
5 Process Modeling using UML

G. ENGELS† and A. FÖRSTER‡ and R. HECKEL§ and S. THÖNE¶

University of Paderborn, Germany

5.1 INTRODUCTION

The Unified Modeling Language (UML)1 is a visual, object-oriented, and
multi-purpose modeling language. While primarily designed for modeling soft-
ware systems, it can also be used for business process modeling.

Since the early 70s, a large variety of languages for data and software
modeling like entity-relationship diagrams [2], message sequence charts [5, 10],
state-charts [9], etc. have been developed, each of them focusing on a different
aspect of software structure or behavior. In the early 90s, object-oriented
design approaches gained increasing attention, for instance, in the work of
James Rumbaugh (Object Modeling Technique, OMT [21]), Grady Booch [1],
and Ivar Jacobson [12].

The UML emerged from the intention of Rumbaugh, Booch, and Jacobson
to find a common framework for their approaches and notations. Furthermore,
the language was also influenced by other object-oriented approaches like,
e.g., Coad/Yourdon [3]. The first version UML 1.0 [20] was released in 1997
and accepted as a standard by the Object Management Group (OMG)2 the
same year. The OMG, taking over the responsibility for the evolution of the
UML from then on, is a consortium from both industry and academia also
responsible for other well-known initiatives like CORBA, MDA, and XMI.
OMG specifications have to undergo a sophisticated adoption process before
being agreed upon as a standard by the OMG members. Since many important
tool builders and influential software companies are involved in the OMG,
UML has quickly been accepted by the software industry, especially since

†engels@upb.de
‡alfo@upb.de
§reiko@upb.de
¶seb@upb.de
1www.uml.org
2www.omg.org

1

2 PROCESS MODELING USING UML

version UML 1.3 in 1999. When writing this book, the current UML version
is UML 2.0 [18], a major revision of the language.

UML is a conglomeration of various diagram types. Therefore, the chal-
lenge is to provide a uniform framework for all these heterogeneous diagram
types also accounting for relationships between them. In UML, this is solved
by a common meta-model which formally defines the abstract syntax of all
diagram types. The meta-model is defined with the help of the OMG Meta-
Object Facility (MOF) [16]. Such a declarative meta-model is an alternative
to grammars usually used to define formal languages.

Besides the meta-model and a notation guide defining a concrete syntax
for the meta-model elements, the UML specification also informally describes
the meaning of the various meta-model elements. In the past, this informal
semantics description has raised many issues about how to interpret certain
details of the language. Even in the latest revision UML 2.0, there is still a
number of contradictions and ambiguities to be found in the specification.
At some points, the UML 2.0 specification is intentionally left incomplete,
providing so-called variation points which allow tool builders and modelers to
interpret the language according to their specific purposes.

This chapter provides an introduction to UML focusing especially on those
parts relevant for process modeling. It covers five major aspects of process
models, namely (1) actions and control flow, (2) data and object flow, (3) or-
ganizational structure, (4) interaction-centric views on business processes, and
(5) system-specific process models used for process enactment. Although not
every detail of the language can be presented, we intend to provide at least
the most important concepts required for UML-based process models.

For discussing the various process modeling aspects, we use activity di-
agrams as a fundamental tool for process modeling with UML. Section 5.2
explains the control flow concepts of activity diagrams, and Section 5.3 ex-
tends the process models by integrating object flow. According to aspect (3),
the modeling of underlying organizational structures is covered by Section 5.4
with the help of class and object diagrams. Section 5.5 then covers aspect (4)
and deals with a different view on business processes focusing more on the
interactions among involved business partners. To model such an interaction-
centric view, we introduce sequence diagrams. To facilitate process enactment
according to aspect (5), system-specific models should describe how to re-
late existing software components to the desired process activities. Thus, Sec-
tion 5.6 introduces structure diagrams for describing available software sys-
tems and for specifying provided operations, which are then integrated into
the considered process models. The chapter is concluded by a summary and
exercises of varying degrees of difficulties.

Throughout the chapter, the different diagram types are illustrated by a
running example which deals with an e-business company selling hardware
products. For simplicity reasons, the company’s product range is limited to
monitors and computers only. It processes incoming orders by testing, assem-
bling and shipping the demanded products.

MODELING CONTROL FLOW WITH ACTIVITY DIAGRAMS 3

5.2 MODELING CONTROL FLOW WITH ACTIVITY
DIAGRAMS

The basic building block of a process description in UML is the activity. An
activity is a behavior consisting of a coordinated sequencing of actions. It is
represented by an activity diagram. Activity diagrams visualize sequences of
actions to be performed including control flow and data flow. This section
deals with the control flow aspect of process models in UML.

5.2.1 Basic Control Flow Constructs

1

switch off power

[power switch
set to “on”]

[no more coffee left]
take out
old filter

put in
new filter

put in
new coffee

take out
coffee pot

clean
coffee pot

put coffee
pot back

switch
machine on

[else]

[else]

Coffee cooking

check
order

get
products

<<decisionInput>>
Product.type

test
computer

test
monitor

assemble
bundle

save order infor-
mation in archive

Sell computer hardware

[Computer]

[Monitor]

Figure 5.1 First example: computer hardware sales

Figure 5.1 shows a first small example of an activity. This activity describes
a business process of our exemplary e-business company which sells computer
hardware products.

The activity is visualized by a round-edged rectangle. If the activity has
a name, it can be displayed in the upper left corner of the rectangle. The
name of the example activity in Figure 5.1 is Sell computer hardware. Inside
the activity rectangle we find a graphical notation consisting of nodes and
edges that represents the activity’s internal behavior. There are two kinds of
nodes to model the control flow: action nodes and control nodes.

As a first step in the formulation of a business process, we need to model
what tasks the process has to perform while executing. In an activity diagram,
this is described by actions. An action stands for the fact that some transfor-
mation or processing in the modeled system has to be performed. Activities
represent the coordinated execution of actions. Action nodes are notated as a
round-edged rectangle, much like that of an activity, but smaller. Actions have
a name that is displayed inside the action symbol, for instance check order or
get products in our example. Actions can manipulate, test and transform data
or can be a call to another activity. What has to be done when executing an

4 PROCESS MODELING USING UML

action can be described by the name of the action such as check order. Actions
can also be specified using programming language expressions such as c:=a+b
or formal expressions. The execution of actions takes place over a period of
time.

Actions need to be coordinated. This coordination of actions within an
activity is expressed by control flow edges and control nodes. The most fun-
damental control structure is the sequence, in which one action can start exe-
cuting when another action stops executing. A simple example of a sequence
of actions can be seen in Figure 5.2. The stick-arrowhead lines between the
action nodes are called activity edges which specify the control flow.

1

Action 1

Action 2

1

2

3

check order get products test computer assemble bundle

Figure 5.2 Sequence of actions

In UML 2.0, the semantics of activities is defined based on token flow.
Tokens can be anonymous and undistinguishable; in that case they are called
control tokens. Tokens can also reference to data objects. These tokens are
called object tokens. See Section 5.3 for an introduction into the concept of
object flow.

Tokens flow along the control edges thus determining the dependencies in
the execution of the actions. Actions can only begin execution when tokens
are available from all preceding actions along the incoming edges (step 1 in
Figure 5.3). When the execution of the action starts, all input tokens are
consumed and removed from the incoming control flow edges simultaneously
(step 1 and 2 in Figure 5.3). After completion of the action, tokens are offered
to all outgoing edges simultaneously (step 3).

1

Action 1

Action 2

1

2

3

Figure 5.3 Token flow

In a control flow, actions sometimes have to be executed alternatively de-
pending on conditions. This corresponds to the control structure often called
“XOR-split” or “simple choice” (see Chapter 9), which is represented in activ-
ity diagrams by decision nodes, merge nodes and guards. The diamond symbol
in Figure 5.4 represents a decision node if one edge enters the node and mul-

MODELING CONTROL FLOW WITH ACTIVITY DIAGRAMS 5

tiple edges leave it. In the opposite case, if multiple edges enter the diamond
symbol and one leaves it, it is a merge node which corresponds to an “XOR-
join”. Diamond symbols with both multiple edges entering and multiple edges
leaving it are combined decision and merge nodes.

1

… … …

decision node with
multiple outgoing edges
and guards

merge node combined decision/merge node

… … … …

fork node join node combined fork/join node

[a<0]

[else]

simple activity edge

a a

activity edge connector notation

Figure 5.4 Decision node notations

In order do describe the conditions for the choice of the alternative con-
trol flows, the edges leaving a decision node are usually annotated by guards.
Guards are logical expressions that can evaluate to true or false. They can
be formulated using natural language, programming language constructs or
formal expressions such as mathematical logic or OCL. OCL stands for Ob-
ject Constraint Language [17], which is also developed by the OMG. It is a
language for describing constraints whenever expressions over UML models
are required. In an activity diagram, guards have to be enclosed in squared
brackets. An edge can only be traversed if the guard attached to that edge, if
any, evaluates to true.

If a guard expression becomes very lengthy, one can also attach a �decision-
Input� note box to the diamond containing the text of the guard condition.
This note box is connected to the decision node with a dashed line as in
Figure 5.1. In the example, a product is either a computer or a monitor. As
there exist two different test facilities for monitors and computers, the control
flow has to be split into two different alternatives.

A special case of a guard is [else], which evaluates to true if and only if all
other guards on all other edges leaving the same node evaluate to false. The
use of guards is not restricted to edges leaving decision nodes. As a general
rule, control edges can only be traversed if their guard condition evaluates to
true.

In process models, one frequently has to model concurrent control flows.
Concurrency in activity diagrams can be expressed by using fork and join
nodes. They are equivalent to the concept of “AND-splits” and “AND-joins”
described in Chapter 9. A thick-lined bar is a fork node if one edge enters
it and multiple edges leave it as in Figure 5.5. At a fork node, the control
token becomes duplicated and the control flow is broken into multiple separate
control flows that execute in parallel. In order to simplify the model, one can
also draw multiple outgoing edges leaving an action node (implicit fork). In
our example in Figure 5.1, the action save order information in archive can be

6 PROCESS MODELING USING UML

executed in parallel with the action get products and the product tests, as
indicated by the fork node.

1

… … …

decision node with
multiple outgoing edges
and guards

merge node combined decision/merge node

… … … …

fork node join node combined fork/join node

[a<0]

[else]

simple activity edge

a a

activity edge connector notation

Figure 5.5 Fork/join node notations

A join node is used to combine the concurrent control flows again. It is
represented by a thick-lined bar with multiple edges entering it and one edge
leaving it. It synchronizes the control flows at the incoming edges since the
execution is stopped until there are tokens pending along all incoming edges.
A thick-lined bar with multiple incoming and outgoing edges is a combined
join and fork node as depicted in Figure 5.5. Actions with multiple incoming
edges represent implicit joins as the action assemble bundle in our example in
Figure 5.1. Figure 5.6 shows an action with implicit fork and join.

1

Action 1

Action 2

1

2

3

check order get products test computer assemble bundle

Action

Figure 5.6 Action with multiple incoming and outgoing edges and implicit fork/join

In Figure 5.1, there are two more control nodes. A solid circle indicates an
initial node which is the starting point for an activity. A solid circle surrounded
by a hollow circle is the final node indicating the end of the control flow. It
is possible to have more than one final node in one activity. In that case, the
first final node reached stops all flows in the activity. A detailed analysis of
control structures in workflow models can be found, for example, in [13].

5.2.2 Advanced Concepts

Pre- and postconditions In process models, it is often required to formulate
assertions and conditions that need to hold locally at certain points in the
control flow, at the overall beginning of an activity, or at its end.

In order to express global conditions for an activity, the activity can be
constrained with pre- and postconditions. Whenever the activity starts, the
precondition is validated. Whenever the activity ends, the postcondition has
to be fulfilled. Both pre- and postconditions are modeler-defined constraints.
They are indicated by the keywords �precondition� and �postcondition�, typ-
ically in the upper part of an activity box like in Figure 5.7 a).

MODELING CONTROL FLOW WITH ACTIVITY DIAGRAMS 7

Local pre- and postconditions can be attached to actions. They are dis-
played as note boxes containing the keywords �localPrecondition� or �local-
Postcondition� as in Figure 5.7 b). A token can only traverse an edge when
it satisfies the postconditions of the source node, the guard condition for the
edge and the preconditions for the target node all at once. The constraints
can be formulated in natural language, programming language expressions or
any formal language like OCL, mathematical logic, etc.

1

activity name <<precondition>> constraint
<<postcondition>> constraint

a)

action

<<localPrecondition>>
constraint

<<localPostcondition>>
constraint

b)

action
[guard]

Figure 5.7 Pre- and postconditions

Hierarchical process composition Business processes can easily become very
complex. It is advantageous for a process description language to allow hier-
archical nesting in order to reduce the complexity. Thus, actions as part of a
UML activity can be calls to other activities. The nesting of activities results
in a call hierarchy in which activities can be found on different levels of ab-
straction. An action that calls another activity is symbolized by a hierarchy
fork within the action symbol (see action test computer in Figure 5.8.)

1

test computer

test computer

visual inspection

test mechanical
construction

boot up
test

Figure 5.8 Example of an activity call

Edge weights In business processes it is sometimes necessary to describe a
situation in which a defined number of objects or tokens have to accumulate
at a certain point in the process before the execution can continue. In our
example, one needs to collect all monitors and computers of an order before
they can be bundled for shipment. With activity diagrams, it is possible to

8 PROCESS MODELING USING UML

describe such situations. Edges can carry multiple tokens at the same time.
They can also have weights which are displayed by writing {weight=n} next to
an edge. The weight expression by which n is replaced determines the number
of tokens that are consumed from the source node on each traversal. The
traversal of the edge is delayed until the required number of tokens is offered
by the source node.

Connectors If edges cross large parts of a diagram, one can use connectors
to split a control flow edge into two parts (see Figure 5.9). Connectors are
circles containing a label. The label has to match uniquely with the label of
one other connector.

1

… … …

decision node with
multiple outgoing edges
and guards

merge node combined decision/merge node

… … … …

fork node join node combined fork/join node

decision node

[a<0]

[else]

simple activity edge

a a

activity edge connector notation

Figure 5.9 Example of an activity edge split into two parts by a labeled connector

Process interaction and signaling If the modeled system contains multiple
threads of control or different activities or instances of activities running at
the same time, process interaction can be required to coordinate the execution
between these control flows. Process interaction can be facilitated by sending
and receiving signals. In activity diagrams, there are two special nodes rep-
resenting this functionality as shown in Figure 5.10: send signal action and
receive signal action.

If a token reaches the send signal action, it triggers the emission of the
signal. Signals can be received by receive signal actions. Corresponding send
and receive actions can be determined by the signal name and optionally by a
dashed line connecting sender and receiver. As soon as the signal is sent, the
control token can pass on.

Receive signal actions may be included in the control flow, i.e. they have
an incoming control edge. In that case, they become activated as soon as
there is a token available along its incoming edge. When the incoming signal
is received, the execution can continue and the control token will be passed
on. Receive signal actions without incoming edges become activated as soon
as the activity starts execution. After that, they can always receive signals.

1

send signal ’a’ receive signal ’a’

Figure 5.10 Signal send and receive actions

MODELING CONTROL FLOW WITH ACTIVITY DIAGRAMS 9

Constructs to model exception handling The UML provides constructions for
exception handling. A common problem is that in part of a process an excep-
tional condition can arise that requires actions to be performed apart from the
regular workflow. This situation can be reflected in activity diagrams by in-
troducing an interruptible activity region. Such a region contains one or more
actions. It is displayed by a round-edged dashed line rectangle surrounding
the actions that form the interruptible region. A lightning-bolt shaped edge
called the interrupting edge leaves the interruptible region. The semantics of
this construction is that if the interrupting edge is traversed, all other actions
within the region are canceled and all remaining tokens within the interrupt-
ible region become abandoned. Two alternative notation options are available
for the interrupting edge as shown in Figure 5.11.

1

[…]

[…]

alternative notation

[…]

[…]

Figure 5.11 Two alternative notations for an interruptible activity region

Another exception handling situation occurs when an exceptional condi-
tion arises within one single action. For example, the action could be a math-
ematical division operation possibly leading to a division by zero. In activity
diagrams, an exception handler can be attached to single actions as in Fig-
ure 5.12. In this case, the exception handler is a behavior that is executed
whenever a predefined exception occurs while an action is being executed.

1

Action Exception
handler

exception
type

Action Exception
handler1

exception
type1

Exception
handler2

exception
type2

Figure 5.12 Exception handler

10 PROCESS MODELING USING UML

Multiple exception handlers can be attached catching different types of
exceptions. The execution of the exception handler substitutes the execution
of the action for the time it is running. After the execution of the exception
handler has terminated, the control flow is continued at the point where the
execution was triggered.

The exception handler does not have own incoming and outgoing control
edges since it only replaces the execution of the interrupted action. In case
that an exception cannot be caught it becomes propagated to the next higher
nesting or abstraction level, i.e. if the action raising the exception is part of
an activity A that has been called by an activity B, then the exception is
propagated to B if it is not caught by A. If no exception handler can be found
after all, the system behavior is undefined.

5.3 MODELING OBJECTS AND OBJECT-FLOW

All processes perform operations on physical objects, like goods that are pro-
duced out of raw materials, or logical objects, like pieces of information and
data. With UML, it is possible to model the types, properties, and states
of those objects as well as to integrate corresponding object flows into the
activities.

For instance, consider the order handling process of our computer hardware
company (see Figure 5.1), which comprises the packing of product bundles
for incoming orders. This process involves two basic object types, namely
hardware products and order forms. From this simple scenario, we can derive
the following three requirements for modeling objects and object flow:

1. We want to model data structures, objects types (in object-oriented lan-
guages called classes) and relationship types in order to classify objects,
define common properties, restrict possible relationships, and explain
internal structures. For instance, we want to describe that order forms
always contain a list of order items and that each item refers to a certain
product type. For this purpose, we will introduce UML class diagrams.

2. We want to represent individual objects with their concrete properties
and relationships. For instance, we want to describe pending orders and
available products at a particular point in time. For this purpose, we
will introduce UML object diagrams.

3. We want to define the dependencies between objects and actions occur-
ring in activities, in particular input and output relationships as well
as object flow dependencies. For instance, we want to describe that our
packaging process requires a new order as input and how this order is
processed at the different stages of the process. For this purpose, we will
explain object flow concepts as part of UML activity diagrams.

MODELING OBJECTS AND OBJECT-FLOW 11

5.3.1 Object types and instances

Since UML is an object-oriented language, objects and their types are fun-
damental concepts of the language. They can be used to represent physical
entities like products or persons, pieces of information like data or documents,
as well as logical concepts like product types or organizations. Object types,
also called classes, are defined in UML class diagrams. Objects are instances
of these types, and they are represented in UML object diagrams.

Figure 5.13 summarizes the basic constructs that can be used within a class
diagram. In principle, each class diagram is a graph with classes as nodes and
relationships as edges. A class defines a set of common properties, also called
attributes, that all instances of the class assign concrete values to. A property
is defined in the second compartment of a class symbol by a property name
and a property type like, e.g., String, Integer, etc.

Classname

property1: data type
property2: data type
…

abstract
superclass

association name 0..10..1

subclass
aggregation name *

1

Figure 5.13 Basic class diagram constructs

Besides the classes as object types, a class diagram can contain three dif-
ferent kinds of relationship types (cf. Figure 5.13):

• A generalization relationship (depicted as a triangle-shaped arrow) is
used to factorize common properties of different classes in a common
superclass. The subclasses inherit all the properties and associations
of their superclasses. If it is not intended or meaningful to create own
instances of the superclass, it can be declared to be an abstract class
(indicated by its name printed in italics).

• An association (depicted as a line between classes) is used to define
possible links between objects. The usual form are binary associations
between exactly two classes. Besides a name, an association has cardi-
nality constraints at its ends which are given as a fixed value or as a
range of lower and upper bounds (the symbol ∗ means “unbounded”).
For each association end, the cardinality constraint restricts the number
of objects that can be associated to an instance of the opposite associa-
tion end. A small solid arrowhead next to the association name can be
used to indicate a reading direction for ambiguous association names.

• An aggregation (depicted as an association with a diamond symbol next
to the container class) is a special association indicating a containment
relationship. It is used to model object types which have other objects
as parts.

12 PROCESS MODELING USING UML

OrderItem

1

1..*
contains

Producttype

name: String

orders
1*

Computertype

processor: String

Monitortype

size: Integer

Order

Product

Bundle
0..1

1..*
contains

Computer Monitor

isOfType
1 *

Customer

name: String

submits
1*

Figure 5.14 Class diagram example

Coming back to our example, consider the class diagram in Figure 5.14. It
states that every Order is submitted by a Customer and that it is composed out
of one or more OrderItems. The Producttype class and its subclasses Computer-
type and Monitortype are used to describe the product range of the company.
Every OrderItem refers to a Producttype that the customer wants to order. The
Product class and its subclasses Computer and Monitor are used to describe the
physical products to be sold. The association isOfType between Product and
Producttype is used to assign a type to every product. Both Product and Pro-
ducttype are abstract classes so that only their subclasses can have instances.
Due to the generalization, the subclasses inherit the isTypeOf association and
the name attribute. Products can be aggregated to a Bundle.

Objects, being instances of the defined classes, have unique identifiers and
concrete values for their properties. A snapshot of the objects existing at
a certain point in time is modeled by a UML object diagram, as shown in
Figure 5.15 for our application example. In contrast to classes, objects are
depicted with underlined identifiers and type names. Objects that are parts
of composite objects can be shown within the rectangle of the container object.

m12:Monitor

m34:Monitor

c32:Computer

orders

isOfType
mt1:Monitortype

name = “flat 19”
size = 19

mt2:Monitortype

name = “CRT 21”
size = 21

ct2:Computertype

name = “PC de luxe”
processor = 4.5 GHz

ct1:Computertype

name = “PC standard”
processor = 3.1 GHz

o1:Order

i1:OrderItem

i2:OrderItem

b1:Bundle

c11:Computer

m27:Monitor

isOfType

isOfType

isOfType

isOfType

orders

cu1:Customer

name = “R. Jackson”

submits

Figure 5.15 Object diagram example

MODELING OBJECTS AND OBJECT-FLOW 13

5.3.2 Extending activities with object flows

In Section 5.2, we introduced UML activities solely focusing on the control
flow aspect. Now, we can combine the control flow with object flow.

In UML activities, we use object nodes to model the occurrence of objects
at a particular point of the process. If we expect objects of a certain type only,
we can type object nodes by one of the classes defined in the class diagram.
Since business processes usually perform transformations on physical objects
or data objects, it is often useful to add information about the current state in
the object life cycle to an object node. In general, an object node is depicted
as a rectangle containing the type name and, in squared brackets, the state
information as shown in Figure 5.16 a).

1

check
order

get
products Ordercheck

order
get

products

Order OrderOrder
[checked]

{upperBound=10}

«selection»
‘by priority’

a) c) d)

Order
[checked]

b)

Figure 5.16 Object nodes (a,b), connected pins (c), and standalone notation (d)

In order to also capture object flow, the token flow semantics of activity
diagrams is extended by object tokens. An object token behaves like a control
token, but, in addition, it carries a reference to a certain object. Edges between
object nodes represent flows of such object tokens. If the target object node
of such an edge has a type, it can only accept tokens with objects that are
instances of this type. Thus, the modeler has to consider type compatibility,
and an object flow edge is only allowed if the type of the target object node
is the same or a supertype of the type of the source object node.

Whenever an object token arrives at an object node it is immediately of-
fered along outgoing edges to downstream nodes. If the node has more than
one outgoing edges, they have to compete for the object token and only one of
them can retrieve it. If no guard condition is given, the winning edge is deter-
mined non-deterministically. Otherwise, if we want to allow all downstream
nodes to have concurrent access to the object, we can insert an explicit fork
node since this causes a duplication of the object token. Then, each down-
stream node receives a token referring to the same object.

However, if none of the downstream nodes is ready to accept tokens, the
object node can temporarily store the tokens and pass them on in the same
order (FIFO, “first-in-first-out”). Instead of FIFO, one can also specify a
different kind of queuing orders like LIFO (“last-in-first-out”), ’by priority’,
etc. by a suitable �selection� note as shown in Figure 5.16 b). Moreover,
an upper bound can be given that restricts the number of tokens allowed to

14 PROCESS MODELING USING UML

accumulate in an object node. Object tokens cannot flow into the node if that
limit has already been reached.

With the help of object nodes and object flows, we can model how objects
are directed through the different actions of an activity and how they are as-
signed to the input and output parameters of the various actions. To facilitate
the latter, object nodes can also appear in the form of input pins and output
pins which are directly attached to an action node. Input pins are assigned to
the input parameters of the action, and output pins to its output parameters.
As shown in Figure 5.16 c), pins are depicted as small hollow squares with
their types written above the square.

An action can start execution only if all its input pins hold an object
token. Then, the action consumes the tokens from its input pins and, after
completion, places new object tokens on all of its output pins. Figure 5.16 c)
shows two actions whose output and input pins are connected by an object
flow edge. If the connected output and input parameters have the same name
and type, the standalone notation can be used instead of the two pins as
shown in Figure 5.16 d).

In the following paragraphs, we show how these object flow concepts apply
to our example business process of Figure 5.1, and we explain the different
usages of object nodes in more detail. The resulting extended activity model
is shown in Figure 5.17.

1

Order Order
[checked]

check
order

Order
[rejected]

get
products

Product

test
computer

ComputerComputer

test
monitor

MonitorMonitor

«decisionInput»
Product.type

[Computer]

[Monitor]
«centralBuffer»

Product
assemble

bundle

Product
Bundle

{weight =
no_of_order_items}

«datastore»
Order archive

Order

save order infor-
mation in archive

Order

Figure 5.17 Example activity with object flow

Similarly to the individual actions, the overall activity can have input and
output parameters, too. Those activity parameters are modeled with object
nodes playing the role of activity parameter nodes. In our order process for
instance, each arrival of an Order object places a corresponding object token
at the input parameter node of the activity. From there, the token is directed

MODELING OBJECTS AND OBJECT-FLOW 15

to the first action, and the process is executed until the last action places a
token with the Bundle object at the output parameter node.

The first action check order of the process validates an incoming Order
object and, if successful, passes it on through its output pin. Since the down-
stream actions require Order objects in the state checked, too, we can use the
standalone notation for object nodes here.

If the check is not successful, we want the process to terminate and to
reject the invalid order. We can model this as an exception output parameter:
Both actions and activities can have such output parameters that are used
only when an exception occurs. As shown for check order in Figure 5.17, the
output pins and output parameter nodes for exceptions are indicated by a
small triangle. A token is placed there only after an abnormal termination.
Otherwise, if the action or activity completes successfully, it does not place
any object token there.

According to the control flow model of Figure 5.1, the downstream actions
are divided into two parallel paths. Since both of them need information from
the Order object, we let the fork node duplicate the object token. One copy of
the token goes to the get products action and another copy to the save order
information in archive action.

The get products action takes the Order object and retrieves the ordered
products from the warehouse. The resulting Product objects are placed on the
output pin of the action. Since this is the only output pin of the action, the
first Product token placed on that pin would already cause the termination
of the action. However, we want the action to continue until it has provided
individual tokens for all Product objects to be retrieved.

To generalize the problem, we require special input and output pins which
associate incoming and outgoing tokens to the same execution of an action. In
UML activity diagrams, this is done by declaring pins as a stream (depicted
by a filled square). For instance, the output pin of the get products action in
Figure 5.17 is a stream. Actions with streaming output pins can continue to
place tokens there while they are executing. Similarly, actions with streaming
input pins can continue to accept new input tokens while a single execution
of the action is running.

Coming back to our example, we want the subsequent testing actions to
treat the retrieved Product object tokens separately because each product has
to pass its own quality test. Consequently, the pins of the testing actions are
not declared as streams again. Since different tests are required for computers
and monitors, a decision node is used to direct the products to the right test
action. As shown in the example, we can use information about objects and
their attributes in the branching conditions.

After the quality test, the products should be collected again before they
are assembled into bundles. We can model this by a central buffer node which
is a special object node (labeled as �centralBuffer�) that can be used to
manage object flows of various incoming and outgoing edges. Central buffer
nodes are not directly connected to actions but to other object nodes or pins.

16 PROCESS MODELING USING UML

Thus, they provide additional, explicit means for queuing object tokens. In
our example, the buffer type Product is compatible to both upstream types
Computer and Monitor since they are subtypes according to the class diagram
of Figure 5.14.

The save order information in archive action has to store statistical infor-
mation about the order in an archive. If we want to model such persistent
storage of data, we can use data store nodes which are a specialization of cen-
tral buffer nodes (labeled as �datastore�). In contrast to central buffer nodes,
a data store node keeps all tokens that enter it copying them when they are
chosen to move downstream.

Eventually, the assemble bundle action packages all Product objects into a
Bundle object and passes it to the output parameter node of the activity. The
action must not start execution unless all ordered products have finished the
quality test and are available from the central buffer. This can be guaranteed
by the weight expression which delays the object flow until as many Product
tokens are available as order items are contained in the Order.

5.4 MODELING ORGANIZATIONAL STRUCTURE

The actions included in activities that describe business processes are exe-
cuted by specific persons or automated systems within a company. Companies
are complex socio-technical organizations. It is necessary to link the under-
lying organizational structure of a company to the activities of its business
processes in order to describe which actions have to be performed by which
organizational entity. This corresponds to the resource and organizational per-
spectives of workflow modeling discussed in Chapter 3. This section describes
how UML can be used to address the following key requirements for modeling
organizations and resources:

1. Companies consist of a multitude of organizational entities such as per-
sons, machines and systems. Actions, for example in an activity dia-
gram, can be associated to any of these organizational entities. To build
a coherent model of a company, all these different organizational enti-
ties should be described in one single model together with their specific
properties and relationships. Examples of such relationships are leader-
ship hierarchies, ownership and shareholder relationships, department
affiliation, project group affiliation, communication structures etc. We
will use UML object diagrams to model concrete organizations.

2. The organizational structures in companies usually follow typical pat-
terns, such as hierarchically organized leadership structures, functional
division of labor in departments or matrix organizations. With UML, it
is possible to flexibly model the majority of these general organizational
structures in such a way that concrete organizations can be treated as

MODELING ORGANIZATIONAL STRUCTURE 17

instances of these structures. General organizational structures can be
modeled by UML class diagrams.

3. Finally, the control and object flow description contained in activity
diagrams and the organizational view expressed in class and object di-
agrams have to be linked to each other because actions and activities
need to be assigned to the organizational entities that are responsible
for their execution. For this purpose, we will introduce the concepts of
activity partitions and swim lanes in activity diagrams.

A general introduction into UML object and class diagrams has been pre-
sented in Section 5.3. In this section, we will focus on the usage of object and
class diagrams for organizational modeling.

5.4.1 Modeling organizational structures with object and class
diagrams

Figure 5.18 shows an example of an object diagram describing the concrete
organization of our exemplary computer hardware sales company. Object dia-
grams are always instances of corresponding class diagrams. In this diagram,
there are objects of three different classes:

• Objects of the class Employee for concrete persons;

• Objects of the class Department for departments; and

• Objects of the class Owner for legal persons that own an equity stake of
the company.

1

Mr.Porter:Owner
share = 51%

Mrs.Brown:Employee
position = “Head of accounting”
salary = $30,000

Mr.Smith:Employee
position = “Accountant”
salary = $25,000

Accounting:Department
location = “1-8,Tower Rd.”

Mrs.Jones:Employee
position = “Accountant”
salary = $25,000

Mr.Ross:Employee

position = “Production manager”
salary = $30,000

Mr.Barclay:Employee
position = “Production”
salary = $25,000

Mr.Perry:Employee
position = “Production”
salary = $25,000

Mr.Rogers:Employee
position = “Production”
salary = $25,000

works_for works_for

works_for works_for

works_for works_forworks_for

Production:Department
location = “1-8,Tower Rd.”

is_head_of is_head_of

Figure 5.18 Object diagram describing a simple concrete organization

18 PROCESS MODELING USING UML

These three classes represent three types of organizational entities in our
example company. Different organizational entities can have a different set of
properties. In UML, these properties are described by attributes. By associat-
ing different kinds of organizational entities to different classes, one can have
different attribute sets for each kind of organizational entity. This is reflected
in our example in Figure 5.18. Employees have the attributes position and
salary. Departments have the attribute location and owners have the attribute
share describing the equity share they own of the company. These observations
lead us to the corresponding class diagram as in Figure 5.19, which describes
the general organizational structure of the company. The object diagram in
Figure 5.18 is an instance of this class diagram.

1

Employee
position: string
salary: float

Owner
share: float

is_head_of

works_for

Department
location: String

1

works_for
*

*
1

*

1

Figure 5.19 Class diagram representing a simple organizational structure

To show the full potential of organizational modeling with class diagrams,
we lay down some more observations about our example company that we
want to describe.

• Departments have a number of employees that work for the department.
The organizational structure consists in our simplified example only of
departments.

• Each department has exactly one employee or one owner as head of the
department.

• The company has a board of directors that is constituted by the owners
of the company.

• The owners of the company form the board of directors.

• Each employee can work for either another employee or an owner.

Figure 5.20 shows a class diagram that integrates all the observations about
our example organization. Now there are classes for the organizational entities
Employee, Owner, CompanyMember, BoardOfDirectors, and Department.

MODELING ORGANIZATIONAL STRUCTURE 19

1

CompanyMember

Employee
position: string
salary: float

Owner
share: float

BoardOfDirectors

is_head_of

belongs_to

works_for

Department
location: String

1

belongs_to

1

1*

*

*

*

0..1

Figure 5.20 More sophisticated organizational structure

In the early version of the class diagram in Figure 5.19, Employee has two
distinct associations works for. Employees can either work for another em-
ployee or an owner. It is possible to introduce an abstract superclass Compa-
nyMember making Employee and Owner subclasses of CompanyMember. Then
the class diagram can be optimized by having only one association works for
from Employee to CompanyMember.

With the abstract superclass CompanyMember, it is also possible to model
the fact that owners as well as employees can be the head of a department
by changing the association is head of to be between Department and the new
class CompanyMember. As CompanyMember is an abstract class, in an object
diagram describing a concrete organization, an Employee or an Owner has to
take the place of the CompanyMember. The cardinality 1 at the association
is head of expresses that there has to be exactly one head of a department.
The hierarchy of the company is built up by the departmental structure of
the organization and by the association works for.

In the class diagram of Figure 5.20, we introduce a new class representing
the organizational unit BoardOfDirectors. The board of directors is built from
the set of owners which is reflected by the aggregation relationship belongs to
symbolized by the association line with the diamond symbol. The Department
class has an aggregation relationship to the class Employee because depart-
ments consist of employees that work for the department. The cardinality 1
expresses that every employee belongs to exactly one department.

We can now describe the complete concrete organizational structure of our
example. If we add the BoardOfDirectors and the belongs to associations to
the object diagram of Figure 5.18, we yield a diagram as in Figure 5.21.

Additional remarks The structure of the class diagram in Figure 5.19 allows
that in principle every employee can be subordinate to every other employee
or owner, but every employee can only belong to one department. Therefore,
the class diagram stipulates a hierarchical department structure.

It is also possible to describe other organizational structures than hierar-
chies. For example, many companies have on the one hand functional depart-

20 PROCESS MODELING USING UML

1

:BoardOfDirectors
location = “12, Market Street”

Mr.Porter:Owner
share = 51%

Mrs.Brown:Employee
position = “Head of accounting”
salary = $30,000

Mr.Smith:Employee
position = “Accountant”
salary = $25,000

Accounting:Department
location = “1-8,Tower Rd.”

Mrs.Jones:Employee
position = “Accountant”
salary = $25,000

Mr.Ross:Employee

position = “Production manager”
salary = $30,000

Mr.Barclay:Employee
position = “Production”
salary = $25,000

Mr.Perry:Employee
position = “Production”
salary = $25,000

Mr.Rogers:Employee
position = “Production”
salary = $25,000

works_for works_for

works_for works_for

works_for works_forworks_for

Production:Department
location = “1-8,Tower Rd.”

is_head_ofbelongs_tobelongs_to is_head_of

belongs_to

belongs_to

belongs_to

belongs_to

Figure 5.21 Complete object diagram for the example company

ments like “production”, “accounting”, “development”, etc. and on the other
hand departments for different product lines. This leads to a two-dimensional
matrix organization. To model such an organizational structure, the cardinal-
ity 1 between employee and department has to be changed to 2. Sometimes,
not every position in the matrix is staffed. For example, some employees fulfill
the same function for different products. In that case, the cardinality between
employee and department can be changed to 2..* for a two-dimensional matrix.
Figure 5.22 shows an example of a excerpt of an object diagram for a matrix
organization with two product lines for monitors and computers. Some objects
and associations are left out in the diagram to account for clear arrangement.
In this example, we added the department Procurement and the employee
Mr.Taylor. Mr. Taylor is responsible for the procurement for both product
lines, so the corresponding class diagram can be the same as in Figure 5.20
but the cardinality between employee and department has to be 2..*.

5.4.2 Integration of organizational structures into activity
diagrams

After we have seen how organizational structures can be modeled using class
diagrams and concrete organizations can be described using object diagrams,
we have to connect these organizational models to the process models. In
UML, this connection is done within an activity diagram using the notational
elements activity partition and swim lane.

MODELING ORGANIZATIONAL STRUCTURE 21

1

Accounting:Department
location = “1-8,Tower Rd.”

Production:Department
location = “1-8,Tower Rd.”

Procurement:Department
location = “1-8,Tower Rd.”

Mr.Smith:Employee
position = “Accountant”
salary = $25,000

Mrs.Jones:Employee
position = “Accountant”
salary = $25,000

Mr.Barclay:Employee
position = “Production”
salary = $25,000

Mr.Perry:Employee
position = “Production”
salary = $25,000

Mr.Taylor:Employee
position = “Procurement assistant”
salary = $25,000

Computers:Department
location = “1-8,Tower Rd.”

Monitors:Department
location = “1-8,Tower Rd.”

belongs_to

belongs_to
belongs_to

belongs_to
belongs_to

belongs_to belongs_to belongs_to belongs_to belongs_to

belongs_to

Figure 5.22 Object diagram excerpt for a matrix organization

Activity partitions divide the set of nodes within an activity into different
sections. Their use is not restricted to modeling organizational units. For
example, they can also be used to constrain other resources among the nodes
of an activity.

Activity diagram nodes can belong to none, one or more partitions at the
same time. Partitions can be divided into sub-partitions. Partitions can be
visualized in two different ways. The partition name can be written in brackets
over the action name within the action symbol as is Figure 5.23 a). The other
possibility is the usage of swim lanes as in Figure 5.23 b).

1

(Partition 1)
Action A

Partition 1 Partition 2

(Partition 2)
Action B

a) Partition notated on a specific activity b) Swim lane notation

Figure 5.23 Actions associated to activity partitions

22 PROCESS MODELING USING UML

Swim lanes are lines that are drawn through the activity diagram dividing
it into different sections. The name of the partition is displayed on the top of
the swim lane. In our case, that would be the name of the organizational unit
that is responsible for execution of the actions in that partition.

With swim lanes, simple organizational structures can be reflected. In the
previous section, we have introduced hierarchical and matrix organizations.
Simple situations of the two organizational structures can also be displayed by
swim lanes. They can be hierarchically structured as shown in Figure 5.24 a).
Swim lanes can also intersect each other like in Figure 5.24 b) to represent for
example matrix organizations. Then the actions are associated with multiple
partitions at the same time.

1

Partition 1 Partition 2

Pa
rtit

ion
 A

Pa
rtit

ion
 B

Partition 1.1 Partition 1.2 Partition 2
Partition 1

a) Hierarchy in swim lanes b) Multi-dimensional swim lanes

Figure 5.24 Simple organizational structures and swim lanes

The model of the organizational structure can now be integrated into the
business process models of our running example. The activity depicted in
Figure 5.17 contains a number of actions that have to be executed either
by the accounting department or the production department. In Figure 5.25,
swim lanes are included into the activity diagram to describe that the ac-
tions check order and save order information in archive are performed by the
accounting department and the other actions are performed by the production
department.

5.5 MODELING BUSINESS PARTNER INTERACTIONS

So far, we have concentrated on modeling the various dependencies between
the different actions of a business process. However, a complementary view on
business processes is more centered around the interactions that take place
between different participants. Such interactions occur, e.g., among the em-
ployees of a certain department as well as across department and company
borders. In a supply chain, for instance, the involved business partners have
to interact in order to coordinate demand and supply of certain materials.

MODELING BUSINESS PARTNER INTERACTIONS 23

1

Order Order
[checked]

check
order

Order
[rejected]

get
products

Product

test
computer

ComputerComputer

test
monitor

MonitorMonitor

«decisionInput»
Product.type

[Computer]

[Monitor]
«centralBuffer»

Product
assemble

bundle

Product
Bundle

{weight =
no_of_order_items}

«datastore»
Order archive

Order

save order infor-
mation in archive

Order

Accounting:Department Production:Department

Figure 5.25 Exemplary activity with swim lane notation for the organizational
entities

In such cases, the involved participants have to agree on the way they
will interact. An interface process, as defined in Chapter 4, constitutes an
approach to define the interactions between partners, represented by their
provided endpoints. In an interface process, interactions are described from
the perspective of one of the involved endpoints. As shown in Chapter 4, an
interface process can be described through an activity diagram where the ac-
tivities produce or consume interaction events. In some situations however,
a more interaction-centric (rather than activity-centric) view on the relevant
processes is more appropriate. This view allows modelers to focus on the in-
teractions themselves, and provides a more global perspective on how multiple
partners interact, as the description does not focus on the events produced or
consumed by a specific participant.

For this purpose, UML provides so-called sequence diagrams. They com-
prise the participants involved in an interaction. Each of them has a lifeline
representing its progress in time (usually from top to bottom). Arrows be-
tween the lifelines indicate the passing of a message. The sequence of arrows
along the lifelines represents the order of message exchanges.

As an example, we consider the interaction of the hardware seller company
with its customers, its warehouse, and a shipping service that is in charge of
delivering ordered products to the customers. Figure 5.26 shows the corre-
sponding sequence diagram.

This sequence diagram is named order interactions and comprises a Cus-
tomer, the Company, its Warehouse, and the ShippingService as participants.

24 PROCESS MODELING USING UML

1

c:Customer :ShippingService:Company :Warehouse

submit order

check order

get products

products

ship bundle (c)

bundle

alt
[check = ok]

[else]

reject order

sd order interactions

Figure 5.26 Sequence diagram for interactions related to order processing

Every participant is depicted as a rectangle which contains the name of the
participant and its type. In contrast to the notation of objects in object di-
agrams, these names and types are not underlined because they represent a
certain role rather than a concrete instance. At process enactment time, the
role names have to be bound to concrete entities of the specified type. For in-
stance, a concrete customer submits the order and a specific shipping service
is selected. If the role name is not referenced later in the diagram, one can
also omit it and specify just the role type.

The messages attached to the arrows represent, e.g., a request for some pro-
vided service, a response to the requester, the transmission of a certain signal,
the sending of a certain return value, the transportation of some objects, and
so forth. Like with action names in activities, there are different degrees of
formalization possible starting from simple keywords down to operation calls
with formal parameters.

In UML sequence diagrams, one distinguishes between synchronous (filled
arrowhead) and asynchronous (open arrowhead) message passing. The syn-
chronous mode means that the sender stops its activity after sending the
message and waits until the corresponding response message arrives. In our
example, we use only asynchronous message passing, meaning that the part-
ners remain active after having sent a message independent of the response.

In our example, the Customer at first submits the order which is then
checked by the Company. Although one should usually abstract from internal
actions like check order and concentrate on external interactions in sequence

SYSTEM-SPECIFIC PROCESS MODELS 25

diagrams, we can still model such internal actions as self-related messages
if they have an impact on the remaining part of the interaction. In our ex-
ample, this is the case because the downstream interactions are divided into
two alternative interaction fragments (indicated by the keyword alt and the
subdivided rectangle) which are chosen according to the outcome of the check
order action. Either the order is valid and the products can be retrieved from
the Warehouse and delivered by the ShippingService, or the order is not valid
and rejected to the Customer.

Besides the alt operator for alternatives, sequence diagrams also provide
other interaction operators that can be used in combination with interaction
fragments, e.g., the loop operator indicating that a certain fragment is re-
peated as long as a certain condition holds, or the par operator indicating
that several fragments are executed in parallel. Besides, different fragments
can also be nested to model more complex interactions.

Such interaction model provides a complementary view on the business
processes modeled before. In contrast to the activity diagrams, they usually
hide internal actions which do not affect other participants (e.g., the testing
actions of Figure 5.1 and 5.17). Nevertheless, the two different views on the
business process must be consistent with each other, which means that they
have to preserve the order of overlapping actions and events. For example, in
both views Figure 5.1 and Figure 5.26 the check order action comes before the
get products action.

5.6 SYSTEM-SPECIFIC PROCESS MODELS

The so far presented business process models can be used for, e.g., design,
analysis, or documentation purposes. However, another purpose of process
models is to support process enactment. In this case, they have to be refined
into activities with atomic actions that are not further subdivided. These
actions can then either be performed by humans or executed by machines and
computers.

At this point, we want to focus on the latter case where processes mainly
transform pieces of information and can therefore be enacted with the help
of computer systems (i.e. application-to-application processes). We model the
available software components of an enterprise and relate their services to
the actions of our process model. Thus, we receive a refined, system-specific
model that can be used for process enactment. In the terminology introduced
in Chapter 4, this type of model corresponds to an integration process.

In principle, such system-specific process descriptions can be used in two
ways. The first option is to feed them into a central process engine that has
access to all available software components and invokes their services accord-
ing to the process description (see Figure 5.27 a). Thus, the process engine is
responsible for managing the various process instances, the control flow, and
the object flow.

26 PROCESS MODELING USING UML

The second option is to take the more local point of view of a single com-
ponent which realizes a new service by using a set of services provided by
other components. Then, the process model can be used to describe how the
invocations of the required services are coordinated in order to realize the
desired service (see Figure 5.27 b).

1

process engine

software components

process description
provided services

required services

process-driven
coordination

b)a)

Figure 5.27 Central process engine (a) and process-driven service coordination (b)

For instance, service-oriented architectures consist of distributed software
components that make use of existing third-party services in order to pro-
vide new services. Since this usually involves components of different business
partners, process descriptions are needed to adjust the invocation behavior
among the different partners. The Business Process Execution Language for
Web Services (see Chapter 14) is a textual language for implementing such
architectures in which process-driven coordination of services takes place.

As an example of system-specific models, we refine the check order action
used in the order processing activity of Figure 5.17 and specify how existing
services are combined to realize this action. For this purpose, we have to de-
compose the action into atomic subtasks like evaluating the customer’s credit
rating and checking the available product supplies. We assume that there are
software components including, e.g., warehouse and customer management
systems which provide services for these tasks. This leads to the following
requirements:

1. We require a model of available systems and components which ab-
stracts from their internal computations but specifies their provided
and required services. For instance, we want to describe that there is an
order management system which provides the service to check incoming
orders; and, in order to do so, it requires certain warehouse and rating
services. For this purpose, we will introduce UML structure diagrams
and interface descriptions.

2. Having specified the provided and required services, we want to integrate
them into our process models in order to coordinate their invocation.
For instance, we want to describe in which way the services required by
the order management system are invoked in order to realize the pro-
vided order checking service. Since inputs required by one service might

SYSTEM-SPECIFIC PROCESS MODELS 27

be provided as outputs by other services, we have to consider both con-
trol and object flow dependencies. The resulting system-specific process
models should serve as a basis for computer-based process execution.

UML structure diagrams provide a high-level view on existing information
systems as shown in Figure 5.28. Components are depicted as boxes omitting
details about their internal computations. Provided and required services,
in UML called operations, are summarized into interfaces of the components.
Provided interfaces are depicted as a circle connected to the providing compo-
nent, required interfaces as a half-circle connected to the requiring component.

Order-
ManagementSystem

OrderServices

«interface»
CustomerServices

getCustomer (o:Order): Customer
…

«interface»
RatingServices

getRating (c:Customer): Integer
…

«interface»
WarehouseServices

checkStock (o:Order): Report
logOrder (o:Order): Order

«interface»
OrderServices

checkOrder (inout o:Order,
out re:Order {exception})

Customer-
ManagementSystem

CustomerServices RatingServices WarehouseServices

Financial
Services

Warehouse-
ManagementSystem

Figure 5.28 Structure diagram example

For each required interface, another component is needed which can pro-
vide a matching interface. In our case, the CustomerManagementSystem pro-
vides CustomerServices to the OrderManagementSystem, the FinancialServices
component provides the RatingServices interface, and the WarehouseManage-
mentSystem provides the WarehouseServices interface.

Interfaces are specified in a simple form of class diagram as shown in Fig-
ure 5.29. In contrast to classes used for modeling object structures, the focus
is not on structural properties and relationships but on operations. An oper-
ation signature is defined in the second compartment of the interface symbol
by a name and a set of input and output parameters. If there is not more
than one output parameter, we can list the input parameters in parentheses
and append the output parameter as return type of the operation at the end.
Otherwise, we have to distinguish input and output parameters by the key-
words in, out, or inout (see, e.g., the checkOrder operation of the OrderServices
interface).

Order-
ManagementSystem

OrderServices

«interface»
CustomerServices

getCustomer (o:Order): Customer
…

«interface»
RatingServices

getRating (c:Customer): Integer
…

«interface»
WarehouseServices

checkStock (o:Order): Report
logOrder (o:Order): Order

«interface»
OrderServices

checkOrder (inouto:Order,
out re:Order {exception})

Customer-
ManagementSystem

CustomerServices RatingServices WarehouseServices

Financial
Services

Warehouse-
ManagementSystem

Figure 5.29 Interface specifications

28 PROCESS MODELING USING UML

In contrast to ordinary classes, interfaces cannot be instantiated but they
can only be used to indicate that a class or component either provides or
requires the set of operations defined in the interface. In order to integrate
the invocation of these operations into our process models, we introduce call
actions for activity diagrams.

In general, call actions represent the invocation of certain behaviors de-
fined in accompanying diagrams. In our case, we use them to call operations
of component interfaces as shown in the system-specific checkOrder activity
(Figure 5.30). In contrast to ordinary action nodes, the node symbol contains
the exact name of the operation to be called. Below the operation name, the
name of the interface or component type providing the operation is added in
brackets. All input and output parameters defined in the operation signature
are transformed into input and output pins of the action node. Thus, when
defining the control flow between the call action nodes, one has to consider
object flow dependencies that arise from the operation’s input and output
behavior.

1

Order

Order
[checked]

reject order

Order
[rejected]

getCustomer
(CustomerServices::)

CustomerOrder

[Rating.value < 0]

Order
e

getRating
(RatingServices::)

Rating

Customer

checkStock
(WarehouseServices::)

ReportOrder [Report.result = false]

e

[else]

[else]

logOrder
(WarehouseServices::)

Order

OrderManagementSystem::checkOrder

e

Figure 5.30 System-specific activity diagram for the checkOrder service

Since, according to the interface description in Figure 5.29, the checkOrder
operation has an inout parameter of type Order, the activity gets a corre-
sponding input parameter node, too. From there, incoming Order objects are
passed on to the action nodes of the activity until they are eventually placed
on the output parameter node shown at the bottom of Figure 5.30.

SUMMARY 29

If any of the involved checks returns a negative result, then the Order is
rejected and placed at the second output parameter node (shown at the top
of Figure 5.30), which is an exception as indicated by the small triangle. Note
that exactly this arrangement of parameter nodes is required if we want to
use the activity as an refinement of the check order action of Figure 5.17.

The activity involves two checks that can be performed in parallel: Firstly,
the customer’s credit rating should have a positive value, and secondly, the
available product supplies of the warehouse should be sufficient to satisfy the
demand. Since the getRating operation of the RatingServices interface requires
a Customer object as input parameter (see Figure 5.29), we have to insert an
action calling the getCustomer operation first. This CustomerManagementSys-
tem operation retrieves the corresponding Customer object from an associated
database, which is then passed on to the getRating operation.

The two parallel action flows for order checking are enclosed in an inter-
ruptible region so that any negative result prevents further effort and directly
leads to the reject order action throwing an exception. However, if both par-
allel checks are successful, the interruptible region is left, and the logOrder
operation of the WarehouseServices interface is invoked to update the prod-
uct information stored in the WarehouseManagementSystem. Eventually, the
checked Order is returned as output to the superior process.

As revealed by this example, system-specific process models refine actions
and activities of more abstract, business-level process models. Given a map-
ping of the interfaces to real components with physical addresses (also called
deployment description), such system-specific process models can be used for
process enactment and coordination of the involved software components. For
related work about using activity diagrams in order to integrate applications
and software components, the interested reader is referred to [6] and [22].

5.7 SUMMARY

Modeling processes requires the description of a number of different perspec-
tives of the process [11, 4]. We have covered five major perspectives of process
modeling with UML diagrams. This includes the description of actions and
control flow, data and object flow, organizational structure, interaction-centric
views, and application integration through system-specific, refined process
models for process enactment. Table 5.7 summarizes which UML diagrams we
have employed to describe these process modeling perspectives respectively.

For further studies of the UML, the interested reader can find detailed
insights into the language concepts in the book by Pender [19]. How to apply
the UML for developing information systems from requirements analysis to
system design is described, for instance, in the work by Maciaszek [14].

There are strong efforts to further increase the usability of UML for process
modeling. The recent revision UML 2.0 has already improved, among others,
the suitability of activity diagrams. In order to further extend the language

30 PROCESS MODELING USING UML

activity class object sequence structure

diagram diagram diagram diagram diagram

actions and control flow X

data and object flow X X X

organizational structure (X) X X

interaction-centric view X

system-specific models X (X) X

Table 5.1 Overview of the different UML diagrams

according to business process modeling requirements, one can also use the
built-in extension mechanisms of UML. These extensibility features allow de-
signers to adapt certain parts of the language to their domain-specific needs
while still remaining within the framework of the UML meta-model. For this
purpose, so-called stereotypes can be defined which describe semantic exten-
sions as well as syntactical modifications of dedicated meta-model elements.
A set of related stereotype definitions forms a UML profile.

Work in progress includes the development of a specialized business process
definition profile by the OMG [15]. The objective is to allow groups using a
variety of process models, including UML activity diagrams and other pro-
cess modeling notations, to map to a common meta-model and thus facilitate
communication among themselves.

Among others, there are efforts to increase the support for collaborating
business processes, business process patterns, runtime implications of process
definitions, resource assignments, access control etc. The extensibility feature
of UML will facilitate the efforts to further develop extensions of the UML
for business process modeling in order to make it even more powerful and
user-friendly.

5.8 EXERCISES

1. Consider the test computer and test monitor actions in Figure 5.17 and
model the case when such a product test fails. For this purpose, you
could, e.g., add output pins returning a test report. If the report reveals
a negative test result, a substitute product has to be retrieved from the
warehouse and the test has to be redone.

2. As a preparation for modeling the internals of the testing actions, extend
the class diagram of Figure 5.14 as follows: A checklist is associated to
each product type. Every such list contains a set of items that describe

EXERCISES 31

the properties to be checked for the associated product type. Each item
has a property name and a reference value as attributes.

3. Now, refine the test computer action of Figure 5.17 into an activity show-
ing the internals of the action. Model the input and output parameter
nodes of the activity according to the pins of the corresponding action
node. The activity should contain an archive for all the checklists for
the various product types. Whenever a new computer object arrives,
the right checklist has to be selected from the archive. You can then
freely design your own control and object flow to realize the testing
activity.

4. Extend the interaction model of Figure 5.26 with the company’s house
bank as additional business partner. After ordered products have been
delivered to the customer, the company sends a bill to the customer
containing a reference to the bank. Then, the customer can transmit the
payment to the company’s bank account. In a second step, try to model
that the delivery of the products and the payment can also happen in
parallel.

5. Consider the object diagram for the example company in Figure 5.21 and
the matrix organization excerpt in Figure 5.22. How would a complete
object diagram of the company look like if you combined the two existing
diagrams?

6. In the matrix organization in Figure 5.22, we use the organizational
entity Department both for the functional entities of the company like
procurement, accounting etc. and for the product oriented entities like
monitor and computer. Devise an organizational structure that con-
tains departments and product lines as two distinct organizational en-
tities. Extend the organizational model developed in Section 5.4 with
the necessary additional classes. What additional associations have to
be defined? How would the object diagram in Figure 5.22 be affected?

7. In Figure 5.21, Mr. Ross is an employee. Now assume that Mr. Ross is
not only an employee but also an owner of the company at the same
time. How could this be modeled in the class diagram (hint: consider
multiple inheritance)? How would the object diagram in Figure 5.21 be
affected?

References

1. G. Booch. Object-Oriented Analysis and Design with Applications. Addi-
son Wesley, 2nd edition, 1994.

2. P. Chen. The entity-relationship model - toward a unified view of data.
ACM Transactions on Database Systems, Vol. 1, No. 1:9–36, 1976.

3. P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press, 2nd
edition, 1991.

4. B. Curtis, M. I. Kellner, and J. Over. Process modeling. Communications
of the ACM, 35(9), 1992.

5. W. Damm and D. Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001.

6. R. Depke, G. Engels, M. Langham, B. Lütkemeier, and S. Thöne. Process-
oriented, consistent integration of software components. IEEE Proc. of the
26th Int. Computer Software and Applications Conference (COMPSAC),
pages 13–18, 2002.

7. G. Engels, R. Heckel, and J. M. Küster. The consistency workbench: A
tool for consistency management in UML-based development. Proceedings
UML 2003 - The Unified Modeling Language, Springer LNCS 2863:356–
359, 2003.

8. A. Förster. Quality ensuring development of software processes. Eu-
ropean Workshop on Software Process Technology (EWSPT), Springer
LNCS 2786:62–73, 2003.

9. D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, June 1987.

10. ITU-TS, Geneva. ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC), 1996.

11. St. Jablonski and C. Bussler. Workflow Management: Modeling Con-
cepts, Architecture and Implementation. International Thomson Com-
puter Press, London, 1996.

33

34 REFERENCES

12. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-
Oriented Software Engineering – A use case driven approach. Addison
Wesley, 1992.

13. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Funda-
mentals of Control Flow in Workflows. Acta Informatica, 39(3):143–209,
2003.

14. L. A. Maciaszek. Requirements Analysis and System Design: Developing
Information Systems with UML. Addison Wesley, 2001.

15. Object Management Group. Business Process Definition Metamodel RFP.
http://www.omg.org/docs/bei/03-01-06.pdf.

16. Object Management Group. Meta-Object Facility (MOF) Specification,
Version 1.4. http://www.omg.org/cgi-bin/doc?formal/2002-04-03.

17. Object Management Group. UML 2.0 OCL 2nd revised submission. http:
//www.omg.org/cgi-bin/doc?ad/2003-01-07.

18. Object Management Group. UML 2.0 Superstructure Final Adopted spec-
ification. http://www.omg.org/cgi-bin/doc?ptc/2003-08-02.

19. T. Pender. UML Bible. Wiley Publishing, 2003.

20. J. Rumbaugh, G. Booch, and I. Jacobson. Unified Modeling Language,
Notation Guide, Version 1.0. Rational Software Corporation, Santa Clara,
1997.

21. J. E. Rumbaugh, M. Blaha, W. J. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, 1990.

22. S. Thöne, R. Depke, and G. Engels. Process-oriented, flexible composi-
tion of web services with UML. Proc. of the Int. Workshop on Concep-
tual Modeling Approaches for e-Business (eCOMO 2002), Springer LNCS
2784:390–401, 2002.

