Automatic Conformance Testing of Web Services

Reiko Heckel and Leonardo Mariani

Department of Mathematics and Computer Science,
University of Paderborn,
33095 Paderborn, Germany
{heckel, mariani}Qupb.de

Abstract. Web Services are the basic building blocks of next generation
Internet applications, based on dynamic service discovery and composi-
tion. Dedicated discovery services will store both syntactic and behav-
ioral descriptions of available services and guarantee their compatibility
with the requirements expressed by clients. In practice, however, inter-
actions may still fail because the Web Service’s implementation may be
faulty. In fact, the client has no guarantee on the quality of the imple-
mentation associated to any service description.

In this paper, we propose the idea of high-quality service discovery
incorporating automatic testing for validating Web Services before al-
lowing their registration. First, the discovery service automatically gen-
erates conformance test cases from the provided service description, then
runs the test cases on the target Web Service, and only if the test is suc-
cessfully passed, the service is registered.

In this way, clients bind with Web Services providing a compatible
signature, a suitable behavior, and a high-quality implementation.

1 Introduction

Internet and the WWW provide a huge amount of services accessible from every
connected machine. Most of these services are designed for human users, and
only a strict subset can be easily discovered by search engines. This scenario is
in contradiction to that of a machine-readable Web that exploits dynamic and
automatic composition of services [1].

Web Services and the Service Oriented Architecture (SOA) represent a step
toward the Internet as computational infrastructure [2, 3]. Web Services are soft-
ware applications identified by URIs, whose interfaces and bindings are defined
and discovered through XML documents. A Web Service supports direct inter-
actions with other software agents using XML-based messages exchanged via
Internet-based protocols [2]. The SOA provides the basic infrastructure for the
discovery and dynamic binding of Web Services by defining the roles of provider,
requestor and discovery service. A provider offering a service publishes its de-
scription at the discovery service. The requestor queries the discovery service in
order to find a suitable service it can interact with to perform a certain task.
The discovery service provides functions for storing, classifying, and browsing
registered services [3].

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 34-48, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Conformance Testing of Web Services 35

With this basic scenario, several problems remain open. First of all, service
description and discovery is largely syntactic, reduced to the signatures of oper-
ations and simple classifications. Thus, there is no guarantee that the returned
service operates in the way expected by the client. This problem can be over-
come by augmenting the syntactic description by a behavioral specification of
the service. Rather than logic or algebraic techniques we prefer graph transfor-
mation rules for this purpose because they blend well with UML, the standard
software modeling language, thus keeping the additional effort manageable [5].

Graph transformation rules have been proposed for modeling both the be-
havior of the provided service and the client’s requirements [4]. The provider
uploads (an XML representation of) these models together with the syntactic
service description, while the requestor uses a requirements model to specify
its query. Then, service discovery includes the matching of these models at the
discovery service: If the provided model satisfies the requirements, binding is
allowed; otherwise another Web Service must be selected.

This new scenario increases the reliability of the binding between the re-
questor and the provider. However, another problem still exists. Can the client
trust the implementation of the service description? The provider may register a
suitable model, but provide a faulty implementation; for instance because of in-
sufficient testing. Moreover, service providers could maliciously provide “models
better than services”. Since a faulty interaction can affect a distributed compu-
tation, clients dynamically binding to faulty Web Services can encounter serious
problems, e.g., a complex business transaction may lead to expensive recovery
procedures. Therefore, requestors exploiting dynamic and automatic discovery
and binding require high-quality Web Services. To reach this goal we foresee the
introduction of High-Quality Service Discovery agencies, i.e., discovery services
with added functionality for behavioral matching and automatic testing.

High-quality service discovery automatically tests a Web Service with respect
to a provided model consisting of GT rules that specify the individual operations
of the service. The registration of services is allowed only if testing is passed,
otherwise a report is generated and sent to the service provider. The developer
of the Web Service can use the report to refine either the rules of the models or
the implementation, depending on the origin of the problem.

Clients that use a high-quality service discovery agency have the guarantee
that any discovered Web Service has passed the testing phase, therefore it can
rely on both the interface compatibility and the implementation of the service.

2 Registration Scenario

We focus on the scenario taking place during the registration of a new service.
The discovery and binding phases have been discussed in [4].

Let us assume the existence of a provider P and a discovery service U. P
provides a Web Service ws that is described by means of both a syntactic inter-
face description (e.g., a WSDL descriptor) and GT rules specifying the offered
behavior. The registration phase includes the following steps (see Figure 1):

36

3

R. Heckel and L. Mariani

| PASS/ FAIL + REPORT

Fig. 1. The registration process for a new Web Service

. The provider P uploads both the WSDL document and the GT rules to the

discovery service U. See Section 3 for details on the specification of Web
Services by GT rules.

The discovery service U automatically generates a set of test specifications
from the GT rules. Tests cover validation of both single operations and
sequences. See Section 4 for details.

Concrete test cases are generated and remotely executed using a testing
interface T provided by the Web Service ws. This resembles the normal
interface, but includes additional functions facilitating the execution of the
test cases. See Section 5 for details.

Results of test cases are judged based on the returned results and the con-
ceptual state of the service after completing the operation. The latter is read
through the testing interface which provides access to an abstraction of the
internal data state. See Section 5 for details.

If all test cases have been passed, the discovery service U registers the new
Web Service with both the WSDL document and the GT rules for matching
against the requirements of requestors. Finally, the service provider replaces
the testing interface by the ordinary one. If test cases have failed, the dis-
covery service U generates a report that is sent to the provider P.

Specification of Web Services by GT Rules

A Web Service provides a coherent set of operations based on a common data
model, i.e., an XML schema. Together with the operation’s signatures this makes
up the WSDL description of the service. Extending this syntactic description,
the behavioral specification of operations by means of GT rules is based on the
data model of the service interface as well as a conceptual model of the internal
state of the service. At the model level, the state is represented by an attributed
graph, visualized as an UML object diagram [6].

A GT rule refines the signature of the service, specifying how parameters

and internal data are used and modified. Each service is associated to a set
of production rules representing the different computations that can take place

Automatic Conformance Testing of Web Services 37

ast J:zbs

G/ﬁl{/

Fig. 2. Relation between conceptual and implementation state transformation

when the service is executed with different input values at different states. A
production rule has a precondition and an effect. If the precondition is satisfied,
the rule can be applied. The effect consists of objects and links that are deleted
and added, and attribute values that are modified. A graph can satisfy the
preconditions of multiple rules, in such case the choice is non-deterministic.

In this paper, we visualize graph transformations by the notation proposed
in [7], see Figure 3 for an example. The semantics of the adopted graphical
notation is the following one: nodes and edges fully contained inside the triangle
are part of the pre-condition: they must be present and are not deleted by the
application; edges and nodes partially or fully present at the left-hand side of
the triangle are part of the pre-condition, too, but they are deleted when the
rule is applied; nodes and edges partially or fully present on the right-hand side
of the triangle are created by the rule; and finally, edges and nodes partially or
fully present below the triangle form a negative application condition: they must
not be present in the given graph. Parameters are distinguished from objects in
the state of the server by a gray background. Finally, at the bottom of the
graphical notation, guard conditions and assignment are provided. The guard is
a Boolean expression over attributes: a production rule can take place only if the
guard is evaluated to true. The assignment is responsible for updating values of
attributes.

Graph transformations specify the behavior of a Web Service at the concep-
tual level. Therefore, the state of the service whose evolution is described does
not coincide with the concrete data state, whose representation may involve Java
objects and attributes or database tables, depending on the used implementa-
tion technology. Testing is performed on the implementation of the Web Service,
hence it refers to the concrete data state. However, test cases are generated from
the specification, thus they refer to the conceptual state. Figure 2 captures this
situation where G’ is the concrete state of the service, and G represents the
abstract state that corresponds to G’ [8]. G can be obtained from G’ by an
abstraction function abs that extracts a high-level representation of the actual
state. A production rule p can be applied to the abstract state to obtain a new
abstract state H. In the same way, the corresponding service s can be executed
on the concrete state G’ to obtain a new concrete state H'.

Testing is used to demonstrate the conformance of the specification with the
implementation. We define conformance in terms of the following conditions.

completeness: For each concrete state G’ of service s, if abs(G') = G satisfies

the precondition of an associated rule p, then there exists a transformation
S

G’ == H’ on the concrete state such that G == H = abs(H').

38 R. Heckel and L. Mariani

soundness: A service s does not perform unspecified operations, with the ex-
ception of errors leaving the state unchanged, i.e., G’ == H’ implies G’ = H’
or there exists an associated rule p with abs(G') = G == H = abs(H').

We initially validate completeness and soundness by deriving test cases for
single rules. Completeness is validated by generating test cases inside the input
domain of the rules, while soundness is checked through test cases outside the
rules’ domain.

Unfortunately, testing single rules is not enough to ascertain the conformance
of the specification with the implementation. The execution of sequences of op-
erations can reveal additional implementation faults related to details that are
not present in the conceptual state. We account for such cases by defining dif-
ferent types of dependencies among rules and deriving test cases where these
dependencies are exercised.

Throughout the paper we consider the example of a Web Service providing
simplified banking functions. Figure 3 shows production rules corresponding to
the creation of a new account, the withdrawal of money, the charging of an
account with a set of payments, the deposit of money, and the closing of the
account.

4 Test Case Generation

We generate test cases for testing conformance of the implementation with in-
dividual rules by selecting “promising” inputs. Moreover, we generate test se-
quences stressing the interaction among rules.

Generation of Test Cases for Single Services. A WSDL description defines the
input parameters and domains for the operations of a service. Possible inputs
are further constrained by the preconditions of the GT rules. This suggests
the derivation of test cases using a domain-based strategy, known as partition
testing [9], which is an established technique successfully used in several con-
texts [10,11]. The idea is to select test cases by dividing the input domain into
(possibly overlapping) subsets and choosing one or more elements from each
domain [10].

Partition testing has been used neither in the context of Web Services nor
with respect to GT rules. Hence, our approach reuses standard ideas of testing
in a new context. This requires a notion of input domain which combines the
concrete input parameters of operations with the conceptual state of the Web
Service before it is applied.

Formally, the input domain of a service s is the set of all parameter-state
pairs ID(s) = {(par, st) | par satisfies the WSDL description}. The presence of
both input and state in the domain is required because services are triggered
by a combination of the two. Samples from I D(s) can thus invoke all possible
behaviors.

We identified the following fault-based guidelines [10] as strategy for designing
the domains from each of which at least one test case should be chosen. The

Automatic Conformance Testing of Web Services 39

identifier= res = withdraw(id,v) P3
openAccount(init) P1 P2
; NN N
N\ : / \
/\ N focsant
f_,f'r ‘___ value / value & / 'fl:lumelﬁer ™ account - Account
= v>0
init >0 account.idenfitier==id account.idenfitier==id e - -
value <- init account.value >= v account.value < v account.idenfitier==id
value =v
res = charge(id,set)
P1 P2 —
N=— NE==)/ P
/N 74 { \‘-_l _;"; Y
account - Account [. i N ;.’ \\\
[oay : Paymentl /[dentifier | v Pl laccount | Accoun 7 \
lomount | /" lvalue \\ idelnliﬁe(\ [amount A
£ A ralue N laccount . Account|
pay.amount > 0 P —— identifier
account.idenfitier==id account.idenfitier==id value
account.value >= sum(pay.amount} account.value < sum(pay.amount) account.idenfitier==id
value -= sum{pay.amount)
res = deposit(id,v) res = closeAccount(id)
P1 P2 P1 P2
/
N\)), 7
i /N | [enmer X VAN
[aceount.: Account] .'/ A\ = / .\\ coount : Account
/ figertifer \ TR / \ -
,/ lvalue AN e L\ value
atEaaRt e f=<id value account.identifier==id ; =
ey e account.identifier==id
value +=v

Fig. 3. Production rules for a Web Service managing bank accounts

idea is that “small” partitions where several insidious faults can be present, and
“larger” partitions where no assumptions about specific implementation threats
can be performed are identified. Inside a partition all inputs have the same bias
to be faulty. The discovery service administrator can exactly set the number of
test cases that are sampled for each domain in a way to find the right balance
between coverage and time consumed on testing. Experimental work aiming at
finding the best number of test cases that should be selected from each domain

is part of future work.

— The input domain of a rule p, given by the set of all parameter-state pairs
(par, st) satisfying the pre-condition of the rule, defines a domain D(p).

— Parameter-state pairs (par, st) simultaneously enabling two different rules
p1, pe form an input domain D(py,p2) = D(p1) N D(p2) because they require
an internal decision (possibly non-deterministic) to decide which behavior
must take place. This decision may be complex and its implementation in-
correct.

— Input parameters and objects in the conceptual states carry attributes that
are constrained by types and attribute conditions. Faults are likely when

40 R. Heckel and L. Mariani

dealing with values at the boundary of their domains [9]. Thus, we define
separate domains for inputs where at least one attribute has a boundary
value. Note that the same attribute can have multiple boundary values.

— A production rule can also contain multi-objects which, upon application,
are expanded to a set of objects whose cardinality depends on the current
input. In order to validate this mechanism, we consider the inputs leading
to expansions with zero, one, and multiple elements.

— Inputs outside the specification should create a response to notifies the client,
but without modifying the state of the server. Failures to check for incorrect
inputs can lead to follow-up faults which are very difficult to detect. We
therefore consider a domain for values that do not belong to the input of
any rule, but are correctly typed with regard to the WSDL description of s,

ie., ID(s)\ pLgS D(p;).

Note that these domains are not disjoint, but can overlap. It happens because
different problems with different probabilities to be faulty can apply to the same
concrete input elements.

A test case specification is composed of three parts: the precondition, the test
sequence, and the expected result. The precondition specifies constraints that are
expected to hold for the state of the server when the test case is executed. It
is derived from the left-hand sides of the rules that must be tested. Conditions
on parameters are not considered as part of the precondition, but contained in
the test sequence which specifies conditions on input parameters together with
the order of service invocations. Conditions on parameters are extracted from
the left-hand sides of rules, too. The expected result is obtained by executing the
rule for the generated input values. Note that a parameter-state pair can trigger
multiple rules associated to the same service. In this case, we accept as correct
any result produced by any of the applicable rules.

If we apply the defined criteria to the service charge in Figure 3, we obtain
the following domains.

— The service is specified by three production rules; hence we have domains
D(p1), D(p2), D(p3) generated from their left-hand sides.

— There is no non-determinism, i.e., the three domains are pair wise disjoint.

— Considering rule p;, there are three attributes that can be defined: payment,
sum(pay.amount)! and account.value. Test cases are generated by fixing
a boundary value for at least one of them and randomly generating the other
two values. The same applies to rules ps and ps.

— Each multi-object produces domains for zero, one, and many instances. Thus,
three test cases are generated for each rule: one with an empty set of pay-
ments, one with a set containing one payment, and one with a set containing
n payments.

! values obtained by the application of common mathematical functions on multi-
objects are handled as attributes, thus avoiding the use of problem solvers even for
simple cases.

Automatic Conformance Testing of Web Services 41

— Incorrect inputs are generated for each rule by choosing attribute values
that violate the guard conditions. For instance, p; generates a test case with
negative payments.

Currently we limit the generation of random values to linear constraints.
Extensions to non-linear constraints have already been proposed in [11].

Generation of Tests for Sequences of Operations. The execution of an operation
can alter parts of the service’s state that are used by other operations. GT rules
specify state modifications at a conceptual level. By analyzing these rules we can
thus understand dependencies and conflicts between operations without looking
into their actual implementation.

Data flow analysis is frequently used to generate test cases. The idea is to
exercise paths in the code that include combinations of variable definition and
uses [12]. This problem has been extensively investigated and several coverage
criteria have been defined [13]. In particular, a widely used coverage criterion
is “all def-use pairs” [14], which requires a test suite that executes all possible
pairs of definition and uses for variables in the program under test.

Conceptually, each operation (rule) can add or remove nodes and edges to or
from the conceptual state, and can change the values of attributes. The principles
of data-flow testing can be reused to test the interaction among production
rules if creation of nodes and edges is interpreted as “definition” and deletion
as “use”. We expect that sequences of operations that include the creation of
a (conceptual) entity and its subsequent use are likely to expose (state-based)
faults. The formalization of this intuition is given by the relations of conflicts
and casual dependencies between rules.

Given two transformations G == H; and G == H, like in Figure 4, they are
parallel independent if the application of one does not disable the other. That
means, one transformation does not delete anything necessary for the applica-
tion of the other, does not add anything forbidden by the negative application
condition of the other, and does not modify attribute values used in the guard
condition of the other rule.

Fig. 4. Independence of transformation steps

Given a sequence of two transformations G 24 7 £ X like in Figure 4,
they are sequentially independent if they can be exchanged. This means, as in
the parallel case, that their occurrences do only overlap in such elements that are

42 R. Heckel and L. Mariani

preserved by both transformations, and that application and guard conditions
are not affected.

Thus, parallel and sequential independence are defined with respect to given
graphs and occurrences, that is, using run-time concepts. To derive test cases
from specifications, however, a static definition of potential conflicts and depen-
dencies is required. Therefore, the above notions have to be lifted to the level of
rules. For two rules p; : L1 — R; and ps : Ly — Ry we say that

— po may disable py if there exist transformation steps G == H; and G == H,
like in Figure 4, such that G L4 H, is not independent of G =2 H,,

— p1 may cause ps if there exist transformation steps G = H; =2 X like in
Figure 4, such that H; 22 X is not independent of G == H;.

The may-disable relation captures possible conflicts among rules and is used
to test sequences of actions that should lead to an error when the last request is
issued, but that can erroneously produce some side effects on the actual state.
The may-cause relation captures possible structural and attribute dependencies
among rules. The may-disable relation is used to test completeness of rules, while
the may-cause relation is used to test the consistency of rules. Formal definitions
for dependencies among rules can be found in [15].

The criterion for generating test cases consists of covering the execution of all
pairs of rules (ps, p), where ps may disable/cause p;. However, it may be impos-
sible to immediately execute p; after ps. Therefore, a sequence pg, p1,...Pn, D
must be generated, where p; may disable/cause p; and the overall effect of the
sequence pi, ..., p, does not entirely “invalidates” the may disable/cause rela-
tion.

The relation between two rules is based on a set of nodes that have been
deleted or added, or on a set of attributes that have been modified: the entities of
the relation. If further rules are executed between the execution of the two related
rules (ps,p:), the effect of the intermediate rules can overwrite the part of the
state where p, and p; interact, i.e., the entities of the relation can be modified. In
our case, if the effect of py,...,p, modifies all entities of the relation, p1,...,p,
entirely invalidates the relation. For the purpose of test case generation, it makes
sense to cover the execution of only those pairs that effectively interact, i.e., the
dependencies have not been overwritten and the conflicts have not been removed
by other rules.

Also in this case, a test case specification is composed of three parts: the
precondition, the test sequence, and the expected result. The precondition for a
particular invocation sequence is obtained by anticipating the preconditions of
all rules in the sequence [16]. The test sequence is given by the sequence of
operations that must be executed and the conditions over the parameters that
must be used for their invocation. Finally, the expected result is obtained by
executing the rules over the concrete values. The concrete test cases are obtained
by randomly generating concrete values that satisfy the constraints.

Potential conflicts and dependencies between rules are automatically com-
puted by the AGG tool [17]. The additional relations deriving from attribute

Automatic Conformance Testing of Web Services 43

values can be obtained by simple data-flow analysis over constraints and as-
signments. If we apply this criterion to the running example and focus on rule
p1 of the service withdraw, we derive that the target service is dependent on
rule p; of openAccount, on rule p; of charge, on rule p; of deposit, and on
rule p; of service withdraw. Therefore, test cases for opening the account and
withdrawing money, charging payments and withdrawing money, depositing and
withdrawing money, and withdrawing money twice are generated. Moreover, rule
p1 of the withdrawing service is in conflict with itself and with rule p; of the
closeAccount service. Thus, a test case that closes the account before withdraw-
ing money and a test case that withdraws money twice leading the current de-
posit to a negative value are generated for testing soundness (attributes and pa-
rameters for the latter test case are obtained by randomly generating values that
satisfy all rule constraints and the negation of the condition account.value>v
in p1). In a similar way, we proceed for the other rules.

The Certified Level of Quality. Once a Web Service has passed the pre-registration
testing phase, the client can rely on a high-quality implementation of the discov-
ered services. In particular, the test cases generated for single services validate
that all specified scenarios are implemented and that the implementation be-
haves according to the specification, at least for some inputs. Moreover, test
cases validate that any internal decision taken by the Web Service satisfies the
specification. Test cases for boundary values and multi-objects also certify that
a range of values representing the normal operation of the service is defined and
that collections are correctly managed in the cases of 0, 1 and multiple elements.
Finally, test cases that violate guard conditions certify that guard conditions are
implemented according to the specification and that a proper reaction mecha-
nism is provided for incorrect inputs.

Test cases for sequences of operations validate that the state of the component
evolves according to the specification at least for pairs of service invocation.
Moreover, test cases check that the Web Service prevents reaching unsound states
by multiple invocation of services.

Some interferences among operations, e.g., the definitions and uses of some
state variables that cannot be deduced from the specification, cannot be au-
tomatically tested. However, clients of high-quality Web Services can rely on
both the implementation of all specified behaviors and the existence of guard
mechanisms for identifying incorrect inputs and effects.

5 Generation of Invocation Sequences

A test case has a precondition that consists of a set of constraints that must
be satisfied by the actual state. Thus, the Web Service must be set to a state
that satisfies the precondition of the test case. We assume that a Web Service
facilitates this goal by providing a testing interface with three basic additional
features:

— the possibility to setting the initial state of the service, possibly choosing
from a set of alternatives representing different situations,

44 R. Heckel and L. Mariani

— a set of creator/destructor operations that enable the modification of the
state of the server (if necessary),
— an implementation of the abstraction function.

A state that enables the execution of a given test case is reached by choosing
an initial state from the set of states provided by the Web Service, and searching
for a suitable sequence of requests that turns the chosen state into one satisfying
the precondition of the test case. Dedicated creator/destructor operations are
not required if the “normal” service interface already enables sufficiently free
creation and deletion of objects on the server.

A similar problem arises in testing sequences of operations, where a trans-
formation sequence must be generated enabling the execution of pairs of related
rules. Both search problems are solved by building a search tree rooted at the
selected initial state(s) and then incrementally considering the different rules.
Each node is labeled with a path condition, i.e., the constraints that must be
satisfied by the state variables to enable the sequence starting from the root
and ending with the considered node. The path condition is derived by merging
and simplifying both the guards and the assignments of single rules. When a
state that satisfies the given properties is identified, the search stops, and the
corresponding sequence is used in the test case. This is essentially the strategy
employed by [18], the first work on model-based testing with GT rules we are
aware of. In that paper, the search tree is in fact the concurrent unfolding of a
grammar.

The search problem is realistic because not all rules can be applied at all
steps and the overall number of rules is generally small for Web Services. For
instance, a meaningful subset of the Amazon Web Service has been specified with
11 GT rules (see Section 6). Moreover, the service provider can further restrict
the search space by uploading a specification of the Web Service interaction
protocol [19]. Goal directed search strategies can heavily increase performance
of the search by considering the structure of the current state, the modifications
performed by the GT rules, and the structure of the final state in the search.
However, a discussion over effective search strategies is out of the scope of this
paper.

Tool support for execution, depth-first search, and bounded state space con-
struction for GT rules is already in place. In particular, PROGRESS allows spec-
ifications based on rules with attributes and various application conditions and
implements search by means of backtracking [20]. GROOVE [21] can generate
bounded fragments of the transition system described by a set of rules in which
paths to states with particular properties can be detected. Since the tool does
not support attributed graphs, it would have to be complemented with a theo-
rem prover to collect and combine the guard conditions and assignments for the
identified sequence.

Concrete test cases are obtained by randomly generating attribute values
that satisfy the path condition of the test sequence. Once concrete values have
been generated, the expected result can be obtained by executing the rules over
the concrete values. When a test case is executed, the final state of the Web

Automatic Conformance Testing of Web Services 45

Service is retrieved using the abstraction function of the testing interface. If the
retrieved final state corresponds to the final state generated by the rules, the
test case has been passed. The conformance relation (see Section 3) requires
that the result obtained by applying the rule on the conceptual state coincides
with that obtained by the abstraction function on the concrete state reached
after the execution of the test case.

The implementation of this function can be simplified by developing the
system behind the Web Service with the Model-View-Controller (MVC) design
pattern [22]. The design pattern isolates the state of the application (model)
from the rest of the system, i.e., the control logic and the presentation layer.
This strategy simplifies the access to the actual state and reduces the effort
required to the developer for implementing the abstraction function.

Both the specification and the implementation of a service are furnished by
the service provider who can, in principle, “cheat” by providing specifications
and implementations that do not correspond with the final service, but that
can easily pass the testing phase. However, specifications are used by clients
for dynamically discovering services. Therefore, if the specification differs from
the concrete service, the service cannot be successfully used by clients. In the
same way, if the implementation is modified without repeating the testing phase,
the registered specification will not match the provided service and interactions
with clients will not be possible. Thus, the running version of the service, its
specification and the tested implementation must be kept synchronized by the
service provider.

6 Early Experience

We performed a number of small experiments in test case generation for real
Web Services, initially considering two simple Web Services, the Weather - Tem-
perature Web Service available at www.xmethods.com and the Kayak Paddle
Guide available at www.terawave.ca/webservices/paddle.html. The former
provides the current temperature in a given U.S. region. The latter computes
the recommended length of a paddle, given the height of the person who will
use it. Both Web Services provide one single simple operation. We derived the
GT specification from the informal description available on Web. Then we gen-
erated test cases for single operations by sampling two values from each domain.
The Weather - Temperature Web Service has been covered with 4 test cases and
passed the test. The Kayak Paddle Guide has been covered with 6 test cases
and failed the test. The technique discovered a fault for values that are expected
to represent incorrect heights for a person, e.g., 600cm. In this case, the Web
Service returns the longest paddle instead of signaling the incorrect input.

The two Web Services are very simple examples, but their complexity is
representative for a large set of Web Services currently available on the Web.
However, we decided to move to an example closer to the current state of the art
for the Web Service technology. Thus, we considered the Amazon Web Service
at www.amazon.com/gp/aws/landing.html, which provides a full set of func-

www.xmethods.com
www.terawave.ca/webservices/paddle.html
www.amazon.com/gp/aws/landing.html

46 R. Heckel and L. Mariani

tionalities for browsing and purchasing all items available in the Amazon Web
Shop. In our experiment, we considered a comprehensive subset of the provided
operations and we derived the GT specification from the online documentation
provided by Amazon. In case of failing test cases, we inspected the fault to under-
stand whether the cause is either a fault or an error in the inferred specification.
The operations selected for testing have included the search for DVDs based on
the director’s name and usual operations for cart management, i.e., item addi-
tion, item modification, item deletion, and clearing of the cart. We overcame
the necessity of constructor methods for creating DVDs in the catalog by taking
advantage of the knowledge of the content of the catalog. In a real scenario, the
Web Service should have offered constructor methods for the creation of DVDs
that could be then purchased.

The definition of the rules was straightforward, the five operations were spec-
ified by 11 GT rules. For testing of single rules, we sampled 2 values for each
domain and we obtained 65 test cases. For testing of sequences, 14 dependent
pairs and 3 conflicting pairs were identified. All pairs can be directly executed
without requiring the generation of an intermediate sequence of operations. For
test cases of both single rules and pairs, the initial sequence enabling the exe-
cution of the test case was always generated by the initial addition of a proper
set of items in the cart. In a real scenario, the sequence would include also the
invocation of constructor methods for the creation of DVDs.

Test case execution - which has been performed with a Java client - revealed
an incompatibility between the rules and the Web Service. The incompatibility
arose from a fault in the specification. In fact, in contrast with our rules, the
operation for adding an item did not increase the quantity of items that were
already in the cart, but overwrote the quantity instead, e.g., adding a DVD in
the cart twice results on a single DVD in the cart. Thus, we modified the rule
and generated the test cases again. This time the Web Service passed the test.

Our early experience with the testing of Web Services provided important
insights: The technique is useful with respect to the complexity of current Web
Services; the inspected Web Services do not require the generation of long initial-
ization sequences, thus the search space that must be inspected is very limited;
the number of generated test cases is suitable for a discovery service that auto-
matically performs testing; both test cases for consistency, such as the repeated
addition of items in the cart for the Amazon Web Service, and completeness,
such as the incorrect input height for the Kayak Web Service, revealed to be
useful.

7 Related Work and Conclusions

To our knowledge, there is only one approach to test case generation based on
GT rules [18]. We advance research in this area by proposing two novel ideas: (1)
the application of existing domain-based testing techniques to the case of graph
transformations and (2) the execution of automatic testing for validating Web
Services. The application of domain-based testing requires the management of

Automatic Conformance Testing of Web Services 47

the server state as part of the domain, when adapted to graph transformations.
Moreover, data-flow testing needs to be reinterpreted in terms of dependencies
and conflicts among rules. Finally, the idea of using agencies which automatically
test Web Services before registering them is new.

In contrast with graph-based testing, behavioral descriptions based on UML
sequence diagrams and state charts can be used to generate test cases [23,24].
However, the generated test cases fail to capture the concrete complexity of
the exchanged parameters that often are restricted to few simple types, see for
instance [24]. Moreover, due to the lack of precise semantics, UML diagrams
cannot precisely describe the evolution of the state of the service. Graph trans-
formations instead are suitable to unambiguously correlate the concrete states
of the objects involved in an interaction with the behavior of a service. This kind
of description enables the automatic generation of test cases that cover complex
parameter passing and behaviors that are activated only for given internal states.

The design of GT rules has been demonstrated to be convenient when com-
bined with a development methodology based on UML [5]. Therefore, the addi-
tional effort on behalf of the service developer for providing high-quality services
is limited to the implementation of the abstraction function and to the eventual
definition of additional constructor methods. The result is the publication of
the Web Service in discovery services that aim at the dynamic composition of
high-quality systems.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284 (2001) 34-43

2. W3C Web Services Architecture Working Group: Web Services architecture re-
quirements. W3C working draft, World Wide Web Consortium (2002)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web Services architecture. W3C working group note, W3C (2004)

4. Hausmann, J.H., Heckel, R., Lohmann, M.: Model-based discovery of Web Services.
In: Intl. Conference on Web Services. (2004)

5. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: a software
engineering perspective. In: Intl. Conference on Graph Transformation. Volume 1
of LNCS., Springer (2002)

6. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Addison-Wesley (1999)

7. Kaplan, S., Loyall, J., Goering, S.: Specifying concurrent languages and systems
with d-grammars. In Ehrig, H., Kreowski, H.J., Rozenberg, G., eds.: Proc. 4th
Intl. Workshop on Graph Grammars and Their Application to Computer Science.
Volume 532 of LNCS., Springer (1991) 475-489

8. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and Their Comparison. Volume 47 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press (1998)

9. White, L., Cohen, E.J.: A domain strategy for computer program testing. IEEE
Transactions on Software Engineering 6 (1980) 247-257

10. Weyuker, E., Jeng, B.: Analyzing partition testing strategies. IEEE Transactions
on Software Engineering 17 (1991) 703-711

48

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

R. Heckel and L. Mariani

Jeng, B., Weyuker, E.J.: A simplified domain-testing strategy. ACM Transactions
on Software Engineering Methodology 3 (1994) 254-270

Rapps, S., Wejuker, E.: Data flow analysis techniques for program test data selec-
tion. In: 6th Intl. Conference on Software Engineering. (1982) 272-278

Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering 14 (1988) 1483-1498

Pande, H.D., Landi, W.A., Ryder, B.G.: Interprocedural def-use associations for
C systems with single level pointers. IEEE Transactions on Software Engineering
20 (1994) 385-403

Hausmann, J., Heckel, R., Taentzer, G.: Detecting conflicting functional require-
ments in a use case driven approach: a static analysis technique based on graph
transformation. In: Intl. Conference on Software Engineering. (2002) 105-155
Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Volume Volume 1 - Foundations. World Scientific (1997)
Technical University Berlin: The attributed graph grammar system (AGG).
http://tfs.cs.tu-berlin.de/agg/ (Visited in 2004)

Baldan, P., Konig, B., Stiirmer, I.: Generating test cases for code generators by
unfolding graph transformation systems. In: Proc. 2nd Intl. Conference on Graph
Transformation, Rome, Italy (2004)

Bochmann, G.V., Petrenko, A.: Protocol testing: review of methods and relevance
for software testing. In: Proceedings of the 1994 ACM SIGSOFT Intl. Symposium
on Software Testing and Analysis, ACM Press (1994) 109-124

Schiirr, A., Winter, A.J., Ziindorf, A.: The PROGRES approach: language and
environment. In: Handbook of graph grammars and computing by graph transfor-
mation: vol.2: applications, languages, and tools, World Scientific (1999) 487-550
Rensink, A.: The GROOVE simulator: A tool for state space generation. In:
2nd Intl. Workshop on Applications of Graph Transformations with Industrial
Relevance. Volume 3062 of LNCS., Springer (2004) 479485

Singh, 1., Stearns, B., Johnson, M., Enterprise Team: Designing Enterprise Appli-
cations with the J2EE Platform. 2nd edn. Addison-Wesley (2002)

Fraikin, F., Leonhardt, T.: SeDiTeC - testing based on sequence diagram. In:
IEEE Intl. Conference on Automated Software Engineering. (2002)

Hartmann, J., Imoberdorf, C., Meisinger, M.: Uml-based integration testing. In:
Intl. Symposium on Software Testing and Analysis, ACM Press (2000) 60-70

	Introduction
	Registration Scenario
	Specification of Web Services by GT Rules
	Test Case Generation
	Generation of Invocation Sequences
	Early Experience
	Related Work and Conclusions

