
Electronic Notes in Theoretical Computer Science 82 No. 6 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 12 pages

Towards Contract-based Testing of
Web Services

Reiko Heckel 1

Faculty of Computer Science, Electrical Engineering
University of Paderborn

33098 Paderborn, Germany

Marc Lohmann 2

Faculty of Computer Science, Electrical Engineering
University of Paderborn

33098 Paderborn, Germany

Abstract

Web Services are composed by linking together service providers and requestors.
To ensure interoperability, the requestor’s requirements for a service have to be
matched against a service description offered by the provider.

Besides data types and operation signatures, this requires service specifications
to include behavioral information, like contracts specifying pre- and post-conditions
of (required or provided) operations.

In this paper, we propose to visualize contracts by graph transformation rules
which blend well with a UML-based notion of data models and signatures. The
operational interpretation of rules could turn out to be useful for simulating the
behavior of required components in unit testing.

Key words: Web Services, Design by Contract, graph
transformation

1 Introduction

Modern distributed applications are built according to the service-oriented
architecture (SOA), the conceptual model underlying platforms like Web Ser-
vices [3] or Jini [17]. As shown in Fig. 1 (cf. [3]), service-oriented architec-
tures involve three different kinds of participants: service providers, service

1 Email: reiko@uni-paderborn.de
2 Email: mlohmann@uni-paderborn.de

c©2004 Published by Elsevier Science B. V.

Heckel, Lohmann

requestors and registry services. The service provider exposes some software
functionality as a service to its clients. Such a service could, e.g., be a SOAP-
based Web Service for electronic business collaborations over the Internet. In
order to allow clients to access the service, the provider has to publish a de-
scription of the service. Since service provider and service requestor usually
do not know each other in advance, the service descriptions are published
via special registry services. After these registry services have registered and
categorized the service descriptions, they can provide them in response to a
query issued by one of the service requestors. As soon as the service requestor
finds a suitable service description for its requirements at the registry, it can
bind to the provided service and use it. Such service-oriented architectures
are typically highly dynamic because the services are only loosely coupled and
clients often bind to services at runtime.

Registry Service

Service
Requester

Service
Provider

Service
Description

Service
Description

Service

Client
Bind

PublishFind

Fig. 1. Service Oriented Architecture

The mechanisms to achieve this vision of an open, dynamic architecture
rely on two assumptions.

(i) Provided services are functionally correct w.r.t. their descriptions.

(ii) Matching descriptions with requirements is sufficient to establish the in-
teroperability of provider and requestor.

The first assumption is obvious. It is necessary for all kinds of systems
and it may be established by unit testing. The second assumption comes
from the fact that loosely coupled distributed systems cannot be tested in
integration. Instead, the specifications have to contain enough information
about the provided and requested behavior that, once a match is established,
requestor and provider can work together successfully.

A method addressing similar issues in object-oriented development is De-
sign by Contract [12], where assertions are used to specify the relation be-
tween a component and its clients as a formal agreement, expressing each
party’s rights and obligations. Contracts are expressed in terms of pre- and
post-conditions of operations as well as invariants and can range from very
abstract specifications (given two positive integers, the result will never be
zero) to complete specifications (this computes the sum of two integers). This

2

Heckel, Lohmann

flexibility allows for providing just the right amount of information on the
behavior required.

In this paper, we want to discuss the use of Design by Contract for Web
Service descriptions. This includes the problem of testing Web Services against
their descriptions.

The paper is organized as follows: In Section 2 we describe Design by Con-
tract in more detail. In Section 3, we apply this concept to Web Services and
introduce a visualization of contracts by graph transformation rules. Section 4
discusses the use of contracts for testing and Section 5 concludes the paper.

2 Design by Contract

Design by Contract is an object oriented design technique that shares some
similarities with establishing a legal contract [12]: viewing the relationship
between a class and its clients as a formal agreement, expressing each party’s
rights and obligations. With this precise definition of a class claims and re-
sponsibilities at code level we can add specifications to the source code and
attain a significant degree of trust in large software systems [12].

Design by Contract can also be used at the level of components. As a
developer using Design by Contract, you specify component contracts as part
of the components offered interfaces. The contract then describes what that
component expects of its clients and what clients can expect of it. Typically
contracts for a component are then written from the server’s perspective: ”If a
client promises to provide x when sending a message, then the server promises
always to return y in response to such a message.“

A contract states what both parties must do, independent of how it is
accomplished. A contract is typically defined by assertions and associated
concepts. An assertion is a Boolean expression involving some entities of the
software, and stating a property that these entities may satisfy at certain
stages of software execution. A typical assertion might express that a certain
integer has a positive value or that a certain reference is not void. At runtime,
you can evaluate these assertions during the system’s execution. In a valid
software system, all assertions evaluate to true. In other words, if any assertion
evaluates to false, we consider the software system invalid or broken according
to its specification.

In Design by contract we identify three different kinds of assertions [2]:

Pre-conditions: Pre-conditions specify conditions that must hold before a
operation can execute. As such, they are evaluated just before a method
executes. Pre-conditions involve the system state and the arguments passed
into the method.

Post-conditions: In contrast, post-conditions specify conditions that must
hold after a operation completes. Consequently, post-conditions are evalu-
ated after a method completes.

3

Heckel, Lohmann

Invariants: An invariant specifies a condition that must hold anytime a client
could invoke an object’s method. Invariants are defined as part of a class
definition. In practice, invariants are evaluated anytime before and after
a method on any class instance executes. A violation of an invariant may
indicate a bug in either the client or the software component.

3 Design by Contract for Web Services

In the following, we describe different levels the concept of Design by Contract
is needed for Web Services. Further, we introduce the notions of provided and
required contracts to allow for using Design by Contract on provider as well
as on requestor side.

3.1 Specification levels of DbC for Web Services

A Web Service is a component that is network-accessible via standardized
XML-messaging mechanisms. The vision of Web Services is that they connect
applications with each other using the internet to exchange data and combine
data in new ways [7]. To inform a service requestor about its rights and obliga-
tions, contracts have to be transferred from the service provider to the service
requestor. Thus, using Design by Contract for Web Services we face different
representations of contracts beyond the classical implementation-level. Alto-
gether, we face representation of contracts during the development process of
a Web Service on three different levels:

Implementation-level: Here, a contract consists of a Boolean expression
of the implementation language, using all the functional features (access to
fields, method calls, basic types and operations) with some specific operators
to refer to pre-conditions (e.g. pre) and to post-conditions (e.g. post).

Current Web Services are in the majority of cases based on object-oriented
programming languages. Most of these programming languages only sup-
port syntactic contracts, but some languages, as for example Eiffel [11],
inherently incorporate behavioral contracts with pre-, post-conditions, and
invariants. However, there are different approaches to extend existing lan-
guages with behavioral contracts, like iContract [10], JML [5], or JCon-
tract [15] for Java. An example of JContract looks as follows:

/**

* @pre ((b!=null) \&\& (a!=null) \&\& (c!=null))

* @post \$result.getBill() != null

*/

public Order orderBook(Book b, DeliveryAddress a,

CreditCard c) {

...

return order;

...}

4

Heckel, Lohmann

XML-level: Web-Services are components that are used over the Internet us-
ing XML-based protocols. The Web Service Description Language (WSDL)
[6], for example, describes the interface offered by a Web Service as a col-
lection of network endpoints (ports) in terms of operation signatures. This
description can be read by a service requestor to access the interfaces offered
by a service provider (see Fig. 2). However, WSDL falls short of providing
behavioral information on operations. An extension with operation con-
tracts would solve this problem.

Requester Provider

<<component>>
Provider Agent

<<component>>
Requester Agent

Proxy <<use>>

<<use>>

WSDL+WSDL+

describescr
ea

te
d

fr
om

Transfer of
WSDL+ file

Fig. 2. Transfer of interface descriptions to requestor agent

Model-level: The main drawback of the first two levels is that they are hard
to read and write for humans. A visualization for contracts that enables
documentation and communication between developers would be preferable.
In the following, we will concentrate on the model-level specification of
contracts to explain our ideas.

The goal is to derive implementation- and model-level contracts auto-
matically from the model-level specification. A developer then only has to
create and reason about contracts on model-level.

3.2 Model-based specification of contracts

A model for a Web Service should have at least the following parts.

• the offered interface including its operations;

• a model of the externally visible data of the service, i.e., all data types
needed for communication with its clients;

• contracts describing the operations offered by the service.

For describing an interface, we use UML interfaces [13] as shown in Fig. 3.

We use class diagrams to model the data model of a problem domain.
These class diagrams describe the data structures that are of interest for

5

Heckel, Lohmann

+orderBook(in b : Book, in a : DeliveryAdress, in c : CreditCard) : Order

«interface»
BookShopInt

Fig. 3. Interface of a simple online shop

providers and requestors of a specific domain (e.g. business areas or technical
domains). This enables requestor and provider to share a common language
to be sure that they use the same keywords for describing identical concepts.
Fig. 4 provides a small data model for the domain for bookselling. It provides
the basic terminology and is depicted as a UML class diagram. In this domain,
an order is composed of a DeliveryAddress, the ordered Book, and a Bill. A
generalization relationship indicates that CreditCard and BankTransfer are
specializations of the basic concept PaymentMethod. This means, that a bill
can be paid either by credit card or by a bank transfer.

Ontology

Book

PaymentMethod

CreditCardBankTransfer

Order Bill

1 1

payBy

DeliveryAdress

1 1

1

*

1

1

Fig. 4. Data model for bookselling (attributes omitted)

A service provider now can express by a contract that his service is able to
handle orders for books which are payable by credit card. We therefore devel-
oped a technique, which uses the mechanism of graph transformation rules to
facilitate an intuitive visual formulation of contracts. Before we introduce the
technical details let us look at the example rule of a service provider in Fig. 5.
The rule expresses that the Web Service needs data on a book to order, the
personal data of the buyer and his credit card and will effect a new order for
the specified book and a bill (which is paid by credit card) to be created for
this customer. We can see that the service behaves as we intuitively expected
from its name. Using the mechanism of graph transformation it becomes easy
to describe all kinds of different services in this area. One might e.g. formulate
descriptions for Services, which add items to existing orders or delete items or
which offer books without any payment information. A simple translation of
the graph transformation rule in Fig. 5 into JContract is shown in Section 2.

Formally, a graph transformation rule consists of two graphs (left and right
hand side), which are in our case visualized by using UML object diagrams.
Each of the graphs is typed over a class diagram. Refer to [16,1] for the
technical details. The basic intuition is that every object, which is only present
in the right hand side of the rule, is newly created and every object, which is
present only in the left hand side of the rule, is being deleted. Objects which
are present on both sides are unaffected by the rule. If only one object of a
type exists, it can remain anonymous, if a distinction between different objects

6

Heckel, Lohmann

of one type is necessary, then they carry names, separated from their type by
a colon. If an even closer resemblance to standard UML concepts is called
for, it is also possible to encode graph transformations in UML Collaboration
Diagrams [9].

Provider Rule

dap : DeliveryAdress

ccp : CreditCard

bp : Book

op : Order bip : Bill

dap : DeliveryAdress

ccp : CreditCard

bp : Book

Fig. 5. Contract describing the behavior of the operation orderBook

3.3 Required and provided contracts

Service-oriented architectures are highly dynamical and flexible. A service
requestor can replace a service provider dynamically at runtime or develop-
ment time. This flexible architecture requires new mechanisms to ensure that
service requestor and service provider can work together. On this account we
use graph transformation rules for both: a description of an offered service
and as the formulation of a request. A service provider details its offered
interface by a provided contract and a service requestor details its required
interfaces by a required contract. From a providers point of view the left hand
side of the rule specifies the pre-condition of his service, i.e. the situation that
must be present or the information that must be available for the service to
perform its task. The right hand side of the rule depicts the post-condition,
i.e. it characterizes the situation after the successful execution of the Web
Service. From a requestors point of view the left hand side of the rule rep-
resents the information he is willing to provide to the service and the right
hand side of the rule represents the situation he wants to achieve by using the
service. Such a rule from a requestors point of view can be found in Fig. 6.
This rule expresses that the client is able to provide information on a book,
a credit card and his delivery address and is looking for a provider, which is
able to construct an order for him based on these information. This means
he is looking for a book-seller and intuitively the provider rule from Fig. 5
should be a suitable candidate for this request, because in this rule an order
is created. Notice that the rule in Fig. 6 is a minimal demand of the service
requestor to order a book. Unlike the contract in Fig. 5 the bill is not part of
the post-condition as the requestor is primarily interested in ordering a book
(paying for it is a kind of unwelcome side effect from the requestor’s point of
view). To allow changing the service provider we have defined in [8] criteria’s
whether a provided contract of a service provider fulfills the required contract
of a service requestor.

In summary, a Web Service offers interfaces that are detailed by provided

7

Heckel, Lohmann

Client Rule (Post of client is subset
of Post of provider):

dar1 : DeliveryAdress

ccr1 : CreditCard

br1 : Book

or1 : Order

dar1 : DeliveryAdress

ccr1 : CreditCard

br1 : Book

Fig. 6. Required contract of a service requestor describing the behavior of the
operation orderBook

contracts and can self use other services. Since the latter are only known at
run-time, at design-time behavior specifications of all required interfaces are
created which contain operation contracts (Fig. 7).

<<component>>
Provider Agent

Provided Interface Required Interface

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

or2 : Order

btr2 : BankTransfer

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

btr2 : BankTransfer

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

or2 : Order

btr2 : BankTransfer

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

btr2 : BankTransfer

Interfaces detailed by graph transformation rules

Fig. 7. Service Provider specified by provided and required contracts

4 Testing Web Service contracts

Design by Contract is a formal way to specify the behavior of operations.
Using Design by Contract at implementation level is a way to incorporate
specification information into the code itself. However, we still have to test
the implementation against its specification. The question is how Design by
Contract can be used to support testing, i.e., to create, select, and execute
test cases.

In this paper, we are interested in functional tests, i.e., black-box tests
derived from contracts. Such tests ensure that the delivered product meets
its specification [4]. With this goal in mind, it makes sense to use provided
contracts both for the creation of test cases (sample input data) and test
oracles (conformance checks for the output).

However, as discussed in the introduction, open distributed applications
limited our scope to unit testing. Indeed, classical integration testing is dif-
ficult within the field of Web Services because it has to connect different
services to determine if they are interoperable. This is a problem because (i)
the Web Services called by the Web Service under test may not be known at
design-time and (ii) it may impossible or expensive to call them just for test-
ing purposes. For example, a Web Service for booking a holiday could require

8

Heckel, Lohmann

other services for booking flights, hotels, etc. Actually booking all facilities
with each test case would soon exceed the testing budget. Therefore, we need
to simulate required services. We propose to use required contracts to drive
this simulation.

4.1 Creating test suites from provided contracts

For testing purposes, we have to execute a Web Service using combinations of
input parameters to demonstrate the conformance of the service to its provided
contracts. A test driver applies different test cases or test suites to a Web
Service using its provided interface (see Fig. 8). Within this paper, a test case
specifies input values for an operation of an interface of a Web Service. A test
suite is a collection of test cases, typically related by a testing goal [2]. In
our case, a test suite could be a collection of test cases to test all individual
operations offered by an interface of a Web Service. Using Design by Contract,
the input values making up a test case can be derived from the pre-condition
of a provided contract. As described above, pre-conditions specify conditions
that must hold before a method can execute. As such, they describe allowed
arguments for an operation call.

Rather than deriving test cases manually, we consider to use the Jtest tool
by Parasoft [14] for this purpose. Jtest is a Java-based unit testing tool. Its
aim is to support the testing of components before they are integrated into an
environment. Jtest works together with JContract whose implementation-level
contracts are analyzed to derive test cases and oracles. Thus, Jtest enables
automated unit-level functional testing.

<<component>>
Provider Agent

Provided Interface Required Interface

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

or2 : Order

btr2 : BankTransfer

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

btr2 : BankTransfer

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

or2 : Order

btr2 : BankTransfer

dar2 : DeliveryAdress

ccr2 : CreditCard

br2 : Book

btr2 : BankTransfer

<<component>>
Test Driver incl.

Test Oracle

Interfaces detailed by graph transformation rules

Fig. 8. Design by Contract for testing Web Services

9

Heckel, Lohmann

4.2 Required contracts for component simulation

For the reasons mentioned above, tests should be restricted to single Web
Services. To simulate the behavior of the services required by the service
under test, we propose to use the corresponding required contracts. The idea
is that the contracts describe the interaction between different Web Services.
A test driver can use these contracts to simulate the Web Service called by
the Web Service under test (see Fig. 8). Each time the Web Service under
test uses the required interface the test driver is called and creates a return
value by applying the contract to the input data provided by the client service.
That means contracts are given an operational semantics.

Such operational interpretation is not obvious for logic-based descriptions,
but naturally contained in the rule-based view of graph transformations. In
this sense, a required service is simulated by a typed graph transformation
system having all required contracts as rules and working on object diagrams
over the class diagram of the service.

5 Summary

In this paper, we proposed some ideas to enable testing of Web Services by
using Design by Contract to add behavioral information to the specification
of a Web Service. As an important new aspect, we introduced provided and
required contracts. Provided contracts describe the behavior offered and re-
quired contracts the behavior needed by a Web Service. We have used graph
transformation rules to describe the contracts at the level of models. This
allows a simulation of the required Web Service by accomplishing the required
contracts during the execution of a test case.

To conclude, we list the open issues of the approach (hoping that some of
them might be resolved by building on the work of other people).

• An XML-based language for contracts has to be defined and integrated into
existing standards like WSDL.

• A UML-based notation for contracts has to be fixed using concepts of graph
transformation rules. A CASE tool has to be found or adapted to support
the editing of these models.

• A mapping of UML-based contracts to JContract (or other implementation-
level contract languages), as well as to a XML-based contract language is
required. Based on this mapping we want to deduce the general contract
semantics that can be expressed by means of graph transformation rules.
Also, these mappings have to be supported by tools.

• A simulation engine for required services has to be provided, e.g., by wrap-
ping a graph transformation tool like AGG or Fujaba into a Web Service
interface.

10

Heckel, Lohmann

References

[1] Baresi, L. and R. Heckel, Tutorial introduction to graph transformation: A
software engineering perspective, in: A. Corradini, H. Ehrig, H.-J. Kreowski
and G. Rozenberg, editors, Proceedings of the First International Conference on
Graph Transformation (ICGT 2002), Lecture Notes in Computer Science 2505
(2002), pp. 402–429, http://www.upb.de/cs/ag-engels/ag_engl/People/
Heckel/talks/Agtive2003Tutorial/.

[2] Binder, R. V., “Testing Object-Oriented Systems: Models, Patterns, and Tools,”
Object Technology Series, Addison Wesley, 1999.

[3] Booth, D., H. Haas, F. McCabe, E. Newcomer, I. M. Champion, C. Ferris and
D. Orchard, “Web Services Architecture, W3C Working Group Note,” (2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[4] Carmichael, A. and D. Haywood, “Better Software Faster,” Prentice Hall PTR,
2002.

[5] Cheon, Y. and G. T. Leavens, A runtime assertion checker for the Java
Modeling Language (JML), in: H. R. Arabnia and Y. Mun, editors, Proceedings
of the International Conference on Software Engineering Research and Practice
(SERP ’02), Las Vegas, Nevada, USA, June 24-27, 2002 (2002), pp. 322–328,
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf.

[6] Chinnici, R., M. Gudgin, J.-J. Moreau and S. Weerawarana, “Web Services
Description Language (WSDL) Version 1.2 Part 1: Core Language,” (2002),
http://www.w3.org/TR/wsdl12/.

[7] Fensel, D. and C. Bussler, The web service modeling framework wsmf, Technical
report, Vrije Universiteit Amsterdam (VU) (2002), http://www.csd.uch.gr/
~hy565/Papers/wsmf.pdf.

[8] Hausmann, J. H., R. Heckel and M. Lohmann, Towards automatic selection of
web services using graph transformation rules, in: R. Tolksdorf and R. Eckstein,
editors, Berliner XML Tage (2003), pp. 286–291, http://www.upb.de/cs/
ag-engels/Papers/2003/BXMT-AutomaticSelectionOfWS.pdf.

[9] Heckel, R. and S. Sauer, Strengthening uml collaboration diagrams by state
transformations, in: H. Hussmann, editor, Fundamental Approaches to Software
Engineering, 4th International Conference, FASE 2001, held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2001,
Genova, Italy, April 2-6, 2001, Proceedings, LNCS 2029 (2001), pp. 109–123.

[10] Kramer, R., iContract – the Java design by contract tool, TOOLS 26:
Technology of Object-Oriented Languages and Systems, Los Alamitos,
California (1998), pp. 295–307.

[11] Meyer, B., “Eiffel: The Language,” Object-Oriented Series, Prentice Hall, New
York, NY, 1992.

11

http://www.upb.de/cs/ag-engels/ag_engl/People/Heckel/talks/Agtive2003Tutorial/
http://www.upb.de/cs/ag-engels/ag_engl/People/Heckel/talks/Agtive2003Tutorial/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf
http://www.csd.uch.gr/~hy565/Papers/wsmf.pdf
http://www.csd.uch.gr/~hy565/Papers/wsmf.pdf
http://www.upb.de/cs/ag-engels/Papers/2003/BXMT-AutomaticSelectionOfWS.pdf
http://www.upb.de/cs/ag-engels/Papers/2003/BXMT-AutomaticSelectionOfWS.pdf

Heckel, Lohmann

[12] Meyer, B., “Object-Oriented Software Construction, 2nd Ed,” Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 1997, second edition, xxvii + 1254 pp.
URL http://www.prenhall.com/allbooks/ptr_0136291554.html

[13] Object Management Group, UML specification version 1.4 (2001), http://
www.celigent.com/omg/umlrtf/.

[14] Parasoft, “Automated Java Unit Testing Coding Standard Compliance, and
Team-Wide Error Prevention,” (2003), http://www.parasoft.com/.

[15] Parasoft, “Using Design by ContactTM to Automate Java Software and
Component Testing,” (2003), http://www.parasoft.com/.

[16] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations,” World Scientific, 1997.

[17] Sun microsystems, “Jini Architectural Overview - Technical White Paper,”
(1999), http://wwws.sun.com/software/jini/whitepapers/architecture.
pdf.

12

http://www.prenhall.com/allbooks/ptr_0136291554.html
http://www.celigent.com/omg/umlrtf/
http://www.celigent.com/omg/umlrtf/
http://www.parasoft.com/
http://www.parasoft.com/
http://wwws.sun.com/software/jini/whitepapers/architecture.pdf
http://wwws.sun.com/software/jini/whitepapers/architecture.pdf

	Introduction
	Design by Contract
	Design by Contract for Web Services
	Specification levels of DbC for Web Services
	Model-based specification of contracts
	Required and provided contracts

	Testing Web Service contracts
	Creating test suites from provided contracts
	Required contracts for component simulation

	Summary
	References

