
38

Flexible Interconnection
of Graph Transformation Modules

A Systematic Approach

Gregor Engels, Reiko Heckel, and Alexey Cherchago

University of Paderborn, Germany
{engels,reiko,cherchago}@upb.de

Abstract. Modularization is a well-known concept to structure software
systems as well as their specifications. Modules are equipped with export
and import interfaces and thus can be connected with other modules
requesting or providing certain features.
In this paper, we study modules the interfaces of which consist of behav-
ioral specifications given by typed graph transformation systems. We in-
troduce a framework for classifying and systematically defining relations
between typed graph transformation systems. The framework comprises
a number of standard ingredients, like homomorphisms between type
graphs and mappings between sets of graph transformation rules.
The framework is applied to develop a novel concept of substitution
morphism by separating preconditions and effects in the specification of
rules. This substitution morphism is suited to define the semantic rela-
tion between export and import interfaces of requesting and providing
modules.

1 Introduction

One of the most successful principles of software engineering is encapsulation,
i.e., the containment of implementations in classes, modules, or components ac-
cessible through well-defined interfaces only. This reduces possible dependencies
of clients to those functions provided in the interface and allows to replace im-
plementations without affecting the client.

Client ���������� Server
INT

Fig. 1. Server component implementing interface INT that is used by Client compo-
nent.

As it is obvious from Fig. 1, the developer of the Client component requires
knowledge about the interface of the Server. That means, the development of the
two components can not easily be decoupled and the architectural dependencies
have to be known at design time.

In the service-oriented paradigm, but also in more advanced component mod-
els, this picture is extended by distinguishing between provided and required in-
terfaces. While provided interfaces describe existing implementations, required

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 38–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [430.866 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

Flexible Interconnection of Graph Transformation Modules 39

interfaces are specifications of virtual components whose existence is assumed
at design time to capture the context dependencies of the components under
development.

Requestor
IMP � � ��� ����� �������� Provider

EXP

Fig. 2. Requestor and provider components.

As shown in Fig. 2, composing two components (or services) now means to
connect their required and provided interfaces. This is possible if the operations
asked for in the required interface are guaranteed by the provided interface.
In programming languages like Java and component models like Corba such a
relation between interfaces is verified by the compiler, matching the signatures
(names and parameter types) of these operations.

However, in a truly open scenario, as it is typical for Web services or, more
generally, service-oriented architectures, we cannot assume that, e.g., the name of
an operation has any global meaning or that the types of the parameters convey
enough information about the purpose and usage of the operation. In such case,
it is inevitable that both required and provided interfaces contain behavioral
specifications which are taken into account when interfaces are matched.

1.1 Module and Component Models with Behavioral Interfaces

The first steps in this direction have been made in the context of algebraic
and logic specifications. An algebraic specification module MOD (see, e.g., [7])
consists of a body BOD providing the implementation and of interfaces IMP
for import and EXP for export describing, respectively, required and provided
functionality. (In addition, a parameter PAR is provided to allow for generic
modules, but this feature will not be relevant for our purposes.) All specifications
are connected through algebraic specification morphisms.

The composition of modules MOD and MOD′ is based on morphisms, too,
connecting the import (required) interface of IMP of MOD with the export
(provided) interface of EXP ′ of MOD′. Hence, algebraic specification modules
realize the idea illustrated in Fig. 2 that components are connected indirectly
through the matching of required and provided interfaces.

In [7] the relation between IMP and EXP ′ is described by standard mor-
phisms of algebraic specifications. That means, for example, that matching op-
erations are required to have the same number of parameters of corresponding
types. A more flexible approach to the connection of required and provided in-
terfaces is presented by Zaremski and Wing in [25] and [26], who have developed
sophisticated matching procedures at the level of both signatures and specifica-
tions.

In object-oriented programming, the extension of interfaces with behavioral
information became known under the name of Design by Contract in the context

40 Gregor Engels, Reiko Heckel, and Alexey Cherchago

EXP

exp

��

IMP

subst

��

imp
�� BOD

EXP ′

exp′

��

IMP ′ imp′
�� BOD′

Fig. 3. Conformation of the TGTS-modules.

of the Eiffel language [22]. Here, preconditions and effects of operations are
specified by means of logic predicates, and object-oriented subtyping rules are
extended to capture the compatibility of, for example, the contracts of a newly
introduced subclass with that of a superclass.

1.2 Modules of Graph Transformation Systems

Since the mid nineties [5], there is an increasing interest in the transfer of mod-
ularity concepts from algebraic specifications and programming languages to
graph transformation systems [21, 24, 10] (see also the survey [19]). Modules
of typed graph transformation systems (TGTS modules) [10] follow the struc-
ture of algebraic specification modules, replacing the specifications BOD, IMP ,
and EXP by graph transformation systems related by different kinds of mor-
phisms. In particular, IMP and BOD are related by a simple inclusion mor-
phism (IMP ⊆ BOD), whereas EXP and BOD are connected by a refinement
morphism, allowing a sequential or parallel decomposition of rules.

In [1, 15] it has been observed that graph transformation rules could provide
a more abstract, visual representation of contracts, specifying preconditions and
effects of operations. In order to check the desired behavioral compatibility of
contracts between required and provided interfaces, a matching relation has been
defined which can be syntactically verified. Roughly speaking, the semantic idea
of this compatibility was the substitution principle, i.e., it should be safe to
replace the required rule by a matching provided rule: The applicability of the
first should imply the applicability of the latter, and the effect of applying the
latter should satisfy the expectations of the first.

However, it has been assumed that the two rules to be compared are defined
over the same types, based on the assumption that the matching is performed by
a central discovery agency which represents both provided and required contracts
over a common ontology. This assumption, which is satisfied in service-oriented
architectures, is not in general true for modules or components.

It is the purpose of this paper to define a flexible matching relation enabling
retyping as a morphism of typed graph transformation systems representing the
required and provided (import and export) interfaces of modules.

Flexible Interconnection of Graph Transformation Modules 41

1.3 Morphisms of Graph Transformation Systems

A survey of the literature reveals at least five fundamentally different proposals
for morphisms of graph transformation system [2, 23, 13, 17, 20]. They represent
different objectives, like inclusions, refinements, or views and enjoy different
semantic properties.

So far there has been no general and systematic approach for comparing and
relating different notions. Hence, before going on to extend the list by a new
proposal, so-called substitution morphisms, we will survey possible definitions
and provide a four-step recipe for deriving the appropriate definition from given
semantic requirements.

We will apply this recipe to derive a notion of morphism between graph
transformation systems with application conditions which, as it turns out, are
essential for a flexible and yet semantically meaningful relation between required
and provided interfaces.

1.4 Outline of the Paper

The rest of this paper is organized as follows. After recalling in the next section
the basic concepts of the DPO and DPB approaches to graph transformation, in
Section 3 we introduce a framework enabling to classify and systematically define
morphisms of typed graph transformation systems. In particular, two examples
of morphisms existing in the literature will be discussed informally in Section 3.1.
After that, the constituents of the framework will be identified in Section 3.2,
and aggregated in the definitions of the sample morphisms in Section 3.3. Then,
a new concept of a substitution morphism playing a role of an inter-connector
between two modules requiring and offering a specific service will be considered
in Section 3.4.

The flexibility of the substitution morphism depends on the rule structure
which is refined in Section 4 via separating preconditions and effects. Here, we
will revise all the necessary definitions on the graph transformation rules with
application conditions in Section 4.1, and formally define the substitution mor-
phism in Section 4.2. In Section 5, the substitution morphism as well as the
other sample morphisms are illustrated via their application as intra- and inter-
connectors of the modules. We conclude with the summary of our work in Sec-
tion 6.

2 Basic Definitions

In this section we review some of the basic notions of the double-pushout (DPO)
[8] and double-pullback (DPB) [18] approaches to graph transformation. The
DPB approach represents a loose version of the classical DPO, assuming that
rules may be incomplete specifications of the transformations to be performed
and thus allowing additional, unspecified effects. Both approaches are presented
using typed graphs [3].

42 Gregor Engels, Reiko Heckel, and Alexey Cherchago

By graphs we mean directed unlabeled graphs G = 〈GV , GE , srcG, tarG〉
with set of vertices GV , set of edges GE , and functions srcG : GE → GV and
tarG : GE → GV associating with each edge its source and target vertex. A
graph homomorphism f : G → H is a pair of functions 〈fV : GV → HV , fE :
GE → HE〉 preserving source and target, that is, srcH ◦ fE = fV ◦ srcG and
tarH ◦ fE = fV ◦ tarG. With componentwise identities and composition this
defines the category Graph.

Given a graph TG, called type graph, a TG-typed (instance) graph consists
of a graph G together with a typing homomorphism g : G → TG (cf. Fig. 4 on
the left) associating with each vertex and edge x of G its type g(x) = t in TG.
In this case, we also write x : t ∈ G. A TG-typed graph morphism between two
TG-typed instance graphs 〈G, g〉 and 〈H, h〉 is a graph morphism f : G → H
which preserves types, that is, h ◦ f = g. With composition and identities this
defines the category GraphTG, which is the comma category Graph over TG.

G

g

��

TG

G

f

��

g
���

��
��

��
� H

h
����

��
��

��

TG

L

(1)dL

��

K

(2)

l�� r ��

dK

��

R

dR

��

G Dg
��

h
�� H

Fig. 4. Typed graph and graph morphism (left) and double-pushout (or -pullback)
diagram (right).

Definition 1 (typed graph transformation system). A TG-typed graph
transformation rule is specified by a span (L l←− K

r−→ R) of injective TG-
typed graph morphisms (cf. Fig. 4 on the right).

Given TG-typed graph transformation rules p = (L l←− K
r−→ R) and q =

(L′ l′←− K ′ r′−→ R′), a typed rule morphism f : p → q is a tuple (fL, fK , fR)
of TG-typed graph morphisms commuting with the span morphisms l, l′, r and
r′ (cf. Fig. 5). With componentwise identities and composition this defines the
category RuleTG, which is the comma category Rule over TG.

L

(=)fL

��

K

(=)

l�� r ��

fK

��

R

fR

��

L′ K′
l′

��
r′

�� R′

Fig. 5. Typed rule morphism.

A typed graph transformation system GTS = (TG, P, π) consists of a type
graph TG, a set of rule names P , and a mapping π : P → |RuleTG| associating
with each rule name p a TG-typed rule π(p).

Flexible Interconnection of Graph Transformation Modules 43

The left-hand side L of a rule contains the items that must be present for an
application of the rule, the right-hand side R those that are present afterwards,
and the interface graph K specifies the “gluing items”, i.e., the objects which
are read during application, but are not consumed.

As running example, a specification of a mutual exclusion algorithm with
deadlock detection [16] is developed throughout the paper.

Example 1 (MUTEX). The typed graph transformation system in Fig. 6 models
a distributed algorithm for mutual exclusion (MUTEX). This example is derived
from a small case study [16] and tailored for our presentation. Two basic types,
processes P (drawn as black nodes) and resources R (drawn as light boxes),
constitute the type graph shown in the upper-left corner. A request is modeled
by an edge going from a process to a resource. The fact that the resource is
currently held by the process is shown by an edge in the opposite direction.
A token ring algorithm implements the mutual exclusion. The processes in the
token ring are arranged in a cycle. Two neighbor processes are connected by an
edge running from the antecedent to the next process. This edge is given by a
loop in the type graph. A default position for introducing new processes and
resources is marked by a pointer head.

Fig. 6. Graph transformation system modeling MUTEX algorithm.

An edge with a white flag denotes a token which is passed from process to
process along the ring. In order to get an access to a resource a process waits
for the corresponding token. Mutual exclusion is achieved by uniqueness of the
token for each resource in the system.

Now we discuss the rules of the graph transformation system. The first four
rules are used for creating and killing processes (new and kill), and for mounting
and unmounting resources (mount and unmount). The rules req, take, and rel
allow processes to issue requests, take resources, and release them upon regular
completion of their task. The negative application conditions [14] for req ensure

44 Gregor Engels, Reiko Heckel, and Alexey Cherchago

that a process can not issue more then one request at a time. The negative
application condition for rel prevents the release of a resource r while the process
requests another resource, since r may still be required to complete the given
task.

The last two rules are intended for application in possibly deadlock situations
resulting from competition of processes for non-sharable resources. The MUTEX
algorithm does not know how to detect deadlocks, therefore the rule dead? rep-
resents external features, to be imported from another module. The dotted part
of this rule is a positive application condition (cf. Section 4.1) representing
items that must be present for the rule application, but are not consumed. This
condition restricts the applicability of rule dead? to situations where the process
has a pending request for a resource.

In general, positive application conditions can be encoded by extending both
the left- and the right-hand side of a rule by the required elements: they become
part of the context. That means rules with positive application conditions can
easily be transformed into ordinary rules. The use of positive application condi-
tions makes a difference, however, when we consider relations between different
systems, as shall be demonstrated in Section 4.2.

Rule rel dl finally implements the resolution of detected deadlocks by forcing
the release of the resource held by the involved process.

In the DPO approach, transformation of graphs is defined by a pair of
pushout diagrams, a so-called double-pushout construction. Operationally speak-
ing that means: the elements of G matched by L \ l(K) are removed, and a copy
of R \ r(K) is added to D.

A double-pushout (DPO) diagram d is a diagram as in Fig. 4 on the right,
where (1) and (2) are pushouts. Gluing the graphs L and D over their common
part K yields again the given graph G, i.e., D is a so-called pushout complement
and the left-hand square (1) is a pushout square. Only in this case the application
is permitted. Similarly, the derived graph H is the gluing of D and R over K,
which forms the right-hand side pushout square (2).

This formalization implies that only vertices that are preserved can be merged
or connected to edges in the context. It is reflected in the identification and the
dangling conditions of the DPO approach. The identification condition states
that objects from the left-hand side may only be identified by the match if they
also belong to the interface (and are thus preserved). The dangling condition
ensures that the structure D obtained by removing from G all objects that are
to be deleted is indeed a graph, that is, no edges are left “dangling” without
source or target node.

Definition 2 (DPO graph transformation). Given a typed graph transfor-
mation system GTS = (TG, P, π), a (DPO) transformation step in GTS from

G to H via p is denoted by G
p/d
=⇒ H, or simply by G

p
=⇒ H if the DPO diagram

d is understood.
A transformation sequence ρ = ρ1 . . . ρn : G⇒∗ H in GTS via p1, . . . , pn is

a sequence of transformation steps ρi = (Gi
pi/di=⇒ Hi) such that G1 = G, Hn = H

and consecutive steps are composable, that is, Gi+1 = Hi for all 1 ≤ i < n.

Flexible Interconnection of Graph Transformation Modules 45

The category of transformation sequences over GTS denoted by Trf (GTS)
has all graphs G ∈ GraphTG as objects and all transformation sequences in
GTS as arrows.

A sample transformation step is shown in Fig. 7. It applies the rule new
inserting a new process in the token ring.

Fig. 7. A sample DPO transformation step.

The DPO approach ensures that the changes to the given graph H are exactly
those specified by the rule. A more liberal notion of rule application is provided
by the double-pullback (DPB) approach to graph transformation [18], where
at least the elements of G matched by L \ l(K) are removed, and at least the
elements matched by R \ r(K) are added. The DPB approach introduces graph
transitions and generalizes DPO by allowing additional, unspecified changes.
Formally, graph transitions are defined by replacing the double-pushout diagram
of a transformation step with a double-pullback .

Definition 3 (DPB graph transitions). Given a typed graph transformation
system GTS = (TG, P, π), a transition in GTS from G to H via p, denoted by

G
p/d
� H, is a diagram like in the right of Fig. 4, where both (1) and (2) are

pullback squares. A transition is called injective if both g and h are injective
graph morphisms. It is called faithful if it is injective, and the morphisms dL

and dR satisfy the following identification condition [4] with respect to l and r:
for all x, y ∈ L, y
∈ l(K) implies dL(x)
= dL(y), and analogously for dR.

A transition sequence ρ = ρ1 . . . ρn : G �∗ H in GTS via p1, . . . , pn is a

sequence of faithful transitions ρi = Gi
pi/di
� Hi such that G1 = G, Hn = H and

consecutive steps are composable, that is, Gi+1 = Hi for all 1 ≤ i < n.
The category of transitions over GTS, denoted by Trs(GTS), has all graphs

G ∈ GraphTG as objects and all transition sequences in GTS as arrows.

A sample transition is shown in Fig. 8. It also demonstrates an application
of the rule new. Note that during application of the rule a token is deleted that
is unspecified by new. Here the left-hand square is not a pushout: the graph
G obtaining by the gluing of L and D additionally contains the token which is
“spontaneously deleted”.

46 Gregor Engels, Reiko Heckel, and Alexey Cherchago

Fig. 8. A sample DPB graph transition.

3 TGTS Morphisms, Systematically

In this section, we provide a framework for classifying and systematically defin-
ing morphisms of typed graph transformation systems based on a number of
standard “ingredients”, like homomorphisms between type graphs and mappings
between sets of rules. First, two examples of morphisms will be discussed infor-
mally in the context of TGTS modules. Then, in Section 3.2, the constituents
of the framework are presented and combined, yielding definitions of the sam-
ple morphisms in Section 3.3. In Section 3.4, a novel concept of substitution
morphism is considered.

3.1 TGTS Morphisms as Intra-connectors of Modules

Each TGTS describes a specific behavior in terms of the transformation or
transition sequences obtained via application of its rules. A TGTS morphism
f : GTS → GTS′ defines a relation between the behaviors of GTS and GTS′

through an association of their type graphs and rules. Thus, a systematic ap-
proach should always start by identifying the kind of semantic relation that shall
be expressed.

First, we consider an example of behavior-preserving morphisms providing
a first attempt at describing the relation between the export interface EXP
of a module MOD with its body BOD. The export interface EXP specifies
the features offered for import by other modules. The specification of these
features should be consistent with their implementation in the body. That means,
applicability of EXP rules should imply applicability of the corresponding BOD
rules. Behavior-preserving morphisms shall ensure this property.

Example 2 (behavior-preserving morphism). The body of the module MUTEX
is given in Fig. 6. One service provided by this module is deadlock resolution
described by the rule rel dl in the export interface EXP (cf. Fig. 9 on the right).
(It shall be imported by an external deadlock detection module to break up de-
tected deadlocks.) The embedding of EXP into BOD preserves behavior: Each
transformation sequence in EXP implies a corresponding sequence in BOD.

The type graph TGEXP of the export is a subgraph of TGBOD of the body
containing all the types relevant for deadlock resolution. More generally, a homo-
morphism between type graphs ensures that all types of the source (TGEXP in

Flexible Interconnection of Graph Transformation Modules 47

Fig. 9. TGTSs IMP (left) and EXP (right) of the module MOD modeling the MU-
TEX algorithm.

this case) have a correspondence in the target (TGBOD). If the homomorphism
is not an inclusion, as in our example, a type in the target may have a different
name than its source or two different types in the source may be mapped to the
same target type.

Based on the homomorphism, graphs, rules, and also transformations typed
over the source can be converted into such typed over the target by a simple
renaming of their types. This gives us the opportunity to compare two systems
by translating the rules of the source system into ones typed over the target.

Due to the subgraph relation between TGEXP and TGBOD the translation
of the EXP rule to the BOD type graph does not change anything in this rule.
The comparison reveals that the rule identical to rel dl is already present in
TGBOD, even with the same name. In the general case, we might consider a
mapping of rule names as well to use different names for corresponding rules in
the two systems.

The behavior-preserving morphisms as discussed above are originally intro-
duced in [9, 11]. In our example, the export interface EXP is just a subsystem
of BOD. More general situations are considered in [11] where the relation be-
tween export interface and body may be, e.g., spatial or temporal refinements. In
spatial refinements, a rule of the source system may be associated with an amal-
gamation of rules of the target system, in temporal refinements with a sequential
composition.

The requirements and definitions about behavior-preserving morphisms are
presented in Section 3.3. Here, we proceed with an example of behavior-reflecting
morphisms, determining the relation between the import interface IMP and the
body BOD of a module MOD. The idea is that the rules required at IMP have
at least the effect of the rules specified at BOD. Otherwise, the body could not
use the imported rules for the internal implementations. This can be expressed
as a reflection of the BOD transformations by IMP transitions.

Example 3 (behavior-reflecting morphism). As mentioned already, deadlock de-
tection represents an external feature abstractly represented in the MUTEX
module by the rule dead? in the import interface IMP (cf. Fig. 9 on the left).

Reflection of BOD behavior by IMP means that for each transformation
in BOD we require a corresponding transition in IMP . As with behavior-
preserving morphisms, we have to specify the relation between the type graphs
and rules of the two systems.

For type graphs, a homomorphism from TGIMP to TGBOD ensures that
BOD has at least the same types as IMP . In order to check that transformations

48 Gregor Engels, Reiko Heckel, and Alexey Cherchago

in BOD are reflected by transitions in IMP , we have to compare the rules
of the two systems. In this case, since we are interested in reflection rather
than preservation of steps, we translate the rules of BOD to IMP against the
direction of the type graph morphism. That means, beside the renaming of types,
elements of the rules are removed if their type in BOD does not have a pre-image
in IMP under the type graph homomorphism.

Then, the BOD behavior is reflected by IMP if each rule, after the transla-
tion, turns out to be a super-rule of the corresponding rule in IMP . In our case,
the rule dead? of BOD coincides with the one in IMP after the translation.

Morphisms that reflect transformation in the target by transitions in the
source have been introduced in [16] to specify the relation between different
views of a system model.

Below, we formally introduce the different components of TGTS morphisms.

3.2 Definitions of Ingredients

In this section we define the two main ingredients of TGTS morphisms, i.e.,
translations between type graphs and subrule relations. We start with forward
and backward retyping using the notation of [12].

Definition 4 (retyping). A graph morphism fTG : TG → TG′ induces a
forward retyping functor f>

TG : GraphTG → GraphTG′ , f>(g) = f ◦ g and
f>(k : g → h) = k by composition as shown in the diagram below,

H

h

��

G

k

����������

g
���

��
��

��
�

TG
f

�� TG′

as well as a backward retyping functor f<
TG : GraphTG′ → GraphTG, f<(g′) =

g∗ and f<(k′ : g′ → h′) = k∗ : g∗ → h∗ by pullbacks and mediating morphisms
as shown in the diagram below.

H∗

h∗

��

�� H ′

h′

��

G∗

k∗
����������

g∗
���

��
��

��
�

�� G′

k′
����������

g′
����

��
��

��

TG
f

�� TG′

We proceed by listing a number of relations between rules typed over the
same type graph.

Flexible Interconnection of Graph Transformation Modules 49

Definition 5 (subrule relations). Given TG-typed graph transformation

rules p : (L l←− K
r−→ R), q : (L′ l′←− K ′ r′−→ R′), and a typed rule mor-

phism f : p→ q (cf. Fig. 5), we say that

– p is identical to q, in symbols p = q, if f is an identity in RuleTG,
– p is a DPO-subrule of q, in symbols p �DPO q, if the diagrams (1) and (2)

in Fig. 5 are pushouts in GraphTG,
– p is a DPB-subrule of q, in symbols p �DPB q, if the diagrams (1) and (2)

in Fig. 5 are pullbacks in GraphTG and construct a faithful transition.

This list could be further extended by relations between a single rule and
a collection of rules such as the spatial and temporal refinements, but this is
beyond the scope of this paper.

Having defined retyping and rule relations we are now in a position to com-
bine these ingredients into definitions of TGTS morphisms.

3.3 Recipes for TGTS Morphism

We have already discussed by means of the two examples in Section 3.1 how
semantic requirements determine the definition of morphisms of graph transfor-
mation systems. In this section, we are going to make this explicit in terms of
a four-step recipe. In each step we introduce a number of options and motivate
possible choices based on the semantic requirements. First of all we formulate
an initial assumption to simplify the presentation.

Assumption: Without loss of generality we assume that the TGTS morphism
f : GTS → GTS′ and the type graph morphism fTG : TG → TG′ have the
same direction. That means, the target system has at least the types like the
ones of the source system, but possibly more.

Step 1. The first variation point is the relation between the sets of rule names of
GTS and GTS′. Here it is most convenient to use total functions, rather than
general relations. For example, a mapping from P to P ′ designates for each p ∈ P
one corresponding p′ ∈ P ′: the relation is left total and right unique. This option
should be used for behavior-preserving morphisms, where each transformation
of the source system has to be associated with a transformation of the target
system. Dually, a mapping in the opposite direction provides for each p′ ∈ P ′ one
p ∈ P : a left unique and right total relation which is suitable for the behavior-
reflecting morphisms.

Step 2. The next alternative is introduced by the context of comparison, i.e.,
where the corresponding rules of the two systems are compared. This can be done
either in the context of GTS′ using the forward retyping f>

TG : GraphTG →
GraphTG′ of the rules in GTS, or in the context of GTS using the backward
retyping f<

TG : GraphTG′ → GraphTG of the rules in GTS′. The forward re-
typing is appropriate for behavior-preserving morphism, the objective in this case

50 Gregor Engels, Reiko Heckel, and Alexey Cherchago

being the construction of transformations in the target from existing ones in the
source system. By analogy backward is used for behavior-reflecting morphisms.

We continue with the specification of the subrule relation required between
the rules of the two systems. For pairs of corresponding rules as defined in Step
1 and modulo the retyping functor selected in Step 2 this means to decide for
the direction of the relation in Step 3 and its kind in Step 4.

Step 3. The direction of the subrule relation, i.e., if p is required to be a sub-
rule of p′, or vice versa, depends on the desired relation between the sets of
transformations or transitions of the two systems. If p is a subrule of p′ then
each transformation step via p′ implies a transition or transformation step via p.
Thus, behavior-preserving morphisms generally require that the GTS′ rules are
subrules of the GTS rule, while behavior-reflecting morphisms specify the dual
requirement.

Remark 1. Note that it may be the case that a subrule relation between p and p′

holds when considered over the larger type graph GTS′ using forward retyping,
but not if compared via backward retyping (projection) over the smaller GTS
type graph. The converse is also true, i.e. a subrule relation may hold over GTS,
but not over GTS′.

This motivates why the comparison of rules is always done over the system
where the existence of transformations or transitions should be ensured, i.e., the
target system if behavior shall be preserved and the source system if behavior
shall be reflected.

Step 4. Finally, we have to select the kind of subrule relation that the comparison
shall be based upon. The identity of p and p′ ensures that all transformations
via p are also transformations via p′. If p is a DPO or DPB subrule of p′, respec-
tively, then each transformation step via p′ implies a transformation (�DPO) or
transition (�DPB) via p. (The dual holds if we replace p and p′.)

The relation between the different choices and the implied semantic proper-
ties is summarized in Table 1. Combinatorially, we obtain eight different notions.
Numbers 4 and 5 represent, respectively, the behavior-reflecting and preserving
morphisms discussed above.

Next we introduce formally the semantic requirements of behavior-preserva-
tion and -reflection and, subsequently, the actual definitions of the morphisms.

Table 1. Ingredients of TGTS-morphisms.

forward retyping f>
TG backward retyping f<

TG

left-total left-unique left-total left-unique
right-unique relation right-total relation right-unique relation right-total relation

� – – DPO/DPBε DPO,DPB,[=]
1 2 3 4

� =,[DPO/DPB] – – –
5 6 7 8

Flexible Interconnection of Graph Transformation Modules 51

Definition 6 (preservation of behavior). Given typed graph transformation
systems GTS = (TG, P, π) called the source system and GTS′ = (TG′, P ′, π′)
called the target system. We say that the target system preserves the behavior of
the source system if there exists a functor F : Trf (GTS)→ Trf (GTS′).

The existence of a functor between two categories of sequences requires that
each individual step in GTS is mapped to a sequence in GTS′. By induction, this
mapping extends to sequences in GTS. However, we will deal with the simpler
case where a step in GTS is actually mapped to a single step in GTS′.

As discussed above, this requires that each rule p ∈ P has a corresponding
rule p′ ∈ P ′. Hence, a mapping f : P → P ′ is chosen in Step 1. To ensure the
preservation of sequences in GTS′, the comparison of rules is done in the context
of GTS′ and, therefore, forward retyping is applied at Step 2.

The mapping in Step 1 must guarantee the desired relation between the
transformations in the two systems. This is achieved if in Step 3 the rules in
GTS′ are subrules of those in GTS. The choices in Step 4 ensuring behavior
preservation range from identity to DPB relations. The identity is the most
common one because it results in an embedding of GTS into GTS′, while any
true subrule relations would mean that the rules of GTS are reduced in GTS′.

The behavior-preserving morphism is specified in cell 5 of Table 1 and for-
mally defined below.

Definition 7 (behavior-preserving morphism). Given typed graph trans-
formation systems GTS = (TG, P, π) and GTS′ = (TG′, P ′, π′), a behavior-
preserving TGTS morphism fpres = (fTG, fP) is given by a type graph mor-
phism fTG : TG → TG′ and a mapping fP : P → P ′ between the sets of rule
names such that for each p ∈ P , f>

TG(π(p)) = π′((fP (p))).

The justifications for the following claim can be found in [9, 11].

Fact 1 Behavior-preserving morphisms fpres : GTS → GTS′ satisfy the re-
quirements of Def. 6.

Just to consider another example, the candidate in cell 6 differs from the one
above in the direction of the mapping between rule names. That means, to each
p′ ∈ P ′ a p ∈ P is associated. If we require the existence of the subrule relation
for all pairs of rules thus associated, this guarantees a partial preservation of
behavior only, i.e., for those transformations in GTS via rules with corresponding
rules in GTS′.

To continue on the right-hand side of the table, the semantic requirements
for behavior-reflecting morphisms are given below.

Definition 8 (reflection of behavior). Given typed graph transformation sys-
tems GTS = (TG, P, π) called the source system and GTS′ = (TG′, P ′, π′) called
the target system, we say that the first reflects the behavior of the second if there
exists a functor F : Trf (GTS′)→ Trs(GTS).

52 Gregor Engels, Reiko Heckel, and Alexey Cherchago

That means, each transformation step in GTS′ implies a transition in GTS,
a liberal requirement compared to reflecting transformations in transformations.

By the same arguments as above, in Step 1 we assume a mapping of rule
names from P ′ to P . The context of comparison is the source system, leading
to the use of backward retyping is selected at Step 2. To fulfill the semantic
requirement, rules in P ′ are subrules of corresponding rules in P in Step 3. Both
DPO or DPB subrule relations are reasonable at Step 4. The first would, in fact,
guarantee the stronger reflection property based on transformations only.

This morphism specified in cell 4 of Table 1 is formally defined below.

Definition 9 (behavior-reflecting morphism). Given typed graph transfor-
mation systems GTS = (TG, P, π) and GTS′ = (TG′, P ′, π′), a behavior-
reflecting morphism f refl = (fTG, fP) is given by a type graph morphism fTG :
TG→ TG′ and a mapping fP : P ′ → P between rule names such that for each
p′ ∈ P ′, π(fP (p′)) �DPO/DPB f<

TG(π′(p′)).

The proof of following is obvious.

Fact 2 Behavior-reflecting morphisms f refl : GTS → GTS′ satisfy the require-
ments of Def. 8.

In [16] a variant of the above has been used represented by cell 3. The dif-
ference from 4 is the direction of the mapping of rule names from P to P ′, i.e.,
in the same direction like the mapping of types. Using DPB subrules and as-
suming in each GTS an empty ε-rule, each step in GTS′ using a rule without
a corresponding rule in GTS is associated with an ε-transition. In this way, the
behavior is indeed reflected by GTS.

If we consider, instead, DPO subrules we obtain a partial reflection of the
target transformations by the source ones.

It turns out that none of the other alternatives in Table 1 preserve or reflect
behavior. Variants 1 and 2 are not behavior-preserving, because the subrule
relation allows rules in the target system to be larger than in the source. Hence,
additional preconditions may be introduced which make rules in GTS′ applicable
in less situations.

Similarly, variants 7 and 8 are inadequate for the behavior reflection since,
due to Remark 1, subrule rule relations are not in general preserved by the
retyping.

The preservation properties for subrule relations between the rules of the two
systems are detailed in Fig. 10.

In the next section we discuss another kind of semantic relation, called sub-
stitutability: Abstract operation specifications in the source system (e.g., the
import interface) shall by substituted by their implementations in the target
system (e.g., the body of another module).

3.4 Towards Substitution Morphisms

Let us come back to the discussion of the connector between the import inter-
face IMP of the requestor module MOD and the export interface EXP ′ of the

Flexible Interconnection of Graph Transformation Modules 53

f>
TG(π(p)) � π′(p′) �

∦

��

π(p) � f<
TG(π′(p′))⇐
∦

��
f>

TG(π(p)) � π′(p′) ⇒
∦

��

π(p) � f<
TG(π′(p′)

�

∦

��

Fig. 10. Relation between the different alternatives for the TGTS-morphisms.

provider module MOD′. Since IMP and EXP ′ are TGTS, the desired relation
between them should be described via a TGTS morphism. To construct an ap-
propriate recipe for the morphism between IMP and EXP ′, it is necessary to
understand what are the semantic requirements behind this a relation.

IMP contains the abstract specifications of the required features, so it is
natural to interpret its rules as incomplete, with DPB semantics. The provider
offers the concrete implementations of the operations, therefore the correspond-
ing rules should be complete, having DPO interpretation.

The concrete rules can be safely substituted for the abstract rules if the fol-
lowing two conditions are true: First, the effect of applying a rule of EXP ′ should
satisfy the expectations described in the rule of IMP for which it was substi-
tuted. This is the case if IMP reflects the EXP ′ behavior. Second, applicability
of the IMP rule should imply applicability of the corresponding EXP ′ rule, i.e.,
applicability must be preserved from IMP to EXP ′. These two requirements
are formally given in the following definition.

Definition 10 (substitutability). Given typed graph transformation systems
GTS = (TG, P, π), the source system, and GTS′ = (TG′, P ′, π′), the target
system, the second is substitutable for the source if there exists a functor F :
Trf (GTS′)→ Trs(GTS) such that for all graphs G′ ∈ |Trf (GTS′)| and for all
transition sequences ρ : F (G′) → ∈ Trs(GTS) there exists a transformation
sequence ρ′ : G′ → ∈ Trf (GTS′) with F (ρ′) = ρ.

Let us give an operational interpretation of what happens when the abstract

rules pi = (Li
li←− Ki

ri−→ Ri) are substituted for the concrete rules p′i = (L′
i

l′i←−
K ′

i

r′
i−→ R′

i). This assumes that requestor and provider are actual components
which communicate at runtime.

G0
p1/d1
� H0 = G1

p2/d2
� H1 = G2

. . .

G′
0

�
f<

T G

��

p′
1/d′

1=⇒ H ′
0 = G′

1

�
f<

T G

��

p′
2/d′

2=⇒ H ′
1 = G′

2

�
f<

T G

��

. . .

Fig. 11. Substitution in detail.

The starting point is a graph G′
0 ∈ GraphTG′ , representing the state of the

provider component (cf. Fig. 11).

54 Gregor Engels, Reiko Heckel, and Alexey Cherchago

The substitution consists of the following steps:

– G′
0 is projected to G0 ∈ GraphTG via backward retyping, modeling the

requestors incomplete knowledge about the provider.
– If a rule p1 is applicable to G0 on the requestor side, the same holds for the

corresponding provider rule p′1 = fP (p1).

– A transformation step G′ p′
1/d′

1=⇒ H ′ is performed by the provider which

projects to a transition G0
p1/d1
� H via the corresponding rule in the re-

questor view.

Thus, the requestor receives an update to its local view of the state of the
provider, and the cycle can start anew.

After this operational motivation, let us understand the consequences of the
semantic requirements of Def. 10, i.e., reflection of behavior and preservation
of rule applicability. The first requires that rules are compared over the GTS
(backward retyping for Step 2) with π(p) �DPB f<

TG(π′(p′)) (DPB subrule from
p to p′ for Steps 3 and 4). The second is guaranteed if the left-hand sides of
the rules p′ is contained in that of p (Steps 3 and 4), compared over GTS′

(forward retyping for Step 2). Thus, modulo retyping, p is contained in p′, but
L′ is contained in L, i.e., the rules must be essentially identical.

It is clear that this is not a satisfactory result because it means that, again,
requestor and provider components have to be developed in close coordination.
We will see in the next section that the solution consists in a separation of the
preconditions for the application of the rule from the description of the effects
of the transformation. Indeed, the problem occurs because the left-hand side of
a rule mixes up items restricting the applicability with items needed to specify
the actual transformations.

4 Separating Preconditions and Effects

As discussed in the previous section, the separate specifications of application
conditions and transformations allows for a more flexible notion of substitution
morphisms. The desired separation is achieved by extending rules with positive
and negative application conditions as introduced below. In Section 4.2, substitu-
tion morphisms will be introduced formally. It will be illustrated by an example
in Section 5, as well as the other morphisms discussed so far.

4.1 Application Conditions

Negative conditions are well-known to increase the expressive power of rules [14].
This is not the case for positive application conditions which are easily encoded
in the left-hand side of a rule (more precisely: in both the left- and the right-hand
side if the elements are to be preserved).

However, this encoding, while leading to an identical operational behavior,
is not compatible with the semantic requirements for substitution morphisms.

Flexible Interconnection of Graph Transformation Modules 55

For example, by strengthening the precondition of an operation in the import
we should preserve legal substitution relations because the overall requirements
towards existing implementations are weakened. Yet, due to the encoding we
are enlarging the rule itself, which reduces the collection of legal substitution
morphisms outgoing from the import interface.

Therefore, we consider in the following definition negative as well as positive
application conditions.

Definition 11 (rules with application conditions). An application condi-
tion A(p) = (AP (p), AN(p)) for a graph transformation rule p : (L l←− K

r−→
R) consists of two sets of typed graph morphisms AP (p), AN(p) outgoing from
L which contain positive and negative constraints, respectively. A(p) is called
positive (negative) if AN(p) (AP (p)) is empty.

Let L
l̂−→ L̂ be a positive or negative constraint and L

dL−→ G be a typed
graph morphism (cf. Fig. 12). Then dL P-satisfies l̂, if there exists a typed graph

morphism L̂
dL̂−→ G such that dL̂ ◦ l̂ = dL. dL N-satisfies l̂, if it does not P-

satisfy l̂.

L̂

d
L̂ 		

��
��

��
��

L
l̂�� l̂��

dL

��

(1)

K
l�� r ��

dK

��

(2)

R

dR

��

G D
h

��
g

�� H

Fig. 12. DPB graph transition and rule with application condition.

Let A(p) = (AP (p), AN(p)) be an application condition and L
dL−→ G be

a typed graph morphism. Then dL satisfies A(p), if it P–satisfies at least one
positive constraint and N-satisfies all negative constraints from A(p).

A graph transformation rule with application condition is a pair p̂ = (p, A(p))
consisting of a graph transformation rule p : s = (L l←− K

r−→ R) and an
application condition A(p) for p. It is applicable to a graph G via L

dL−→ G if dL

satisfies A(p).
Let p̂ = (p : (L l←− K

r−→ R), A(p)) be a graph transformation rule with
application condition. A graph transition from G to H via the rule p̂, denoted

by G
p̂/d
� H, is a graph transition via a rule p, such that dL ∈ d satisfies the

application condition of p̂.

Note that positive application conditions consist of a disjunction of positive
constraints, in contrast with the conjunction in [14]. That means, L

dL−→ G
satisfies AP (p) if it satisfies at least one positive constraints. So, positive and
negative conditions are, in fact, dual to each other.

56 Gregor Engels, Reiko Heckel, and Alexey Cherchago

As an example of a rule with positive and negative constraints let us consider
the rule req in Fig. 6. Constraints are represented in the left-hand side of the
rule where they are distinguished by dotted borders. If a positive constraint
coincides with L, we omit this border. All nodes and edges outside these borders
form the left-hand side L while L̂ is given by the left-hand side plus one of
the bordered parts and l̂ or k̂ by the corresponding embedding. Two negative
constraints and one positive, being identical to the left-hand side, constitute the
application condition of the rule req.

4.2 Substitution Morphism

We proceed with the definition of substitution morphisms, consisting of two
parts. The first one ensures that the applicability of the requestor rule implies
the applicability of the associated provider rule. This is similar to behavior-
preserving morphisms (cf. cell 5 in Table 1) except that the application condition
is considered instead of the actual rule.

The second part of the definition ensures the reflection of effects. Thus,
behavior-reflecting morphisms are appropriate here, but only for those rules of
EXP ′ which are associated to rules of IMP , cf. cell 3 of Table 1.

Below, we first deal with reflection of effects and then with preservation of
applicability.

Definition 12 (substitution morphism). Given typed graph transformation
systems GTS = (TG, P, π) and GTS′ = (TG′, P ′, π′) containing graph trans-
formation rules with application conditions. A substitution morphism fsub =
(fTG, fP) is given by a type graph morphism fTG : TG → TG′ and a mapping
fP : P → P ′ between the sets of rule names, such that for each p ∈ P we have

1. π(p) �DPB f<
TG(π′(p′)) (cf. Fig. 13 on the right)

2. applicability of p implies that of fP (p) = p′, i.e.
(a) for each f>

TG(l̂ : L → L̂) ∈ f>
TG(AP (p)) there exist l̂′ : L′ → L̂′ ∈

AP (p′) and a graph homomorphisms hL̂′
P

: L̂′ → f>
TG(L̂) such that the

corresponding square in Fig. 13 on the left commutes;
(b) for each k̂′ : L′ → L̂′ ∈ AN(p′) there exist f>

TG(k̂ : L→ L̂) ∈ f>
TG(AN(p))

and a graph homomorphism hL̂′
N

: f>
TG(L̂) → L̂′ such that the corre-

sponding square in Fig. 13 on the left commutes.

The justification for the definition of the substitution morphism is presented
in the following theorem.

Theorem 1. The substitution morphism fsub = (fTG, fP) satisfies the semantic
requirements of Def. 10.

Proof Sketch. It is necessary to show that Def. 12 implies Def. 10, i.e. (1) trans-
formation steps via a GTS′ rule can be considered as transitions via the cor-
responding GTS rule, and (2) the applicability of this GTS rule implies the

Flexible Interconnection of Graph Transformation Modules 57

f>
TG(L̂

h
L̂′

N

L
l̂/k̂

��

f>
TG

(fL)

��

)

L̂′

=h
L̂′

P

��

L′
l̂′/k̂′

��

L

fL

��

K
l�� r ��

fK

��

R

fR

��

f<
TG(L′ K′

l′
��

r′
�� R′)

Fig. 13. Substitution morphism of graph transformation rules (the functors f>
TG and

f<
TG are applied to the entire constraint of p in the left part of figure and to the entire

bottom span in the right part of figure correspondingly).

applicability of the GTS′ rule. Assume two graph transformation rules with ap-
plication conditions p̂ = (π(p), A(p)) in GTS and p̂′ = (π′(p′), A(p′)) in GTS′

such that p′ = fP (p).

1. It is necessary to demonstrate that each transformation step via the GTS′

rule can be reflected by a transition via the GTS rule. By assumption, for
each backward retyped rule f<

TG(p̂′) there is a DPO-/DPB-subrule p̂ in GTS,
i.e. there exist graph homomorphisms between the first and the second rule
(fL, fK , fR), forming a faithful transition (cf. Fig. 14 on the right). Now,
both transitions can be vertically composed using the composition of the un-
derlying pushout/pullback squares. The faithfulness of the composed tran-
sition follows from the preservation of the identification condition under the
composition of pushout/pullback squares. Obviously, both transitions have
the same underlying span G

g←− D
h−→ H .

2. We have to show that if f>
TG(dL) satisfies the application condition of f>

TG(p̂),
then dL′ satisfies the application condition of p̂′. This induces two problems:
(a) dL′ (cf. Fig. 14 on the left) must N-satisfy all negative constraints of p̂′,

i.e., there must not exist dL̂′ : L̂′ → G′. This can be proved by assuming
existence of dL̂′ and showing a contradiction. The full proof of this can
be found in [1].

(b) dL′ (cf. Fig. 14 on the left) must P-satisfy some positive constraint of
p̂′. Since the satisfiability of the positive constraints is defined dually to
the negative case, the proof is analogous.

Combining (a) and (b), we obtain that dL′ satisfies the application condition
of p̂′.

Further we discuss the application of the introduced TGTS morphisms.

5 Application of TGTS Morphisms

In this section we revise the intra-connectors relating the import/export inter-
faces and the body of a module and introduce a new concept of inter-connector
employing the substitution morphism defined in the previous section. The inter-
connectors determine a relation between the import and export interfaces of
two modules being requestor and provider of a specific service. To illustrate the

58 Gregor Engels, Reiko Heckel, and Alexey Cherchago

Fig. 14. Substitution morphisms satisfy the semantic requirements (the functors f>
TG

and f<
TG are applied to the entire application constraint of p in the left part of figure

and to the entire bottom span in the right part of figure correspondingly).

application of the substitution morphism as the inter-connector a module imple-
menting the algorithm for distributed deadlock detection (DDD) is introduced.

5.1 Extended Scenario

The algorithm for distributed deadlock detection is specified by the module
MOD′ depicted in the lower part of Fig. 15. The upper part of this figure shows
the module MOD modeling the algorithm for mutual exclusion discussed in
Section 3.1.

The module MOD′ offers a deadlock detection service at the export interface
EXP ′ asked for by the module MOD at the import interface IMP (cf. IMP
and EXP ′ in Fig. 15). At the same time, the module MOD′ lacks deadlock res-
olution capabilities provided, in turn, by the module MOD through the export
interface EXP (cf. IMP ′ and EXP in Fig. 15). In general, such a relation be-
tween module interfaces, called cyclic import, might be problematic for practical
realization. However, it properly illustrates different kinds of module connectors.

Example 4 (distributed deadlock detection). The main purpose of MOD′ is to
observe processes and resources and to detect a deadlock if asked to do so. In a
graph representing a system state, a deadlock appears as a cycle of request and
held by edges, where one process requests a resource held by another process
and simultaneously holds a resource requested by it. The distributed deadlock
detection uses blocked messages, represented by edges with a black flag, in order
to detect such cyclic dependencies.

The algorithm is invoked by a process p waiting for a resource r. The process
uses rule dead? to send a blocked -message to r. This feature is offered by MOD′

at EXP ′ for external use, e.g., by MOD. If the resource is held by another pro-
cess which itself is waiting for a resource, the message is passed on using waiting.
If this is not the case, which is checked by a negative application condition, the
message is deleted by rule ignore. Thanks to the mutual exclusion, each resource
is held by only one process. Hence, if the message arrives at a resource which is
held by the original sender, a cycle has been detected.

Flexible Interconnection of Graph Transformation Modules 59

Fig. 15. Modules implementing the algorithms for mutual exclusion (upper) and dis-
tributed deadlock detection (lower).

60 Gregor Engels, Reiko Heckel, and Alexey Cherchago

Since MOD′ is only destined for deadlock detection, deadlock resolution is
described only abstractly by the rule rel dl, which deletes the blocked -message,
but does not decide how the deadlock is actually resolved. This rule in the import
interface IMP ′ needs to be replaced by the rule of MOD with the same name.
The positive application condition of rel dl restricts the rule applicability to the
system states where a resource is held by the process, i.e. to the situations being
meaningful for the deadlock resolution.

5.2 TGTS Morphisms as Intra-connectors of Modules (Revised)

We proceed with the discussion of intra-connectors relating an import interface
and a body of a module. In Section 3.1 behavior-reflecting morphisms were
proposed for this purpose. We shall verify whether the requirements of Def. 9
are fulfilled for the corresponding constituents of the modules MOD and MOD′

in Fig. 15.
First of all, we establish a type graph morphism fTG and a mapping fP be-

tween the sets of rule names. In the module MOD the type graph TGIMP of the
import is a subgraph of TGBOD of the body. Similarly, the type graph TGIMP ′

is a subgraph of TGBOD′ in the module MOD′. The type graph morphisms in
both cases are given by inclusions. The corresponding rules in the source and
target systems are identified by their names, i.e. dead? for IMP and BOD, and
rel dl for IMP ′ and BOD′.

The rule dead? in IMP is a subrule of the BOD one, simply because the two
rules are identical (cf. Def. 9). The rule rel dl in IMP ′ is a subrule of the BOD′

rule, because the latter becomes identical to the IMP ′ rule after the backward
retyping. Hence, the specifications at IMP and IMP ′ conform with BOD and
BOD′ correspondingly.

In contrast with the import-body connector, the requirements towards the
connector between export interface and body shall be strengthened. Behavior-
preservation guarantees that the applicability of rules in the export interface
implies the applicability of corresponding body rules. However, this property
would be satisfied even for empty body rules. In fact, we also require that the
effect achieved by the body rules is at least the one promised by the rules in
the export interface. Hence, we “upgrade” behavior-preserving morphisms to
substitution morphisms. Next we shall demonstrate that the relations between
exports and bodies of the modules in Fig 15 are indeed substitution morphism.

To show this one should check preservation of applicability from the export
interface to the body and reflection of the effects between the rules in the body
and the export interface. The rules rel dl in the export interface EXP of MOD
and dead? in EXP ′ of MOD′ are identical to the body rules of the modules,
and so the properties required by Def 12 obviously hold.

5.3 TGTS Morphisms as Inter-connectors of Modules

The ultimate aim of matching import and export interfaces of requestor and
provider modules is to check whether the corresponding rules in the body of

Flexible Interconnection of Graph Transformation Modules 61

the former can be safely substituted for the rules in the body of the later. That
means the obvious choice of morphism for this inter-connector is the substitution
morphism.

Let us first discuss the relation between the import interface IMP and the
export interface EXP ′ of the modules in Fig 15. The type graph morphism fTG

from TGIMP to TGEXP ′ is given by an inclusion. The mapping fP between the
sets of rule names is unique, because only one rule dead? is contained in each of
the interfaces.

After that, one should check the preservation of applicability from IMP to
EXP ′ (cf. Def 12). Each of the rules has one positive application condition
being the union of the left-hand side and the dotted part for the IMP rule, and
coinciding with the left-hand side for the EXP ′ rule. The application conditions
of the two rules are the same because the forward retyping of the EXP ′ rule
does not introduce any changes. Applicability is thus preserved.

The last step is the reflection of effects. While the backward retyping of
the EXP ′ rule gets rid of the blocked -message, it is still bigger in context and
effect then the IMP rule. This is allowed by the DPB-subrule relation which
can be established between the two rules. Thereby, the import interface IMP is
associated with the export interface EXP ′ by a substitution morphism.

Now we discuss the relation between the import interface IMP ′ and the ex-
port interface EXP . The type graphs TGIMP ′ and TGEXP of the two systems
are the same, consequently the retyping does not change the rules. The positive
application conditions of the rules rel dl coincide, that means preservation of
applicability from IMP ′ to EXP . The reflection of effects is ensured by the
DPO-subrule relation between the two rules in spite of the bigger context of the
EXP ′ rule additionally containing the held by edge. Hence, the import inter-
face IMP ′ and the export interface EXP are also connected by a substitution
morphism.

The fact that import-export and export-body relations are both described by
substitution morphisms allows us, by means of their composition, to consider the
body of the provider module as a replacement for the export of the requestor.
This is the first prerequisite for a composition of modules, i.e., the actual sub-
stitution of the import by the body. The detailed analysis of this construction
is, however, beyond the scope of this paper.

The final section summarizes the main results of our work.

6 Conclusion

The contributions of this paper can be summarized in two points: a system-
atic presentation of morphisms of graph transformation systems along with a
recipe of how to define new variants, if needed, in a generic framework; and a
novel notion of substitution morphism between graph transformation systems
with application conditions being uniformly introduced in the context of this
framework.

The latter has been motivated by the need to connect import and export
interfaces of modules in a flexible way, i.e., such that they can be developed

62 Gregor Engels, Reiko Heckel, and Alexey Cherchago

independently of each other. The first result is a reaction to the multitude of
proposals and variants that exist in the literature.

Future work will include the further analysis of modules based on the con-
nectors introduced here, in particular their composition, as well as possible gen-
eralizations towards refinements of both the general framework and the notion
of substitution morphism.

References

1. A. Cherchago and R. Heckel. Specification matching of web services using con-
ditional graph transformation rules. In H. Ehrig, G. Engels, F. Parisi-Presicce,
and G. Rozenberg, editors, Proc. 2nd Int. Conference on Graph Transformation
(ICGT’04), Rome, Italy, volume 3256 of LNCS. Springer-Verlag, 2004.

2. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg. The category of
typed graph grammars and their adjunction with categories of derivations. In 5th
Int. Workshop on Graph Grammars and their Application to Computer Science,
Williamsburg ’94, LNCS 1073, pages 56–74. Springer-Verlag, 1996.

3. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

4. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation, Part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations, pages 163–245. World Scientific,
1997. Preprint available as Tech. Rep. 96/17, Univ. of Pisa, http://www.di.unipi.
it/TR/TRengl.html.

5. H. Ehrig and G. Engels. Pragmatic and semantic aspects of a module concept
for graph transformation systems. In 5th Int. Workshop on Graph Grammars
and their Application to Computer Science, Williamsburg ’94, LNCS 1073, LNCS,
pages 137–154. Springer-Verlag, 1996.

6. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

7. H. Ehrig and B. Mahr. Fundamentals of algebraic specification 2: module specifi-
cations and constraints. Springer-Verlag, 1990.

8. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

9. M. Große–Rhode, F. Parisi Presicce, and M. Simeoni. Concrete spatial refine-
ment construction for graph transformation systems. Technical Report SI 97/10,
Università di Roma La Sapienza, Dip. Scienze dell’Informazione, 1997.

10. M. Große–Rhode, M. Simeoni, and F. Parisi Presicce. Refinements and modules
for typed graph transformation systems. In J.L.Fiadeiro, editor, Proc. WADT’98
(Workshop on Algebraic Development Techniques), at ETAPS’98, Lisbon, April,
number 1589 in LNCS, pages 138 – 151. Springer, 1999.

11. M. Grosse-Rhode, F. Parisi-Presicce, and M. Simeoni. Spatial and temporal re-
finement of graph transformation systems. In Proc. of Mathematical Foundations
of Computer Science 1998, volume 1450 of LNCS, pages 553–561. Springer-Verlag,
1998.

Flexible Interconnection of Graph Transformation Modules 63

12. M. Grosse-Rhode, F. Parisi-Presicce, and M. Simeoni. Refinements and modules
for typed graph transformation systems. In J.L. Fiadeiro, editor, Proc. Workshop
on Algebraic Development Techniques (WADT’98), at ETAPS’98, Lisbon, April
1998, volume 1589 of LNCS, pages 138–151. Springer-Verlag, 1999.

13. M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni. Refinement of graph trans-
formation systems via rule expressions. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Proc. 6th Int. Workshop on Theory and Application
of Graph Transformation (TAGT’98), Paderborn, November 1998, volume 1764 of
LNCS, pages 368–382. Springer-Verlag, 2000.

14. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26(3,4):287 – 313, 1996.

15. J.H. Hausmann, R. Heckel, and M. Lohmann. Model-based discovery of web ser-
vices. In Proc. International Conference on Web Services, San Diego, USA, July
2004.

16. R. Heckel. Open Graph Transformation Systems: A New Approach to the Com-
positional Modelling of Concurrent and Reactive Systems. PhD thesis, TU Berlin,
1998.

17. R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical structuring
of typed graph transformation systems. Math. Struc. in Comp. Science, 6(6):613–
648, 1996.

18. R. Heckel, H. Ehrig, U. Wolter, and A. Corradini. Double-pullback transitions and
coalgebraic loose semantics for graph transformation systems. Applied Categorical
Structures, 9(1), January 2001. See also TR 97-07 at http://www.cs.tu-berlin.
de/cs/ifb/TechnBerichteListe.html.

19. R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. Classification and comparison of
modularity concepts for graph transformation systems. In Ehrig et al. [6], pages
669 – 690.

20. R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. A view-based approach to system
modelling based on open graph transformation systems. In Ehrig et al. [6], pages
639 – 667.

21. H.-J. Kreowski and S. Kuske. On the interleaving semantics of transformation
units - a step into GRACE. In 5th Int. Workshop on Graph Grammars and their
Application to Computer Science, Williamsburg ’94, LNCS 1073, pages 89 – 106.
Springer-Verlag, 1996.

22. B. Meyer. Object-Oriented Software Construction. Prentice Hall International,
1988.

23. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, TU Berlin, 1996.

24. A. Schürr and A.J. Winter. UML packages for PROgrammed Graph REwrite
Systems. In Selected Papers of 6th International Workshop on Theory and Appli-
cation of Graph Transformations (TAGT’98), Paderborn, Germany, volume 1764
of LNCS, pages 396–409. Springer-Verlag, 1999.

25. A.M. Zaremski and J.M. Wing. Signature matching: a tool for using software
libraries. ACM Transactions on Software Engineering and Methodology (TOSEM),
4(2):146 – 170, April 1995.

26. A.M. Zaremski and J.M. Wing. Specification matching of software components. In
Proc. SIGSOFT’95 Third ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, volume 20(4) of ACM SIGSOFT Software Engineering Notes,
pages 6–17, October 1995. Also CMU-CS-95-127, March, 1995.

