B and the
second from A. The first branch is followed after receiving a message receiveA, while the second is
triggered by a message receiveB. This means that the branch followed is driven by the first node that
produces data, but the value is received from the second node.

If we considered While statements, producers and consumers can be organized in different ways:

• The producer node is executed before the loop and the consumer is executed within the loop. In
this case, we add a Switch Structured Node before the consumer. If the iteration is the
first, the corresponding switch branch has a node to receive data from the producer; otherwise no
operations are performed.

• Producer and consumer are in the loop. The producer is executed before the consumer. This simple
case can be directly solved by using the rules already presented in [BMM04].

• The producer is within the loop and the consumer is executed after the end of the loop. In this
case, we add a Basic Node after the end of the loop to send produced data.

• A producer is before the loop, but another producer is within the loop and after the consumer.
To cope with this situation, we add a Switch Structured Node before the consumer to
distinguish between the first iteration, when the data come from the external producer, and the
other iterations, when data come from the internal producer.

Even if our meta-model considers exception handlers as structured activities, they need some specific
considerations. First of all, we use the general term exception handler to identify fault, event, and
compensation handlers. They comprise two parts: a part that model the raising of the exception, and
a part that models the behavior of the handler by using “normal” WS-BPEL activities. Thinking of

2Two WS-BPEL activities are interpreted as producer and consumer if the former sets the value of a given variable that is
then used by the latter, without any other activity that changes the value between the two activities.

6

Page 20

ELECTRONIC COMMUNICATIONS OF THE EASST

distributed executions, the second part can be managed with the rules already used for the “normal”
behavior, while we need to address more thoroughly the raising of the exception and its propagation to
involved orchestrators.

Each exception is associated with a scope and the relevant orchestrators are the same as those involved
in the corresponding scope. For this reason, we add a synchronization mechanism at the end of each
scope to ensure that if an exception is raised in a scope all orchestrators are properly synchronized. The
other operation we need to insert is the propagation of the fault to all involved orchestrators. To cope
with this, we propose a solution that is very similar to that used for propagating the value of a variable in
Switch statements (an orchestrator evaluates it and then propagates the result to the others).

Figure 4 shows how to propagate the fault to all the orchestrators involved in a scope. The Switch is
necessary to distinguish if the controller is also the catcher of the exception (e.g., a controlled activity
failed) or if it is only involved in the scope.

Exception Handler

Inform C1 ……. inform Cn

exception

Local view of
BPEL Code

managing exception

Internal catch
of exception

External catch
of exception

Figure 4: Distributed exception handling

This propagation mechanism, along with the synchronization required before the end of the scope,
ensures that each exception is properly forwarded to all interested orchestrators.

To create the local processes, we have a dedicated set of rules. Given the orchestrator for which we want
to produce the view, the rules are applied as follows. They: (1) remove all the Basic Nodes whose
execution is not controlled by the selected orchestrator; (2) translate all the Structured Nodes, with
the exception of Sequences, that do not include “local” activities into Sequences with no nodes.
The same process, applied iteratively, produces the partial WS-BPEL models for the orchestrators that
are part of the system.

VOLUME 3 7

Page 21

TOWARDS DISTRIBUTED BPEL ORCHESTRATIONS

3 Example

To explain the approach, we render as workflow a standard procedure defined and realized for carrying
out maintenance by the Italian railways. Specifically, we consider the situation in which maintenance
and testing of electrical lines and signals have to be performed. This process is partially automatic and
involves a central management unit (CMU) and several teams that perform required actions on site. CMU
manages the activation/deactivation of railroad traffic on a given track. There are also two teams, one for
putting and checking signals and the other one for managing electrical lines. The latter is further divided
in the Electric Maintenance team (EMT) and the Electric Test Team (ETT). There is also a control post
(CP) that controls the power supply on tracks. In this example, CP only exposes a Web service that
allows to inhibit or reactivate electricity on tracks.

SCOPE

While exit section n do

Put Working in Progress Signal

Ask for disabling railroad traffic

Maintenzance section n

Test section n

Signals Maintenance

Ask for testing signals

Test Signals

Ask for restoring railroad traffic

Restore railroad traffic

Remove "Working in Progress" Signal

Ask for disabling current

Ask for restoring current

Disable railroad traffic

DCOEMTETT Signal Team

Receive confirmation

Receive confirmation

Get Railroad Electric Characteristic

Get Railroad Signal Characteristic

Update Railroad Electric Charac.

Update Railroad Signal Charac.

Figure 5: Example workflow

Figure 5 shows the example WS-BPEL process rendered as activity diagram. Each swimlane corre-

8

Page 22

ELECTRONIC COMMUNICATIONS OF THE EASST

sponds to a different controller (orchestrator). For our purposes, we consider each operation as a single
task that can be modelled as a WS-BPEL basic activity. A fault handler is associated with the process. It
models the possibility of stopping the maintenance activity, and thus resume the availability of the track
for the normal train traffic. Notice that the operative teams could be off-line and perform part of their
tasks while disconnected.

The workflow starts with the Signal Team that raises a working in progress signal on a given track.
Then, the EMT asks the CMU for disabling the railroad traffic. CMU disables the traffic and gets from the
database the information about the electric characteristics and signals of the considered track. After this,
the Electric Team and the Signal Team perform their activities in parallel. Electric maintenance is carried
out by asking for the inhibition of the track, by dividing it in sections, and by starting maintenance and
testing activities on each section. At the end, the power supply is restored. The maintenance of signals
is performed by the Signal Team and then signals are tested by the CMU. At the end of their work, both
EMT and Signal Team update the corresponding parts of the database. All operations are enclosed in
a scope with an associated fault handler that allows the process to be interrupted to restore the normal
traffic on the track. After completing maintenance, the EMT asks for restoring the normal traffic and
after the CMU does this, the Signal Team removes the working in progress signal.

After explaining the problem, we are ready to apply our partitioning approach. Rules are applied
recursively to insert specific coordination activities in the original workflow.

Electric Test Team Dirigenza Centrale Operativa Signal Team Electric Maintenance Team

FAULT HANDLER
On msg: Request for rapid railroad restore

Ask for restoring current

Receive Confirmation

Propagate request to Electr.Maint.Team

Propagate request to Electr. Test. Team

Propagate request to Signal Team

FAULT HANDLER
On msg: Propagate Request

FAULT HANDLER
On msg: Propagate Request

FAULT HANDLER
On msg: Propagate Request

Stop current activity

Stop current activity
Stop current activity

Figure 6: Decentralized fault handler

In our example, we have one fault and it can only be caught by the CMU. With this assumption, Figure 6
shows the fault handlers of the different controllers. After the CMU captures the request for restoring
the normal situation, it propagates a message to the other orchestrators to raise an exception in each
workflow. After this propagation, it asks the CP for restoring electricity. For security reasons, the
procedure would require double confirmation to stop the activities of the operative teams (both CMU
and CP would be involved), but this is not important for this example since it would only require that the
fault handler be more complex.

The local view of each orchestrator, that is, its sub-process, can then be extracted from the modified
workflow: Figure 7 shows the dedicated sub-process for the CMU orchestrator limited to the execution
flow.

As far as data are concerned, the example shows that variables railroad electric characteristic and
railroad signal characteristic are used by different roles (orchestrators). They store information that

VOLUME 3 9

Page 23

TOWARDS DISTRIBUTED BPEL ORCHESTRATIONS

SCOPE

Test Signals

Restore railroad traffic

Disable railroad traffic

Receive start

Receive start

Receive start

Do start

Get Railroad Electric Characteristic

Get Railroad Signal Characteristic

Do start

Do Start ScopeDo Start Scope

Do Start Scope

Reply End Scope

Do start

From EMT

To EMT

To ETT

To Signal Team

To EMT

From Signal Team

To Signal Team

To EMT

FAULT HANDLER
On msg: Request for rapid railroad restore

Ask for restoring current

Receive Confirmation

Propagate request to EMT

Propagate request to ETT

Propagate request to Signal TeamTo EMT

To ETT

To Signal Team

Figure 7: Local view for the CMU

10

Page 24

ELECTRONIC COMMUNICATIONS OF THE EASST

will be updated during the process. In Figure 5, the activities that use these variables are marked with x
and +, respectively. In the centralized model, they are global variables, but in the decentralized scenario
they have to be propagated to the correct orchestrators. It is possible to determine how these variables
are used by building the data flow graph. Then, Figure 8 shows the activities that must be added to the
original workflow to manage their propagation.

Dirigenza Centrale OperativaElectric Maintenance Team Signal Team

send Railroad Electric CaracteristicReceive Railroad Electric Caracteristic

Get Railroad Signal Characteristic

send Railroad Signal Characteristic Receive Railroad Signal Characteristic

Figure 8: Activities inserted for propagating variables

4 Related work

The problem of workflow partitioning has been well-studied in the field of business process design for
some ten years. The issue of workflow distribution still offers interesting aspects to study because of
mobile information systems and Web services with the problems that come with them. In [JSH+01], the
authors present a comparison among the different approaches to distribution.

Cross-Flow [GAHL00] aims at providing high-level support to workflows in dynamically-created vir-
tual organizations. High-level support is obtained by abstracting services and offering advanced cooper-
ation support. Virtual organizations are created dynamically by contract-based match-making between
service providers and consumers. In Agent Enhanced Workflow [JOSC98], the agent oriented solution
presents the interesting aspect of building execution plans using a goal approach. Event-based Work-
flow Process Management [EP99] includes an event-based workflow infrastructure and model constructs
for addressing time aspects of process management. The main feature of ADEPT [RD98] is the pos-
sibility of modifying workflow instances at run-time. MENTOR [MWW+98] provides an autonomous
workflow engine. In this approach the workflow management system is based on a client-server architec-
ture. The workflow itself is orchestrated by appropriately configured servers, while the applications that
invoke workflow activities are executed on the client sites. The METEOR (Managing End to End Op-
eRations) [ASC+03] system leverages Java, CORBA, and Web technologies to provide support for the
development of enterprise applications that require workflow management and application integration.
It enables the development of complex workflow applications which involve legacy information sys-
tems and that have geographically distributed and heterogeneous hardware and software environments,
spanning multiple organizations. It also provides support for dynamic workflow processes, error and ex-
ception handling, recovery, and QoS management. Exotica [MAGK95] is characterized by the possibility

VOLUME 3 11

Page 25

TOWARDS DISTRIBUTED BPEL ORCHESTRATIONS

of disconnected operations. It does not permit complete decentralization because it maintains a central
unit and all operations obey a client/server paradigm. WISE [AFH+99] exploits the Web for its engine
and offers an embedded fault handler. WAWM [Rie98] focuses on the problems related to the workflow
management in wide area networks. Mobile [JB96] is developed to support inter-organizational work-
flows and is strongly based on modularity. This characteristic alleviates change management and also
allows users to customize and extend aspects individually.

The analysis of presented models suggests two different and dual approaches to the problem of work-
flow coordination. The first approach supports the integration of autonomous and preexisting workflows
and it aims mainly at the coordination of different and independent actors. The second approach sup-
ports the decomposition of single workflows to support their autonomous execution by means of different
engines. Cross-Flow, Agent Enhanced Workflow, Event-based Workflow process Management, Adept,
WISE and WAWM belong to the first approach; Mentor, Exotica and Mobile belong to the second one.

Described systems offer three different solutions for the definition of partitioning and allocation rules.
The first solution proposes specific definition languages (Cross-Flow, Agent enhanced workflow, Mentor,
Exotica). The second approach proposes the extension of workflow languages with distribution rules
(Cross-Flow, ADEPT, WISE, WAWM, Mobile). The third approach does not consider the language for
distribution rules (Event-based, workflow Process Management). Cross-Flow belongs to more than one
class because the distribution rules are split into several definition parts.

Our delegation model supports disconnected components like Exotica, the independence of workflow
engines like MENTOR, and the possibility of modifying the workflow instance at run-time like ADEPT.
Moreover, we argue that the mobile environment needs a language strongly oriented to the automatic
execution like WS-BPEL, but we do not forget the need for lightness that is a mandatory feature if the
system runs on portable devices in ad-hoc networks. As far as the definition of rules is concerned, our
approach defines partitioning rules, but does not define allocation rules. It demands them to the specific
business process and application domain.

Many of these cited approaches do not consider Web services as available instruments for decentralizing
business processes. A different comment is for [CCMN04], which presents an approach very similar to
ours. The authors use BPEL as workflow model and use the term Composite Web Service to refer to
a standard workflow. However, they focus on the problem of assigning workflow portions to specific
orchestrators to minimize the traffic among nodes, but they do not provide any specific information
about the partitioning rules and/or any proof of their validity. They introduce the concepts of Control
Flow Graph and Program Dependence Graph without providing how they refer to WS-BPEL constructs
and activities.

5 Conclusions and future work

The paper has presented our approach towards distributed orchestrations. It is the continuation of the
results already presented in [BMM04], and extends them with the partitioning rules for handling data
exchange among orchestrators and for dealing with handlers. Again, the first results are encouraging and
are motivating us to continue working on these ideas.

Besides refining the rules, and applying them on further and more complex examples, the key element

12

Page 26

ELECTRONIC COMMUNICATIONS OF THE EASST

of our future work is the definition of the infrastructure to accommodate the execution of our federated
WS-BPEL processes. We are working on different solutions that allow us to solve different problems.
The first option is the use of standard WS-BPEL engines. This is the simplest solution, but it requires that
all synchronization and communication problems among orchestrators be faced and solved in the pro-
cess specifications. We are thinking of adopting an infrastructure based on a tuplespace middleware (like
JavaSpace [Sun04]) to increase the reliability of the supporting infrastructure, cope with the problems
that come from producer-consumer analysis, and allow nomadic users to store and retrieve their data
in/from dedicated tuples. Finally, we are investigating how to move the synchronization among orches-
trators from the WS-BPEL models to the supporting infrastructure by adopting event-based architectures
(e.g., WS-Notification) as the means to make the orchestrators communicate.

References

[AFH+99] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, and N. Weiler. WISE: Business
to business e-commerce. In RIDE, pages 132–139, 1999.

[Aka04] Akamai Technologies, Computer Associates International, Fujitsu Laboratories of Europe,
Globus, Hewlett-Packard, IBM, SAP AG, Sonic Software, TIBCO Software. Web Services
Notification. 2004.

[ASC+03] K. Anyanwu, A. Sheth, J. Cardoso, J. Miller, and K. Kochut. Healthcare enterprise process
development and integration. Journal of Research and Practice in Information Technology,
35(2), 2003.

[BEA03] BEA and IBM and Microsoft and SAP and Siebel. Business Process Execution Language
for Web Services Version 1.1. 2003.

[Bey92] M. Beyer. AGG1.0 - Tutorial. Technical University of Berlin, Department of Computer
Science, 1992.

[BH02] L. Baresi and R. Heckel. Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. In Proceedings of the First International Conference on Graph
Transformation (ICGT 2002), volume 2505 of Lecture Notes in Computer Science, pages
402–429. Springer-Verlag, 2002.

[BMM04] L. Baresi, A. Maurino, and S. Modafferi. Workflow partitioning in mobile information sys-
tems. In Kluwer, editor, In Proc. of IFIP TC8 Working Conference on Mobile Information
Systems, volume 158 of IFIP International Federation for Information Processing, 2004.

[BMM05] Luciano Baresi, Andrea Maurino, and Stefano Modafferi. Partitioning rules for ws-bpel
processes. Technical report, Politecnico di Milano, 2005.

[CCMN04] G.B. Chafle, S. Chandra, V. Mann, and M.G. Nanda. Decentralized orchestration of com-
posite web services. In In Proc. of the Int. World Wide Web conference on Alternate track
papers & posters, pages 134–143, New York, NY, USA, 2004. ACM Press.

VOLUME 3 13

Page 27

TOWARDS DISTRIBUTED BPEL ORCHESTRATIONS

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. W3C, March 2001.

[EP99] J. Eder and E. Panagos. Towards distributed workflow process management. In In proc.
of Workshop on cross-Organizational Workflow Management and Coordination, San Fran-
cisco, USA, 1999.

[Ga03] T. Gardner and al. Draft uml 1.4 profile for automated business processes with a mapping
to the bpel 1.0. IBM alphaWorks, 2003.

[GAHL00] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. Crossflow: Cross-organizational work-
flow management in dynamic virtual enterprises. International Journal of Computer Sys-
tems Science & Engineering, 15(5):277–290, 2000.

[JB96] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture and
Implementation. International Thomson, 1996.

[JOSC98] D. Judge, B. Odgers, J. Shepherdson, and Z. Cui. Agent enhanced workflow. BT Technical
Journal, (16), 1998.

[JSH+01] S. Jablonski, R. Schamburger, C. Hahn, S. Horn, R. Lay, J. Neeb, and M. Schlundt. A
comprehensive investigation of distribution in the context of workflow management. In In
proc. of International Conference on Parallel and Distributed Systems ICPADS, Kyongju
City, Korea, 2001.

[MAGK95] C. Mohan, G. Alonso, R. Gunthor, and M. Kamath. Exotica: A research perspective of
workflow management systems. Data Engineering Bulletin, 18(1):19–26, 1995.

[MWW+98] P. Muth, D. Wodtke, J. Weisenfels, A. Kotz Dittrich, and G. Weikum. From centralized
workflow specification to distributed workflow execution. Journal of Intelligent Informa-
tion Systems, 10(2):159–184, 1998.

[Nic04] Nickolaos Kavantzas and David Burdett and Greg Ritzinger. Web Services Choreography
Description Language Version 1.0. 2004.

[Obj02] Object Management Group. Meta Object Facility (MOF) Specification - v.1.4. Technical
report, OMG, March 2002.

[RD98] M. Reichert and P. Dadam. Adeptflex− supporting dynamic changes of workflows without
losing control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

[Rie98] G. Riempp. Wide Area Workflow Management. Springer, London, UK, 1998.

[Sun04] Sun Microsystems. Jini network technology, 2004. wwws.sun.com/software/jini/.

14

Page 28

ELECTRONIC COMMUNICATIONS OF THE EASST

EMF Model Refactoring based on Graph Transformation
Concepts

Enrico Biermann *, Karsten Ehrig **, Christian Köhler *, Günter Kuhns *, Gabriele Taentzer *,
Eduard Weiss *

*Department of Computer Science, Technical University of Berlin,
Germany,{enrico,bunjip,jaspo,gabi,eduardw}@cs.tu-berlin.de

**Department of Computer Science, University of Leicester, UK, karsten@mcs.le.ac.uk

Abstract. The Eclipse Modeling Framework (EMF) provides a modeling and code genera-
tion framework for Eclipse applications based on structured data models. Within model driven
software development based on EMF, refactoring of EMF models become a key activity. In this
paper, we present an approach to define EMF model refactoring methods as transformation rules
being applied in place on EMF models. Performing an EMF model refactoring, EMF transfor-
mation rules are applied and can be translated to corresponding graph transformation rules,
as in the graph transformation environment AGG. If the resulting EMF model is consistent, the
corresponding result graph is equivalent and can be used for validating EMF model refactor-
ing. Results on conflicts and dependencies of refactorings for example, can help the developer to
decide which refactoring is most suitable for a given model and why.

Keywords: Model refactoring, Eclipse Modeling Framework, graph transformation

1 Introduction

In the world of model-driven software development, the Eclipse Modeling Framework (EMF) [EMF06]
is becoming a key reference. It is a framework for describing class models and generating Java code;
it supports the creation, modification, storage, and loading of model instances. Moreover, it provides
generators to support the editing of EMF models.

EMF unifies three important technologies: Java, XML, and UML. Regardless of which one is used
to define a model, an EMF model can be considered as the common representation that subsumes the
others. That means defining a transformation approach for EMF, it will become also applicable to the
other technologies.

Refactoring within the model-driven software development process means to refactor the corresponding

VOLUME 3 1

Page 29

EMF MODEL REFACTORING

models. Basing the model-driven approach on EMF models, refactoring of EMF models becomes a key
activity which should be supported. Since EMF unifies three different technologies, i.e. Java, XML and
UML, the EMF refactoring can also be used to restructure Java programs, XML schemas and UML
models. Considering especially UML, a number of refactoring methods are already available, see e.g.
[SPTJ01], [Por03], [MB05], which all cover at least refactoring of class models. Since EMF models
resemble very much UML class models, UML refactoring methods can also be considered for EMF
model refactorings.

Different approaches have been considered for model refactorings which can be categorized as model
transformations in general, optimizing models of a given modeling language. Most of the refactoring ap-
proaches presented (e.g. [SPTJ01], [MB05]) use OCL constraints to describe the pre- and post-conditions
of refactorings in a declarative way. Another kind of approaches use transformation rules (e.g. [Por03]).
In [MT04], declarative approaches based on pre-/post-conditions are compared with graph transforma-
tion approaches.

In this paper, we consider two selected refactorings of instances of the Ecore model being the EMF
meta model and as such also an EMF model. Besides the Ecore model, we could also choose any other
EMF model, such as the UML2 model, for refactoring. Our transformation approach is based on graph
transformation and adapted to EMF models.

In our running example, we consider an EMF model which stores the abstract syntax of simple place/
transition Petri nets and refactor it in order to get a more object-oriented model. (See the original Petri
net model in Fig. 1.) This model is restructured by pulling up the common attribute ”name” of classes
”Place”, ”Transition” and ”PetriNet” to a new superclass ”NamedElement”. (See the refactored model in
Fig. 2.) In the following, we consider “create superclass” and “pull up attribute” as sample EMF model
refactorings.

Figure 1: Petri net model before refactoring

EMF model refactoring can be considered as endogenous model transformation [MVG06] performing
some kind of model optimization. When applying a refactoring method to an EMF model, this model
shall be modified, i.e. it shall be transformed in-place. Considering the current transformation approaches

VOLUME 3 2

Page 30

ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 2: Petri net model after refactoring

for EMF such as Tefkat [LS05], ATL [JK06], MTF [MTF05], Merlin [Mer06], and the transformation en-
gines developed within the Eclipse Project General Model Transformer (GMT), a transformation engine
for in-place transformation and with validation facilities for model transformations is not yet available.

Therefore, we recently developed an endogenous EMF model transformation engine [BEK+] which can
perform in-place model transformations, based on graph transformation concepts. The transformation
description can be compiled to Java code using those EMF classes already generated. Furthermore, it is
possible to translate the rules to AGG [AGG06], a tool environment for algebraic graph transformation
where the transformation might be further analyzed.

The analysis of transformations and transformation rules is helpful in deciding what to refactor and
when. Termination of refactoring operations as well as conflicts and dependencies between different
refactorings are important issues to be analysed to inform the user about the refactorings which can be
performed. The dependency analysis has already been considered in [MTR04].

2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [EMF06] provides a modeling and code generation frame-
work for Eclipse applications based on structured data models. The modeling approach is similar to that
of MOF, actually EMF supports Essential MOF (EMOF) as part of the OMG MOF 2.0 specification
[EMO06]. The type information of sets of instance models is defined in a so-called core model corre-
sponding to metamodel in EMOF. The core or metamodel for core models is the Ecore model. It contains
the model elements which are available for EMF core models in principle. In Fig. 3, the main part of
Ecore (without attributes) is shown. The kernel model contains elements EClass, EDataType, EAttribute
and EReference. These model elements are needed to define classes by EClass, their attributes by EAt-
tribute and interrelations by EReference. EClasses can be grouped to EPackages which might be again
structured into subpackages. In addition, each model element can be annotated by EAnnotation. Fur-

VOLUME 3 3

Page 31

EMF MODEL REFACTORING

thermore, there are some abstract classes to better structure the Ecore model, such as ENamedElement,
ETypedElement, etc.

ENamedElement EAnnotation

EModelElement

0..n
+eAnnotations
0..n

+eModelElement

ETypedElement EPackage

0..n

+eSubpackages

0..n

+eSuperPackage

EParameter

EClassifier

0..1

+eType

0..1

0..n

+ePackage+eClassifiers

0..n

EOperation

0..n

+eOperation +eParameters

0..n

EReference
0..1

+eOpposite

0..1

EDataType

EAttribute

+eAttributeType 11

EClass 0..n

+eSuperTypes

0..n

0..n

+eContainingClass

+eOperations

0..n

0..n
+eReferences

0..n

0..n

+eAttributes

0..n

EStructuralFeature

+eContainingClass

+eStructuralFeatures

0..n0..n

File: C:\Dokumente und Einstellungen\christian\Desktop\thesis\refs\mof-vs-ecore.mdl 15:00:44 Sonntag, 25. Juni 2006 Class Diagram: Logical
View / ecore-kernel Page 1

Figure 3: Kernel of Ecore model

It is important to note that the EMF metamodel (Ecore) is again a core model. That means that the
meta classes EClass, EDatatype, EReference etc. actually cannot only be interpreted as, but in fact are
classes of an EMF core model. This fact is of great importance for our approach, since it enables us to
use native EMF notions (elements of the meta model) for the definition of refactoring rules and interpret
these notions in terms of formal graphs and graph transformations.

3 Specification of EMF Model Refactorings

Before presenting the specification of concrete EMF model refactoring methods, we present the transfor-
mation approach used to manipulate EMF models. The transformation concepts are closely related to the
algebraic graph transformation concepts [EEPT06]. The main reason for this design decision is the basic
opportunity to validate EMF model transformations which is possible only if some form of consistency
can be reached by the EMF transformation. We will discuss consistency issues in the next section.

VOLUME 3 4

Page 32

ELECTRONIC COMMUNICATIONS OF THE EASST

3.1 EMF Model Transformation Approach

Basically, an EMF transformation is a rule-based modification of an EMF source model resulting in an
EMF target model. Both, the EMF source and target models are typed over an EMF core model which
itself is again typed over Ecore. Refactoring can take place on two levels: (1) Refactoring rules are typed
over the Ecore model and are applied to EMF models. The running example of this paper containing
refactorings of a Petri net model (being an EMF core model) is of this kind. (2) Refactoring rules are
typed over some EMF core model (e.g. the Petri net model in Fig. 1) and refactor EMF instance models
(e.g. Petri net instance models).

A Transformation System consists of a set of transformation rules. Furthermore, it has a link to the core
model its instances are typed over. Rules are expressed mainly by two object structures LHS and RHS,
the left and right-hand sides of the rule. Furthermore, a rule has mappings between objects of the LHS
and the RHS indicated by numbers preceding the class names. The left-hand side LHS represents the
pre-conditions of the rule, while the right-hand side RHS describes the post-conditions. Those objects of
the LHS which are mapped to the RHS, describe a structure part which has to occur in the EMF source
model, but which is not changed during the transformation. All objects of the LHS not mapped to the
RHS define the part which shall be deleted, and all symbols and links of the RHS to which nothing is
mapped, define the part to be created.

The applicability of a rule can be further restricted by additional application conditions. As already
mentioned above, the LHS of a rule formulates some kind of positive condition. In certain cases also
negative application conditions (NACs) which are pre-conditions prohibiting certain object structures,
are needed. If several NACs are formulated for one rule, each of them has to be fulfilled. A NAC is
again an object structure which is the target of a mapping from the LHS. This feature is useful to prohibit
structures connected to the LHS.

The rule’s LHS or a NAC may contain constants or variables as attribute values, but no Java expressions,
in contrast to an RHS. A NAC may use the variables already used in the LHS or new variables declared
as input parameters. The scope of a variable is its rule, i.e. each variable is globally known in its rule.
The Java expressions occurring in the RHS, may contain any variable used within the LHS or declared
as input parameter. Multiple usage of the same variable is allowed and can be used to require equality of
values.

A rule-based transformation system may show two kinds of non-determinism: (1) for each rule several
matches may exist, and (2) several rules may be applicable. There are techniques to restrict both kinds
of choices. The choice of matches can be restricted by using input parameters. Moreover, some kind
of control flow on rules can be defined by applying them in a certain order. For this purpose, rules are
equipped with layers. All rules of one layer are applied as long as possible (in any order) before going
over to the next layer. The transformation stops after having execute the last layer.

To apply the defined transformation rules on a given EMF model, we either select and apply the rules
step-by-step, or take the whole rule set and let it apply as long as possible. A transformation step with
a selected rule is defined by first finding a match of the LHS in the current instance model. A pattern is
matched to a model if its structure can be found in the model such that the types and attribute values are
compatible. In general, a pattern can match to different parts of a model. In this case, one of the possible
matches has to be selected, either randomly or by the user.

VOLUME 3 5

Page 33

EMF MODEL REFACTORING

Performing a transformation step which applies a rule at a selected match, the resulting object structure
is constructed in two passes: (1) all objects and links present in the LHS but not in the RHS are deleted;
(2) all object and links in the RHS but not in the LHS are created. A transformation, more precisely a
transformation sequence, consists of zero or more transformation steps.

3.2 Selected Refactoring Methods for EMF Models

Based on the presented transformation approach for EMF models we show two selected refactoring
methods for EMF models. All transformation rules are typed over the Ecore model, in more detail
over the Ecore section shown in Fig. 3. In the following, we define the simple refactorings “create
superclass” and “connect superclass” where a new superclass is created for a given class and can be
become superclass of further classes. Moreover, the complex refactoring “pull up attribute” is shown. If
each subclass contains an attribute with the same name and type, it can be pulled up to their common
superclass.

Refactoring rule “CreateSuperclass(EString c, EString s, boolean a)” in Fig. 4 has parameters “c” and
“s” to determine the name of the child class and of the new super class. Moreover, we have to decide if
the new super class shall be abstract. The LHS describes the pattern to be found for refactoring consisting
of a class which will be the child and the package it belongs to. The RHS shows the new pattern after
refactoring where a new class with name “s” has been created which is the super class of the given class.
The super class shall be contained in the same package as the class its subclass. Fig. 4 shows the left
and the right-hand sides of the rule. Objects which are preserved occur in both parts. If two objects
correspond to each other, they are colored and numbered equally.

Figure 4: Rule ”CreateSuperclass”

After creating a super class, it might become super class of more than one class which can be restruc-
tured by rule “ConnectSuperclass(EString s, EString c)” in Fig. 5. A class is allowed to become subclass
of a given class, if that class does not have attributes and references yet. These additional conditions are
expressed by two NACs “No Attribute” and “No Reference” which check that the class does not have an
EAttribute and does not have an EReference to some class.

Refactoring “PullUpAttribute” is more complex, i.e. it cannot be defined by just one rule, but four rules
are needed to check the complex pre-condition, to do the kernel refactoring, and to make the model
consistent afterwards. For checking the pre-condition, rule “CheckAttribute(EString c, EString a)” in
Fig. 6 checks for the class named “c” if there is a subclass not containing an attribute named “a”. This

VOLUME 3 6

Page 34

ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 5: Rule ”ConnectSuperclass”

rule can be applied at most once, since there are NACs which check if there is already a subclass with this
annotation. Thereafter, we try to apply rule “PullUpAttribute(EString c, EString a)” in Fig. 7. If there is
no subclass of the class named “c” which has an annotation with source ” no attribute” and if the class
named “c” has not already an attribute named “a”, it looks for a subclass which has an attribute named
“a”. After the refactoring, an existing attribute with name “a” is pulled up. This rule is applicable at most
once. Thereafter, NAC “Attribute already pulled up” will not be satisfied anymore. NAC “Attribute not
in all sub-types” checks a necessary pre-condition.

Figure 6: Rule ”CheckAttribute”

VOLUME 3 7

Page 35

EMF MODEL REFACTORING

Figure 7: Rule ”PullUpAttribute”

If “PullUpAttribute” was successful, i.e. there is no subclass with a corresponding annotation, all at-
tributes named “a” being still contained in subclasses have to be deleted. This is done by rule “DeleteAt-
tribute(EString c, EString a)” in Fig. 8 applying it as long as possible. Finally, if the refactoring was
not successful, all new annotations have to be deleted again which is performed by rule “DeleteAnnota-
tion()” in Fig. 9. The application control for these rules just described can be realised by putting each of
the rules to consecutive layers in the order of description. (See Table 1.)

Layer Rule
1 CreateSuperclass, ConnectSuperclass, CheckAttribute
2 PullUpAttribute
3 DeleteAttribute
4 DeleteAnnotation

Table 1: Control flow for refactoring “pull up attribute”

Compared to the first refactorings, the implementation of refactoring “pull up attribute” looks rather
complicated. Four rules instead of one are needed, since our approach does not support complex pre-
conditions which allow to check for-all-conditions. For example, refactoring “pull up attribute” is al-
lowed only, if all direct subclasses contain that attribute to be pulled up. After this refactoring, the result-
ing model has to be updated in the sense that the subclasses do not have to contain that attribute anymore.
Thus, rules should have a for-all-operator for deletion and/or creation of graph parts. We restricted our
transformation approach such that for-all-conditions and -operators are supported, because we provide
algebraic graph transformation as formal basis for validation purposes, provided by AGG. Since there are
also formal concepts for graph transformation with for-all-conditions and -operators around, it is up to

VOLUME 3 8

Page 36

ELECTRONIC COMMUNICATIONS OF THE EASST

future work to extend the analysis techniques for such extended graph transformation and to implement
them.

Figure 8: Rule ”DeleteAttribute”

Figure 9: Rule ”DeleteAnnotation”

Applying first rule “CreateSuperclass(“Transition”, “NamedElement”, “true”) to class “Transition” of
the Petri net model in Fig. 1. Second, rule applications “ConnectSuperclass(“Place”, “NamedElement”)”
and “ConnectSuperclass(“Petrinet”, “NamedElement”)” are performed. Thereafter, attribute “name” is
pulled up by first applying “PullUpAttribute” once, e.g. to class “Place”. Thereafter, rule “DeleteAt-
tribute” is applied twice (to classes “Petrinet” and “Transition” in this case). Rule “CheckAttribute” does
find a match, since all subclasses of “NamedElement” have attribute “name”. Similarly, rule “DeleteAn-
notation” is not applicable.

4 Consistency of EMF Model Refactorings

Consistency of model refactorings can be understood in different ways: (1) In the software development
process different kinds of artefacts such as models, programs, documentations,etc. occur. If the model

VOLUME 3 9

Page 37

EMF MODEL REFACTORING

is changed, the corresponding code and documentation has to be changed accordingly (see [MT04]
for further information). Following the model-driven software development paradigm thoroughly, code
would be changed accordingly as soon as the code generator uses the refactored model. Thus, consistency
between model and code could be easily achieved in this case. (2) More basically, consistency of model
refactorings should also mean a kind of syntactic correctness in the sense that the refactored model is still
an element of the given modeling language and fulfills certain validation properties. In the following, we
concentrate on this second kind of consistency, while the first kind is out of scope of this paper.

Similarly to MOF, modeling languages are defined with EMF by a class model defining the model
elements and their relations. Since all refactoring rules are typed over the EMF core model, i.e. the meta
model, the refactored model is still correct wrt. its meta model. If the meta model contains additional
consistency constraints, they have to be checked after each refactoring to make sure that the resulting
model is still consistent.

4.1 Consistency with Graph Transformation

To open up the possibility for formal validation of EMF model refactorings, another kind of consistency
is needed. In the following, we consider EMF model refactorings as consistent if they can be compared
with graph transformations. In this case, the formal analysis techniques for graph graph transformation
become available also for EMF refactoring. Results on conflicts and dependencies of refactorings for
example, can help the developer to decide which refactoring is most suitable for a given model and why.

Although EMF models show a graph-like structure and can be transformed similarly to graphs [EEPT06],
there is a main difference in between. In contrast to graphs, EMF models have a distinguished tree struc-
ture which is defined by the containment relation between their classes. An EMF model should be defined
such that all its classes are transitively contained in the root classes. Since an EMF model may have non-
containment references in addition, the following question arises: What if a class which is transitively
contained in a root class, has non-containment references to other classes not transitively contained in
some root class? In this case we consider the EMF model to be inconsistent.

A transformation can make an EMF model inconsistent, if its rule deletes one or more objects. For
example an inconsistent situation occurs, if one of these objects transitively contains an object referred
to by a non-containment link. To restore the consistency, all objects to be deleted have to be determined.
Thereafter, all non-containment references to these indicated objects have to be removed, too. To ensure
consistent transformations only, rules which delete objects or containment links or redirect them, have to
be equipped with additional NACs.

If a containment link is deleted, the corresponding contained object has to be deleted, too. This object
is not allowed to contain further objects. This constraint has to be required with a separate NAC. If
a containment link is set or redirected and a maximum multiplicity is set on the container’s end, an
application condition is needed which checks that this multiplicity has not yet been reached, i.e. there do
not exist objects which would be without container after rule application.

Similarly to the handling of deleted structures, consistency recovery is also applied to newly created
objects. If a rule creates objects which are not transitively contained in one of the root objects, the con-
sistency recovery will remove these objects at the end of a rule application. It is easily possible to forbid
the application of those rules entirely, since inconsistencies on creation of objects can be determined

VOLUME 3 10

Page 38

ELECTRONIC COMMUNICATIONS OF THE EASST

statically.
Our visual editor for EMF transformation rules is able to check the consistency with graph transforma-

tion discussed above. Every time an inconsistency is found, the inconsistent part is highlighted and the
inconsistency is further described to inform the user.

4.2 Consistency of Selected EMF Model Refactorings

All selected refactoring rules are typed over the Ecore model, thus also the refactored EMF models will
be typed over Ecore.

Considering the consistency of the selected EMF model refactorings, we define all objects of type
“EPackage” as root objects. Now we check the consistency of those refactoring rules defined in the
previous section: Rules “CreateSuperclass”, “ConnectToSuperclass”, “CheckAttribute”, and “PullU-
pAttribute” are consistent by definition. Rule “DeleteAttribute” could cause an inconsistent model in
principle, but does not do so, since “EAttribute” objects cannot have children and all possible links oc-
cur in the LHS. In contrast, rule “DeleteAnnotation” defines the deletion of an object which may have
children due to the Ecore model, but does not have any applying only the refactoring rules. To ensure
a consistent rule application only, rule “DeleteAnnotation” could be extended by a NAC checking that
there is no EObject connected to the given EAnnotation. In this way we get a set of consistent refactoring
rules only which can be translated to a set of corresponding graph transformation rules for further valida-
tion. In this case, the EMF refactoring rules can be translated to AGG, a tool environment for algebraic
graph transformation where they might be further analyzed. Since all refactoring rules in the running
example preserve the consistency of EMF models, analysis techniques such as critical pair analysis, ter-
mination checks, etc. are available also for EMF model refactorings. For example in [MTR04], critical
pair analysis was used to detect conflicts and dependencies between refactorings of class models.

Figure 10: Sample critical pair in AGG

As a sample critical pair a “delete-use-conflict” is shown in Fig. 10 produced by the critical pair analysis
of AGG between rule “PullUpAttribute” two times. The overlapping graph at the right-hand side of
Fig. 10 depicts a situation where edge “5:eStructuralFeatures” is critical, since it is deleted during the first
application and cannot be used again during the second application of “PullUpAttribute”. Considering
our example, this situation is not critical, since one and the same “EAttribute” is intended to be pulled
up only once.

VOLUME 3 11

Page 39

EMF MODEL REFACTORING

5 Conclusion

In this paper we presented an approach to specify the refactoring of EMF models by endogenous, in-place
EMF model transformation. We use a recently developed EMF model transformation engine [BEK+]
which is based on algebraic graph transformation concepts. Due to this formal basis, a formal analysis
of conflicts and dependencies of EMF model refactorings can be performed. A necessary presumption
for this kind of formal validation is the consistency of EMF refactorings with graph transformations. We
could show that the selected EMF model refactoring rules fulfill this kind of consistency.

It is up to future work to investigate further EMF model refactorings, to answer the following ques-
tions: How far are EMF refactorings similar to UML refactorings? Which of the EMF refactorings are
consistent with graph transformation (as defined above) and thus, can be formally analysed concerning
conflicts and dependencies?

Future work also includes the development of a comprehensive environment for EMF model refactor-
ing. A visual editor and a transformation engine with code generator presented in [BEK+] are already
available at http://tfs.cs.tu-berlin.de/emftrans. Further tools such as a visual debugger and validation
tools would be helpful.

References

[AGG06] AGG-System http:// tfs.cs.tu-berlin.de/ agg/ , 2006.

[BEK+] E. Biermann, K. Ehrig, G. Kuhns, C. Köhler, G. Taentzer, and E. Weiss. Graphical Definition
of Rule-Based Transformation in the Eclipse Modeling Framework. In Springer LNCS. 9th
Int. Conf. on Model Driven Engineering Languages and Systems. To appear.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theoretical Computer Science. Springer, 2006.

[EMF06] Eclipse Modeling Framework (EMF) http:// www.eclipse.org/ emf , 2006.

[EMO06] Essential MOF (EMOF) as part of the OMG MOF 2.0 specification http:// www.omg.org/
docs/ formal/ 06-01-01.pdf , 2006.

[JK06] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Satellite Events at
the MoDELS 2005 Conference: MoDELS 2005 International Workshops OCLWS, MoDeVA,
MARTES, AOM, MTiP, WiSME, MODAUI, NfC, MDD, WUsCAM, Montego Bay, Jamaica,
October 2-7, 2005, Revised Selected Papers, LNCS 3844, edited by Jean-Michel Bruel.
Springer Berlin / Heidelberg, pages 128–138, 2006.

[LS05] M. Lawley and J. Steel. Practical Declarative Model Transformation With Tefkat. In J. Bruel,
editor, Satellite Events at the MoDELS 2005 Conference. Springer, LNCS 3844, 2005.

[MB05] Slavisa Markovic and Thomas Baar. Refactoring ocl annotated uml class diagrams. In MoD-
ELS, pages 280–294, 2005. URL: http://lgl.epfl.ch/pub/Papers/baar-2005-models.pdf.

VOLUME 3 12

Page 40

ELECTRONIC COMMUNICATIONS OF THE EASST

[Mer06] Merlin Generator http:// sourceforge.net/ projects/ merlingenerator/ , 2006.

[MT04] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions on Soft-
ware Engineering, 30(2):126–139, February 2004.

[MTF05] IBM Model Transformation Framework http:// www.alphaworks.ibm.com/ tech/ mtf ,
2005.

[MTR04] T. Mens, G. Taentzer, and O. Runge. Detecting Structural Refactoring Conflicts unsing Crit-
ical Pair Analysis. In In R. Heckel and T. Mens, editors, Proc. Workshop on Software Evolu-
tion through Transformations: Model-based vs. Implementation-level Solutions (SETra’04),
Satellite Event of ICGT’04), Rome, Italy, 2004.

[MVG06] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. In Proc. International
Workshop on Graph and Model Transformation (GraMoT’05), number 152 in Electronic
Notes in Theoretical Computer Science, Tallinn, Estonia, 2006. Elsevier Science.

[Por03] Ivan Porres. Model Refactorings as Rule-Based Update Transformations. In Perdita Stevens,
Jon Whittle, and Grady Booch, editors, UML 2003 - The Unified Modeling Language. Model
Languages and Applications. 6th International Conference, San Francisco, CA, USA, Oc-
tober 2003, Proceedings, volume 2863 of LNCS, pages 159–174. Springer, 2003. URL:
http://citeseer.ist.psu.edu/porres03model.html.

[SPTJ01] Gerson Sunye, Damien Pollet, Yves Le Traon, and Jean-Marc Jezequel. Refactoring UML
models. In The Unified Modeling Language, pages 134–148, 2001.

VOLUME 3 13

Page 41

Page 42

ELECTRONIC COMMUNICATIONS OF EASST

Exogenous Model Merging by means of Model Management
Operators

Artur Boronat *, José Á. Carsı́ *and Isidro Ramos *
*Technical University of Valencia

Information Systems and Computation Department
Camı́ de Vera, s/n. 46022, València (Spain)

Abstract. In Model-Driven Engineering, model merging plays a relevant role in the mainte-
nance and evolution of model-based software. Depending on the amount of metamodels involved
in a model merging process, we can classify model merging techniques in two categories: en-
dogenous merging, when all the models to be merged conform to the same metamodel; and
exogenous merging, when the models to be merged conform to different metamodels. MOMENT
(MOdel manageMENT) is a framework that is integrated in the Eclipse platform, and provides
a collection of generic set-oriented operators to manipulate MOF models, following the Model
Management discipline. In this paper, we study how model transformations are useful in a model
merging process and we provide a solution for both kinds of model merging by means of model
management operators and the QVT Relations language.

Keywords: Model-Driven Architecture, Model Management, Exogenous Model Merg-
ing, QVT Relations

1 Introduction

Software merging is an essential aspect of the maintenance and evolution of large-scale information sys-
tems. Information systems can be specified by means of models in Model-Driven Engineering. Models
collect the information that describes the information system at a high level of abstraction, which per-
mits the development of the application in an automated way using generative programming techniques.
The consolidation of the Meta-Object Facility standard [OMG04] as a four-layer architecture, where
metamodels can be specified as a set of syntactical well-formedness rules to define models, permits the
definition of modeling domains where merging processes can be performed. A model merging process
can be defined over a metamodel. Then, any two well-formed models in this metamodel can be merged.
Traditionally, the tasks that are involved in this process have usually been solved in an ad-hoc manner
for a specific context or metamodel: relational databases [BLN86, BDK92], XML schemas [Beh00],
OWL-DL ontologies [HM05] , aspect-oriented modeling [SGS+04], UML models [OWK03], etc.

[Men02] presents a classification of merge approaches, where domain independence and customizabil-

VOLUME 3 1

Page 43

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

ity of a generic merge operator to a specific domain are desired features. However, the definition of
metamodels by means of a common metamodeling language (like MOF, or any MOF-like implemen-
tation) is a desired feature that should be preserved on the grounds that it permits the development of
generic infrastructures to manipulate models.

Following this direction, Model Management [BHP00] is a new emergent discipline that pursues an
abstract reusable solution for problems of this kind, independently of the metamodel under study. The
Model Management discipline deals with software artifacts by means of generic operators that do not
depend on their internal implementation because they work on mappings between models [Ber03]. These
operators treat models as first-class citizens and increase the level of abstraction of the solution avoiding
programming tasks and improving the reusability of the solution.

As stated in [BLN86], a model merging process consists of three main phases: a model comparison
phase, where elements of different models that are equivalent are found; a consistency checking phase,
where conflicts that may appear if we merge equivalent elements are identified, defining a conflict reso-
lution strategy to eliminate them; and a merging phase, where the equivalent elements that are found in
the first step are merged taking into account the conflict strategy defined in the second step.

Generic model merging approaches provide support for these three phases in different ways. [AP03]
uses MOF identifiers to compare elements in different versions of a same base model. [BP03, BCE+06]
provide a set of model management operators to define equivalence relationships between elements of
different models by means mappings, which are used by a merge operator later on. [KPP06] proposes
several domain-specific languages to define model comparison and model merging over metamodels.
The model comparison language permits the definition of equivalence relationships between elements
of a metamodel that can be applied over elements of the corresponding models afterwards. The model
merging language embeds the comparison language so that these equivalence relationships can be used
in the merging process.

In our approach, we propose a set of model management operators that use the QVT Relations language
[OMG05] to perform model comparison and model transformation. In a model merging process where
two models are involved, the comparison phase is achieved by defining relations between elements of
the same metamodel. The consistency phase is solved by defining a model transformation that takes
the two models to be merged as input models. Finally, the merging phase is performed by a generic
operator that uses the QVT Relations programs defined in the previous phases. Thus, we enhance the
use of the QVT Relations language within the Model Management field, avoiding the definition of a
new DSL for every model management operator. In this paper, we show how this approach can be used
by providing an example of exogenous model merging, where the models to be merged conform1 to
different metamodels.

The structure of the paper is as follows: Section 2 presents the exogenous model merging problem;
Section 3 introduces the ModelGen operator for model transformation; Section 4 introduces the Merge
operator for model merging; Section 5 provides the solution for the example in Section 2; Section 6
provides some related works. Finally, Section 7 summarizes the main contributions of the paper.

1A model conforms to a metamodel if it is syntactically well-formed by using the constructs of the metamodel.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 2

Page 44

ELECTRONIC COMMUNICATIONS OF EASST

Figure 1: Exogenous model merging of a UML model and a relational schema.

2 Exogenous Model Merging Scenario

When two models are merged, an equivalence relation must be defined between their corresponding
metamodels, associating their elements using a set of relationships. These relationships are used to
identify equivalent elements in different models in order to avoid duplicated information in the merged
model.

Generic approaches to merge models use this concept of equivalence relation, but they do not usually
differentiate between an endogenous and an exogenous model merging. In Fig. 1, we provide an exam-
ple of exogenous model merging: the integration of a UML model and a relational schema. We have
used the Ecore metamodel [BBM03] as an implementation for the UML class diagram metamodel, and
the relational metamodel that appears in the Query/View/Transformation (QVT) standard specification
[OMG05]. In Fig. 1, the relational schema is shown in a tree-like form.

In this paper, we use this example to show that an exogenous model merging process is a generalization
of an endogenous model merging process. Therefore, it can be broken down into simpler processes,
which can be solved by means of model management operators. Our approach for solving the example
consists of two steps: a model transformation that permits representing the UML model as a relational
schema; and a model merging between relational schemas. We present how we deal with model trans-
formation and endogenous model merging in the following sections.

3 The QVT Relations Language and the ModelGen Operator

In the QVT Relations language, a model transformation is defined among several metamodels, which
are called the domains of the transformation. A QVT transformation is constituted by QVT relations,
which become declarative transformation rules. A QVT relation specifies a relationship that must hold
between the model elements of different candidate models. The direction of the transformation is defined
when it is invoked by choosing a specific domain as target. If the target domain is defined in the QVT

VOLUME 3 3

Page 45

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

transformation as enforce, a transformation is performed by creating the corresponding elements in the
target model. If the target domain is defined as checkonly, just a checking is performed without creating
any new element in the target model. Both kinds of transformations are used in our approach.

A relation can be also constrained by two sets of predicates, a when clause and a where clause. The when
clause specifies the conditions under which the relationship needs to hold. The where clause specifies
the condition that must be satisfied by all model elements participating in the relation.

A transformation contains two kinds of relations: top-level (marked with the top keyword) and non-
top-level. The execution of a transformation requires that all its top-level relations hold, whereas non-
top-level relations are required to hold only when they are invoked directly or transitively from the where
clause of another relation.

As example, we have taken the UmlToRdbms transformation that is presented in the MOF QVT final
specification2. The top relation below specifies the transformation of a Class into a Table. By means
of the where clause, the relation ClassToTable needs to hold only when the PackageToSchema relation
holds between the package containing the class and the schema containing the table. By means of the
when clause, the ClassToTable relation holds, the relation AttributeToColumn must also hold.

top relation ClassToTable {
className: String;
checkonly domain ecoreDomain c: EClass {

ePackage = p:EPackage {},
name=className

};
enforce domain rdbmsDomain t: Table {

schema = s:Schema {},
name = className,
column = cl:Column {

name = className + ’ tid’,
type = ’NUMBER’

},
key = k:Key {

name = className + ’ pk’,
column=cl

}
};
when {

PackageToSchema(p, s);
}
where {

AttributeToColumn(c, t, className);
}

}
In MOMENT, a model transformation can be applied to several source models, which may or may not

conform to the same metamodel. When the transformation is invoked, it generates one target model
and a set of traceability models. A traceability model contains a set of traces that relate the elements
of the source model to the elements of the target model, indicating which transformation rule has been

2In this paper, we are using a version of this transformation in which we consider Ecore as an implementation of the UML
Class Diagram metamodel. The version of the transformation that is used is presented in Appendix B.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 4

Page 46

ELECTRONIC COMMUNICATIONS OF EASST

Figure 2: Traceeability Editor in the MOMENT Framework.

applied to each source element. A QVT Relations enforced transformation is executed by means of the
ModelGen operator as follows:

< output model, trac1, ..., tracn >= ModelGen(transformation, input model1, ..., input modeln)

where transformation is the name of the QVT transformation; input model1, ..., input modeln are
the input models, which may conform to different metamodels; output model is the generated model;
and trac1, ..., tracn are the trace models that are generated for each one of the corresponding input
models.

Fig. 2 presents the traceability editor of the MOMENT framework. This editor shows the trace model
that is generated by the UmlToRdbms transformation, when it is applied to the UML model that is defined
in Fig. 1. This transformation constitutes the first step of the exogenous model merging process. Trace
models in our framework conform to our traceability metamodel, which was presented in [BCR05]. The
traceability editor is constituted by three main frames, the left frame shows an input model of the trans-
formation, the right frame shows the output generated model and the frame in the middle shows the
traces that relate elements of the input model to elements of the target model. Traces also provide infor-
mation about the transformation rule (or relation) that has been applied to source elements to generate
the corresponding trace and the related target elements.

VOLUME 3 5

Page 47

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

4 The Merge Operator

The Merge operator takes two models as input and produces a third one. If A and B are models that
conform to the same metamodel, the application of the Merge operator on them produces a model C,
which consists of the members of A together with the members of B, i.e. the union of A and B. Taking
into account that duplicates are not allowed in a model, the union is disjoint.

To understand the semantics of the Merge operator in our example, we need to introduce two concepts:
the equivalence relation, for finding duplicates by comparing models, and the conflict resolution strategy,
for integrating them.

4.1 The equivalence relation

In an endogenous model merging, an equivalence relation is defined between elements that belong to
different models that conform to the same metamodel. To define an equivalence relation among the
elements of a model in our approach, the user can use the QVT Relation language in the checkonly
mode. Only checkonly transformations with two domains are accepted in this context. Both domains
have to refer to the same metamodel in our approach. For the example, we customize the Merge operator
to merge relational schemas, i.e., models that conform to the RDBMS metamodel of Appendix A. To do
so we use a checkonly QVT Transformation whose domains refer to the RDBMS metamodel. The user
can add a QVT relation for each of the classes that appear in the metamodel when it is desired. Such
QVT relations act as equivalence relationships that must hold over the elements of two RDBMS models.
These QVT relations are used in the merging process to check when two elements are equivalent in order
to eliminate duplicates.

For instance, the following relation can be defined to indicate that two tables are the same if they belong
to the same schema and they have the same name by means of the tableName variable3:
top relation TableEquivalence {

tableName: String;
checkonly domain rdbmsDomain1 t1: Table {

schema = s1:Schema {},
name=tableName

};
checkonly domain rdbmsDomain2 t2: Table {

schema = s2:Schema {},
name=tableName

};
when {

SchemaEquivalence(s1, s2);
}

}
where the SchemaEquivalence is another QVT Relation defined within the same transformation, de-
scribing when two Schema instances are equivalent (for instance, by name). In our approach, this kind of
equivalences may involve several instances of two models as in the above example, where Table instances

3We have chosen these criteria for the example. Nevertheless, they can be customized to a specific metamodel by the
user. Nothing impedes us to add semantic annotations to the elements of a model and use this information to determine which
elements are equals or not.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 6

Page 48

ELECTRONIC COMMUNICATIONS OF EASST

and Schema instances are used to check whether two tables are equivalent or not.
During the merging process, this checkonly transformation permits checking when groups of elements

of different models represent duplicate elements so that they will be merged. In a checkonly QVT
transformation, helper functions can be defined by using OCL expressions to manipulate and compare
names, and to navigate the structure of the corresponding model. Thus, the user only has to be aware of
the standard QVT Relations language and the domain-specific knowledge.

4.2 The conflict resolution strategy

During a model merging process, when two software artifacts (each of which belongs to a different
model) are supposed to be equivalent, one of them must be erased. Their syntactical differences may cast
doubt on which should be the syntactical structure for the merged element. Here, the conflict resolution
strategy comes into play. The conflict resolution strategy is a model transformation that has two input
models and one output model, the merged one. The generic semantics of this strategy in our framework
consists of the preferred model strategy. When the Merge operator is applied to two models, one has
to be chosen as preferred (the first argument of the Merge operator). In this way, when two groups of
elements (that belong to different models) are equivalent due to an equivalence relation, the elements of
the preferred model prevail although they may differ syntactically.

To refine the Merge operator, the conflict resolution strategy can also be customized. During the merg-
ing process, when the Merge operator finds two duplicates, they should be integrated. This integration
involves a transformation process where information of both duplicates may be taken into account to
define the merged model. Thus, an enforced QVT transformation can be used to customize the conflict
resolution strategy in the same way a checkonly QVT transformation is used to customize the generic
equivalence relation.

A QVT transformation that is used to define a specific conflict resolution strategy has three domains.
All of them refer to the metamodel under study (RDBMS in our example). The first two domains are
defined as checkonly and they only query the two input models of the Merge operator. The third domain
is defined as enforce and is the one that produces merged elements. In the case study, when we integrate
two tables that are equivalent (because they have the same name), we have to integrate their respective
columns, primary keys and foreign keys. The following QVT Relation is intended to perform this task:
top relation TableMerging {

tableName: String;
checkonly domain rdbmsDomain1 t1: Table {

schema = s1:Schema {},
name = tableName

};
checkonly domain rdbmsDomain2 t2: Table {

schema = s2:Schema {},
name = tableName

};
enforce domain rdbmsDomain3 t3: Table {

schema = s3:Schema {},
name = tableName

};
when {

VOLUME 3 7

Page 49

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

SchemaMerging(s1, s2, s3);
}
where {

ColumnMerging(t1, t2, t3);
PKMerging(t1, t2, t3);
FKMerging(t1, t2, t3);

}
}
where the SchemaMerging QVT relation, which is invoked in the when clause, ensures that the container
schemas of both Table instances must be equivalent in order to apply the current relation to the involved
tables. The QVT Relations that are invoked in the where clause ensure that the merging process will go
on by merging columns, primary keys and foreign keys of the involved tables.

The enforce QVT transformation that the user defines to customize the conflict resolution strategy is
automatically compiled into a ModelGen equation as briefly introduced in the previous section 4.

4.3 The Merge operator

The Merge operator takes two models that conform to the same metamodel as inputs. The outputs of
the Merge operator are a merged model (merged model) and two models of traces (trac1 and trac2)
that relate the elements of each input model (model1 and model2) to the elements of the output merged
model. The operator is used as follows:

< mergedmodel, trac1, trac2 >= Merge(model1, model2)

The Merge operator uses the equivalence relation that is defined for a metamodel to detect duplicated
elements between the two input models. When two duplicated elements are found, the conflict resolution
strategy is applied to them in order to obtain merged elements, which are then added to the output model.
The elements that belong to only one model, without being duplicated in the other one, are copied into
the merged model.

The two output trace models are automatically generated by the Merge operator on the grounds that it
reuses the model transformation mechanism that is described in Section 3, through the conflict resolution
strategy. These trace models provide full support for keeping traceability between the input models and
the new merged one. The second step of the exogenous model merging in the example constitutes a
merging process that involves the model RDBMS’ and the model RDBMS. The model RDBMS’ is the
result of applying the UmlToRdbms transformation (defined in Appendix B) to the model UML that is
defined in Fig. 1, as explained in Section 3. The model RDBMS is provided in Fig. 1. In Fig. 3, we show
the trace model that is generated during this merging process for the RDMBS’ model (shown in the left
frame of the editor). The model that appears in the right frame of the editor is the final merged relational
schema.

4More information about the semantics of the Merge operator can be found in [BCRL06]

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 8

Page 50

ELECTRONIC COMMUNICATIONS OF EASST

Figure 3: Trace model that is produced during the merging of the models RDBMS’ and RDBMS.

5 Exogenous Model Merging in MOMENT

The exogenous model merging problem consists in the merging of two models that conform to different
metamodels, as in the example in Section 2. This problem can be divided into simpler ones that can be
solved by two simple model management operators. A composite operator, called ExogenousMerge, can
be defined for this purpose by composing the Merge operator and the ModelGen operator. This operator
has three arguments: the model A, which conforms to the metamodel MMA (the Ecore metamodel in our
example); the model B, which conforms to the metamodel MMB (the RDBMS metamodel in our exam-
ple); and the name of the QVT transformation that must be defined between between the metamodels
MMA and MMB (umlToRdbms in our example). In the first step, model A is transformed into a model B’,
which conforms to the metamodel MMB by means of the operator ModelGen. This step has been per-
formed in Section 3. In the second step, models B and B’ are merged within the metamodel MMB. This
step has been performed in Section 4. Finally, the merged model result is the output of the composite
operator. The definition of the ExogenousMerge composite operator is as follows:

operator ExogenousMerge (A : MMA, B : MMB, T : Transformation) =
<B’, mapA−>B′ > = ModelGen(T, A) (1)
<result, mapA−>B′ , mapA−>B> = Merge (B’, B) (2)

return (result)

VOLUME 3 9

Page 51

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

The ExogenousMerge operator is defined independently of any metamodel so that it can be reused to
merge two models that conform to any metamodel. In this example, we have not taken into account the
trace models that are generated by the ModelGen and Merge operators. Nevertheless, another version of
the operator could generate traceability models as result of the ExogenousMerge operator.

Figure 4: Application of the ExogenousMerge operator to the example in Section 2.

Fig. 4 graphically represents the merging process that is performed by the operator ExogenousMerge
for solving the example that is shown in Section 2. In the example, parameter A corresponds to the UML
model and parameter B corresponds to the RDBMS model in Fig. 4. To be able to apply the operator,
the equivalence relation for the RDBMS metamodel and the transformation function between the UML
and the Relational metamodels must be previously defined by the user.

6 Related Work

Generic model merging approaches take into account the phases that were discussed in [BLN86] to
merge database schemas. These approaches can be differentiated by the mechanism that is used to
perform model comparison.

[AP03] uses MOF identifiers to compare elements in different versions of a same base model. Although
this approach is effective, only versions of a same base model can be compared and merged.

[BP03, BCE+06] provide a set of model management operators to define equivalence relationships
between elements of different models by means of mappings, which are used by a merge operator later
on. In this approach, the Merge operator receives two models (A and B) and a mapping model (mapAB)
between them as inputs, and it produces the merged model C and two new mapping models (mapAC and
mapBC): <C, mapAC, mapBC> = Merge (A, B, mapAB).

In the AMMA platform [FJ05], the Generic Model Weaver AMW is a tool that permits the definition
of mapping models (called weaving models) between MOF models in the ATLAS Model Management

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 10

Page 52

ELECTRONIC COMMUNICATIONS OF EASST

Architecture. AMW provides a basic weaving metamodel that can be extended to permit the definition
of complex mappings. These mappings are usually defined by the user, although they may be inferred by
means of heuristics, as in [MBR01]. These mapping models are used, together with the mapped models
in a model transformation to perform a model composition.

In MOMENT, mapping models are introduced as trace models that are generated by model management
operators. This is because operators do not have to rely on them to be applied to a set of models. In
MOMENT, mappings between the elements of two models are defined between the elements of their
corresponding metamodels by means of checkonly QVT Relations. This permits a clearer specification
of composite operators. Trace models are produced by the application of a simple operator to a set of
models and keep information about the manipulation task that has been performed to a model.

[KPP06] proposes several domain-specific languages to define model comparison and model merging
over metamodels. The model comparison language enhances the definition of equivalence relationships
between elements of a metamodel that can be applied over the elements of the corresponding models
afterwards. In this language, a differentiation between matching and conformance is provided. While
a matching mapping indicates when two elements are equivalent, a conformance mapping indicates
when two elements are equivalent and consistent to be merged. In this approach, when an equivalence
relationship based on names is used, two elements do not conform to each other if they have different
types, for instance. In our approach, we use the QVT Relations language to perform model comparison
and model transformation. This feature aims at decreasing the learning curve of our framework since
there is only one language, which has been specified as an standard. The QVT Relation language does
not provide such a differentiation between conformance and matching. Since two elements that do not
conform to each other are usually interpreted as an error, we collapse the conformance and matching
conditions in a relation. However, a transformation with conformance relations could be defined for a
specific metamodel. Then, this transformation could be specialized with user-defined checkonly relations
for defining equivalence relationships.

7 Conclusions

Model merging plays a relevant role in the maintenance and evolution of model-based software. Systems
of this kind are usually represented by models that conform to different metamodels. Thus, two kinds of
merging processes arise by considering the amount of metamodels that are involved: endogenous merg-
ing and exogenous merging. In an endogenous merging process, the models that are merged conform to
the same metamodel. In an exogenous merging process, the models that are merged conform to different
metamodels.

The MOMENT framework is a model management framework that provides operators to manipulate
models on top of a MOF architecture, such as Merge for model merging and ModelGen for model trans-
formations. In our approach, model management operators are defined independently of any metamodel,
keeping a generic infrastructure, but they might be customized by an expert user with domain-specific
knowledge by means of standard languages, such as OCL and QVT.

In this paper, we have presented how model transformations are supported in MOMENT through the
QVT Relations language and how model transformations play an important role in a model merging

VOLUME 3 11

Page 53

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

process. We have used the standard QVT Relations for this purpose instead of providing new languages
for model comparison and model merging. To study the aforementioned kinds of model merging, we
have described a solution for an endogenous model merging process by using model transformations
through the Merge operator. Finally, we have provided a generic solution for exogenous model merging
by reusing model transformations and endogenous model merging.

8 Acknowledgments

This work was supported by the Spanish Government under the National Program for Research, Devel-
opment and Innovation, DYNAMICA Project TIC 2003-07804-C05-01.

We are grateful to Abel Gómez, Pascual Queralt, Joaquı́n Oriente and Luis Hoyos for their effort in the
development of the MOMENT Framework.

References

[AP03] Marcus Alanen and Ivan Porres. Difference and union of models. In Perdita Stevens, Jon
Whittle, and Grady Booch, editors, UML 2003 - The Unified Modeling Language. Model
Languages and Applications. 6th International Conference, San Francisco, CA, USA, Octo-
ber 2003, Proceedings, volume 2863 of LNCS, pages 2–17. Springer, 2003.

[BBM03] Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling Framework. Pearson
Education, 2003.

[BCE+06] Greg Brunet, Marsha Chechik, Steve Easterbrook, Shiva Nejati, Nan Niu, and Mehrdad Sa-
betzadeh. A manifesto for model merging. In GaMMa ’06: Proceedings of the 2006 in-
ternational workshop on Global integrated model management, pages 5–12, New York, NY,
USA, 2006. ACM Press.

[BCR05] Artur Boronat, José A. Carsı́, and Isidro Ramos. Automatic support for traceability in a
generic model management framework. In Alan Hartman and David Kreische, editors, Model
Driven Architecture - Foundations and Applications, First European Conference, ECMDA-
FA 2005, Nuremberg, Germany, November 7-10, 2005, volume 3748 of Lecture Notes in
Computer Science, pages 316–330. Springer, 2005.

[BCRL06] Artur Boronat, José A. Carsı́, Isidro Ramos, and Patricio Letelier. Formal model merging
applied to class diagram integration. Electr. Notes Theor. Comput. Sci. (Accepted for publi-
cation), 2006.

[BDK92] Peter Buneman, Susan B. Davidson, and Anthony Kosky. Theoretical aspects of schema
merging. In Extending Database Technology, pages 152–167, 1992.

[Beh00] Ralf Behrens. A grammar based model for XML schema integration. Lecture Notes in
Computer Science, 1832:172+, 2000.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 12

Page 54

ELECTRONIC COMMUNICATIONS OF EASST

[Ber03] Philip A. Bernstein. Applying Model Management to Classical Meta Data Problems. In
Proceedings of the 1st Biennial Conference on Innovative Data Systems Research (CIDR),
2003.

[BHP00] Phillip A. Bernstein, Alon Y. Halevy, and Rachel A. Pottinger. A vision for management of
complex models. SIGMOD Record (ACM Special Interest Group on Management of Data),
29(4):55–63, 2000.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv., 18(4):323–364, 1986.

[BP03] Philip A. Bernstein and Rachel A. Pottinger. Merging models based on given correspon-
dences. In Proceedings of the 29th VLDB Conference, Berlin, 2003.

[FJ05] Marcos Didonet Del Fabro and Frédéric Jouault. Model transformation and weaving in the
amma platform. In Pre-proceedings of the Generative and Transformational Techniques in
Software Engineering (GTTSE’05), Workshop, pages 71–77, Braga, Portugal, 2005. Centro
de Ciências e Tecnologias de Computaçao, Departemento de Informatica, Universidade do
Minho.

[HM05] Peter Haase and Boris Motik. A mapping system for the integration of owl-dl ontologies.
In IHIS ’05: Proceedings of the first international workshop on Interoperability of heteroge-
neous information systems, pages 9–16, New York, NY, USA, 2005. ACM Press.

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model comparison: a foun-
dation for model composition and model transformation testing. In GaMMa ’06: Proceed-
ings of the 2006 international workshop on Global integrated model management, pages
13–20, New York, NY, USA, 2006. ACM Press.

[MBR01] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching using cupid. In Proc.
VLDB 2001, pages 49–58, 2001.

[Men02] T. Mens. A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering, 28(5):449–462, 2002.

[OMG04] Object Management Group OMG. Meta object facility (mof) 2.0 core specification (ptc/04-
10-15). http://www.omg.org/cgi-bin/doc?formal/2006-01-01, 2004.

[OMG05] Object Management Group OMG. Mof 2.0 qvt final adopted specification (ptc/05-11-01).
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01. 2005.

[OWK03] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between versions of uml diagrams.
In ESEC/FSE-11: Proceedings of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on Foundations of software engi-
neering, pages 227–236, New York, NY, USA, 2003. ACM Press.

VOLUME 3 13

Page 55

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

[SGS+04] Greg Straw, Geri Georg, Eunjee Song, Sudipto Ghosh, Robert B. France, and James M.
Bieman. Model composition directives. In Thomas Baar, Alfred Strohmeier, Ana M. D.
Moreira, and Stephen J. Mellor, editors, UML, volume 3273 of Lecture Notes in Computer
Science, pages 84–97. Springer, 2004.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 14

Page 56

ELECTRONIC COMMUNICATIONS OF EASST

A RDBMS Metamodel

Figure 5: RDBMS metamodel.

B An Ecore to RDBMS Transformation by means of the QVT Relations
Language

transformation umlToRdbms(ecoreDomain:ecore, rdbmsDomain:rdbms) {
key Schema {name};
key Table {schema,name};
key Column {owner,name};
key ForeignKey {owner,name};

top relation PackageToSchema {
packageName: String;
checkonly domain ecoreDomain p:EPackage {

name=packageName
};
enforce domain rdbmsDomain s:Schema {

name=packageName
};

}//end PackageToSchema

VOLUME 3 15

Page 57

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

top relation ClassToTable {
className: String;
checkonly domain ecoreDomain c: EClass {

ePackage = p:EPackage {},
name=className

};
enforce domain rdbmsDomain t: Table {

schema = s:Schema {},
name = className,
column = cl:Column {

name = className + ’ tid’,
type = ’NUMBER’

},
key = k:Key {

name = className + ’ pk’,
column=cl

}
};
when {

PackageToSchema(p, s);
}
where {

AttributeToColumn(c, t, className);
}

}//end ClassToTable

relation AttributeToColumn
{

checkonly domain ecoreDomain c:EClass {};
checkonly domain rdbmsDomain t:Table {};

primitive domain prefix:String;
where {

PrimitiveAttributeToColumn(c, t, prefix);
SuperAttributeToColumn(c, t, prefix);

}
}//end AttributeToColumn

relation PrimitiveAttributeToColumn
{

attributeName, columnName, sqltype: String;
checkonly domain ecoreDomain c:EClass {

eAttributes = a:EAttribute {}

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 16

Page 58

ELECTRONIC COMMUNICATIONS OF EASST

};
checkonly domain rdbmsDomain t:Table {};
primitive domain prefix:String;
where {

PrimitiveAttributeToColumneAttributes(a,t,prefix);
}

}//end PrimitiveAttributeToColumn

relation PrimitiveAttributeToColumneAttributes
{

attributeName, columnName, ecoreTypeName, sqltype: String;
checkonly domain ecoreDomain a:EAttribute {

name = attributeName,
eType = ecoretype: EDataType {

name = ecoreTypeName
}

};
checkonly domain rdbmsDomain t:Table{};
enforce domain rdbmsDomain cl:Column {

name = (
if (prefix = ”) then

attributeName
else

prefix + ’ ’ + attributeName
endif

),
type = PrimitiveTypeToSqlType(ecoreTypeName),
owner = t

};
primitive domain prefix:String;
when {

IsPrimitiveDatatype(ecoreTypeName);
}

}//end relation

relation SuperAttributeToColumn
{
checkonly domain ecoreDomain c: EClass {

eSuperTypes = sc:EClass {}
};
checkonly domain rdbmsDomain t:Table {};

primitive domain prefix: String;

VOLUME 3 17

Page 59

EXOGENOUS MODEL MERGING BY MEANS OF MODEL MANAGEMENT OPERATORS

where {
AttributeToColumn(sc, t, prefix);

}
}

top relation AssocToFKey
{

srcTbl, destTbl: Table;
pKey: Key;
referenceName, sourceClassName, targetClassName: String;

checkonly domain ecoreDomain ref: EReference {
name = referenceName,
eContainingClass = sc:EClass {

name = sourceClassName
},
eType = tc:EClass {

name = targetClassName
}

};
enforce domain rdbmsDomain fk:ForeignKey {

name = sourceClassName + ’ ’ + referenceName + ’ ’ + targetClassName,
owner = srcTbl,
column = fkc:Column {

name = sourceClassName + ’ ’ + referenceName + ’ ’ + targetClassName + ’ tid’,
type = ’NUMBER’,
owner = srcTbl

},
refersTo = ObtainReferredPrimaryKey(destTbl)

};
when {

ClassToTable(sc, srcTbl);
ClassToTable(tc, destTbl);

}
}

function ObtainReferredPrimaryKey(table: Table):Key
{

table.key
}

function IsPrimitiveDatatype(datatype: String):Bool
{

((datatype = ’EInt’) or (datatype = ’EBoolean’) or (datatype = ’EString’) or (datatype = ’EDate’))

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 18

Page 60

ELECTRONIC COMMUNICATIONS OF EASST

}

function PrimitiveTypeToSqlType(primitiveType:String):String
{

if (primitiveType=’EInt’)
then ’NUMBER’

else if (primitiveType=’EBoolean’)
then ’BOOLEAN’
else

’VARCHAR’
endif

endif
}

function IsDirectedReference(ref:EReference):Bool
{

(ref.eOpposite -> size() = 0)
}

}

VOLUME 3 19

Page 61

Page 62

ELECTRONIC COMMUNICATIONS OF EASST

An Algorithm for Detecting and Removing Clones in Java
Code

Nicolas Juillerat and Béat Hirsbrunner *
*University of Fribourg, Department of Computer Science, 1700 Fribourg, Switzerland

Abstract. This paper proposes a new algorithm for automatically detecting and removing du-
plicated code in existing Java programs. Its purpose is to improve the structure of small code
snippets (as in refactoring), rather than reducing the overall redundancy in huge legacy pro-
grams. As such, approaches that favor code clarity over efficiency are introduced. The skeleton
of our algorithm is presented and illustrated on concrete examples of code.
. .

Keywords: clone detection, clone removal, code duplication, extract method, refactor-
ing, Java

1 Introduction

As a big software project grows, code duplication is a common problem. When the developer team is
under the pressure of the deadline, and when the specification is constantly changing, the programmers
frequently just copy and paste existing code, and apply a few (sometimes empty) modifications. This
results in code duplication, or so called “clones” which makes maintenance and debugging very difficult
[9, 13].
The process of detecting and removing clones consists of two steps: detecting the duplicated statements

first, and then extracting them into new methods and replacing their occurrences by invocations to the
corresponding methods. In this paper, we propose a new algorithm for both steps.
While existing algorithms are mainly targeted to the maintenance of big legacy programs [5, 11] in

various languages, our solution is targeted to small Java code snippets, and is meant to be used like any
other refactoring tool, in a semi-automated way. As such, our algorithm proposes new solutions that
favor the clarity of the resulting code rather than the overall performance.
This paper assumes the reader has knowledge of the Java language and of the notion of abstract syntax

tree (AST). A large part of the presented algorithm consists of an implementation of the extract method
refactoring. Because this transformation has already been covered by previous papers [1, 3, 4, 6], we
give the focus on the remaining parts only.
This paper is organized as follow: section 2 gives an overview of existing and related work, in order

to define the context of this paper and its contribution over previous work. Section 3 presents an algo-

VOLUME 3 1

Page 63

AN ALGORITHM FOR DETECTING AND REMOVING CLONES IN JAVA CODE

rithm for the detection of clones. Section 4 discusses the problem of removing the detected clones, and
presents a generic solution for the Java language that can easily be extended and adapted to other similar
programming languages. The full algorithm is summarized in section 5, and its limitations and possible
improvements are stated in section 6.

2 Related work

There are multiple ways of detecting clones, including string based and token based solutions. An
overview of existing techniques is given by F. Von Rysselberghe and S. Demeyer [9]. While string based
techniques are possible, more promising techniques are those based on the Program Dependency Graph
[11] and on the AST [13]. Our solution is based on the AST and has thus some similarities with the
solution of Ira D. Baxter [13].
The problem of extracting the detected clones has been covered by various papers [8, 12, 13, 16].

Removing a clone consists in extracting it into a new method, and replacing all its occurrences by in-
vocations to that method. This is a complex problem compared to the clone detection because it is
constrained by the preconditions of the extract method refactoring [1, 4, 6].
W. Griswold and D. Notkin [16] cover this problem on the Scheme language and Ira D. Baxter [13] on

the C language with the help of macros. In both cases the process is greatly simplified by the choice of
the target programming language. S. Horwitz [12] gives a solution for the C language (without using
macros), but does not handle jumps. The solution is refined in a next paper [8] to handle jumps as well
and to perform clone extraction even in “difficult” cases. Unfortunately it relies on the possibility of
passing arguments by reference, which is not possible in the Java language.
The solution presented in this paper is mainly targeted to the Java language. We give the following new

contributions over previous work:

• Unlike previous solutions, we do not make use of code transformations before the clone extraction
such as promotion, statement reordering, predicate duplication or jump transformations [8]. We
instead allow a clone to be extracted into more than one method if necessary. As a result, the
transformed code remains closer to the original one.

• Regarding the clone removal, our solution properly handles the limitations imposed by the Java
language that cannot pass parameters by reference. The proposed solution does not require any
artificial tricks for that purpose, which would greatly reduce the clarity of the code. Note that most
existing solutions for the Java language are limited to clone detection and simply do not handle
clone removal [5, 9].

• Previous work are based on clones consisting of statements that are consecutive (or eventually
disjoint but close to each other). Our solution not only works for consecutive statements, but also
detects and removes small clones hidden in sub-expressions.

These choices can reduce the quality of the result in term of the overall reduction of duplications, com-
pared to other existing solutions. Nevertheless they are justified by the use of our algorithm as a refactor-
ing tool: in this context, the clarity of the resulting code and its fidelity to the original one are the main

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 2

Page 64

ELECTRONIC COMMUNICATIONS OF EASST

block

print

+

- 4

get

*

3x

*

5x

save

get

-

- 4

*

3x

+

6x

Figure 1: The AST of the two Java statements. Nodes that are part of a clone are shaded.

concerns [10]. Refactorings dealing with small sub-expressions exist [6] and hence detecting clones in
sub-expressions may be useful as well in this context.

3 Clone detection

In this section we present the first part of the process: clone detection.
Our solution for the detection of clones is based on the abstract syntax tree (AST). The first step consists

of converting the AST into a list of tokens using a post-order walk of the tree. Consider the following
Java statements as an example:

save(get(x * 3) - (x + 6) - 4);
print(get(x * 3) - (x * 5) + 4);

The figure 1 shows a possible AST of these statements. Note that we have chosen a representation in
which consecutive statements belonging to the same block are children of a block node. The algorithm
we are discussing can easily be adapted to other representations.
A post-order tree walk of the AST results in the following list of tokens:

[x, 3, *, get, x, 6, +, -, 4, -, save, x, 3, *, get, x,
5, *, -, 4, +, print, block]

This list of tokens exhibits some duplication which are also visible in the source code and in the AST.
But it has some advantages over the two other representations: like the AST, it is abstract and hence does
not contain any element such as white spaces or comments which are not relevant. But unlike the AST,
the fact it is a list allows us to use the variety of existing tools for the detection of duplications in lists.
For instance, if we want to detect duplications between two similar methods, a differentiation algo-

rithm, such as the one used in the Linux diff command [18], can be used on the two token lists. In the

VOLUME 3 3

Page 65

AN ALGORITHM FOR DETECTING AND REMOVING CLONES IN JAVA CODE

more general case, we can use lossless data compression algorithms (usually based on hashing), such as
the LZ77 algorithm [14, 15]: the first step of this lossless data compression algorithm and its variants
precisely consists in detecting clones in a list of tokens. Other methods are covered in the literature [9].
With these techniques, the two following duplicated sublists of tokens are detected in our previous

example:

[x, 3, *, get, x], [-, 4]

These two sublists seem to correspond to clones. Unfortunately we cannot safely extract them into meth-
ods: the extract method refactoring has various preconditions [2] and at least one of them is not satisfied:
in both cases, the sublist does not correspond to a single expression or to a list of consecutive expressions
or statements. More generally, we cannot just expect that a clone will satisfy all the preconditions that
are required to extract it: the extract method refactoring has a lot of preconditions compared to other
transformations [6].
Rather than modifying the first step of our algorithm, we will now introduce a second step, whose

purpose is precisely to satisfy all the preconditions of the extract method refactoring and to correct some
side-effects of the post-order tree walk used for the detection of clones.

4 Removing clones

The previous section described a way of detecting duplicated code fragments. Once these clones are
detected, they cannot always be extracted into methods immediately. The solution we propose is to
apply various constraints on the previous result. The purpose of each constraint is to modify the detected
clones in such a way they can safely be extracted. This section explains this idea by illustrating these
constraints, most of which correspond to the preconditions of the extract method refactoring.

4.1 Splitting expressions

Coming back to the example of the previous section, one of the detected sublists of similar tokens was:

[x, 3, *, get, x]

These tokens correspond to two subtrees on the AST: the first one is formed by the first four tokens, and
the second one is formed by a single token, the last one. In general, a sublist of tokens forms a forest
of one or more subtrees of the AST. In our case, because the sublist corresponds to two subtrees, it also
corresponds to two sub-expressions. Thus, it is not possible to build a single method which returns two
values.
Therefore, the first constraint we have to apply is to split the detected sublists in such a way each of

them corresponds to a single subtree and hence to a single expression. This is feasible if the tokens of
the lists are linked to the corresponding nodes of the AST.
Note that this constraint is only necessary for subtrees whose parent nodes are not the same block node.

If two or more consecutive subtrees are children of the same block node, they correspond to consecutive
statements and can be kept together.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 4

Page 66

ELECTRONIC COMMUNICATIONS OF EASST

Applying this constraint to the result of the previous section produces four sublists of tokens corre-
sponding to four sub-expressions:

[x, 3, *, get], [x], [-], [4]

Note that the third sublist corresponds to a single sub-expression (a subtraction), although the operands
are not included. Extracting four methods corresponding to these four sub-expressions results in the
following code1:

save(sub(expr1(), (getX() + 6)) - get4());
print(sub(expr1(), (getX() * 5)) + get4());

where expr1 is a function returning “get(x * 3)”, sub is a function subtracting its two arguments,
getX is a function that just returns x and get4 is a function that returns the value 4.

4.2 Applying a threshold

The previous result immediately suggests an obvious new constraint: applying a threshold. More pre-
cisely, sublists of similar tokens whose lengths are below a threshold are probably not worth putting in a
new method. By dropping the three sublists consisting of only one token from the previous example, the
resulting code looks much better:

save(expr1() - (x + 6) - 4);
print(expr1() - (x * 5) + 4);

The result is the expected one: we have successfully removed the following cloned sub-expression:
“get(x * 3)”.

4.3 Control statements

To handle control statements, that is, statements having bodies such as if, while or for, a new constraint
is necessary: if it is part of a clone, the statement itself must be dropped from the corresponding list
of tokens unless its body is fully included in the clone. The reason is that such a statement cannot
be extracted without its entire body [1, 4, 8]. When the token is dropped, the initial list of tokens is
eventually split in two lists, resulting in two methods to extract.
Most other constraints imposed by control statements are already handled by the expression splitting

process described in section 4.1. As an example, consider that we have the following list of tokens cor-
responding to the AST shown in figure 2:

[cond, stmt1, stmt2, stmt3, block, if, stmt4, block]

And assume that two clones corresponding to the two following sublists have been found:

1In practice, an automatic tool would generate arbitrary method names. We use more meaningful names only for the sake
of clarity.

VOLUME 3 5

Page 67

AN ALGORITHM FOR DETECTING AND REMOVING CLONES IN JAVA CODE

if

block

stmt4

blockcond

stmt1 stmt2 stmt3

Figure 2: An AST with a clone that only partially covers the body of an if statement. The nodes that
are part of a clone are shaded. “cond” is an arbitrary expression’s subtree and “stmt1” to “stmt4” are
arbitrary statements’ subtrees.

[cond, stmt1, stmt2], [if, stmt4]

Because the body of the if statement is not fully included in the second clone, the corresponding token
must be dropped from the second sublist. The expression splitting process described in section 4.1 will
further separate the condition from the first two body statements in the first sublist.
As a result, three clones to extract are produced: one for the condition, one for the first two body

statements “stmt1” and “stmt2”, and one for the “stmt4” statement. These clones can all be extracted
safely.
More formally, when dealing with statements that have bodies, a method can only be extracted if it

crosses no or both boundaries of the statement’s body. The other cases, where only one boundary of the
body is crossed, are handled in the following ways by our algorithm:

• Statements before the body and from the begin of the body: these two parts belongs to two different
subtrees of the AST. As a result they are extracted in two different methods, as explained in section
4.1.

• Statements from the end of the body and after the body: these two parts are separated by a token
corresponding to the control statement itself in the list of tokens. This is a property of the post-
order walk used by our algorithm. Removing this token as explained in this section will split the
list, and result in two different methods to be extracted.

• Statements including part of a control statement’s expression: unless the whole control statement
is covered, the expression splitting process described in section 4.1 will separate the control state-
ment’s expression from the rest, if any.

4.4 Multiple outgoing data flows

A method cannot return more than one value in Java. Therefore we cannot extract a code fragment with
multiple outgoing data flows, that is, a code fragment that modifies the value of more than one variable
that are read afterwards. As an illustration, consider the following code:

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 6

Page 68

ELECTRONIC COMMUNICATIONS OF EASST

min = x - getWindowSize() / 2;
max = x + getWindowSize() / 2;
middle = x;
doStuff(min, middle, max);

And assume that the three first statements are duplicated somewhere else in the code, and all the variables
are local variables and not instance variables. These three statements correspond to the following list of
tokens:

[min, x, getWindowSize, 2, /, -, =, max, x,
getWindowSize, 2, /, +, =, middle, x, =]

Unfortunately, we cannot extract these statements in a method, because the method would then need to
return three values: min, max and middle2.
Also note that the constraint presented in section 4.1 will not perform any changes there because we

have three subtrees having the same parent block node.
A way of dealing with this problem is to split the list of tokens in such a way every sublist has at most

one outgoing flow and has a maximum size. The first sublist can be found by repeatedly removing the
last token until the condition is satisfied and the result corresponds to a whole expression or to a list of
statements. Then the process is applied again with the rest of the clone.
In our example, the whole process will split the list in three sublists:

[min, x, getWindowSize, 2, /, -, =],
[max, x, getWindowSize, 2, /, +, =],
[middle, x, =]

Now, three methods can safely be extracted, resulting in the following code:

min = method1(x);
max = method2(x);
middle = method3(x);
doStuff(min, middle, max);

It is necessary to make a few observations at this stage. First, identifying the number of outgoing flows
in a code fragment is far from being a simple task and requires a complex flow analysis. This process
is part of our algorithm, but we will not address it as it is similar to existing implementations that are
already heavily covered by the literature [1, 2, 3, 11].
Second, by splitting a list of tokens into smaller sublists, we may fall into resulting sublists that are very

short. The threshold constraint presented in section 4.2 may eventually drop some sublists. In extreme
cases, this may dramatically reduce the number of methods we can extract. A worst case example (but
fortunately unlikely to occur in practice) would be a code fragment where every variable is postfixed
with the “++” operator, such as:

weird(x++ + y++, x++ + y++, x++ + y++);

2Note that there would be no problem if these variables were instance variables.

VOLUME 3 7

Page 69

AN ALGORITHM FOR DETECTING AND REMOVING CLONES IN JAVA CODE

Unless x and y are instance variables, we cannot really extract any duplicated code: the duplicated
expression “x++ + y++” modifies two variables and cannot be extracted into a method; and the sub-
expressions “x++”, “y++” and “+” are too short to be extracted alone.

4.5 Iteration

In the previous section, we assumed that the following code fragment was duplicated and we managed
to extract it into common methods:

min = x - getWindowSize() / 2;
max = x + getWindowSize() / 2;
middle = x;

But there is also some duplication within the fragment itself: the sub-expression

getWindowSize() / 2

Therefore, to fully remove code duplications, we may need to apply our whole algorithm in a recursive
way on the generated methods, until no more clones are found. Note that this is not implemented by a
constraint this time, but by a modification of the algorithm itself.

4.6 Multiple outgoing control flows

As described in section 4.4, it is not possible to extract a code fragment with multiple outgoing data
flows. This is one of the preconditions of the extract method refactoring. Another related precondition is
that we cannot extract a code fragment with multiple outgoing control flows either [1, 3, 11].
A code fragment has multiple outgoing control flows when the execution can leave the code fragment

at more than one place. This typically occurs when the code fragment contains one or more conditional
“jump” statements such as break, continue or return.
Consider the following code as an illustration:

boolean stable = false;
while (true) {
stable = detectClones(code);
if (stable || code.hasErrors())
break;

stable = extractClones();
if (stable || code.hasErrors())
break;

}

Clearly, there is a duplication of the if statement and its body, corresponding to the AST subtree of
figure 3, and to the following list of tokens (after a post-order walk):

[stable, code, hasErrors, ||, break, if]

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 8

Page 70

ELECTRONIC COMMUNICATIONS OF EASST

if

break||

stable

code

hasErrors

Figure 3: The AST subtree of the duplicated statements.

But the break instruction prevents the extraction of the statements corresponding to these tokens: if they
were extracted in a new method, this method would contain the break statement, but not the enclosing
loop, yielding to a compilation error. The problem would be similar with a return statement (even
when not in a loop): once a return statement is extracted, it does no longer return from the original
method but from the extracted method, changing the semantics.
The solution we propose is simply to remove the break statement from the list of tokens, and to

split the list at the position of the break. The same process would be performed for a return or
continue statement. In this particular case, we are left with the following two sublists:

[stable, code, hasErrors, ||], [if]

The second list has a single token, and cannot be extracted for two different reasons explained in sections
4.2 and 4.3. The best we can do is therefore to extract the first sublist, corresponding to the common
expression of the two if statements.
In more complex cases where the break statement occurs in the middle of a big clone, there would

also be two additional extracted methods for the statements before and after the break.
There are other ways of dealing with these “jump” statements. One solution is presented by S. Horwitz

[8]: a single method is extracted with the jump statement. The method must return an additional value
which specifies whether the execution has terminated at the end of the method or at the jump statement
(actually replaced by a return statement). This returned value is then used by the caller to conditionally
execute the “real” jump.
Unfortunately, while this alternative solution is feasible for the C language, it will fail most of the time

in Java because a method cannot return more than one value: by adding an additional return value, this
limitation is easily reached. Also note that this solution, unlike ours, requires code transformations that
go beyond the extraction of a method.

5 Summary

At this stage, we can give the following skeleton of our algorithm to detect and remove clones:

1 Parse the source code and build the corresponding AST

VOLUME 3 9

Page 71

AN ALGORITHM FOR DETECTING AND REMOVING CLONES IN JAVA CODE

2 Create a list of tokens using a post-order walk on the AST

3 Detect clones in the list, using technologies of lossless data compression

4 Apply constraints on the produced sublists of tokens corresponding to clones

– Split unrelated expressions (section 4.1)

– Resolve multiple outgoing data flows (section 4.4)

– Resolve multiple outgoing control flows (section 4.6)

– Handle control statements (section 4.3)

– Apply a threshold (section 4.2)

5 Extract the code corresponding to the remaining sublists of tokens into new methods

6 Restart on all the extracted methods until no more duplicates are found

Note that this is only the overall structure of a full-featured algorithm. We have only covered the most
important constraints imposed by the Java language; but in practice, there are many other aspects to
deal with. These aspects include for example visibility, naming conflicts, anonymous classes and user
interface. In fact, each special construct of a given programming language may involve other or different
constraints.
An interesting aspect is the structure of our algorithm, which exhibits two properties:

• All steps except step 4 are algorithms that are already known and mastered.

• The step 4 consists in the application of a list of independent constraints. Therefore it can be
implemented in a clean way involving nearly no coupling (with the exception of some ordering
constraints such as applying the threshold last).

In other words, given the already existing algorithms, implementing our algorithm for a given program-
ming language basically consists in identifying and implementing various constraints on lists of tokens
corresponding to the clones to extract.

6 Open issues and future works

We have presented the skeleton of an algorithm for the automatic detection and removal of duplicated
code. Our solution deals with small clones and focuses on the clarity of the resulting code compared to
existing solutions. Nevertheless, some global open issues have to be pointed out.
Our solution can only detect code fragments that are equal according to their representation as an AST.

But different statements may have the same semantics although they result in different ASTs. Resolving
this problem in general is still an open issue because it would require a lot of semantic analyses and
transformations. Some specific cases have been solved though.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 10

Page 72

ELECTRONIC COMMUNICATIONS OF EASST

• The solution given by Ira D. Baxter [13] for instance can properly detect clones involving commu-
tative operators with the operands swapped; but the extraction of clones for the Java language is
not discussed.

• In the paper of F. Von Rysselberghe and S. Demeyer [9], a detection algorithm is presented, that can
properly find clones in which variables have been renamed. Unfortunately, the proposed solution
can produce false positives, which are not acceptable for the extraction.

• D. Koes et al. [7] discuss the complexity of finding statements which are independent. This task
would be necessary if we want to properly detect a code fragment that is duplicated, but where two
independent statements are swapped. Possible solutions are given by [8, 11] with the help of the
Program Dependency Graph [17].

Another limitation is that our detection algorithm will not always detect “ideal” clones. The clones
are often different than those that would be detected manually by a human. This problem was already
pointed out for most existing detection algorithms [8, 9].
These issues confirm the importance of the intervention of the programmer during the process. An

automated algorithm can be of a great help, but it usually does not give perfect solutions all the times.

7 Conclusion

In this paper, we have presented a new algorithm for the automated detection and removal of duplicated
code statements, or clones. Unlike previous work, our solution is meant as a refactoring tool and favors
code clarity and fidelity over efficiency.
We have shown that the process of removing the detected clones is mainly constrained by the precon-

ditions of the extract method refactoring, which makes it a difficult process. But we have proposed a
solution that produces acceptable and correct results despite of these constraints.
Unlike previous work, our solution does not modify the source code before the extraction and also

finds clones hidden in sub-expressions. It also correctly handles the limitations imposed by the Java
programming languages that do not allow passing parameters by reference, without sacrificing the clarity
of the resulting code.
While we gave only the “sketch” of a real and full-featured algorithm, we have shown how such an

algorithm could be implemented in a clean and structured way for the Java language.

References

[1] Mathieu Verbaere, Ran Ettinger and Oege de Moor: JunGL: a Scripting Language for Refactoring,
28th International Conference on Software Engineering (to appear), 2006

[2] Leif Frenzel: The Language Toolkit: An API for Automated Refactorings in Eclipse-based IDEs,
Eclipse Magazin, vol. 5, 2006

VOLUME 3 11

Page 73

AN ALGORITHM FOR DETECTING AND REMOVING CLONES IN JAVA CODE

[3] Nicolas Juillerat, Béat Hirsbrunner: FOOD: An intermediate model for automated refactoring, 5th
International Conference on Software Methodologies, Tools and Techniques (to appear), 2006

[4] IBM Corporation: Eclipse 3.1 documentation, 2005, accessible on the home page of Eclipse

[5] Tom Copeland: PMD applied, Centenial Books Online, 2005

[6] Tom Mens, Tom Tourwé: A Survey of Software Refactoring, IEEE Transactions on software engi-
neering, vol. 30, no. 2, pp. 126–139, 2004

[7] David Koes, Mihai Budiu, Girish Venkataramani: Programmer Specified Pointer Independence,
MSP’04, ACM, pp. 51–59, 2004

[8] Raghavan Komondoor, Susan Horwitz: Effective, Automatic Procedure Extraction, 11th IEEE In-
ternational Workshop on Program Comprehension, pp. 33–42, 2003

[9] Filip Von Rysselberghe, Serge Demeyer: Evaluating Clone Detection Techniques, Proceedings of
the International Workshop on Evolution of Large Scale Industrial Software Applications, pp. 25–
36, 2003

[10] Martin Fowler: Refactoring: Improving the Design of Existing Code, Addison-Wesley, 2002

[11] Raghavan Komondoor, Susan Horwitz: Finding Duplicated Code Using Program Dependences,
Lecture Notes in Computer Science, Vol 2028, pp. 383–386, 2001

[12] Raghavan Komondoor, Susan Horwitz: Semantics-Preserving Procedure Extraction, ACM Sym-
posium on Principles of Programming Languages, pp. 155–169, 2000

[13] Ira D. Baxter et al.: Clone Detection Using Abstract Syntax Trees, IEEE Proceedings of ICSM’98,
pp. 368–377, 1998

[14] Mark Nelson, Jean-Loup Gailly: The Data Compression Book, M&T Books, 2nd edition, 1995

[15] Michael Burrows, David Wheeler: A Block-Sorting Lossless Data Compression Algorithm, Digital
Equipment Corporation, 1994, available on the CiteSeer online library

[16] W. Griswold, D. Notkin: Automated Assistance for Program Restructuring, ACM Transactions on
Software Engineering and Methodology, pp. 228–269, 1993

[17] Jeanne Ferrante, Joe D. Warren: The Program Dependence Graph and Its Use in Optimizations,
ACM Transactions on Programming Languages and Systems, vol. 9, no. 3, pp. 319–349, 1987

[18] J. W. Hunt, M. Douglas McIlroy: An Algorithm for Differential File Comparison, Bell Laboratories
Computing Science Technical Report 41, 1976, available on the home page of the second author

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 12

Page 74

ELECTRONIC COMMUNICATIONS OF EASST

Refactoring Information Systems
– Handling Partial Compositions -

Michael Löwe, Harald König, Michael Peters, and Christoph Schulz
FHDW Hannover, Freundallee 15
D-30173 Hannover, Germany

We present our formal framework for the refactoring of complete information systems, i.e., the
data model and the data itself. It is described using general and abstract notions of category
theory and can handle addition, renaming and removal of model objects as well as folding and
unfolding within complete and partial object compositions.

Keywords: Refactoring, Migration, Graph transformation, Pullback complement

1. Introduction
The only constant thing is change. This is especially true for the information and communication
business. Currently, information systems in many companies are subject to change. This is mainly
due to the technological progress connected to the Internet which enables completely new sorts of
electronic business. Thus, we see big efforts to re-engineer the technical basis on the one hand and
to improve the business processes and information models on the other hand [1].

This development has been reflected in the research and development community in the last years.
Agile and Extreme Programming Techniques [2] [3] [4] aim at supporting the ongoing
reengineering processes by providing refactoring methods, techniques, patterns [5] [6] and tools [7].
These tools enable consistent global changes of a whole software system, for example to introduce
some design patterns which are necessary for the system to take the next evolution step. This puts
the flexibility into the development process that is needed to keep a system up-to-date (without any
over-specifications at the beginning of the development) and to realize changing requirements
quickly.

For the time being, agile techniques in database engineering were often restricted to the im-
provement and change of model artifacts. The main obstacle for agile techniques here is existing
data. Attempts to describe semantics-preserving schema transformations that also migrate data can
be found in [8] [9]. A transformational approach that considers the instance level is discussed in
[10].

If a model of a productive information system is changed, we are faced with one central question:
“What shall we do with the data conforming to the old model?” Up to now, we hear two major
answers:

VOLUME 3 1

Page 75

REFACTORING INFORMATION SYSTEMS

1. Leave the data as it is and map the new model to the old one using for example some object-rela-
tional-mapping tools [11].1

2. Migrate the data from the old model to the new one by crafting corresponding migration scripts
and performing the (long-running) data migration at night or on the weekend.

Both solutions possess big disadvantages. The first one leads to complex mappings if applied
several times. This complexity is very likely to produce performance problems and reduce the
development speed of the engineering team in the long run.2 The second solution requires long
production breaks and consumes a lot of development and test time for software (migration scripts)
that is thrown away after success.

We propose another approach, namely the generation of the necessary data migration directly from
model refactoring, compare also [12]. One central issue is the correctness of the induced migra-
tions. We can only benefit from this approach if we can trust in the produced migrations without
any further tests. Therefore, we present a theoretical framework in this paper, which

1. is able to represent models and instances in a uniform meta-model,

2. comes equipped with a suitable notion of model refactoring,

3. provides refactoring-induced correct transformations of the instances (migrations), and

4. proves its applicability by satisfying necessary and natural properties for refactorings and migra-
tions, i.e., that refactoring can be composed in a natural way.

The framework is built on category theory [13] and algebraic graph transformation [14]. In this
theory, we not only have a very general notion of structured object. By the notion of morphism, we
also get a natural way of representing (1) typings of instance objects in model objects as well as (2)
model changes (refactorings) and instance migrations.

Section 2 presents our current framework built on a double-pullback construction, which can handle
addition, renaming, and removal of model objects as well as folding and unfolding within complete
object compositions [15]. This framework is not able to handle inheritance structures directly.
Section 3 provides a slight generalization: We do not longer require that the right-hand side of a
migration is a pullback. Instead we re-use the explicit construction of the pullback complements in
more general situations. It turns out that this construction enjoys some categorical properties that
guarantee uniqueness up to isomorphism. Section 4 shows that the usual sequential composition of
refactorings extends to migrations in the generalized framework as well. We sketch in section 5,
how the results in this paper can be reformulated on a purely categorical level. We explicitly point
out the similarities to the approach of Ehrig et al. using adhesive categories [14]. Section 6 provides
a conclusion and contains hints for future research activities.

1 An older and worse version of this approach is: Leave the data-model as it is and redefine the meaning of the data
within the model, for example by using comma-separated multi-value fields in a single string column.

2 The longer this approach is applied, the bigger the problems to switch to the second one.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 2

Page 76

ELECTRONIC COMMUNICATIONS OF EASST

2. Migration Framework
For a motivation of the following theoretical
aspects, consider the situation of a class
Department. A possible refactoring would be
to extract an abstract superclass Unit in order
to be prepared for additional specializations
[5]. If we interpret generalization as object
composition on the instance level, an
automated migration must add a Unit-Object
to each Department-Object in a 1:1 fashion3.
After the migration client objects no longer
use a single Department-Object but a new
object which contains the Unit-information as
an aggregated object, see Fig. 1. Since Unit is
an abstract class, we can model this refactoring

by unfolding Department to two classes. This can be done by a morphism l that maps the new
model N to the old model M assigning the two classes Department and Unit in N to Department in
M. Having data D which is typed by the morphism t : DM we obviously can generate the
migrated data by calculating the pullback object F of t and l4.
Another possible refactoring is the addition of a new class [5]. This can be achieved with a (non-
surjective) map r from the old to the new model, see Fig. 2. Here the question arises which
categorical construct generates a reasonable migration. Moreover, different data structures are
possible after the migration: one possibility would be to create no B-object, another to create a

default-value or prototype object for B. Both
solutions lead to pullback diagrams, if objects
a1 and a2 are preserved.

Category theory can be applied in the
following way. We can express the typing of
some data D in a model M by a morphism
t : DM . And we need to express refactorings

between models and migrations between typed
data. We will have to use the two variations l
and r discussed above. But we are not only
interested in the model states before and after
refactoring but in the refactoring process itself.
Hence, it is a good choice to represent one
model refactoring from model M to N by a

3 This interpretation is often used when object models are mapped to relational database systems using the “one table
per class”-strategy. This strategy provides one relational table for each class and maps each inheritance association
to a foreign key relation from the special to the general class.

4 Later, we discuss in which category the construction is carried out.

VOLUME 3 3

Fig. 2: Adding a new class

r

NM

t

A A B

a1

a2

r'
D

“A reasonable
object collection”

t'

Fig. 1: Extracting a superclass

D

M
Unit

Client Dept.

cl2 dept1

cl1

Client Dept.

l'

l

vt

cl2 dept1

cl1 unit1

N

F

Page 77

REFACTORING INFORMATION SYSTEMS

combination of the two variants, i.e., by a pair of morphisms: M
l

K
r

N . The pair (l, r) represents
an arbitrary relation between M and N and can model:

1. Deletion of model objects, i.e., l is not surjective,

2. Addition of model objects, i.e., r is not surjective,

3. Renaming of model objects, i.e., l and r are bijective but not identities,

4. Splitting or unfolding of model objects, i.e., l is not injective, and

5. Gluing or folding of model objects, i.e., r is not injective.

Given a typed database t : DM and a model refactoring M
l

K
r

N , we
want to canonically construct the induced migration to some typed database
u: E N . As a first step, we can use the pullback construction of t and l,

which shall result in a typed database v : FK . For reasons of symmetry, we
need to construct a pullback complement of v and r in the second step.

Unfortunately, such a
pullback complement is not guaranteed to exist nor
need be unique if it exists (see Fig. 2).

Even worse, there is no simple property for r that
guarantees existence and uniqueness of the
pullback complement. Some authors argue that r
being epimorphism is sufficient, compare [16] or
[17]. This is wrong as the following examples
demonstrate.

Example 1 (Ambiguous Pullback Comple-
ments). Consider the situation depicted in Fig. 3 in
the usual category of graphs and graph morphisms.
The epimorphism f and the morphism g do not
possess a unique (up to isomorphism) pullback
complement, since (g, f1*) is pullback of (f, g1*)
and (g, f2*) is pullback of (f, g2*) but D1 and D2 are
not isomorphic. □

In the category of sets and mappings, however,
pullback complements seem to be uniquely
determined. This is not (really) true, as is
demonstrated by the following example.

Example 2 (Ambiguous Pullback Complements
in Set). Let g:{1,2,3,4}→{a,b} be given by g(1)=a,
g(2)=a, g(3)=b, g(4)=b and f:{a,b}→{3} be the

constant function as in Fig. 4. There are two pullback complements:

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 4

Fig. 3: Ambiguous Pullback Complement

g
2
*

1D
1

3
2

g

1

2
1
,3
1

2
2
,3
2

f
2
*

2,3

11

32

B

g
1
*

2
1
,3
2

2
2 D

2

f
1
*

2
1
,3
2

1

2
1

f

3
1

A

C

M NK

D EF

r

u v

r'l'

l

t (1) (2)

Page 78

ELECTRONIC COMMUNICATIONS OF EASST

1. ({13,24}, f*1:{1,2,3,4}→{13,24}, g*1:
{13,24}→{3}) with f*1(1)=13, f*1(2)=24,
f*1(3)=13, and f*1(4)=24.

2. ({14,23}, f*2:{1,2,3,4}→{14,23}, g*2:
{13,24}→{3}) with f*2(1)=14, f*2(2)=23,
f*2(3)=23, and f*2(4)=14.

Obviously, {13,24} and {14,23} are isomorphic. But
no isomorphism i:{13,24}→{14,23} translates f*1 to
f*2, in the sense: i ○ f*1 = f*2. Hence, we have
isomorphic pullback complement objects. But the
induced morphisms are ambiguous since they cannot
be compared by the existing isomorphisms. □

This type of ambiguity cannot be accepted in our
context, since the morphisms represent the transition

of the data from the old to the new model. There seems to be no chance to avoid this type of ambi-
guity, if we do not put additional requirements on the “vertical” morphisms g, g1* and g2*. These
properties shall single out a unique choice for the pullback complement extension of g.

These examples provide the motivation for the following definitions:

Definition 3 (Graph). The category G of graphs is the algebraic category w. r. t. the signature:

Sorts: O(bject)

Opns: s(ource), t(arget): O → O.

This is a simple form of graphs where we do not distinguish between nodes and edges. In such a
graph, nodes can be characterized as objects n such that s(n) = n = t(n). Graphs and graph mor-
phisms of this type provide more flexibility in the refactoring/migration context we are considering
here, for example: if two nodes x and y are mapped to the same node z, it is possible that a
morphism maps an edge e with s(e) = x and t(e) = y to z, too. E.g. in Fig. 1, l(Unit) = l(Dept.) =
Dept. and the edge between them is mapped to the node Dept. as well.

Definition 4 (Component Graph). A component graph g: G → G is a morphism in G. A
component graph morphism α: (g: G → G) → (h: H → H) is a pair (α: G → H, α: G → H) such that
the resulting square commutes, i.e., ° g=h° . The comma category CG consists of all component
graphs and all morphisms between them.

If not otherwise stated, we just write g for a component graph g: G → G. Note that G is the under-
lying graph and g provides a decomposition of G into parts or components via the the congruence
kern(g)5. Thus for the carrier set G we have G= {[x]g : x∈G } where []g denotes congruence
classes of kern(g). We also note that congruence classes are not necessarily subgraphs of G as can
easily be seen in component graphs id: G → G where G contains edges.

5 The relation kern(f) denotes the congruence that the morphism f induces on its domain, i.e., (x, y) ∈ kern(f) iff f(x) =
f(y).

VOLUME 3 5

Fig. 4: Ambiguous pullback complement in SET

f*1

a

b
3

1

3

4

2

13

24

14

23

f

g

f*2

g*1

g*2

Page 79

REFACTORING INFORMATION SYSTEMS

The additional component structure on graphs provides means to distinguish typings from
refactorings. In a typing, we require that all components are instantiated completely in a 1:1
manner. In a refactoring we allow identification of objects if and only if they belong to the same
component. Hence, refactorings map components injectively and typings map objects within
components bijectively.

Note that CG has all limits and that pullbacks in CG can be constructed component-wise.

Definition 5 (Typings, Refactorings, and Migrations).
A typing t: g → h is a CG-morphism if for each x∈G the mapping t : [x]g[t x]h considered as a
SET-morphism is bijective.

A refactoring is a pair of morphisms m
l

k
r

n in CG such that l and r are
injective. The morphisms l and r are called refactoring morphisms in this
case.

A refactoring m
l

k
r

n and a typing t :d m induce a migration from
typing t :d m to typing u :en , if there is a diagram as depicted to the
right that satisfies:

1. (1) and (2) are pullbacks, and

2. r' is epimorphism.

The proof of the following proposition is straightforward and relies on the fact, that pullbacks
preserve monomorphisms and isomorphisms.

Propositon 6 (Refactorings, Typings, and Pullbacks). If (n*: l → g, m*: l → k) is the pullback of
(n: k → h, m: g → h) in CG, then

1. m* is a refactoring if m is,

2. n* is a typing if n is, and

3. if n is injective on components, i.e., ∀ x , y∈K : n x=n y∧k x =k y⇒ x= y , then the same
property holds for n*, i.e., ∀ x , y∈L:n* x=n* y∧l x=l y⇒ x= y

Proposition 7 (Existence and Uniqueness of Migrations). Let m
l

k
r

n be a refactoring and let
t: d → m be a typing. If r: K → N is an epimorphism, then:

1. There is a migration as defined in definition 5 and

2. The result of the migration is uniquely determined (up to isomorphism).

Proof. Subdiagram (1) can be constructed as a pullback. Thus (F, v, l') are unique up to isomor-
phism. The morphism v is a typing due to proposition 6. Having a typing v and a refactoring
morphism r, we construct diagram (2), i.e., (E, r', u), as follows and depicted in Fig. 5:

If the component graph f is the morphism f: F → F, then

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 6

m k n

d f e

l r

t v(1) (2) u

l' r'

Page 80

ELECTRONIC COMMUNICATIONS OF EASST

1. r' is the identity on F,

2. E=F /≡ where ≡=kern f ∩ kern r °v

3. r '=[]≡ ,

4. u = r °v ,

5. u is the unique morphism providing u°r '=r°v which
exists since kern r°v⊇≡ , and

6. component graph e: E → E is the morphism with
e° r'= f which exists since kern f ⊇≡ .

By construction u°r '=r°v and r' is epimorphism. Since
kern r ' =kernr °v on each component and r is an epimor-

phism, u is bijective on components and thus a typing. And it
is easy to show that (v, r') is pullback of (r, u) in SET and
therefore in CG: if there is o such that r(x(o)) = u(y(o)), then choose o ' = r '−1 y o ∩ v−1 x o .
This is unique, since v is bijective on components and, by construction, r' folds on components
only. This completes the proof of the first statement.

To prove the second statement, let (r*: F → E', u*: E' → N) be any other completion with the
required properties. It is easy to see, that the two pullback situations project to pullback situations in
SET on each component. Here we have u*° r *=u° r ' where u* and u are bijective. Hence kern(r*)
= kern(r') on each component of F. Because r is a refactoring, so are r' and r* (see proposition 6)
such that this property holds throughout F. Thus E=~ E ' . □

Although the framework presented so far allows copying and gluing of objects within the same
component only, it provides some nice features for our purposes of information system refactoring,
as the following example demonstrates.

Example 8 (Association Redirection). In
Fig. 1 we showed how to introduce a
superclass Unit. Subsequently, one needs to
check the references to Department-objects
and redirect them to Unit-objects if neces-
sary. To do this, consider the model re-
factoring in Fig. 66: All three graphs have 3
components; the non-trivial component in
each graph (the component that has more
than one element) is highlighted. Using this
refactoring in a migration redirects all asso-
ciations of type “7” from the source of “6” to the target of “6”. It uses an intermediate vertex “2”,
that is introduced by the left-hand side l as an unfolding and removed again by the right-hand side r

6 We indicate the model objects numerically to clarify the mappings.

VOLUME 3 7

Fig. 6: Redirection of associations

1

2

4

5

6

3
 7

1

2,4,5

6 3

 7

1,2,6

4

5 3

 7

rl

Fig. 5: Constructing the right side of a
refactoring

K N

K N

F

F

E

Er'

r'

r

r

f e

vv u u

k n

Page 81

REFACTORING INFORMATION SYSTEMS

by a corresponding folding. This example shows, that we are able to redirect association sources
and targets as long as we stay in the same component. □

With these features, we should be able to handle all refactorings that are concerned with inheritance
structures. Recall, that inheritance can be considered as some sort of static composition between
objects: an object of class c can be considered to be composed of a set of (sub-)objects, namely one
object for each direct or indirect ancestor class c' of c. All these objects are created at the same time
the most special object is created. And they are also destroyed at the same time. Hence, we can
model them as explicit parts in a component graph on the instance level in our framework .

But these components are not components in the sense of typings (Def. 5). It is not the case, that the
complete inheritance tree of classes needs to be instantiated, if one class is. If there are concrete
classes that possess subclasses, an object might instantiate a proper subpart of the complete
inheritance tree of its class, only. Our approach is not able to handle those incomplete parts, since
pullback complements do not always exist in these situations.

Example 9 (Missing Pullback Com-
plement). Consider the reverse process
as in example 8. An association to class
“1,2,6” (a concrete superclass of “4”)
shall be redirected to its subclass, see
Fig. 7. We apply this rule to an instance
of “1,2,6”, called “1,2,6' ”. The pullback
on the left produces an intermediate
object “2' ” in F. But we can easily
deduce, that the right part is not able to
complete the diagram to a double-
pullback situation. This is mainly due to
the fact that the non-trivial component
in K is only partially instantiated in F
(there is no “4”-object). For suppose,
that such a pullback complement r':
F → E, u: E → N exists. Then r'(2') is a
preimage of “2,4,5” under u. This is
only possible if there is a preimage of
“4” in F. □

We might use a trick to handle inheri-
tance. We always instantiate complete inheritance graphs, when an object is created and keep the
information about the most special real object in the resulting part (of real and extra objects). Then
we distinguish two views on the system: (1) the refactoring perspective and (2) the operational
perspective. In the first perspective, all objects are visible and our framework is applicable. The
second perspective blends out all extra objects in order to keep the system's state consistent from

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 8

Fig. 7: Missing pullback complement

F

1

2

4

5

6

3
 7

1

2,4,5

6 3

 7

r

1'

2'

6'

3'
 7'

r

v

1,2,6

4

5 3

 7
l

1,2,6'

3'

 7'

t

l'

M K N

D

?

Page 82

ELECTRONIC COMMUNICATIONS OF EASST

the operational point of view.7 With these additional arrangements, inheritance structures and the
typical refactorings could be modeled.

But there are also disadvantages of this approach: the additional instantiations might cause a
significant memory overhead. In this paper, we use a different approach, which omits this problem:
In the next section, we slightly generalize our framework such that partial instantiations of
components in the model are allowed. To achieve that, we do no longer require that the right-hand
side of a migration is a pullback.

3. Partial Instantiation of Components
In this section, we relax the requirements for typings. Weak typings allow partial instantiations of
model components, since they are injective on each component but need not be surjective.

Definition 10 (Weak Typing). A component graph morphism α: (g: G → G) → (h: H → H) is a
weak typing if it is injective on each component, i.e., x = y ∧ g x = g y ⇒ x = y .

Now we use the construction in the proof of proposition 7 to construct the right-hand side of a
migration. This works for weak typings as well.

Construction 11 (Folding). Consider Fig. 8, where
weak typing n and refactoring morphism m are given.
We construct the folding completion of this situation as
follows:

1. m* = ([]≡, idG), where
≡ = kerng ∩ kernm°n ,

2. n* = (i, m°n), where i is the unique morphism
with i °[]≡ = m°n , since kern m°n⊇≡ , and

3. the component graph j is the unique morphism
with j °[]≡ = id ° g , since kern g ⊇≡ .

m* is a CG-morphism by construction. Moreover, we
obtain k ° i = m°n° j , since []≡ is epi and
k °i°[]≡ = k °m°n = m°n°g = m°n° j °[]≡ . Thus, n*
is a CG-morphism, too. □

Lemma 12 (Folding). If (m*, n*) is folding of (m, n), m* is refactoring morphism and n* is typing.

Proof. The first part is obvious, since m * has been constructed as the identity which is a mono.

For the proof of the second statement let i x = i y and j x = j y . Now consider arbitrary
preimages x' and y' for x and y wrt. []≡, i.e., [x']≡ = x and [y']≡ = y. Since j °[]≡ = id °g , we con-
clude g(x') = g(y'). Since i °[]≡ = m°n , it follows that m(n(x')) = m(n(y')).

Thus, x ' , y ' ∈ kern g ∩ kernm°n , which means that [x']≡ = [y']≡. Hence, x = y. □
7 Note that the model is stable under the operational perspective!

VOLUME 3 9

Fig. 8: Construction of a Folding

H

H

K

G

G

G

G/≡

Km

id

[]≡

m
k

j

h

g

 n n i

m

 ○
 n

Page 83

REFACTORING INFORMATION SYSTEMS

Folding diagrams possess an interesting universal property as the following proposition shows.

Proposition 13 (Initiality of Foldings). Let the pair of morphisms (m*: g → f, n*: f → k) be the
folding of a weak typing n: g → h and a refactoring morphism m: h → k as it is constructed in
construction 11. Then for every triple of morphisms (w: g → b, t: b → a, v: k → a) such that t is
weak typing and t°w = v°m°n , there is a unique morphism u: f → b with t °u = v°n* and
u°m* = w .

Proof. Let the folding be given as in Fig. 8. We set u = w and get immediately (1)
u°m* = u° id = u = w . We show that ≡ ⊆ kernw . Let m(n(x)) = m(n(y)) and g(x) = g(y). It
follows t(w(x)) = v(m(n(x))) = v(m(n(y))) = t(w(y)) and b(w(x)) = w(g(x)) = w(g(y)) = b(w(y)). Since
t is weak typing, we get w(x) = w(y) as desired. Now there is a unique u: G/≡ → B with (2)
u°[]≡ = u°m * = w . Since b°u°[]≡ = b°w = w °g = w ° j °[]≡ = u° j °[]≡ , we can conclude (3)
b°u = u ° j . And t °u°[]≡ = t °w = v °m°n = v° i °[]≡ provides (4) t °u = v°i = v°n* . Finally,

we also have (5) t °u = v°m°n = v°n* . □

Proposition 13 characterizes foldings up to isomorphism. In the following, we say that a diagram is
an abstract folding if it has the property of proposition 13:

Definition 14 (Abstract Folding). As depicted in Fig. 9, a
pair (m*: g → f, n*: f → k) consisting of a refactoring mor-
phism m* and a weak typing n* is the abstract folding of a
weak typing n: g → h and a refactoring morphism m: h → k if
(1) n*°m * = m°n and (2) for every triple (w: g → b, t: b →
a, v: k → a) such that t is weak typing and t°w = v°m°n ,
there is a unique morphism u: f → b with t °u = v°n* and
u°m* = w .

Corollary 15 (Uniqueness of Abstract Foldings). Two ab-
stract foldings of a weak typing n: g → h and a refactoring
morphism m: h → k coincide up to isomorphism. Hence (m*:
g → f, n*: f → k) is the abstract folding if and only if the statement

m* is epimorphism and m * x=m* y ⇔ g x=g y ∧m n x =m n y

holds.

Proof. Direct consequence of Definition 14 and the fact that the first folding compares to the
second and vice versa. Therefore, we get two morphisms between the two foldings, which must be
inverse morphisms, because their composition coincide with the identity on the folding objects
(unique morphism from a folding to itself). □

Abstract foldings enjoy the same composition and decomposition properties as pushouts or
pullbacks.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 10

Fig. 9: Abstract Folding

h k a

g f

b

m v

n

m*

n*
t

w

u!

Page 84

ELECTRONIC COMMUNICATIONS OF EASST

Proposition 16 (Composition and Decomposition of Abstract Foldings).
Consider the situation depicted in the diagram below8.

1. If the squares (1) and (2) are abstract foldings, then the rectangle (1) + (2) is an abstract
folding.9

2. If the rectangle (1) + (2) and the square (1) are
abstract foldings, then (2) is an abstract folding.

3. If typing e and refactoring h is the abstract folding of
typing c and refactoring b°a , it can be decomposed
into two foldings as in the diagram on the right, where
h = g° f , if the underlying category has all abstract

foldings.

Proof.
(1) Let morphisms v, t, w, be given such that t is typing and t °w = v°b°a °c . Since (1) is abstract
folding, we get u1 such that u1° f = w and t °u1 = v °b°d . Now u1, t and v compare to (2) and we
get u2 with u2°g = u1 and t °u2 = v°e . Substituting u2°g = u1 in u1° f = w provides
u2°g ° f = w . For the proof of uniqueness, let morphism u3 be given such that u3°g ° f = w and
t °u3 = v °e . Then u3°g ° f = u 2°g ° f and t °u3°g = v°b°d = t °u 2° g hold. We obtain
u3°g = u2°g , since (1) is abstract folding. But this implies u3 = u2, since (2) is abstract folding.

(2) Let v, t, w, be given such that t is typing and t °w = v°b°d . It follows t °w° f = v °b°a°c .
Since (1)+(2) is abstract folding, there is u such that u°g ° f = w° f and t °u = v°e . We also have
t °u°g = v °e°g = v °b°d . Since (1) is abstract folding, we get u°g = w . Uniqueness follows

from the uniqueness of u for (1)+(2).

(3) If there are all abstract foldings, we can construct (d, f) as a folding, which provides diagram (1).
The morphism g is obtained as the unique completion of the diagram from the folding (1). That
diagram (2) is an abstract folding follows from (2) of this proposition. □

Definition 17 (Generalized Migration). A refactoring m
l

k
r

n and a weak typing t :d m induce
a generalized migration from t :d m to weak typing u :en , if there is
a diagram as depicted to the right that satisfies:

1. Subdiagram (1) is pullback and

2. Subdiagram (2) is abstract folding.

Theorem 18 (Existence and Uniqueness of Generalized Migrations).
Given a weak typing t : DM and refactoring M

l
K

r
N for the model of t, there is an induced

migration and the result of the migration is unique up to isomorphism.

8 Here, for the sake of readability, CG-objects are presented in capital letters.
9 (1)+(2) consists of the morphisms b°a , e , g ° f ,and c .

VOLUME 3 11

A B

D Ef

a

c d

C

Fg

b

e(1) (2)

m k n

d f e

l r

t v(1) (2) u

l' r'

Page 85

REFACTORING INFORMATION SYSTEMS

Proof. Direct consequence of (1) the
existence and uniqueness of pullbacks in
CG, (2) the fact that pullbacks in CG
preserve weak typings (proposition 6,
3.), and (3) the existence and uniqueness
of abstract foldings in CG (Construction
11 and Corollary 15). □

Theorem 18 justifies that we write R(t)
for the result typing of a migration from
a typing t : DM using a refactoring R =
M

l
K

r
N . Fig. 10 shows the general-

ized migration that we searched for in
Fig. 7.

4. Sequential Composition
In this section, we show that there is a
natural sequential composition R2°R1 of refactorings R1 and R2 and that applying a sequential
composition to a weak typing t provides exactly the same result as the sequence of first applying R1

to t and second R2 to R1(t), i.e., R2°R1t =R2R1 t .

Definition 19 (Sequential Composition of refactorings).
The sequential composition R2 °R1=l1 ° p1: J M , r2° p2: J P
of two refactorings R1=l1: K M ,r1: K N and
R2=l2: H N , r2 :H P is defined with the help of the pull-

back object p1 : J K , p2 :J H of r1 and l2 as depicted in
Fig. 11.

Note that the sequential composition is well-defined due to
proposition 6, 1. and the fact that the composition of two
refactoring morphisms is a refactoring morphism again.

In order to prove our main theorem, i.e., R2 °R1t =R2R1t , we need the following technical
lemma.

Lemma 20 (Pullback Cubes Preserve Abstract Foldings). Consider the commuting diagram in
CG below10. If the pair of morphisms (i, q) is the abstract folding of the morphism pair (r, m), the
pair (p, t) is the pullback of the pair (s, q), and (j, v) is the pullback of (t, i), then the pair of
morphisms (j, p) is the abstract folding of (n, k).

10 Here, we depict CG-objects as arrows with filled tip.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 12

Fig. 11: Sequential composition

M
N

K r
1

l
1

PH
r

2
l
2

J p
2
 p

1

(PB)

Fig. 10: A generalized migration

1

2

4

5

6

3
 7

1

2,4,5

6 3

 7

r

1'

2'

6'

3'
 7'

r

u

1,2,6

4

5 3

 7
l

1,2,6'

3'

 7'

t

l'

M K N

D 1'

2'

6'

3'
 7'r'

v

F E

Page 86

ELECTRONIC COMMUNICATIONS OF EASST

Proof. The assumptions of the lemma provide that i is the identity. Since pullbacks preserve
isomorphisms, we can set j = id without loss of generality. Because the bottom face is a pullback
and i is an epimorphism (see Corollary 15), j is an epimorphism as well. Again, from Corollary 15
we deduce that it suffices to show, that
j x = j y ⇔ [k n x = k n y ∧ g x = g y]

holds for all x , y ∈ G .

“⇒”: (1) j x = j y ⇒ p j x = p j y ⇒ k n x = k n y

(2) j x = j y ⇒ c j x = c j y ⇒ id g x = id g y ⇒ g x = g y

“⇐”: Let k n x = k n y ∧ g x = g y be given. Since (p, t) is pullback, it is sufficient to
show: (3) t j x = t j y ∧ (4) p j x = p j y :

(3) (a) g x = g y ⇒ v g x = v g y ⇒ h v x = h v y .

(b) k n x = k n y ⇒ sk n x = sk n y ⇒ mrv x = mr v y .

Since (q, i) is abstract folding, it follows from Corollary 15, (a) and (b) that
i v x = i v y , which provides t j x = t j y , because t° j = i°v .

(4) k n x = k n y ⇒ p j x = p j y . □

Theorem 21 (Sequential Composition). If R2R1t for two refactorings R1 and R2 is defined, we
have R2 °R1t =R2R1t .

VOLUME 3 13

Fig. 12: Pullback Cube

s

b

c

a

d

f

g

e

h

k

j
id

i

m

id

n

p

q

r

t

u

v

Page 87

REFACTORING INFORMATION SYSTEMS

Proof. Consider the following diagram, which depicts R2R1t . This migration sequence is given
by the four squares (1) MKFD, (2) KNEF, (3) NHCE, and (4) HPBC. (1) and (3) are pullbacks and

(2) and (4) are abstract foldings. The addi-
tional material in the diagram is defined as
follows: The pair of morphisms (p1, p2) is
given as a pullback of r1 and l2, compare
construction of R2 °R1 in definition 19. We
write (5) for the resulting square NKJH. We
construct (p1',p2') as pullback of (r1',l2'). We
write (6) for the resulting square EFIC. The
morphism u2 is the universal completion of
the diagram into the pullback object J. Now,
the square (7) KJIF is pullback as well. This
is due to the fact that (3)+(6) is pullback11,
(3)+(6) = (5)+(7), and (5) is pullback12. The
square (8) JICH is abstract folding due to
Lemma 20. Now diagram (1)+(7) is pull-
back, since pullbacks compose. It is the left-

hand side of the migration induced by R2 °R1 . Diagram (8)+(4) is abstract folding, since abstract
foldings compose (compare Proposition 16, 1.). It is the right-hand side of the migration induced by
R2 °R1 . This together shows that R2 °R1 migrates t to w as well. □

With Theorem 21 we are, on the one hand, able to compose long refactoring sequences into one
single refactoring, which can capture the effect of the whole sequence. On the other hand, we can
decompose complex refactorings into a composition of simpler ones.

5. General Framework
The whole approach presented above is almost independent from the underlying category of graphs
resp. component graphs. What we need for the existence and uniqueness of migrations is the
existence of pullbacks and abstract foldings. For the results concerning sequential composition, we
need the cube lemma 20, i.e., that pullbacks “pull back” abstract foldings. Thus, we can present our
requirements for a category to provide the infrastructure for unique migrations and sequential
compositions as follows:

An abstract migration framework is a category C together with two subcategories T and R which
have the same objects as C. The morphisms in T are called typings and the morphisms in R are
called refactoring morphisms. The system (C, T, R) is subject to the following requirements:

(1) C has all pullbacks

(2) C has abstract foldings for all pairs of morphisms (f: A → B ∈ T, g: B → C ∈ R).

11 Composition property of pullbacks.
12 Decomposition property of pullbacks.

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 14

Fig. 13: Migration sequence

J

 M K

 N

 P H
l
1

p
1

 p

2

r

1

l
2

r
2

 D F

 I

 E

B C
l
1
'

 p
1
' p

2
'

r
1
'

 l
2
'

r
2
'

t v
1

 u
2

u
1

v
2
 w

Page 88

ELECTRONIC COMMUNICATIONS OF EASST

(3) Pullbacks in C preserve morphisms of T and of R.

(4) In each cube with corners K, N, H, J, F, E, C, and I, as it is depicted in Fig. 13, the square JICH
is an abstract folding if KNEF is abstract folding and the squares IFEC and NECH are
pullbacks.

Since abstract foldings are a generalization of surjective pullback complements, the framework
presented in section 2 fits into this setting as well. Another instance is given by simple graphs,
arbitrary morphisms as typings and injective morphisms as refactoring morphisms. Here we can use
surjective pullback complements as abstract foldings as well [15].

6. Conclusion
We propose formalizations of aspects in the process of refactoring information systems. The power
of our attempt is that a model refactoring can uniquely and automatically be extended to the
instance level. In contrast to other more practical solutions, we can prove correctness of our
approach. The framework is described using abstract notions from category theory.

With a strong assumption to the typing morphisms we can generalize a migration to a double-
pullback diagram. As a first step, it is possible to handle addition, renaming, and removal of model
objects. The investigation under which conditions folding and unfolding is possible, leads to a
model structure where one had to restrict to 1:1 associations on certain components. A refactoring
morphism may fold or unfold on these components, only. In a second step we showed that these
settings are correct as well.

However, object trees of inheritance structures are, in general, not completely instantiated. To treat
this case in a similar way, we have to weaken the assumptions on the type mappings. But weak
typings do not always lead to double-pullback constructions. Thus, this third step requires a
generalization of pullback complements. We introduced abstract foldings that enjoy some of the
well-known properties of pullbacks and pushouts. Abstract foldings are initial in a reasonable
context, which reveales a uniqueness statement of generalized migrations and prepares a statement
on the composition of refactorings.

Composing migrations into larger projects and decomposing migrations into smaller steps leads to
the question if there is a minimal set of atomic refactorings, from which each refactoring can be
constructed by sequential composition. This might be an interesting topic for future research as well
as the question, under which conditions refactorings are parallel or sequential independent and can
be performed concurrently. These results are valuable for tools that produce migrations on the basis
of the construction of pullbacks and abstract foldings.

Finally, in a forth step, we describe a way of integrating refactoring and migration procedures in a
more general framework that abstracts away from the underlying category. We define requirements
that are the basis for a generalized system. These requirements are very similar to the axioms for
adhesive categories in [14]. It is up to future research to investigate if both frameworks can be seen
as two instances of an even more general system.

VOLUME 3 15

Page 89

REFACTORING INFORMATION SYSTEMS

References
1 Havey, M.: Essential Business Process Modeling. O'Reilly 2005
2 Martin, R. C.: Agile Software Development, Principles, Patterns, and Practices. Prentice Hall

2002
3 Beck, K.: Extreme Programming Explained. Addison Wesley 2000
4 Beck, K.: Test-driven Development by Example. Addison-Wesley 2002
5 Fowler, M.: Refactoring: Improving the Design of Existing Code . Addison-Wesley 1999
6 Kerievsky, J. : Refactoring to Patterns. Addison-Wesley 2004
7 D’Anjou, J et al: The Java Developer’s Guide to Eclipse. Addison-Wesley 2005
8 Ambler, S. W.: Agile Database Techniques. Wiley 2003
9 Ambler, S. W.: Refactoring Databases : Evolutionary Database Design . Addison-Wesley 2006
10 Hainaut, J.-L.: Introduction to database reverse engineering. LIBD Publish. 2002
11 Bauer, Ch., King, G. : Hibernate in Action . Manning Publications 2004
12 Löwe, M.: Evolution Patterns – A Graphical Framework for Software Redesign. Proceedings

ISAS'99 1999
13 Adamek, J., Herrlich, H., Strecker G. E.: Abstract and Concrete Categories - the Joy of Cats.

2004 http://katmat.math.uni-bremen.de/acc/acc.pdf
14 Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. Springer 2006
15 Löwe, M., König, H., Peters, M., Schulz, Ch.: A Formal Framework for Information System

Refactorization. Proceedings WMSCI 2006, Vol. 1, 75-80, 2006
16 Meisen, J.: Pullbacks in Regular Categories. Canad. Math. Bull. Vol.16(2) 1973
17 Bauderon, M., Jacquet, H.: Pullback as a generic graph rewriting mechanism. Applied

Categorical Structures Vol.9(1) 2001

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS 16

Page 90

ELECTRONIC COMMUNICATIONS OF THE EASST

An Approach to Invariant-based Program Refactoring

Tiago Massoni * and Rohit Gheyi * and Paulo Borba *
*Informatics Center — Federal University of Pernambuco

PO Box 7851 – 50.732-970 Recife, PE
{tlm,rg,phmb}@cin.ufpe.br

Abstract. Refactoring tools include checking of an object-oriented program for the fulfillment
of preconditions, for ensuring correctness. However, program invariants – semantic informa-
tion about classes and fields assumed valid during program execution – are not considered by
this precondition checking. As a result, applicability of automated refactorings is constrained
in these cases, as refactorings that would be applicable considering the invariants get rejected,
usually requiring manual changes. In this paper, we describe initial work on the use of program
invariants (declared as code annotations) to increase applicability of automated refactoring. We
propose an approach that uses primitive program transformations that employ the invariant to
make the program syntactically amenable to the desired refactoring, before applying the refac-
toring itself.

1 Introduction

A popular technique for dealing with evolution-related problems isrefactoring[Fow99, MT04], which
improves software structure while preserving behavior to better support adaptations or additions. The
practice of refactoring has been improved by supporting tools, avoiding manual work and increasing trust
on behavior preservation. Usually a catalog of refactorings is offered, from which users can choose the
desired transformation for the problem in context (for instance, push down fields of a class to a subclass,
or introduction and renaming of classes and fields). These automated refactorings presentpreconditions
that are checked against the code subject to refactoring, in order to ensure correctness.
Such precondition checking involves analysis of static information from the program – declarations and

statements – enforcing strong conditions that limit the applicability of refactorings. While being effective
to ensure safe refactorings, it leads to prevention of refactoring on programs that would be eligible if some
semantic assumptions about the program behavior were taken into consideration. In these cases, extra
manual refactoring is required, minimizing the benefits of using refactoring tools. Examples of such
refactorings are presented in Section 2.
Semantic assumptions about the program can be expressed asprogram invariants, which consist in

VOLUME 3 1

Page 91

AN APPROACH TOINVARIANT-BASED PROGRAM REFACTORING

predicates about the state of objects and their inter-relationships, assumed valid throughout every possible
program execution. In this paper, we describe how invariants can be used to increase the applicability of
some automated refactorings (invariant-based refactoring). We indicate that if certain types of invariants
are assumed, transformations based on these invariants can be applied to programs that would not be
eligible for refactoring using the current tools. Programmers may provide invariants on classes and their
fields ascode annotations, or invariants may be discovered by existing analysis tools.
We propose an approach for using a sequence ofprimitive program transformationsthat employ in-

variants for making the program syntactically amenable to the desired refactoring, before applying the
refactoring itself. As the program initially does not satisfies the preconditions, we use the invariants as a
basis for applying some auxiliary program transformations that results in a program that can be subject to
the desired automated refactoring. As a consequence, programs not fulfilling preconditions may be auto-
matically refactored based on information about their behavior. By that, refactoring tools are applicable
to more programs. Besides using code annotations, this approach can be applied in combination with
program verification tools for discovering invariants from programs, using static or dynamic analysis.

2 Problem Statement

In this section, we make the case for invariant-based refactoring, by describing examples of refactoring
tool limitations related to their precondition checking. Figure 1 shows a partial Java program representing
a file system. The superclassFSObject defines a general representation for file system objects –
files and directories – being specialized in correspondent subclasses. Theparent field, declared into
FSObject, defines the parent directory for each directory object.

Figure 1: File system implementation.

PROC. OF 3RD SETRA 2

Page 92

ELECTRONIC COMMUNICATIONS OF THE EASST

Suppose that it is known that theparent field is always null for non-directory objects, such as files. In
this context, it is desirable to apply a refactoring forpushing downparent to theDir class [Fow99].
Refactoring tools, such as Eclipse, offer this refactoring in their catalog; selectingparent, the tool
performs all related changes to apply this refactoring.
However, some of the previous accesses to the field do not allow the application of the refactoring.

As indicated in the highlighted statements of Figure 1, accesses withinFSObject andFile would
be invalid after moving the field toDir. Nevertheless,parent does not make sense to non-directory
objects – for example,File only allowsnull assignments to the inherited field –, and this semantic
information is not taken into account by refactoring tools. This refactoring cannot be applied correctly
in existing tools; otherwise, the resulting program would present typing errors.

3 Program Invariants

Reasoning about design of object-oriented programs usually rely on a number ofobject invariants, which
represent consistency conditions on the program’s objects and its data fields that must be maintained
throughout the execution of the program [LM04]. This information may be stated in separate artifacts,
such as object models [LG01], or integrated into programming languages, usingannotation languages.
Code annotations can handle the complexities of object-oriented code, also being directly compilable
into runtime assertions.
Examples of annotation languages for Java include the Java Modeling Language (JML) [BCC+05] and

Alloy Annotation Language (AAL) [KMJ02]. We illustrate the use of annotations by showing object
invariants forFSObject andDir, in Figure 2. The invariants are based on simple first-order logic
based on AAL. InFSObject, the invariant states that file system objects, except directories, have no
parent directories;FSObject-Dir yields allFSObject instances that are notDir instances. The set
of dereferences of theparent attribute from these instances is always empty (# denotes set cardinality).

Figure 2: Object invariants as code annotations.

Code annotations are provided in at least three different ways. Users may add annotations as supple-
mentary design information that may help program documentation and analysis. For instance, advanced
static analysis can be applied to programs annotated with invariants [FLL+02]. Similarly, invariants
may be transferred to the program by abstract modelsin conformance. For instance, the invariant from

VOLUME 3 3

Page 93

AN APPROACH TOINVARIANT-BASED PROGRAM REFACTORING

Figure 2 could have been defined in a structural model (UML class diagrams with constraints) which
the program conforms to. Conformance implies that if the model constrains theparent relationship to
directories only, the classes implementing the involved concepts must follow this constraint.
Furthermore, likely invariants may also be discovered from several executions of a program, as seen

with Daikon tool support [ECGN01]. It consists in a program analysis that generalizes over observed
values to assume program properties, used in testing, verification and bug detection. In this case, user
intervention for dealing with invariants is minimized.

4 Approach for Invariant-based Refactoring

In Section 2, we exemplified a program that would be eligible to automated refactorings if semantic
information was considered. In this section, we show how program invariants that represent this semantic
information can be used as a basis for increasing the applicability of such automated refactorings. We first
show a systematic method for applying behavior-preserving transformations to programs (Section 4.1),
that will aid making programs subject to refactoring. These transformations build a foundation for our
approach, as described in Section 4.2. Other examples of invariants that could be applied accordingly
are defined in Section 4.3.

4.1 Primitive Program Transformations

Refactoring must preserve the observable behavior of a program. A way to facilitate mechanization of
refactorings in tool support is to adopt analgebraicmethod, in which a refactoring is made of a sequence
of behavior-preserving transformations [Opd92]. One classical approach for defining these transforma-
tions can beprimitive laws [HHJ+87] relating language constructs. Easily mechanized by term rewriting,
these laws are immediately available as a framework for transforming programs. In addition, primitive
laws may be composed for deriving large-grained transformations that preserve semantics of programs.
For object-oriented programming, an extensive set of laws has been defined for the Refinement Object-
Oriented language (ROOL) [B+04], which is correspondent to a subset of Java.
Although defined for a simplified language, most laws can be leveraged to Java. The most critical

restriction is on itscopy semantics, rather than a reference semantics [B+04]. In ROOL, objects are
treated as primitive values (records), consequently presenting no pointers. The laws showed in this
section do not deal with object sharing; however, for laws that depend on sharing to be correct, an
additional property ofconfinementmust be ensured. In fact, the laws must be revised in order to deal
with reference semantics. In this section, the laws are presented following the Java syntax, for simplicity.
As an example of primitive law, the following moves an field up (applying from left to right) or down

(right to left) to super or subclass, respectively, which is put in practice by refactoring tools. Each law
denotes two transformations, as it defines equivalence. The provisos (preconditions) ensure that the
transformations denoted by the law preserve semantics. The equivalence is valid within a context of
class declarationscds and a main methodc. The symbol ‘(→)’ before the first proviso indicates it is
only required for applications of this law from left to right. On the other hand, ‘(←)’ is used when a
proviso is necessary only for applying a law from right to left.

PROC. OF 3RD SETRA 4

Page 94

ELECTRONIC COMMUNICATIONS OF THE EASST

Law 1 〈move field to superclass〉
class B extends A {
ads
ops

}
class C extends B {
a : T ; ads′

ops′

}

=cds,c

class B extends A {
a : T ; ads
ops

}
class C extends B {
ads′

ops′

}

provided
(→) The field namea is not declared by the subclasses ofB in cds;
(←) D.a, for anyD ≤ B andD 6≤ C, does not appear incds, c, ops, or ops′.

The ads identifier represents field declarations in the class, whileops stands for the declaration of
methods and constructors. The notationB.a denotes uses ofa through expressions whose static type is
exactlyB (for instance, an expression yielding an object from classB, strictly). To denote thatB is a
subclass ofA, we writeB ≤ A. The second proviso above precludes an expression such asthis.a
from appearing inops, but does not precludethis.c.a, for an fieldc : C declared inB. The last
expression is valid inops no matter whethera is declared inB or inC.
Several laws for commands and expressions complement laws for object-oriented constructs. For in-

stance, the next law allows us to introduce type casts to expressions, as long as the type of the expression
is consistent with the cast, given the type context (denoted byB).

Law 2 〈introduce trivial cast in expressions〉
If cds,ABe : C, thencds,ABe = (C)e.

For ensuring that the program’s state before a given statement fulfills a given invariant, we make use
of Java assertions. Each assertion contains a boolean expression that you believe will be true when the
assertion executes. If it is not true, the system will throw an error. We can, for example, extract assertions
from guards, as stated by the following law, whereψi denotes a boolean formula.

Law 3 〈assertion condition〉
if (ψi) { ci } = if (ψi) { assert (ψi); ci }

4.2 An Approach for Invariant-based Refactoring

We now describe an approach for applying behavior-preserving transformations for refactoring programs
based on invariants. A type of invariant is identified; for that invariant, the tool can apply a predefined
sequence of primitive laws of programming which we callstrategy. Strategies possess two key properties:
(1) they must rewrite programs for updating statements, using invariants, before the desired refactoring;
(2) they preserve program behavior, which entails from the application of laws.
Checking the program from Figure 1 in current refactoring tools involves type declarations for ensuring

correcteness. As theparent field is to be pushed down to a particular subclass, accessingparent

VOLUME 3 5

Page 95

AN APPROACH TOINVARIANT-BASED PROGRAM REFACTORING

from a reference whose type is not of that subclass would be invalid. On the other hand, an intuitive
analysis of the program in the light of the invariant from Figure 2 shows some interesting aspects about
those fragments. The invariant guarantees that theparent field will be null for any object references
whose type isFSObject or its subclasses, exceptDir.
Strategies are illustrated by refactorings applied to the program from Section 2. For pushing down the
parent field, Law 〈move field to superclass〉 may be a straightforward option to refactor the program.
However, the highlighted statements in Figure 1 clearly prohibit the application of the law, as they make
the required provisos invalid. Our aim is to apply other primitive laws that acquire value from this
information. The following derivation is related to the methodgetParent, within whichparent is
read. This derivation is illustrative for the example; in fact, this strategy can be generalized for programs
in a similar context.

Step 1. Within FSObject, the value of thethis identifier obeys the following condition:
this instanceof Dir || !(this instanceof Dir). We express this condition by the
following if statement. Using Law〈assertion condition〉, we can change the body ofgetParent
by extracting assertions from each branch.

Dir getParent(){
if (this instanceof Dir){
assert (this instanceof Dir);
return this.parent;

} else{
assert !(this instanceof Dir);
return this.parent;

}
}

Step 2. Concerning the first branch, we can introduce a cast to the assignment, using Law〈introduce
trivial cast in expressions〉.

Dir getParent(){
if (this instanceof Dir){
return ((Dir)this).parent;

} else{
assert !(this instanceof Dir);
return this.parent;

}
}

Step 3. In the second branch, we now can use the invariant fromFSObject, defined as
#((FSObject-Dir).parent)=0. It is introduced as an assertion conjoined with the previous
one, as follows (translated to Java asthis instanceof Dir || this.parent==null).

Dir getParent(){

PROC. OF 3RD SETRA 6

Page 96

ELECTRONIC COMMUNICATIONS OF THE EASST

if (this instanceof Dir){
return ((Dir)this).parent;

} else{
assert (this instanceof Dir || this.parent==null &&

!(this instanceof Dir));
return this.parent;

}
}

Step 4. Still in the second branch, we use simple logic rules for simplifying the assertion
(!A && A == false).

Dir getParent(){
if (this instanceof Dir){
return ((Dir)this).parent;

} else{
assert (this.parent==null);
return this.parent;

}
}

Step 5. As stated in the assertion, the program state defines the value read by the assignment (already
null before the command), resulting in the following body forgetParent.

Dir getParent(){
if (this instanceof Dir){
return ((Dir)this).parent;

} else{
return null;

}
}

A similar derivation can be developed in the constructor ofFile, assigningnull to parent:

Step 1. Since the command is withinFile, we can introduce the following assertion.

File(){
assert (this instanceof File);
this.parent=null;

}

Step 2. The program invariant (this instanceof Dir || this.parent==null), is then
introduced to the assertion.

VOLUME 3 7

Page 97

AN APPROACH TOINVARIANT-BASED PROGRAM REFACTORING

File(){
assert (this instanceof Dir || this.parent==null &&

this instanceof File);
this.parent=null;

}

Step 3. The assertion can now be simplified accordingly.

File(){
assert (this.parent==null && this instanceof File);
this.parent=null;

}

Step 4. The command has no effect over the state (this.parent possesses a constant value before
and after) and no other variable is changed. Hence, the assignment (along with the assertion) can be
removed with no impact on the program’s behavior.

After the application of this strategy, the program now can be subject to Law〈move field to superclass〉,
from right to left. The same could have been done to other similar occurrences ofparent in the
program. Consequently, these can be generalized for any other program presenting this type of invariant.
The general sequence of transformations before the actual move operation constitutes a strategy with the
aid of the program invariant, to be applied in conjunction with the refactoring tool.

4.3 Other invariants

Similar strategies can be defined for several types of invariants. Some of the invariants we investigated
are summarized next:

• Remove field. In general automated refactorings only remove fields when they are not used
anywhere in the program. A strategy can prepare programs that do not present this prop-
erty – although removal of the given field is desirable – by replacing all reads from the field
to be removed by the correspondent value given by an invariant. For instance, if the invari-
ant this.newField=this.oldField is provided for the class declaring the field, and
oldField is to be removed, we can use the invariant to replace reads fromoldField by the
corresponding expression (newField), eliminating writings. This is possible since no other vari-
able depends on this field (all reads have been removed).

• Replace array field by single variable field.A field can be declared as an array even though a
design assumption defines the field as empty or holding only one element. This is due to planned
additions that did not come about, as for example accounts in a bank that were defined with the pol-
icy of holding at most one credit card, and this assumption did not change in the future. In this case,
we can change its declaration and statements to a single variable, given the invariant on the multi-
plicity of the field. For instance, an array fieldvar, in the presence of an invariant#this.var=1
on its cardinality, can store this single value on a variable; laws can be applied to change the state-
ment to use the variable (for instance,this.var[0] = a becomesthis.var = a. The
reverse transformation (variable to array) can be applied as well.

PROC. OF 3RD SETRA 8

Page 98

ELECTRONIC COMMUNICATIONS OF THE EASST

5 Conclusions and Future Work

In this paper, we describe an approach for automatic refactorings that assumes program invariants for
offering more applicability to refactoring tools, avoiding some manual adjustments. Invariants – declared
as code annotations – provide semantic information about classes and their fields, which is used to
refactor the program in primitive steps – laws of programming – offering a greater degree of applicability.
There are several other open questions. For instance, it is not clear how invariants will be automatically

identified by a refactoring tool for the application of specific refactorings. Our intuition is that catalogs
of program refactorings could be extended with improvements based on invariants, conditionally applied
based on a set of found invariants. Also, other types of invariants must be investigated, in order to
establish a more general notion of invariants that can aid automated refactorings. These accomplishments
are critical to incorporating invariant-based refactorings in tool support.
We plan also to extend this approach to consider other types of annotations, such as pre- or post-

conditions of methods. We believe that these invariants may help more powerful refactorings involving
methods, such as the Extract Method refactoring [Fow99]. Other promising research topic is exploring
invariants not only for refactorings, but also general evolution transformations (adding a new feature to
the program, for example).
In a previous work [MGB05], we propose an approach for refactoring object models (such as UML

class diagrams with OCL invariants [B+99, W+03]) and programs, as show in Figure 3, which is an
application of invariant-based refactoring. A refactoring is applied to the object model, and a program
in conformance with the model is automatically refactored accordingly. The program refactorings are
automatically from the semantic information given by models.

Figure 3: Model-driven Refactoring.

We consider object model refactoring as a composition of primitive semantics-preserving transforma-
tions. Each model transformation applied to the model triggers the application of a strategy to the source
code. The main idea behind strategies is the assumption that the original program is in conformance with
the model, implying that all model invariants are guaranteed to be true in the program. Therefore, the
same principle of invariant-based refactoring is applied, in which predefined model transformations pro-
vide the original model to which the transformation is applied, so the invariants that are considered true
in the program are known in advance. The program transformation is applied independently, although
based on the model transformation; this scenario avoids the problems related to round-trip engineering
tools, in which programs are generated from models, and vice-versa. This is certainly a useful formal

VOLUME 3 9

Page 99

AN APPROACH TOINVARIANT-BASED PROGRAM REFACTORING

investigation for modern development methodologies, such as Model-driven Architecture [K+03].

References

[B+99] Grady Booch et al.The Unified Modeling Language User Guide. Object Technology. Addi-
son Wesley, 1999.

[B+04] Paulo Borba et al. Algebraic Reasoning for Object-Oriented Programming.Science of
Computer Programming, 52:53–100, October 2004.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T. Leavens,
K. Rustan M. Leino, and Erik Poll. An Overview of JML Tools and Applications.Software
Tools for Technology Transfer, 2005.

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
Discovering Likely Program Invariants to Support Program Evolution.IEEE Transactions
on Software Engineering, 27(2):1–25, 2001.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended Static Checking for Java.ACM SIGPLAN Notices, 37(5):234–245,
2002.

[Fow99] Martin Fowler.Refactoring—Improving the Design of Existing Code. Addison Wesley, 1999.

[HHJ+87] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H.
Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of Programming.Communications of the
ACM, 30(8):672–686, 1987.

[K+03] Anneke Kleppe et al.MDA Explained: the Practice and Promise of The Model Driven
Architecture. Addison Wesley, 2003.

[KMJ02] Sarfraz Khurshid, Darko Marinov, and Daniel Jackson. An Analyzable Annotation Lan-
guage. InProceedings of the 17th OOPSLA, pages 231–245. ACM Press, 2002.

[LG01] B. Liskov and J. Guttag.Program Development in Java. Addison Wesley, 2001.

[LM04] K. Rustan M. Leino and Peter M̈uller. Object invariants in dynamic contexts. InECOOP,
pages 491–516, 2004.

[MGB05] Tiago Massoni, Rohit Gheyi, and Paulo Borba. A model-driven approach to formal refactor-
ing. In Companion to the OOPSLA 2005, pages 124–125, USA, October 2005.

[MT04] Tom Mens and Tom Tourwe. A survey of software refactoring.IEEE Transactions on
Software Engineering, 30(2):126–139, February 2004.

PROC. OF 3RD SETRA 10

Page 100

ELECTRONIC COMMUNICATIONS OF THE EASST

[Opd92] William Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illi-
nois at Urbana-Champaign, 1992.

[W+03] Jos Warmer et al.The Object Constraint Language: Getting Your Models Ready for MDA.
Addison Wesley, second edition, 2003.

VOLUME 3 11

Page 101

Page 102

ELECTRONIC COMMUNICATIONS OF EASST

VOLUME 3

1

1. Introduction
During software construction, we may use different types of models and languages such as:
scenarios, requirements sentences, lexicons, component models, class diagrams, entity-
relationship models, and activity diagrams. These different software representations are
necessary because each one of them portrays a different and limited set of characteristics.
This is done in order to decrease software complexity and help the engineer to focus on
scoped problems.

However, because of the volatility of the requirements, it is necessary to be ready for
changes, or evolution. Requirements evolution happens in two ways: during software
development, changing from the high abstraction level to the implementation level, i.e., from
the requirements to the code; and in order to make the model ready to attend new
requirements or fix errors and omissions [19][23]. In both cases, knowing and managing the
interactions between requirements (the traceability) is of fundamental importance. As a
consequence it is important to decompose and modularize the concerns of the system for two
main reasons: (a) the concerns indicate the coupling and cohesion among their components,
and (b) it is important in order to analyze the impact of changes between requirements at the
same abstraction level and requirements and software artifacts on different abstraction levels
[28].

As defined in [33], traceability means the ability to find related requirements in a
requirements specification, discovering: the source of the requirements (pre-traceability); the
components that implement them (post-traceability); or requirements that affect each other
[28]. Traceability is important to manage and to propagate changes in requirements, thus
supporting software construction [15]. However, if many different models are used during the
construction process, it is necessary to map the information from one kind of model to others,
propagating changes, verifying correctness and conflicts among them.

Generating Requirements Views:
A Transformation-Driven Approach

Lyrene Fernandes da Silva* and Julio Cesar Sampaio do Prado Leite**
*Federal University of Rio Grande do Norte – Brazil

**Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) - Brazil

Abstract. This paper reports the use of transformations based on XML to generate
requirements views. A strategy to generate views is defined and scenarios and class
diagrams are automatically created from a goal oriented model; the V-graph.

Keywords: Requirements models, views, traceability, transformations, XML.

Page 103

GENERATING REQUIREMENTS VIEWS: A
TRANSFORMATION-DRIVEN APPROACH

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

2

In order to address this problem, in this paper, we present an approach based on
transformations to create different views of requirements models. The transformations are
defined by using rules and have been implemented in the context of XML (eXtensible
Markup Language) technology, by means of XSLT transformations. We exemplify this
approach by the creation of rules to transform a goal model, called V-graph, into models:
scenarios [23] and class diagrams [4].

This approach was defined in the context of an aspect-oriented requirement modeling
strategy [31][32]. In this context, we have considered that using views is extremely important
because they can be an alternative way to separate concerns and decrease tangling and
scattering problems that occur due to the tyranny of the dominant decomposition [34]. The V-
graph model was used because it can represent both non-functional and functional
requirements. Furthermore, it explicitly represents the positive and negative interactions
between requirements in opposition to use cases, scenarios and requirements sentences which
do not tackle the issue of requirements interference. Therefore, we can identify crosscutting
concerns by analyzing the interactions among them. In this paper, we present our approach to
generate views from V-graph, but we omit the details about “aspects” defined in [31][32]
because of the limited space available.

The remainder of this paper is organized as follows. In Section 2, we present the
context of this work, the concept of views and the V-graph. In Section 3, we present how we
can generate different views by using transformations, the benefits of this strategy and the
defined transformation rules to generate scenarios and class diagrams from V-graph models.
In Section 4, we present a case study to illustrate the visualization mechanism. In Section 5,
we cite some related work. Finally, in Section 6, we present the concluding remarks and
guidelines for future works.

2. State of the Art
Considering software development as an evolutionary process, in which the design and the
programming are based on the requirements definition and the requirements are continually
changing, software evolution happens: during the development process by refining the models
created during the requirements definition process into architecture models and code; and
during each activity, by making a set of models better, generating different versions of the
same model.

In both cases, it is necessary to be able to identify where changes impact, modify and
propagate these changes for all the used models. The traceability (or mapping) between
models can be supported by a transformation-driven approach [3]. Transformations are
interesting in this case because they can be used to:
 Generate views – different total or partial models can be generated from a base model.

Partial models can represent the system focusing on different concerns or different
viewpoints. Total models can represent the information of a base model using another
notation. In both cases, generating views helps software evolution.

 Facilitate analysis – by using different views, the engineer can focus on scoped problems,
analyze and modify the modeling in a more effective way. Consistency and completeness
checking are facilitated because transformations can generate models with the same
information but changing the perspective to analyze it. A proper inspection mechanism,
when in place, can point out errors and omissions between views.

Page 104

ELECTRONIC COMMUNICATIONS OF EASST

VOLUME 3

3

 Propagate changes – changes made in a model can be automatically propagated to other
models. This decreases the rework, increases the engineer’s productivity and guarantees
that all models are updated;

On the other hand, it is difficult to use a transformation-driven approach, because it is
hard to map one model to others. This is not always possible, usually the concerns represented
in a model are not represented in another model, some information can be omitted, and thus it
is difficult to guarantee the consistency and completeness of these models.

In the requirements definition process, non-completeness and inconsistencies are more
tolerable than in other activities because models created in this stage will be refined by future
feedback. These models cannot have all of the information about the solution to the problem
and they have to accommodate some conflicts and ambiguities from the domain because these
conflicts have to be analyzed and resolved.

For us, the creation of views provides different perspectives of the same model,
separating the crosscutting concerns in different ways and offering the requirements engineer
different ways to analyze these concerns. In Section 2.1 we present the concept of views used
in this work and in Section 2.2 we present the syntax and semantic of the V-graph.

2.1 Views
Views are representations of the overall architecture that are meaningful to one or more
stakeholders in the system (IEEE St.1471). Using views is a way of separating different
concerns in order to focus on one at a time. Views help understanding and elaborating
solutions [33], therefore, they are necessary during all the development process.

In the requirements engineering area, the words viewpoints, views and point-of-view
are sometimes used with similar or different meanings [22]. In order to make the view concept
clear, in [16], three categories of views are presented:
 Views as opinions (viewpoints) – in the social context, each stakeholder has his premises,

priorities and experiences, and they use different ways to deal with the problems.
Therefore, it is necessary to know how to compare and negotiate the different opinions or
different ways of how to look at the things, for example, what is the opinion of the
manager, of the seller and of the buyer about an e-commerce site?

 Views as services (concerns) – the idea of partitioning the system into a set of services that
can be connected in different ways provides component-based development. For example,
a component for payment of bills, another for security, among others;

 Views as models (perspectives) – in the context of software engineering many techniques
based on languages have been proposed in order to partially portray a system, such as
entity-relationship models, use cases diagrams and sequence diagrams. Therefore, it is
important to detect consistency and completeness problems among these models.

These categories of views are not disjointed categories. Usually, we use models
(perspectives) to represent services (concerns) from the point of view of one or more
stakeholders (viewpoint). Furthermore, models, by definition, make some types of
information explicit and hide others, so we can have models focusing on functions, data,
sequence of activities and so on.

2.2 V-Graph
V-graph is a type of goal model [36]. Goal models represent the functional and non-functional
requirements through decomposition trees [25]. V-graph, see Figure 1(a), is defined by goals,

Page 105

GENERATING REQUIREMENTS VIEWS: A
TRANSFORMATION-DRIVEN APPROACH

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

4

softgoals, tasks and the following decomposition relationships – contribution links (and, or,
make, help, unknown, hurt, break) and correlation links (make, help, unknown, hurt, break).
Each element has a type and topics. The type defines a generic functional or non-functional
requirement, for example, Security and Management. The topic defines the context of that
element, for example, data and communication.

Figure 1. (a) V-graph and (b) a V-graph example

Figure 1(b) portrays a V-graph example. In such figure, we can observe that in order
to achieve the goal “Model [requirements]” (“Model” is the type and “requirements” is the
topic) the goals “Edit [scenarios]”, “Edit [lexicon]” and “Manage [project]” have to be
achieved. The relationships among these four goals are contribution links. The contribution
links represent a hierarchy between root (a more abstract element that is father of
subelements) and children (an operationalization that can be a leaf or another root of the tree).

V-graph is an interesting model to represent requirements because with it we can
consider requirements at three abstraction levels (softgoals, goals and tasks). This is important
because in the same model we can represent reasons and operations, the context and how each
element contributes to achieving the system goals. Furthermore, there are important results in
goal modeling, concerning: how to analyze obstacles to the satisfaction of a goal [18]; how to
qualitatively analyze the relationships in goal models; how to analyze variability [14]; how to
analyze conflicts among goals through a propagation mechanism of labels [13]; how to
identify aspects in goal models [36]; how to derive a feature, state and component model from
goal models [30]; and how to provide goal reuse [24] – this last work mentions a composition
mechanism used to integrate a goal model and a reusable goal model from a library.

3. Using Transformations to Generate Requirements Views
Views have been used in different activities of software construction because they help the
developer to delimit the scope of a problem and thus, its complexity. Therefore, the developer
can analyze the correctness and completeness of one concern or a set of concerns at a time.
During the requirements definition process, as well as during the design process, i.e., during
the elaboration of solutions, it is important that developers be able to obtain different views
from a base model in order to facilitate the analyses of the solutions created from different
viewpoints and perspectives.

Page 106

ELECTRONIC COMMUNICATIONS OF EASST

VOLUME 3

5

As we defined in Section 2, a view is a representation of the software architecture or
of one part of the system's architecture, focusing on one or more concerns, by one or more
stakeholders. Figure 2(a) presents, through a features model [8], the variability, considering
views as models and as services. This feature model shows that a view represents one or more
services using one or more types of models (notation). Therefore, we can create views to the
requirements focusing each concern separately (partial views) or in conjunction (total views),
using different types of models.

(a) (b)
Figure 2. (a) Feature model representing the V-graph views and (b) Visualization mechanism

Therefore, we consider fundamental to have a visualization mechanism in order to
facilitate the requirements modeling. An automatic mechanism to generate views can
accelerate the modeling process because it decreases reworking and inconsistencies among
different requirements models. Figure 2(b) summarizes a modeling process using a
visualization mechanism to automatically generate views from V-graph. Such visualization
mechanism consists on a transformation component that needs the following sets of
information: the syntax and semantic of the source language (in our case, V-graph) and the
target language (representation to be generated), and transformation rules. Next subsection
deals with how to transform V-graphs into scenarios and class diagrams.

3.1 Transformation Rules
The V-graph is a representation where we can explicitly model functional and non-functional
requirements using softgoals, goals and tasks. This is its dominant decomposition manner, an
intentional-oriented decomposition. However, the hierarchy and the topics of the V-graph
provide new perspectives of the system, based on, for example, situations and data.
Furthermore, the relationships between goals, softgoals and tasks provide a perspective of
interaction, or traceability. Using this knowledge, we define rules to transform the
information from a V-graph into two different models: scenarios [23] and class diagram [4].
Therefore, we provide requirements views that help “combating” V-graph’s dominant
decomposition.
Transforming V-graph into Scenarios
Scenarios are an interesting topic to the software engineering community [35][29]. The
scenario-driven software development is based on the concept that using the problem's
language (user’s domain) is really beneficial for the interaction and communication between
users and developers. Scenarios are common situations to the users [31]. They have to take

Page 107

GENERATING REQUIREMENTS VIEWS: A
TRANSFORMATION-DRIVEN APPROACH

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

6

into account the usability, enable the comprehension of the domain and problem and help
unifying criteria, the sorting of details and user training [7].

Each scenario describes, through semi-structured natural language, a specific situation
of the application or of the domain, focusing on behavior. Scenarios can be detailed and used
as design, in order to help programming. There are many representation proposals for
scenarios, informal representations in free text [7] or formal representations [17]. We opted
for an intermediate representation: it facilitates the comprehension using natural language and
forces sorting of the information by using a well-defined structure, proposed in [23]. In order
to transform the information in V-graph into a scenarios model some steps are followed:
1. First, we generate scenarios and episodes by using the goal tree hierarchy: each node

(goals and tasks) of the tree that is not a leaf generates a scenario; each subgoal and
subtask that is a leaf generates an episode of that scenario; and each subgoal and subtask
that is not a leaf generates an episode with a reference (link) to a scenario; contributions
“or” generate optional episodes.

2. Second, we generate resources, constraints and context. Each topic of goal and task that
generated episodes without references to any scenario is a resource of that scenario; each
softgoal negatively related (correlation or contribution) to goal/task that generated a
scenario generates an exception into that scenario; each softgoal negatively related
(correlation or contribution) to goal/task that generated a episode (without reference to any
scenario) generates a constraint into that episode; each goal related (contribution) to task
that generated a scenario generates the context into that scenario.

3. Next, we merge scenarios with the same title, because it is possible there be more than one
goal or task with the same name in V-graph in order to facilitate the visualization of the
tree of goals.

Table 1 summarizes the transformation process from V-graph to Scenarios and Section
4 presents an example of scenarios model generated by using this process.

Table 1. (a) Transformation process and (b) transformations: V-graph Scenarios
V-graph Scenarios

Goals, tasks Scenarios and episodes in
accordance of the hierarchy of goals
and tasks

Softgoals negatively correlated Exceptions or constrainsts
Goals of tasks that generated
scenarios

Context

Topics of goals and tasks that
generated episodes without
references to scenarios

Resources

(a) (b)

Transforming a V-graph into a Class Diagram
Objects are executable entities, instances of a class that defines its attributes and services.
Object or class models, usually, are used when we want to adopt the object-oriented paradigm
in the design and programming activities. However, these models can be used during the
requirements definition process to represent data and functionalities [33]. In this sense, we
derived class diagrams from V-graph models. In order to transform the information in V-
graph into a class diagram, we followed the general pattern described below.

Page 108

ELECTRONIC COMMUNICATIONS OF EASST

VOLUME 3

7

1. First, we use the hierarchy of goals and tasks to define classes and attributes: each topic of
goal/task that is not a leaf generates a class whose name is the topic name; and each topic
of goal/task that is a leaf generates an attribute in class generated by its parent node.

2. Second, we define the methods of the classes: every goal/task is method of classes whose
name is its topic; each goal/task that is a leaf generates a method into class generated by its
parent node; if one of the methods refers any topic different of class name then this topic is
an attribute of that class.

3. Next, we generate the relationships between classes: classes refer at least one similar
method are associated; each correlation or contribution between elements that generate
classes generates an association into the class diagram;

4. Finally, classes with same name are merged.
Table 2 summarizes the process to transform V-graph into Class Diagram and Section

4 presents an example of class diagram generated by using this process.
Table 2. (a) Transformation process and (b) transformations: V-graph Class diagram

 V-graph Class diagram
 Topic Classes and attributes in

accordance of the hierarchy of
goals and tasks

 Goals, tasks Methods

 Contributions, correlations, and
goals/tasks that refer similar
topics

Associations

(a) (b)

3.2 Implementation
We implemented this strategy using XML (eXtensible Markup Language) and XSLT
(eXtensible Stylesheet Language Transformation). V-graph syntax was defined using a DTD
(Document Type Definition). The visualization mechanism, i.e., the transformations, was
programmed in XSLT. Therefore, a V-graph model (in XML) is the input to the visualization
component and the outputs are scenarios (in HTML) and class diagrams (in Dot). Figure 3
shows how we used XML and XSLT to implement our strategy. The Dot format and the
GraphViz application [16] are used to create graphic representations to V-graph and class
diagrams.

The choice for XML based transformations was due to the characteristics of our
proposal, models written in XML, and due to the characteristic of our transformation rules. In
our case, the transformations were localized and direct, and as such the XSLT mechanism was
sufficient. Of course if more complex rules were necessary, we would have to use a more
robust transformation platform. However it is important to stress that despite its simplicity,
we can easily implement different representations and layouts for the information described in
XML with its structure defined in a DTD. Furthermore, XML can easily be read and changed
for different applications.

Page 109

GENERATING REQUIREMENTS VIEWS: A
TRANSFORMATION-DRIVEN APPROACH

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

8

Figure 3. XML and XSLT used to transform requirements views

4. Case Study
This section presents part of our case study. The complete case study has four goal models: a
goal model for an information system that helps writing scenarios and lexicon [32]; a goal
model for Security; a goal model for Reliability; and a goal model for Persistence. The V-
graph illustrated in Figure 1(b) is the part of this case study we have used in this paper to
demonstrate our approach. On the right side of Figures 4 e 5 we show this same V-graph. The
octagons are goals and the hexagons are tasks. Pointed links are correlations and the other
links are contributions. Each goal and task has at least one Type and zero or more Topics
(bracketed text). On the left side of Figures 4 e 5, we portray the created views: scenarios and
class diagram.

Figure 4. Example of the scenario view

Figure 4 portrays an example of scenarios generated from the V-graph. In this
example, there are three scenarios with the titles “Model [requirements]”, “Edit [scenario]”
and “Manage [project]”; they were derived from goals with similar names. In the scenario
“Manage [project]”, there are two resources (project and user) generated from topics of their
episodes; the context attribute is generated from the goal “Model [requirements]”; the
attribute episode is generated based on the goals/tasks that decompose the goals “Model

Page 110

ELECTRONIC COMMUNICATIONS OF EASST

VOLUME 3

9

[requirements]”, “Edit [scenario]” and “Manage [project]”; and each underlined episode
indicates a relationship with another scenario.

Figure 5 portrays an example of class diagram to the V-graph (in Figure 1b). Each
goal/task that is not a leaf (and has topics) generates a class into the class diagram. Children
of goal/task that do not generate classes (and have topics) generate attributes related to the
class generated by their goals/tasks parent. Relationships between classes are generated from
the contribution links between goals/tasks that generate those classes. In Figure 5 we can
observe the classes “requirement”, “project” and “scenario”, their attributes and operations;
the relationships between them are generated based on the relationships between tasks/goals
whose topics are source to these classes.

Figure 5. Example of class diagram

This case study is available in [32]. The complete modeling has 9 goals, 105 tasks, 12
softgoals, 7 correlations and 173 contributions. After the transformation process applied to
this case study, 40 scenarios and 14 classes were generated into the scenarios view and class
diagram view, respectively. Although the class diagram does not have the types of
relationships and cardinality, the models created help the engineer to analyze the domain from
the date perspective in opposition to the intentional perspective of the V-graph. Scenarios and
class diagrams represent two other dominant ways to separate concerns, therefore by using
our approach the engineers have these views without having to create them manually.
Furthermore, any change made in the V-graph can be automatically propagated to the other
models.

5. Related Work
Although using different types of models helps managing the complexity during software
modeling, it causes tangling and scattering of concerns, making it difficult to maintain every
model consistent and updated. Therefore, integration mechanisms are necessary in order to
integrate services and models as well as to integrate opinions (conflicts resolution). This paper
focused on the integration of models using a transformation-driven approach.

Software transformation has been a central topic in different software related areas. In
the early seventies/eighties several researchers believed it to be central to the idea of
automatic programming and several program transformation initiatives were initiated, notably

Page 111

GENERATING REQUIREMENTS VIEWS: A
TRANSFORMATION-DRIVEN APPROACH

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

10

the Irvine Transformation Catalogue [11]. Also in the area of software reuse, the idea of
software transformation was particularly successful, for instance [1] and the approaches on
product-line [2] and the Draco approach to software construction [21][26][30]. The use of
transformations, in this type of context, requires a more powerful mechanism, since the
control structure is not straightforward and a strict discipline to help the validation of the
complex rewrite rules is necessary.

There are also many approaches less complex which have been used to transform
requirements models into other requirements models or design models. Many of them are
based on natural language that process or consider the structure of the source language to
identify the constructs of the target language, such as:

In [6], a process to generate ontology from LEL is defined. This approach is based on
transformations but it is only semi-automatic. In [5], an approach has been defined to generate
activity diagrams from use cases and after that to transform these diagrams into Pres, a formal
notation that permits verification. Therefore, this approach enables the enrichment of the use
case model and the production of more precise and complete requirements. In [12], an
automated approach to transform feature models into the class diagrams is defined.

In [9], a process to integrate RNFs and RFs is defined. This approach uses the
constructs of MER, of class diagram and of lexicon extended language (LEL) [20], in order to
make this integration. Such integration process is based on mapping the RNFs specified in
LEL into the MER and into the class diagram. However, this mapping is not based on
transformations, it is based on the analysis of the information in the LEL, MER and in the
class diagram.

In [27], an integration framework of models (modeling methods) is defined. This
framework determines the specification of: (1) style – defines the notation; (2) work plan –
specifies the activities, strategies and processes to define a view; (3) domain – indicates the
domain area; (4) specification – the development method; and (5) work report – indicates the
state and history of the modeling. The information described in (1) e (2) is abstract
information; they can be applied to every instance of the same type of model whereas
information in (3), (4) and (5) of this framework is specific to each instance of the model. The
main goal of this work is to give support for consistency checking among different models
and managing inconsistencies, facilitating the reuse of information on how to map one
representation into others. This framework inspired us to define informally the information
described in (1) and (2) in order to specify the transformations from V-graph into scenarios
and class diagrams, as we have shown in Section 3.2.

6. Final Remarks
In this paper, we present a visualization mechanism used to generate requirements models.
This mechanism is transformation-driven. We created some transformation rules in order to
automatically generate scenarios and class diagrams from the V-graph model. Using
transformations during the requirements definition helps us make the trace among the
different models used. It facilitates modeling because consistent models are generated and
changes are automatically propagated. Consequently, these transformations help software
evolution.

The results that we have had using this approach have been satisfactory because we
consider that generated views help the engineer analyze the system. However, such views
cannot be considered complete models, but initial models that help the engineers because they

Page 112

ELECTRONIC COMMUNICATIONS OF EASST

VOLUME 3

11

do not have to begin the modeling from scratch. Future work involves: making better
transformation rules in order to obtain more detailed models; defining transformation rules to
both directions, V-graph (scenarios and class diagrams) and (scenarios and class diagrams)

 V-graph; creating a verification mechanism to report inconsistencies and omissions into
each type of view; and also tools are extremely necessary to support the edition of any of
these models. Furthermore, it is necessary to plan experiments in order to validate our
approach at the requirements definition stage and to evaluate what is the impact of using it
during the entire software development process.

Currently, we are working on the definition of the transformation rules to generate the
system architecture from the requirements definition. This work is part of our aspect-oriented
approach to model requirements [31][32]. When taking crosscutting concerns into account, the
visualization approach presented in this paper is equally important because using views is an
alternative way to separate crosscutting concerns, facilitating the tasks of modeling, analysis,
traceability and software evolution.

7. References
1. D. Batory, S. Dasari, B. Geraci, V. Singhal, M. Sirkin, J. Thomas. Achieving reuse with software

system generators. In: IEEE Software, September-1995, pp. 89-94.
2. D. Batory, R. Lopez-Herrejon and P. Martin. Generating Product-Lines of Product-Families. In:

Automated Software Engineering Conference, 2002.
3. I. Baxter. Transformational Maintenance by Reuse of Design Histories, Ph.D. Thesis,

Information and Computer Science Department, University of California at Irvine, Nov. 1990, TR
90-36.

4. G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language User Guide. Addison-
Wesley, 1999.

5. R. Boudour and M. Kimour. Model Transformation for Requirements Verification in Embedded
Systems, In: Asian Journal Informational Technology, 4 (11): 1012-1019, 2005.

6. K. Breitman1, J. Leite. Lexicon Based Ontology Construction. In: Lecture Notes in Computer
Science 2940- Editors: C. Lucena, A. Garcia, A. Romanovsky, et al., ISBN: 3-540-21182-9,
Springer-Verlag Heidelberg, February 2004, pp.19-34.

7. J. Carroll et al. d'etre: capturing design history and rationale in multimedia narratives. In: HUMAN
FACTORS IN COMPUTING SYSTEMS (CHI94), Boston-USA, ACM Press, 1994, p. 192-197.

8. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

9. L. Cysneiros, J. Leite and J. Neto. A Framework for Integrating Non-Functional Requirements into
Conceptual Models. Requirements Engineering Journal, Vol. 6, No. 2, p. 97-115, 2001,
Springer-Verlag London Limited.

10. Draco - Software Reuse, Domain Analysis and Draco Information. Available at:
http://www.bayfronttechnologies.com/l02draco.htm. Accessed on: Mar, 7th, 2006.

11.M. S. Feather. A Survey and Classification of some Program Transformation Approaches and
Techniques. In IFIP 87, pages 165-195, 1987.

12. F. García, M. Laguna, Y. González-Carvajal and B. González-Baixauli. Requirements variability
support through MDD and graph transformation. Submitted to Elsevier Preprint, 2005.

13. P. Giorgini, J. Mylopoulos, E. Nicchiarelli and R. Sebastián, Reasoning with goal models,
Proceedings of the 21st International Conference on Conceptual Modeling, 2002, pp. 167-181.

14. B. Gonzáles, M. Laguna and J. Leite, “Visual variability analysis with goal models”, Proceedings
of IEEE International Symposium on Requirements Engineering (RE'04), Japan, 2004, pp. 38-47.

15. O. Gotel, and A. Finkelstein. An analysis of the requirements traceability problem. In: PROC. OF
THE FIRST INTERNATIONAL CONFERENCE ON REQUIREMENTS ENGINEERING

Page 113

GENERATING REQUIREMENTS VIEWS: A
TRANSFORMATION-DRIVEN APPROACH

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

12

(ICRE'94), IEEE Conputer Society Press., 1994. p. 94-101.
16. GRAPHVIZ. Available at: http://www.graphviz.org/. Accessed on: Mar, 7th, 2006.
17. P. Hsia et al. Formal Approach to Scenario Analysis. IEEE Software, vol. 11, No. 2, 1994. p. 33-

41.
18. A. Lamsweerde and E. Letier, “Handling obstacles in goal-oriented requirements engineering”,

IEEE Transaction Software Engineering, 26(10):978–1005, 2000.
19. M. Lehman. Laws of software evolution revisited. Lecture Notes in Computer Science, Vol.

1149, 1996. p.108-120.
20. J. Leite and A. Franco. O Uso de Hipertexto na Elicitação de Linguagens da Aplicação. In: ANAIS

DE IV SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE, 1990. p. 134–149.
21. J. Leite, M. Sant'Anna, F. Gouveia. Draco-PUC: A Technology Assembly for Domain-Oriented

Software Development, International Conference on Software Reuse 1994.
22. J. Leite. Viewpoints on Viewpoints. In: ACM Joint Proceedings of the SIGSOFT'96

Workshops, ACM Press, 1996. p. 285-288.
23. J. Leite et al. Enhancing a requirements baseline with scenarios. In: PROC. OF THE THIRD IEEE

INTERNATIONAL SYMPOSIUM ON REQUIREMENTS ENGINEERING (RE’97), IEEE
Computer Society Press, 1997. p. 44-53.

24. J. Leite, Y. Yu, L. Liu, E. Yu and J. Mylopoulos, “Quality-Based Software Reuse”, Proceedings of
the CAiSE 2005-LNCS 3520, 2005, pp. 535-550.

25. J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional requirements: A
process-oriented approach”, IEEE Transactions on Software Engineering, 18(6):483–497, June
1992.

26. J. Neighbors. The Draco Approach to constructing Software from reusable components. In: IEEE
Trans. on Software Engineering, vol.SE-10, No.5, pp.564-574, September-1984.

27. B. Nuseibeh. Crosscutting requirements. In: PROC. OF THE 3RD INTERNATIONAL CONF. ON
ASPECT-ORIENTED SOFTWARE DEVELOPMENT (AOSD 2004), Lancaster-UK, 2004. p. 3-
4. ISBN:1-58113-842-3.

28. W. Robinson, S. Pawlowski and V. Volkov. Requirements Interaction Management. ACM
Computing Surveys, Vol. 35, No. 2, 2003. p. 132-190.

29. C. Rolland et al. A proposal for a scenario classification framework. Journal of Requirements
Engineering, Vol. 3, Springer Verlag, 1998. p. 23-47.

30. M. Sant’anna, J. Leite and A. Prado. A Generative Approach to Componentware. In: Proc. of the
Workshop on Component-based Software Engineering, ICSE'20, Kyoto, Japan, April 1998.

31. L. Silva, J. Leite. An Aspect-Oriented Approach to Model Requirements. In: RE'05 DOCTORAL
CONSORTIUM in conjunction on the 13th IEEE International Requirements Engineering
Conference, Paris-France, 2005.

32. L. Silva. An Aspect-Oriented Strategy to Model Requirements. Rio de Janeiro, 2006. 220p.
PhD Thesis on Software Engineering - PUC-Rio. In Portuguese.

33. I. Sommerville. Software Engineering, Ed. 6th, Addison- Wesley, 2000.
34. P. Tarr, et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns”. In: PROC.

OF THE 21st Int'l Conf. on Software Engineering (ICSE'99), 1999. p. 107-119.
35. K. Weidenhaupt et al. Scenario Usage in system development: current practice. IEEE Software,

Vol. 15, No. 2, 1998. p. 34-45.
36. Y. Yu, J. Leite and J. Mylopoulos, “From goals to aspects: discovering aspects from requirements

goal models”, Proceedings of IEEE International Symposium on Requirements Engineering
(RE'04), Japan, 2004, pp. 38-47.

37. Y. Yu, J. Mylopolous, A. Lapouchnian, S. Liaskos and J. Leite, “From stakeholder goals to high-
variability software design”, Internal report, 2005.

38. L. Zorman. Requirements Envisaging through utilizing scenarios – REBUS. 1995. Ph.D.
Dissertation, University of Southern California.

Page 114

VOLUME 3

ELECTRONIC COMMUNICATIONS OF EASST

1 Introduction
The development of multi-agent systems (MAS) has rapidly increased in the last few years.

Modeling languages [13][17][22], platforms [16][18], methodologies [2][4][15] and some

others MAS modeling and implementing techniques have been proposed with the purpose of

helping the developers in building such systems. Although several approaches concern with

modeling and implementing MAS, only few accomplish the tracking between design models

and implementation code.

 While dealing with MAS, the refinement of design models into implementation code

becomes especially difficult since it is necessary to deal with different paradigms during the

system development. The agent-oriented paradigm is used while modeling the systems but,

frequently, those systems are implemented by using the object-oriented paradigm (OO). Since

agents and objects have different properties and characteristics (for instance, agents are

autonomous and goal-oriented entities that execute plans in order to achieve their goals and,

different from objects, doe not need external stimulus to execute and can ignore requests), the

transformation from agent-oriented design models into OO code is not simple. To try to assist

the implementation of MAS, several OO platforms, architectures and frameworks such as

[18][16] have been proposed. Although such approaches satisfactory provide support for the

implementation of the MAS, they failed in providing the tracing between the design models

and the implementations. The numerals MAS modeling language, methodologies and

platforms deal with different agent properties and characteristics what directly impact in the

traceability.

 Another important concern that mostly affects the development of MAS is the always

changing characteristic of MAS applications and techniques. Since a number of fundamental

questions about the nature and the use of the agent-oriented approach are still being answered,

important techniques features and also applications requirements are still evolving.

A MDE-Based Approach for Developing

Multi-Agent Systems

Viviane Silva*, Beatriz de Maria** and Carlos Lucena**

*Departamento de Sistemas Informáticos y Programación, UCM, Spain

** Departamento de Informática, PUC-Rio, Brazil

Abstract. This paper focuses on the development of multi-agent systems based on a model

driven engineering approach. Our goal is to cope with the traceability between design and

implementation models and with the always changing characteristics of such systems.

Keywords: model driven architecture, multi-agent systems, transformation, evolution

Page 115

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

MDA-BASED APPROACH FOR DEVELOPING MAS

This paper focuses on helping the MAS developers to cope with (i) the mapping

between design models and implementation models and with (ii) the always changing

characteristics of the MAS applications and techniques. In order to achieve these two goals,

we use a model driven engineering (MDE) approach [11] for developing MAS. Being our

proposal a MDE approach we specify (i) the modeling languages being used to describe the

source and target models, (ii) both models, (iii) the transformations, and (iv) some guidelines

to cope with models evolution [11].

The traceability between MAS design models and OO implementation models will be

illustrated by the use of the multi-agent system modeling language called MAS-ML [17][19]

(the source modeling language), the agent society framework called ASF [18] and the UML

modeling language [14] (the target modeling language). The MAS-ML design models (the

source models) will be transformed into UML implementation models (the target models) by

instantiating the ASF framework according to the application characteristics.

Our second goal is accomplished by demonstrating that the transformation rules can be

adapted to the evolution of both applications and techniques begin used in the transformation.

Such adaptation is facilitated due to the low coupling between design and implementation

models. Design models are independent of the platform / framework being used to implement

the system, i.e., design models does not concern with any characteristic of the implementation

technique. In addition, the framework is also defined completely independent of the modeling

language being used in the design models.

The paper is organized as follows. In Section 2 we present the MAS techniques being

used in the paper: MAS-ML and ASF. Section 3 introduces the transformation process and

Section 4 provides some guidelines to embrace the evolution of applications and techniques.

Section 5 describes some related work and Section 6 draws the conclusions and discusses

future work.

2 Multi-Agent System Techniques
The development process of complex and large-scale systems, such as MAS, involves the

construction of different models based on a variety of requirements. The transformation of a

system specification into models and of these models into code is usually accomplished in a

non-organized way that is not easily adaptable to technology changes. In fact, it is possible to

find different modeling languages, methodologies and platforms for modeling and

implementing MAS but it is hard to find in the literature approaches that trace the design

models into code. Therefore, we propose in this paper a top-down MDE approach that traces

MAS-ML design models into ASF object-oriented code.

2.1. The MAS-ML Modeling Language

MAS-ML is a platform independent modeling language that extends UML incorporating

agent-oriented abstractions (such as agents, organizations, environments and roles), their

properties (such as goals, plans, actions, beliefs and protocols) and relationships (such as play,

inhabit and ownership). Although MAS-ML uses agent and object-oriented abstractions,

MAS-ML does not restrict the implementation of its models to a specific implementation

platform.

Figure 1 illustrates an important part of the MAS-ML metamodel that presents the

agent and object-oriented abstractions defined in the metamodel and the possible relationships

among them. By using MAS-ML it is possible to model, for instance, the roles that agents can

Page 116

VOLUME 3

ELECTRONIC COMMUNICATIONS OF EASST

play (by using a static diagram defined in MAS-ML called organization diagram) and agents

achieving their goals while executing their plans (by using the extended UML sequence

diagram defined in MAS-ML).

Class

AgentClass

OrganizationClass

AgentRoleClass

EnvironmentClass

play

1

1..*0..*

define

1 sub-org

play 1..*1

play in

0..*

1..*

1..*1 inhabit
1

0..*

inhabit

inhabit

1

0..*

1

sub-

org

0..* 1

play in play in

0..*

0..*

Metaclass of the UML metamodel

Metaclasses introduced by MAS-ML

Legend

Figure 1. Part of the MAS-ML metamodel

2.2. The ASF Framework

The goal of ASF is to help designers implementing MAS by using the object-oriented

paradigm. The framework defines a set of OO models where each model represents a MAS

entity type. The set of OO classes and relationships defined in each module makes possible

the implementation of the structural aspects of MAS entities (its properties and relationships

with other entities) and also the dynamic ones (their behavior).

 Figure 2 shows a UML class diagram modeling all ASF classes grouped by modules.

The modules that are used to instantiate agents (delimited by a continuous rectangle),

organizations (defined by the dotted enlace) and agent roles (marked by the hatched rectangle)

are complex modules since they group several classes to represent all the properties of these

entity types. The module that corresponds to environments (hatched circle) is simple

represented by one class because the properties of this entity can be directly represented as

attributes and methods.

 In order to use ASF to implement a MAS application, it is necesary to instantiate the

framework by extending the defined modules. The extentions should be made according to

the entities characteristics defined in the application being implemented. For instance, to

implement application agents by using ASF it is necessary (i) to create an OO class extending

the Agent abstract class defined in the ASF agent module to be used to instantiate the agents,

(ii) to create OO classes by extending the Plan and Action classes to implement the plans and

actions of the agents, (iii) to implementing the constructor method of the new agent class to

create the (instances of the) beliefs, goals and plans and also (iv) to relate the agent instances

to the roles that they will play, the organizations where they will play such roles and also to

the environments that they will inhabit. Similar steps could be followed in order to implement

the organizations, roles and environments defined in the MAS application.

3 The Transformation Process
In this section we describe the transformation process used to refine MAS-ML design models

into UML implementation models that instantiate ASF. The transformations were defined by

using the Atlas Transformation Language (ATL) [9]. An ATL transformation program is

composed of rules (described in ATL) that define how source model elements are matched

and navigated to create and initialize the elements of the target models. Besides the rules, an

ATL program receives as input (i) the metamodel of the source model (the MAS-ML

Page 117

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

MDA-BASED APPROACH FOR DEVELOPING MAS

metamodel), (ii) the source model itself (a MAS-ML model) and (iii) the metamodel of the

target model (the UML metamodel). The program checks the source model according to its

metamodel and, by using the transformation rules (MAS-ML2ASF rules), transforms the

source model into the output target model (UML model) that is compliant with the target

metamodel. In MDE [11], transformation processes based on the translations between

metamodels are called language translations. Figure 3 illustrates the inputs and the output of

the ATL program that transforms MAS-ML models into UML models by using the MAS-

ML2ASF rules.

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>><<abstract>>

Figure 2 The ASF classes and relationships

 The set of rules used by the ATL program to transform a MAS-ML model into a UML

model instantiates the ASF framework according to the application features modeled in MAS-

ML. The set of MAS-ML2ASF rules is composed of (i) one general rule that generates all the

classes defined in ASF (and illustrated in Figure 2); (ii) five rules to transform the five entity

types found in MAS-ML models (and defined in the MAS-ML metamodel depicted in Figure

1); and (iii) three other rules to generate the concrete plans, actions and protocols that extends

the abstract classes Plan, Action and Protocol defined in ASF (also illustrated in Figure 2).

Page 118

VOLUME 3

ELECTRONIC COMMUNICATIONS OF EASST

ATL program

UML

metamodel

MAS-ML

metamodel

MAS-ML

model

UML

model

MAS-ML2ASF

rules

input

outputinput

input

Figure 3 The ATL transformation process

3.1. The Transformation Rules

Due to page limitation, we concentrate on demonstrating the transformation of agents

modeled using MAS-ML into OO classes by instantiating ASF. The following sections

describe the MASML2ASF rules used by the ATL program that contemplates such

transformation.

3.2.1The creation of the concrete agent class

For each distinguish agent class modeled in a MAS-ML structural diagram, one object-

oriented agent class that extends the abstract ASF class called Agent must be created.

Therefore, we have implemented a rule that is executed for each agent defined in MAS-ML.

Such rule, illustrated in the box below, is responsible for creating the agent class and for

implementing the constructor method (detailed in Section 3.2.2).

 The new classes are created with the same name of the agent classes modeled in MAS-

ML models. Associated with each agent class, we define a generalization relationship in order

to model the new agent class extending the abstract Agent class defined in ASF. Due to such

generalization, the new agent class inherits all the attributes (and relationships) defined in the

abstract class.

 The set of features of the new class is composed of (i) the constructor method, (ii)

methods for instantiating goals, beliefs, plans and actions, and (iii) methods for creating the

associations between agent instances and the role instances to be played, and the associations

between the agent instances and the environment instances.
rule Agent {
from
 c : masml!AgentClass
to

-- Creating the agent class
outAgent : uml!Class (
 name <- c.name, --the name of the new class is equal to the name of the agent
 isAbstract <- false, --the new class is not an abstract one
 generalization <- genAbstractAgent, --creating the generalization relationship
 feature <- Set{constMethod, createBeliefs, createGoals, createPlans, createActions,
createInhab, createPlays}), –-creating the set of structural and behavioral features

-- Creating the generalization relationship between Agent and UserAgent
genAbstractAgent : uml!Generalization (
 parent <- c.superClass,
 child <- outAgent
),...}

Page 119

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

MDA-BASED APPROACH FOR DEVELOPING MAS

3.2.2The implementation of the constructor method

The constructor method of agent classes invokes other methods that are used to instantiate the

agent properties (goals, beliefs, plans and actions) and to set the relationships between the

agents instances, their roles, and environments. Therefore, the body of this method is very

simple.

-- Constructor Method
constMethod : uml!Method (
 specification <- operationAgent,
 body <- 'createBeliefs(); createGoals(); createPlans(); createActions(); createPlays();

 createEnv(); createPlays();'
),
operationAgent : uml!Operation (
 isAbstract <- false,
 specification <- 'UserAgent()'
),

 The instantiation of the agent properties are exemplified by describing the instantiation

of beliefs and plans. The beliefs and goals of an agent are created by instantiating the ASF

classes Belief and Goal, respectively. Therefore, the body of the method responsible for

generating the beliefs creates one new belief instance from the Belief class for each belief

defined by the agent classes of the MAS-ML model being transformed.

 The plans and actions of an agent are created by instantiating the classes that

correspond to the plans and actions themselves. Those classes are extensions of the Plan and

Action classes as demonstrated in Section 3.2.3.

-- Instantiating the agent beliefs
createBeliefs : uml!Method (
 specification <- operationCreateBeliefs,
 body <- c.beliefs -> iterate (e; body : String = '' | body+'
 Belief newBelief = null;
 beliefs = new Vector();
 newBelief = new Belief('+e.type+','+e.value+'); -- instantiating a belief
 beliefs.add(newBelief);')
),
operationCreateBeliefs : uml!Operation (

isAbstract <- false,
 specification <- 'void createBeliefs()'
),

-- Instantiating the agent plans
createPlans : uml!Method (
 specification <- operationCreatePlans,
 body <- c.plans -> iterate (e; body : String = '' | body+'
 Plan newPlan = null;
 plans = new Vector();
 newPlan = new '+e.name+'(); -- instantiating a plan
 plans.add(newPlan);')
),
operationCreatePlans : uml!Operation (
 isAbstract <- false,
 specification <- 'void createPlans()'
),

 After instantiating the agent properties, it is necessary to relate the agent instances

with the roles to be played, the organization where the roles will be played and the

environments that they will inhabit. In order to do so, two methods were created. Both

methods are called by the agent constructor method every time an agent instance is created.

-- Environment
createInhab : uml!Method (
 specification <- operationInhab,
 body <- c.inhRel -> iterate (e; body : String = '' | body+'
 this.environment = new '+e.env.name+'();') --environment
),
operationInhab : uml!Operation (
 isAbstract <- false,
 specification <- 'void createEnv()'

Page 120

VOLUME 3

ELECTRONIC COMMUNICATIONS OF EASST

),

-- Roles being played
createPlays : uml!Method (

specification <- operationPlays,
 body <- c.playRelAg -> iterate (e; body : String = '' | body+'
 //roles being played
 AgentRole newRole = null;
 rolesBeingPlayed = new Vector();
 newRole = new '+e.role.name+'();-- instantiating the role
 newRole.setAgent(this);

 newRole.setOrganization(\''+e.org.name+'\');-- associating with the organization
 rolesBeingPlayed.add(newRole);
 // organizations where is playng roles
 MainOrganization newOrg = null;
 organizations = new Vector();
 newOrg = new '+e.org.name+'();
 newOrg.setAgentRole(\''+e.role.name+'\');
 organizations.add(newOrg);')
),
operationPlays : uml!Operation (
 isAbstract <- false,
 specification <- 'void createPlays()'
)

3.2.3The creation of the plans and actions classes

Each agent defines its set of plans and their correspondent actions. In the MAS-ML structural

diagrams, the plans and actions are named and associated with the agent. The execution of

plans and actions are therefore modeled in MAS-ML dynamic diagrams.

 In order to create the correspondent plans and actions by using ASF, it is necessary to

create the classes that will represent these agent properties by extending the abstract ASF

classes Plan and Action. Those classes receive the name of the plans and actions defined in

the MAS-ML structural diagrams and also the implementation described in the MAS-ML

dynamic diagrams. Note that plans are related to the goals that they achieve and to the actions

that they execute. Therefore, the constructor method of a plan executes methods to relate the

plan instance being created to its goals and actions.

rule Plan {
from
 c : masml!Plan
to
outPlan : uml!Class (
 name <- c.name,
 isAbstract <- false,
 feature <- Set{constMethod, createActions, createGoals}
),
constMethod : uml!Method (
 specification <- operationPlan,
 body <- 'createActions(); createGoals()'
),
operationPlan : uml!Operation (
 isAbstract <- false,
 specification <- c.name+'()'
),

-- Relating actions to the plan
createActions : uml!Method (
 specification <- operationActions,
 body <- c.actions -> iterate (e; body : String = '' | body+'
 Action newAction = null;
 actions = new Vector();
 newAction = new '+e.name+'();
 actions.add(newAction);')
),
operationActions : uml!Operation (
 isAbstract <- false,
 specification <- 'void createActions()'
),

Page 121

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

MDA-BASED APPROACH FOR DEVELOPING MAS

-- Relating goals to the plan
createGoals : uml!Method (
 specification <- operationGoals,
 body <- 'Goal newGoal = null;
 newGoal= new Goal('+c.goal.value+','+c.goal.valueType+','+c.goal.goalType+');
 goals.add(newGoal);'
),
operationGoals : uml!Operation (
 isAbstract <- false,
 specification <- 'void createGoals()'
)}

3.2.Applying the Transformations in a Simple Example

The UML model generated by the transformation is a UML class diagram that contains the

ASF framework classes and the classes related to the application that instantiate the

framework. Since this paper does not concern the MAS-ML dynamic diagrams during the

transformation, UML dynamic diagrams are not part of the target model and, therefore, details

about the execution of the agents were not transformed. All application entities, properties

and relationships modeled on the three MAS-ML structural diagrams are represented in the

target UML class model. Figure 3 depicts the transformation of the agent class UserAgent

modeled in a MAS-ML organization diagram into a set of three classes (and its correspondent

methods) modeled in a UML class diagram instantiating ASF.

4 Embracing the Evolution of Applications and Techniques
The evolution of the applications’ requirements is easily handled by our MDE approach. After

changing the design models according to the updated requirements, the implementation

models can be regenerated by using the same set of rules already available. Changes in the

requirements of an application do not require adaptations of our approach.

Besides the evolution of applications, the techniques being used in our approach may also

evolve. It may occur adaptations in the MAS-ML metamodel, the ASF framework and also in

the UML metamodel. These three different technology adaptations influence the

transformation rules. The evolution of the MAS-ML and UML metamodel influence the

transformation rules since the rules are defined to receive well-formed models according to

the source metamodels and to generate well-formed models according to the target

metamodel. Adaptation of the ASF framework clearly influence the transformation rules since

the generated target models are instances of the framework and, therefore, conforms to its

specification. If the framework changes its instances also change.

Since the design and implementation models are low coupling, changes in the MAS-ML

metamodel do not influence in the ASF specification or in the UML metamodel, and vice-

versa. Besides, the rules were defined to try to minimize the effort of changing the rules due

to technique evolution, as detailed below:

• There is a rule for creating all the classes defined in ASF. Therefore, if the ASF

specification evolves, it will have a minor influence into the whole set of transformation

rules. The rule that generates the ASF classes will need to be modified together with few

other rules, depending on the adaptation. For instance, if the abstract Agent class is

modified it may be necessary to modify the Agent rule that generates the specializations

of the abstract Agent class.

Page 122

VOLUME 3

ELECTRONIC COMMUNICATIONS OF EASST

User Agent

<<goal>> Boolean : buyItem = false →

negotiation

<<belief>> Book : itemToBuy

...

{priceAgreement} paying {paymentSent}

...

negotiation {bargaining, paying} → buyItem

...

User Agent

<<goal>> Boolean : buyItem = false →

negotiation

<<belief>> Book : itemToBuy

...

{priceAgreement} paying {paymentSent}

...

negotiation {bargaining, paying} → buyItem

...

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>><<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>><<abstract>>

Negotiation

PayingPaying

Negotiation()

createActions()

createGoals()

UserAgent

UserAgent()

createBeliefs()

createPlans()

createEnv()

createPlays()

UserAgent

UserAgent()

createBeliefs()

createPlans()

createEnv()

createPlays()

…

Figure 4. Transformation of a MAS-ML model into a UML model by instantiating ASF

• There is a rule for each entity type defined in MAS-ML. If the MAS-ML metamodel

evolves, it will be necessary to adapt the correspondent rule(s) that deal(s) with the

modified part. Fortunately, each transformation rule deals with the transformation of one

entity type defined in the MAS-ML metamodel. For instance, if the part of the metamodel

that specifies the entity type agent is adapted, it will only be necessary to modify the

Agent rule.

• There is a rule for generating the plans, actions and protocols. Since there is a need

for creating OO classes for implementing plans, actions and protocols, we have defined a

rule for transforming such properties. Thus, if an adaptation occurs in MAS-ML that

Page 123

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

0

MDA-BASED APPROACH FOR DEVELOPING MAS

affects how such properties are modeled or in ASF that affects how such properties are

implemented, these rules must also be adapted.

• It is easy to find out the part of the UML metamodel being used in the rules. Each rule

identifies the part of source model that the rule is able to transform and the part of the

target model that it can generate. Such identification is done by point out the metaclasses

of the source and target metamodels. Therefore, if the UML metamodel is modified, it

will be necessary to search in all transformation rules the rules that deal with the modified

part. For instance, if the specification of Method is changed, it will be necessary to search

in all rules the part of the rules that generate methods, i.e., the part of the rules where the

sentence uml!Method is stated.

5 Related Work
Although, some MAS methodologies such as Prometheus [15], Tropos [2] and MaSE [4] have

not used an MDA approach, they have already proposed the mapping between the design

models into implementation code and have also provided some tools for supporting both the

design and the implementation of MAS. However, they do not clearly demonstrate the

mapping from design models into code by presenting the rules used in the transformation.

Therefore, it is extremely difficult to use the design models created by using the

methodologies to generate code to another platform or framework that has not been addressed

by them.

In addition, they do not separate the models into platform independent models and

platform specific models. By using some of these methodologies, it is possible to describe

platform specific details during the design of the application. In such cases, the high-level

design models are platform dependent and, consequently, are not easily portable to any other

platform.

Other authors have already used the MDA approach in other to define a MAS

development process. Vallecillo et al [21] demonstrate the use of MDA to derive MAS low-

level models from MAS high-level models. The authors propose to use the Tropos

methodology and the Malaca platform [1] in the MDA approach. Malaca is platform where

agents are defined based on the specification and reuse of software components. The high-

level models created while using the Tropos methodology are transformed into low-level

Malaca models. However, the transformation from the Tropos models into Malaca models is

not completely automated. It requires manual intervention. Moreover, such an approach does

not deal with the transformation from Malaca models into code.

Novikay [12] analyzes how GR [3] based on the Tropos visual model can be related to

MDA. The author interprets the MDA approach as a visual modeling activity where more

abstract models are refined in more detailed models, using transformation techniques. This

work covers only the requirement stage existent in Tropos. The difference between our

approach and this approach is that ours contemplates the PIM, PSM and code stages.

In Kazakov et al. [10], the authors recommended a methodology based on a model-driven

approach for the development of distributed mobile agent systems. They define a mobile

agent conceptual model for distributed environments and describe a set of components,

represented by a collection of intelligent mobile agents. While such an approach focuses on a

specific application domain, our approach is a domain-independent development process.

Page 124

VOLUME 3

11

ELECTRONIC COMMUNICATIONS OF EASST

6 Conclusion and Future Work
The MAS development process presented in this paper intends to provide an approach for

modeling and implementing MAS by using MDE. We presented a language translation

approach that is based on the translations between the source metamodel and the target

metamodel. We have implemented a set of transformation rules by using the ATL

transformation languages and to several MAS such as a supply chain management system

[7][8] as well as web-based paper submission and reviewing system [5][23].

The proposed MDE based development process was illustrated by the use of MAS-ML

and ASF. Our intention while using such techniques was to demonstrate how complex it is for

transforming design models into implementation code due to the use of different paradigms

while modeling the applications and while implementing them. Although MAS-ML and ASF

are founded in the same agent’s properties and characteristics, it is still not an easy task to

manually instantiate ASF to implement MAS-ML design models. Therefore, the use of an

(semi-)automatic transformer tool that could generate implementation code from design

models is especially important while dealing with modeling language and platforms that do

not shear the same set of properties and characteristics. Although some times it may be very

difficult to define transformation rules, once those rules are defined the implementation of any

design model can easily be generated.

A prototyping developing tool [6] was created in order to demonstrate the feasibility of

our approach. The tool allows the designers to graphically model MAS systems by using

MAS-ML and to implement them while generating Java code by using the ASF framework.

With the aim of enhancing the tool, several important improvements should be made. First,

the transformer that generates code from MAS-ML models should also consider the MAS-ML

dynamic diagrams. Second, the tool should make the visualization and also the modification

of the UML models that represent the system implementation feasible. In addition, the tool

should provide a model checker to analyze and verify the consistency of the different models

(MAS-ML models and UML models).

References
[1] Amor, M.; Fuentes, L.; Troya, J. A Component-Based Approach for Interoperability

Across FIPA-Compliant Plataforms. Cooperative Information Agents VII, LNAI 2782, p.

266-288. 2003.

[2] Bresciani, P. Tropos: An Agent-Oriented Software Development Methodology. Int.

Journal of Autonomous Agents and Multi-Agents Systems, 8(3):203-236, 2004.

[3] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R. and Lowe M. Algebraic

Approaches to Graph Transformation. Handbook of Graph Grammars and Computing by

Graph Transformation, 1997.

[4] DeLoach, S. A. Multiagent Systems Engineering: a Methodology and Language for

Designing Agent Systems. In: Proc. of Agent Oriented Information Systems, 1999.

[5] DeLoach, S. A. Analysis and Design using MaSE and agentTool. In Proc. 12th Midwest

Artificial Intelligence and Cognitive Science Conference, 2001.

[6] DeMaria, B.; Silva, V.; Chore, R.; Lucena, C. VisualAgent: A Software Development

Environment for Multi-Agent Systems. In: Tool Track of Brazilian Symposium on Software

Engineering, 2005.

Page 125

PROC. OF 3RD WORKSHOP ON SOFTWARE EVOLUTION THROUGH TRANSFORMATIONS

12

MDA-BASED APPROACH FOR DEVELOPING MAS

[7] Fox, M. S.; Barbuceanu, M., Teigen, R. Agent-oriented Supply-chain Management. The

International Journal of Flexible Manufacturing, v.12, p.165-188. 2000.

[8] Huget, M. Agent UML Class Diagrams Revisited. In: Proc. of Agent Technology and

Software Engineering (AgeS), 2002.

[9] Jouault, F, and Kurtev, I. On the Architectural Alignment of ATL and QVT. In: Proc. of

ACM Symposium on Applied Computing, model transformation track, Dijon, France, 2006.

[10] Kazakov, M., Abdulrab, H., Debarbouille, G. A Model Driven Approach for Design of

Mobile Agent Systems for Concurrent Engineering: MAD4CE Project 2002.

[11] Kent, S. Model Driven Engineering. In Proceedings of Third Internations Conference of

Integrated Formal Methods, Springer, LNCS 2335, pp. 286-298, 2002.

[12] Novikay, A. Model Driven Architecture approach in Tropos. Technical Report T04-06-

03, Istituto Trentino di Cultura, 2004.

[13] Odell, J., Parunak, H. Bauer, B. Extending UML for Agents. In Proceedings of Agent-

Oriented Information System Workshop at AAAI, pp. 3-17, 2000.

[14] OMG, UML: Unified Modeling Language Specification. Version 2.0. Available at:

http://www.omg.org/uml/. Accessed in: 02/2005.

[15] Padgham, L, Winikoff, M. Prometheus: A Methodology for Developing Intelligent

Agents, In Proc. of the 1
st
 Int. Joint Conf. on Autonomous Agents and MAS, 2002.

[16] Pokahr, A. Braubach, L., Lamerdorf, W. Jadex: Implementing a BDI-Infrastructure for

Jade Agents. Research of Innovation, 3(3):76-85, 2004.

[17] Silva, V., Lucena, C. From a Conceptual Framework for Agents and Objects to a Multi-

Agent System Modeling Language. Journal of Autonomous Agents and MAS, Kluwer, 9(1-

2), 2004.

[18] Silva, V., Cortes, M., Lucena, C. An Object-Oriented Framework for Implementing

Agent Societies. Technical Report MCC32/04, PUC-Rio. Rio de Janeiro, Brazil, 2004.

[19] Silva, V., Choren, R., Lucena, C. Using the MAS-ML to Model a Multi-Agent System.

Software Engineering for Large-Scale Multi-Agent Systems II, Springer, 2004.

[20] Sycara, K., Paolucci, M., Van Velsen, M., Criampapa, J. The Retsina MAS

Infrastructure. Special joint issue of Autonomous Agents and MAS, 7(1-2):29-48, 2003.

[21] Vallecillo, A., Amor, M., Fuentes, L. Bridging the Gap Between Agent-Oriented Design

and Implementation Using MDA. Autonomous Agents and MAS Workshop, pp.93-108,

2004.

[22] Wagner, G. The Agent-Object-Relationship Metamodel. In: Second International

Symposium: From Agent Theory to Agent Implementation, 2000.

[23] Zambonelli, F.; Parunak, H. From design to intention: signs of a revolution. In: Proc. of

the 1
st
 Int. Conference on Autonomous Agents and MAS, pp. 455-456. 2002.

Page 126

ELECTRONIC COMMUNICATIONS OF THE EASST

From C++ Refactorings to Graph Transformations

László Vidács* and Martin Gogolla** and Rudolf Ferenc*
*Department of Software Engineering, University of Szeged, Hungary

**Department for Mathematics and Computer Science, University of Bremen, Germany

Abstract. In this paper, we study a metamodel for the C++ programming language. We work
out refactorings on the C++ metamodel and present the essentials as graph transformations.
The refactorings are demonstrated in terms of the C++ source code and the C++ target code
as well. Graph transformations allow to capture refactoring details on a conceptual and easy to
understand, but also very precise level. Using this approach we managed to formalize two major
aspects of refactorings: the structural changes and the preconditions.

Keywords: Metamodel, C++, UML, Graph Transformation, OCL, Refactoring

1 Introduction

The programming language C++ is widely used in industry today. Many applications written in C++
exist which are constantly developed further, for example, to be adapted to modern service-oriented
aspects. On the other hand, there is an important current trend in software engineering that focuses on
development activities for using models instead of concentrating on code production only.

This contribution tries to narrow the bridge between industrial, code-centric development with C++
and model-centric development employing languages like the Unified Modeling Language (UML). We
discuss a C++ metamodel and display first ideas how development and maintenance of C++ artifacts
can be performed on instantiations of this C++ metamodel based on refactorings. Our proposal is to
express C++ refactorings and development steps as graph transformations. We think it is important to
clearly express transformation concepts for an involved domain like C++ software development. Graph
transformations possess a sound theoretical basis and allow to express properties on a conceptual level,
not only on an implementation level. Surprisingly, graph transformations have not yet been applied for
C++ software development.

Graph transformations have been applied for the transformation of metamodels, see for example the
work of Gogolla [Gog00] (among many other works on graph transformation on metamodels). In indus-
try, refactoring techniques [Ref06b] are regarded as promising means for software development. Refac-
toring of C++ code is supported by a variety of tools [Sli06][Ref06a][Xre06]. However, refactorings are

VOLUME 3 1

Page 127

usually considered from the implementation point of view only, not from a conceptual view. A concep-
tual view on C++ refactorings on the basis of metamodels and graph transformations allows to express
properties like refactoring applicability more precise. A conceptual view also opens the possibility for
viewing refactorings on the semantical level, for example, in order to describe semantics preserving
refactorings or to test whether they are semantics preserving.

The paper is organized as follows. The next section introduces the C++ language metamodel used in
this work. Section 3 discusses C++ refactorings on this metamodel in terms of graph transformations.
Section 4 gives insight to our implementation. In Section 5 we mention some important contributions of
this area. Finally, the paper ends with a short conclusion.

2 C++ Metamodel

Metamodels, which are also called schemas in the re-engineering community, play a very important role
in the process of source code analysis. They define the central repository for the whole process, from
where the facts can be reached with the help of different transformations.

Several researchers have been working on defining metamodels for C++ programs for reverse engineer-
ing purposes (also for program comprehension or to define an exchange format) [EKRW02], [Bel00],
[FSH+01].

The Columbus Schema for C++ [FBTG02] satisfies some important requirements of an exchange for-
mat. It reflects the low-level structure of the code, as well as higher level semantic information (e.g.,
semantics of types). Furthermore, the structure of the metamodel and the used standard notation (UML
Class Diagrams) make its implementation straightforward, and what is even more important, an API
(Application Programming Interface) is very simple to be realized as well.

Because of the high complexity of the C++ language, the metamodel is divided into six packages. To
introduce all packages is beyond the scope of this paper. To clearly present our ideas we created an
excerpt mainly from the struc package of the metamodel. The presented approach is not limited to this
subset of the C++ language, for example templates are also supported by the metamodel. To carry out
refactorings on a C++ program it is necessary to deal with preprocessor directives. Although we have
a separate metamodel for the preprocessor directives [VBF04], coping with them is not included to this
contribution. The excerpt of the C++ metamodel can be seen in Figure 1 The upper part in the figure
represents the scoping structure of a C++ program. Class Member is the parent of all kinds of elements
which may appear in a scope (we use the term “member” in a more general way than usual). In the
excerpt there are three important subclasses of Member. Class Class stands for C++ classes. It may
contain further members; it may have base classes (shown by BaseSpecifier) and friends. In C++ a friend
(class or function shown by FriendSpecifier in the figure) can access also protected and private members
of the class. The class Function stands for C++ functions. It has body (represented by Block) which
contains any number of Statements; and has parameters (class Parameter). The class Object represents
both variables and member fields in a Class. In the lower left corner there are the necessary enumerations.

In the middle there are classes for type representation. Like in C, in C++ types can be complex, so
each language element which has a type contains a wrapper class called TypeRep. A TypeRep contains
TypeFormers (in complex cases a type consists of many code pieces, each piece is a type-former). In
the figure many type-formers are omitted, only one is shown (TypeFormerType) which refers directly to

PROC. OF 3RD SETRA 2

Page 128

E
L

E
C

T
R

O
N

IC
C

O
M

M
U

N
IC

A
T

IO
N

S
O

F
T

H
E

E
A

S
S

T

���������	
������

�������
��������	�
�

�����

����	
��

�
��������	��������������	�������

������

����		�����������	�
�

�����	�

���	�

�����	

�
��������

�
��������

�

����
�
�����

�

�

��������

����
���

�

�

��������

����
���

��
!����"����#

����

�

����

�
�$�%&
	'�

�������

�

����

���	
���

�����

�
��������

�
��������	���

���&���'
	������	�
�

��������
�
�

�
�������
�
�

���������

�

�
�
��
��"����%���

���
�(�����"����%���

����)��(��!

#�
���(���������

#�
���(���������

�*�

���������

�*�

�

�

��������

����
���

��%���������

��+���

��,��)
��

��,��������

��,'�	��

-��'!��
����.

������
�
�
	��
��

�	��	
��

�	�"��'��

�	�/����

-��'!��
����.

������
��

��	�������

������������

����
���

�

�

��������

��	�������

�

0

��������

����
���

����	
������

������

��������1�!���"�	����������

����������	
��

�����

����
���

�
��������

��
!����"����#

��

�

����

��%�����+
!�

���������

!��$��

!�����2

-��'!��
����.

����������	
���
��

Figure
1:

E
xcerptfrom

the
C

olum
bus

Schem
a

for
C

+
+

-
U

M
L

class
diagram

V
O

L
U

M
E

3
3

Page 129

a type (to a Class in this case). This typing structure enables to express all kinds of types and helps to
avoid redundancies in storing types. In the lower right corner there are some expressions which are used
in this paper (FunctionCall, MemberSelection, Id). An Id expression is an identifier in the code which
refers to Member - in the metamodel this means that it may refer to both classes and class members.

These are the main classes used in our example. For further details please see [Fro06]. As usual in case
of complex class diagrams, we cannot express everything using UML class diagram notations easily. For
example a function body (block statement) contains ordered Positioned nodes. However a Parameter
is also Positioned but it cannot be a part of a function body. OCL expressions as constraints of the
class diagram solve many similar issues. We define the following condition (boolean expression, called
invariant) that must be true for all Block objects:

context Block inv:
not self.contains.oclIsTypeOf(struc_Parameter)

In the following sections we use the introduced metamodel and the OCL expressions together.

3 Graph Transformation Rules on the C++ Metamodel

In this section we show how refactorings on the C++ metamodel can be described with graph transfor-
mation. We provide example, which are “classical” refactorings from Fowler’s catalog [Ref06b]. The
basic idea is simple in both cases, however many subtle details arise when realizing these refactorings.
We also concentrate on C++-specific issues.

3.1 Graph transformation approach, notation

We use a single pushout approach for graph transformation rules possessing a left and a right hand side.
Instead of too complicated NACs (Negative Application Condition) we provide preconditions as OCL
expressions.

The definition of directed, attributed graphs are used as usual. A program graph is directed, labelled,
attributed graph where:

• nodes are labelled with class names shown in the UML class diagram

• nodes have attributes which are called as class attributes, the possible values of the attributes are
from the corresponding UML types

• edges are labelled with relation names shown in the UML class diagram

Program graphs are introduced using an object diagram-like notation (see Figure 2).
Not all graphs that correspond to the definition above represent C++ programs. For example an unde-

clared variable may occur according to the metamodel but the belonging code could not compile. The
well formedness is not checked in this paper. In reverse engineering context we assume that the starting
graph is a well-formed graph and this property is preserved due to the conditions of transformations.
Note that C++ class attributes are modeled with class Object in the metamodel - so the nodes repre-
senting them have label Object. All Object and Function nodes have TypeRep nodes which show their

PROC. OF 3RD SETRA 4

Page 130

ELECTRONIC COMMUNICATIONS OF THE EASST

���������
	���� ����
����������� ��� � � � ����������	������ � �
��� �� ������ �"!#� ���
� �$%��"� � �����&��' ��� ��

(�!#� ���

�"�&�)���
��� �����������
����������� ��� � � � ����������	�� ��� ����� ��

(�*+�-, ���"�

Figure 2: Object diagram like notation of the graph

C++ type. These nodes are omitted from the figures and presented only where it aids comprehension.
Furthermore the notation of multi-nodes is introduced to describe general subgraphs. A multi-node with
value k represents k pieces of nodes of the same type. Usage of multi-nodes is shown in Figure 3.

���������	�

�����	�

���������	�

��

����������

���������

���������	�

�����	�

���������	�

�����	�

���������	�

�����	�

���������	�

��

����������

��������

���������	� ���������	�

Figure 3: Usage of multi-nodes

3.2 Extract class

Classes should serve a clear, well-defined aim. During development, classes are growing. In lots of
cases, there are new responsibilities added to them. The aim of this refactoring is to extract a separate
concept and corresponding data to a new class to improve the quality of the design. The idea is shown in
Figure 4 which is taken from the Refactoring catalog [Ref06b].

.�/�0�1 2�0�3 0�4�5"6�7�0�8:9�;�<�0�= > ?

@ 7�A B�C�7�D&;)0
@ 6�E E A B�0�F%= 0�D�G:6�H�0
@ 6�E E A B�0�8:9�;�<�0�=

IKJ�L M�N�O

.�/�0�1 2�0�3 0�4�5"6&7�0�8:9�;�<�0&= > ?

@ 7�A B�C"7�D�;)0

I�J�L M�N�O

.�/�0�1 2�0�3 0�4�5"6�7�0�8P9�;�<�0�= > ?

@ 6�E E A B�0�F%= 0�D�GP6�H�0
@ 6�E E A B�0�8P9�;�<�0�=

Q�J�R J�S&T�N�O�J�U#V�WYX�J&L

Z

6�E E A B�0�2�0�3 0&4�5"6&7"0

Figure 4: Extract class refactoring example

There is a long way from this semi-informal description to an applicable transformation. Based on this
figure we make decisions about the context and purpose of the refactoring. After that we formalize it as
graph transformation in two steps: the first part concentrates on the structure of the rule and the second

VOLUME 3 5

Page 131

part declares conditions using OCL expressions.
The main questions to be considered when realizing this refactoring as a graph transformation is: who

can use the new (extracted) class and how can it be used. At first, the old class must somehow access it.
If it is the only class that uses the new class then their relationship can be implemented either as the new
class is a member in the old class or as a dynamic object creation in the constructor of the old class and
as a deletion of the object in the destructor of the old class (in this case the other classes can access the
new class through public interface functions of the old class). On the other hand, if the new class is free
to be used by other classes then it is more complicated - for example a reference counter can be used.
This is related to the question: who can instantiate the new class. Similarly, it has to be determined how
the new class can be accessed by other classes: through the old class only or through public functions
of the new class as well. Another obstacle is introduced by attributes which are used externally from the
old class and are now moved to the new class. We assume that the visibility enables one to access those
members through a known interface only (this is not a constraint, using the C++ metamodel, all usages
of an attribute can be checked).

In this paper we choose to protect the newly created class. The new class can be instantiated only by the
old class. Its properties can be modified by the old class, furthermore the old class provides the public
interface to use the new class.

As refactorings can be realized in many different ways so we formalize the extract class first as a rule
schema. A rule schema has parameters and multi nodes and can be instantiated in concrete cases. We call
rule only these concrete cases when the rule schema has concrete arguments and can be applied directly
on a program graph. The attributes and operations to be moved must be determined by analyzing their
usage. Therefore these are parameters of the transformation: any number of Object and Function
nodes which are contained by the old class. The graph transformation rule schema of ExtractClass(... :
(Object—Function)) is shown in Figure 5.

On the left hand side there is the old class. Its members are divided into 3 groups: attributes, public
(interface) functions and protected functions. On the right hand side there are both the old class and the
new (extracted) class. The selected attributes and protected functions are completely moved to the new
class. Public functions are copied from the old class to the new class. The existing implementation of
these functions goes to the copy in the new class. The remaining functions in the old class have a new
implementation: they only have to call the copied functions in the new class. The new class cannot be
accessed from outside, so the copied public functions became protected.

To ensure the connection between the two classes we have a new member (Object) in the old class, its
type is the new class. This is represented by new TypeRep and TypeFormerType nodes. (This abstraction
of types is required to represent complex types in C++ [FBTG02].) Now we have to let the old class
access the new one, which has protected members/functions. This is done by giving friendship grant to
the old class. This is represented by the FriendSpecifier node.

Concrete rule and OCL conditions

The left hand side and right hand side of a concrete rule is given in the figures below. The C++ code
before the transformation with the left hand side is shown in Figure 6. The graph is in fact the object
model of the code, so it contains a node (nickname) which does not take part in the transformation. The

PROC. OF 3RD SETRA 6

Page 132

ELECTRONIC COMMUNICATIONS OF THE EASST

���������	
������

�������	�
�����������	
��

�����������

�

��������
��
���

�������	�
�����������	
��

����
����

����������	��

�������	�
�������

����	���� ��������
��
���

�������	�
�����������	
��

����
���

�����������
���

�������	�
�����������	
��

����
��� �

����������	��

�������	�
�������

����	����

��������������������

�������	�
������������������

�����������

��������������������

�������	�
������������������

�����������

 �

���������	
������

�������	�
������������������

�����������

�����������
���

�������	�
������������������

����	����

������� ��

�����������������

���������!����"���

���������	
������

�������	�
�����������	
��

�����������

�

���#
���

�

���#
���

�

���#
���

�

�������������

�

����

���$�

�

���#
���

���#
���

Figure 5: Extract class refactoring as graph transformation

resulting source code and the right hand side is shown in Figure 7.

class Person {
protected:
string nickname;
string officeAreaCode;
string officeNumber;

public:
string getTelephoneNumber();

};

���������
	���� ����
����������� ��� � � � ����������	������ � �
��� ��������� ��� � ���
� "!#��$� � ���"����% ��� ��

&�� � ���

���������'��� �����������
��������"�� ��� � � � ����������	(� �)� ���$� �)�

&�*+�-, ���$�

����������.���� /���� ��0�1������(23���������
�)��������� ��� � � � �����)����	4����� � �

&�5������"� � ���

���������6��% % � ����!7� �����3���)�
��������"�� ��� � � � ����������	(� �)� ���$� �)�

&�*+�-, ���$�

���������6��% % � ����23���������
��������"�� ��� � � � ����������	(� �)� ���$� �)�

&�*+�-, ���$�

&�84� �����

Figure 6: Extract class - C++ code and model instance before the transformation

Moving function from one class to another requires careful examinations of the body. Class members
or functions referenced from the body may become unaccessible because of changing the class (they are
”foreign” in the new class). (Note that the friendship relation is not symmetric, only the old class can
reach the new class.) To prevent accessing unreachable class members we have to check the subgraph
of the function body. References to class members/functions are classified based on the relation of the
old class and the referenced class as follows: inside the class, class hierarchy (base classes upwards) and
outer classes. Bad references that prevent applying the rules are the following ones:

• reference to protected/private member of the old class which is not among the parameters of the

VOLUME 3 7

Page 133

class Person {
protected:
string nickname;
TelephoneNumber _TelephoneNumber;

public:
string getTelephoneNumber();

};
class TelephoneNumber {
protected:
TelephoneNumber();
string officeAreaCode;
string officeNumber;
string getTelephoneNumber();
friend class Person;

};

� � �������	��
 � 	�
��� � ��� � � � � � � � ����� � � ��� � � � �
� � � ����� � � ��� � � �
� � ��� � �
 � � ����� ��� � �

� ��� ��� �
� � ��������� � � � ��� �
��� � � � � � � � � � � ����� � � ��
 � � � � � �

� ! � " � � �
� ��������#	��� ��$ % � ��&'����� �	

� � � � � � � � � � � � ������� � ����� � � �
� � � ����� � � ��� � � �
� � ��� � �
 � � �	��� � � � �

� ��� � � �

� ������� (�#	� � � $�% �� ��&'����� �

� � � � � � � � � � � � ����� � � ��
 � � � � � �

� ! � " ��� �
� � ������)�� � #	��� ��$ % � ��&'����� �	

��� � � � � � � � � � � ����� � � ��� � � � �

� * ��� � � � �

� +�� � �

� #	� $ �	,'� $

� #	� $ ��*�
 ���	
 #�� $ �

��*
 � � � ��-.$ ��� � � � ��

� �������� � � � � � ��
 � ���� � �
� � � � � � � � � � � � ����� � � ��
 � � � � � �

� ! � " ��� �

� �������� � � � � �	&'����� �	

� � � � � � � � � � � � ����� � � ��
 � � � � � �

� ! � " ��� �

� � ������&.� /���� � � �
��� � ��� � � � � � � � ������� � ��
 � � � � � �

� *�� � � � � ��

� ��������) � � #�� � � � �� ��&'����� �

� � � � � � � � � � � � ����� � � ��
 � ��� � � �

� *�� � � � � ��

� +�� � �

� +�� � �

� *�� � � � � ���'�	� �

� 0 �

Figure 7: Extract class - transformed C++ code and model instance

rule (if the referenced member is public it means that the extract class refactoring is not so reason-
able here)

• reference to protected/private member of one of the base classes (in public case the above note
applies)

• reference to protected/private member of an outer class which is a friend of the old class

According to the metamodel a reference is an Id node which has a refersToName relation to a Member,
especially to a Function or Object. The referenced Member is contained by a class which is the class
we are looking for. To distinguish the 3 different cases mentioned above it is not enough to search Ids
in the subgraph in special container nodes like MemberSelection or FunctionCall. It may happen that a
member selection contains this pointer and the function call without a memberselection may reference a
function in a base class. So we have to scan all Ids and find the referenced class members/functions and
their container classes. Note that in the case of MemberSelection expressions the container class can be
found through the left hand side child Id as well.

The scan can be implemented as an OCL expression.

let Old : struc_Class = B1.hasBody.containsMember.oclAsType(struc_Class)
in
let Bases : Bag(struc_Class) = Old.hasBaseSpecifier.derivesFrom
in
let M : Bag (struc_Member) = B1.containsPositioned->select(i | i.oclIsTypeOf(expr_Id)).

oclAsType(expr_Id).refersToMember.select(oclIsTypeOf(struc_Object) or
oclIsTypeOf(struc_Function))

in
M.iterate(m : struc_Member; res : Boolean = true |
let Cont : struc_Class = m.contains.oclAsType(struc_Class)
in
--condition A : referenced members are in the old class but they are not
-- among the parameters of the transformation rule

PROC. OF 3RD SETRA 8

Page 134

ELECTRONIC COMMUNICATIONS OF THE EASST

if ((m.accessibility=’protected’) or (m.accessibility=’private’) and
(Cont=Old) and not (Bag{O2,O3,F1}.exists(i | i=m)))

then
res and false
else
--condition B : referenced members are in the base classes
if ((m.accessibility=’protected’) or (m.accessibility=’private’) and

(Bases.exists(bc | bc=Old)))
then
res and false
else

--condition C : referenced members are outer friends
let Friends : Bag(struc_Class) = Old.hasFriendSpecifier.grantsFriendship
in
if ((m.accessibility=’protected’) or (m.accessibility=’private’) and

(Friends.exists(fc | fc=Cont)))
then
res and false
else
res
endif

endif
endif

The expression checks for wrong references in a function body B1 (argument of the expression). In
case of any occurrence of a wrong reference the expression returns false and prevents the rule to be
applied. This example show the expressiveness of the OCL. OCL expressions may contain searches
through collections which cannot be easily formulated with simple NACs. A general subgraph notation
is needed for instance to check whether a class is one of the base classes of the old class.

3.3 Other refactorings

There are several refactorings which can be implemented on our metamodel as graph transformations
in a similar way. In this paper we give only the (detailed) case study of extract class not only because
of space limitation. It contains many structural changes and also complex preconditions. In a work of
Eetvelde [VJ05] there is a list of 15 formalized refactorings in 29 pages. Papers usually demonstrate
two refactorings like pull up method and encapsulate variable [MVDJ05], or extract code and move
method refactorings [BPPT04]. We may say that presenting more of the above examples will not say
more than our extract class example regarding the two important aspects of refactorings: formalization
of the structural changes and the preconditions; which was the aim of the current contribution.

4 Implementation

The extract class refactoring graph transformation was implemented using the USE (UML-based Spec-
ification Environment) software [USE06] instead of an existing graph transformation engine. USE is
a system for the specification of information systems. It is based on a subset of the Unified Modeling
Language (UML). A USE specification contains a textual description of a model using features found in

VOLUME 3 9

Page 135

UML class diagrams (classes, associations, etc.). Expressions written in the Object Constraint Language
(OCL) are used to specify additional integrity constraints on the model. A model can be animated to
validate the specification against non-formal requirements.

The USE specification of C++ metamodel contains enumerations, classes and relations corresponding to
the UML class diagrams of the metamodel. Every C++ program can be instantiated as an object diagram
(a graph based on the specification). USE can handle and display our metamodel and model instances
before and after the transformation fairly well. The transformation itself can not be handled directly in
the environment. The left hand side and the right hand side of the transformation is modelled in the
environment, both are saved to a text file. OCL expressions (used as postconditions to modify attributes
of nodes) are added to this description. The description is processed by a script1 which creates a sequence
of basic graph operations from it (create/delete nodes, insert/delete edges). After the USE command file
of the rule is generated this way, the rule can be applied on any model in the USE environment. The script
(based on the description) also generates a function that can list the possible nodes on which the rule can
be applied and a function which applies the transformation (see Appendix A). There is a generated
class (called RuleCollection) in the USE model which contains information and functions regarding to
transformation rules. To apply the rule, one has to pass the appropriate nodes as parameters.

Figure 8: Object diagram in USE after the refactoring

1Thanks to Fabian Büttner

PROC. OF 3RD SETRA 10

Page 136

ELECTRONIC COMMUNICATIONS OF THE EASST

The result of the extract class refactoring in USE can be seen in Figure 8. The execution of the script was
quick because the parameters determined the place of the transformation so the modifications were made
locally (below 1 sec). Future work is to try this implementation on real life software systems. Running
time of the rule-creator script (which creates basic graph operations from a rule) depends on the size of
the rule. In general the most time consuming part is identification of the places where the transformation
is applicable. In case of refactorings in most cases the programmer has to consider and choose a place to
apply the refactoring. The decision is made based on criteria which are not easy to formalize. For instance
extract class refactoring may be applicable on almost every class (which has members or functions) but
only in few cases it is useful to apply. Thus in a real life software the identification of the big class can
be done using other visualization or analyzer tools. After we have identified the place (parameters of the
rule), the actual refactoring can be applied quickly - like in our example.

5 Related work

Since the pioneering work of Opdyke [Opd92] there were lots of efforts made to give a formalism for
refactorings. Graph transformations are also considered as a basis of formalizing refactorings. Our
work has close connections to such approaches. A solid contribution that shows the current state of
the art is given in the work of Mens at al. [MVDJ05]. The graph representation of a program plays
an essential role in the formalism. The paper describes a language independent formalism and also
introduces two major issues in detail: preconditions and behaviour preservation. We borrowed ideas of
the graph formalization from Eetvelde at al. [VJ05] like the multi-nodes and edges. Bottoni [BPPT04]
uses a similar formalism, the focus in that work is on the coordination of a change in different model
views of the code using distributed graph transformations. These works however are not specialized
towards C++ as our approach is.

Although there is much progress in this area, industry uses more or less the same solutions as before:
language specific refactorings are implemented separately. Fanta and Rajlich [FR98] contribute a natural
way of implementing refactorings. The paper shows the key points but this solution is somehow “out
of control” without a formal base. They state that these transformations are surprisingly complex and
hard to implement. Two reasons they give for that are the nature of object-oriented principles and the
language specific issues. We agree with this view, our work shows how to deal with C++ specific issues
on meta level with the checking possibilities provided by the OCL. Our work also differs from the others
in that instead of the usual graph transformation engines we used a script based OCL solution of the USE
system.

6 Conclusion

This paper presents work in progress on using graph transformations to express C++ refactorings in a
clear way and on a conceptual level. Although graph transformations have been used for metamodel
transformation of various languages, they have not been extensively used for C++. For a successful use
of graph transformations, it is necessary to work on cumbersome subjects like C++ refactorings and the
accompanying nasty details. We are aware of the fact that many of our concepts are already known from
other successful application areas of graph transformation.

VOLUME 3 11

Page 137

Future work will elaborate further C++ language refactorings. We will also improve these refactorings
in a graph rewriting machine resp. modeling tool. We think that such an implementation will give
insight into the application conditions and properties of C++ refactorings on a conceptual level. Such an
implementation will thus enable a deeper understanding of C++ refactorings.2

References
[Bel00] Bell Canada Inc., Montréal, Canada. DATRIX – Abstract semantic graph reference manual,

version 1.2 edition, January 2000.
[BPPT04] Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer. Specifying integrated

refactoring with distributed graph transformations. Lecture Notes in Computer Science,
3062:220–235, 2004.

[EKRW02] Juergen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Winter. GUPRO - Generic
Understanding of Programs. Electronic Notes in Theoretical Computer Science, 72(2), 2002.

[FBTG02] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus - re-
verse engineering tool and schema for C++. In ICSM 2002, pages 172–181, Montreal,
Canada, October 2002. IEEE Computer Society.

[FR98] Richard Fanta and Vaclav Rajlich. Reengineering object-oriented code. In ICSM ’98: Pro-
ceedings of the International Conference on Software Maintenance, page 238, Washington,
DC, USA, 1998. IEEE Computer Society.

[Fro06] Homepage of FrontEndART Ltd. http://www.frontendart.com, 2006.
[FSH+01] Rudolf Ferenc, Susan Elliott Sim, Richard C Holt, Rainer Koschke, and Tibor Gyimóthy.

Towards a Standard Schema for C/C++. In WCRE 2001, pages 49–58. IEEE Computer
Society, October 2001.

[Gog00] Martin Gogolla. Graph Transformations on the UML Metamodel. In GVMT’2000, pages
359–371. Carleton Scientific, Waterloo, Ontario, Canada, 2000.

[MVDJ05] Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. Formalizing refactor-
ings with graph transformations. Journal on Software Maintenance and Evolution: Research
and Practice, 17:247–276, 2005.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Urbana-
Champaign, IL, USA, 1992.

[Ref06a] Homepage of Ref++. http://www.refpp.com, 2006.
[Ref06b] Refactoring catalog. http://www.refactoring.com/catalog/, 2006.
[Sli06] Homepage of Slickedit. http://www.slickedit.com/, 2006.
[USE06] Homepage of USE.

http://www.db.informatik.uni-bremen.de/projects/USE/, 2006.
[VBF04] László Vidács, Árpád Beszédes, and Rudolf Ferenc. Columbus Schema for C/C++ Prepro-

cessing. In CSMR, pages 75–84. IEEE Computer Society, March 2004.
[VJ05] Niels Van Eetvelde and Dirk Janssens. Refactorings as graph transformations. Technical

report, University of Antwerp, February 2005. UA WIS/INF 2005/04.
[Xre06] Homepage of Xrefactory. http://xref-tech.com, 2006.

2László Vidács acknowledges the financial support provided through the European Community’s Human Potential Pro-
gramme under contract HPRN-CT-2002-00275, SegraVis.

PROC. OF 3RD SETRA 12

Page 138

ELECTRONIC COMMUNICATIONS OF THE EASST

Appendix

A USE description
--
-- Extract Class refactoring
--
rule ExClass
left
C1:struc_Class
O1:struc_Object
O2:struc_Object
F1:struc_Function
(C1,O1): containsMember
(C1,O2): containsMember
(C1,F1): containsMember

right
C1:struc_Class
C2:struc_Class
O1:struc_Object
O2:struc_Object
NO1:struc_Object
F1:struc_Function
NF1:struc_Function
NF2:struc_Function
NB1:statm_Block
FS:struc_FriendSpecifier
TR:type_TypeRep
TF:type_TypeFormerType
(C2,O1): containsMember
(C2,O2): containsMember
(C2,F1): containsMember
(C2,NF1): containsMember
(C1,NF2): containsMember
(NF2,NB1): hasBody
(C1,NO1): containsMember
(NO1,TR): objectHasTypeRep
(TR,TF): containsTypeFormer
(TF,C2): refersToClass
(C2,FS): hasFriendSpecifier
(FS,C1): grantsFriendshipToClass
-- postconditions
[C2.name = ’TelephoneNumber’]
[C2.accessibility = ’ackProtected’]
[C2.kind = ’clkClass’]
[C2.isAbstract = false]
[C2.isDefined = true]
[NF1.name = ’TelephoneNumber’]
[NF1.accessibility = ’ackProtected’]
[F1.accessibility = ’ackProtected’]
[NO1.name = ’TelephoneNumber’]
[NO1.accessibility = ’ackProtected’]

VOLUME 3 13

Page 139

[NF2.name = ’getTelephoneNumber’]
[NF2.accessibility = ’ackPublic’]

end

--
-- Extract Class refactoring
-- ExClassGT_ExClass.cmd
-- ExClass(_C1,_O1,_O2,_F1)
-- the ’match’ parameter can be bound with ’!let match = ...’
--
!let _C1 = match->at(1)
!let _O1 = match->at(2)
!let _O2 = match->at(3)
!let _F1 = match->at(4)
!openter rc ExClass(_C1,_O1,_O2,_F1)

!create _C2 : struc_Class
!create _NO1 : struc_Object
!create _NF1 : struc_Function
!create _NF2 : struc_Function
!create _NB1 : statm_Block
!create _FS : struc_FriendSpecifier
!create _TR : type_TypeRep
!create _TF : type_TypeFormerType
!insert(_C2,_O1) into containsMember
!insert(_C2,_O2) into containsMember
!insert(_C2,_F1) into containsMember
!insert(_C2,_NF1) into containsMember
!insert(_C1,_NF2) into containsMember
!insert(_NF2,_NB1) into hasBody
!insert(_C1,_NO1) into containsMember
!insert(_NO1,_TR) into objectHasTypeRep
!insert(_TR,_TF) into containsTypeFormer
!insert(_TF,_C2) into refersToClass
!insert(_C2,_FS) into hasFriendSpecifier
!insert(_FS,_C1) into grantsFriendshipToClass
!set _C2.name := ’TelephoneNumber’
!set _C2.accessibility := ’ackProtected’
!set _C2.kind := ’clkClass’
!set _C2.isAbstract := false
!set _C2.isDefined := true
!set _NF1.name := ’TelephoneNumber’
!set _NF1.accessibility := ’ackProtected’
!set _F1.accessibility := ’ackProtected’
!set _NO1.name := ’TelephoneNumber’
!set _NO1.accessibility := ’ackProtected’
!set _NF2.name := ’getTelephoneNumber’
!set _NF2.accessibility := ’ackPublic’
!delete(_C1,_O1) from containsMember
!delete(_C1,_O2) from containsMember
!delete(_C1,_F1) from containsMember
!opexit

PROC. OF 3RD SETRA 14

Page 140

ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 9: Class diagram of the C++ metamodel excerpt in USE

Figure 10: Object diagram in USE before the refactoring

VOLUME 3 15

Page 141

	koenig.pdf
	1.Introduction
	2.Migration Framework
	3.Partial Instantiation of Components
	4.Sequential Composition
	5.General Framework
	6.Conclusion

	front.pdf
	3rd Workshop on Software Evolution through Transformations: Embracing the Change

