
SETra 2004 Preliminary Version

Behavioral Refinement of
Graph Transformation-Based Models

Reiko Heckel a Sebastian Thöne b

a Faculty of Comp. Science, Electrical Eng., and Math., reiko@upb.de
b International Graduate School Dynamic Intelligent Systems, seb@upb.de

University of Paderborn, Germany

Abstract

Model-driven software engineering requires the refinement of abstract models into
more concrete, platform-specific ones. To create and verify such refinements, behav-
ioral models capturing reconfiguration or communication scenarios are presented as
instances of a dynamic meta-model, i.e., a typed graph transformation system spec-
ifying the concepts and basic operations scenarios may be composed of. Possible re-
finement relations between models can now be described based on the corresponding
meta-models.

In contrast to previous approaches, refinement relations on graph transformation
systems are not defined as fixed syntactic mappings between abstract transformation
rules and, e.g., concrete rule expressions, but allow for a more loose, semantically
defined relation between the transformation systems, resulting in a more flexible
notion of refinement.

Key words: MDA and model transformation, consistency and
co-evolution, refinement of graph transformation systems

1 Introduction

Model-driven software development is based on the idea of refining abstract
models into more concrete ones, a recent example being the Model-Driven
Architecture (MDA) put forward by the OMG 1 . Here, platform-specific details
are initially ignored at the model level to allow for maximum portability. Then
platform-independent models are refined by adding implementation details
required for the mapping to a given target platform. Thus, at each level, more
assumptions on the resources, constraints, and services of the chosen platform
are incorporated into the model.

1 www.omg.org/mda/

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

www.omg.org/mda/


The set of models conforming to a modeling language is often defined by
a meta-model, i.e., a class diagram with constraints describing the individual
elements of the model and their composition. For behavioral models, this ap-
proach is extended towards a dynamic meta-model, formalized as a typed graph
transformation system [3]. Informally, a typed graph transformation system
consists of (1) a type graph to define the vocabulary of allowed model ele-
ments and their relationships, (2) a set of constraints to further restrict the
valid models, and (3) a set of graph transformation rules. Type graph and
constraints can be seen as analogous to the classical, static meta-model.

Thus, a model that conforms to a given (static) meta-model is represented
as an instance graph of the type graph. One can think of the type graph as a
UML class diagram and of the instance graph as a corresponding UML object
diagram conforming to the types and constraints of the class diagram.

In the case of dynamic systems evolving at run-time, a single instance graph
models the system state at a certain point in time only. For also modeling sys-
tem evolutions, the dynamic meta-model provides graph transformation rules.
These are executable specifications that can be used to define local transfor-
mations on graphs. Since graphs represent system states, the transformation
rules specify, e.g., possible computation, communication, or reconfiguration
operations which can be applied to individual states yielding transitions to
new states. Based on individual transformation steps, we can explain, simu-
late, and analyze the behavioral semantics of dynamic models. In particular,
we can generate a state transition system that reflects all reachable states of
the system with transitions defined by possible transformation steps.

We provide different meta-models for different levels of abstraction. Thus,
for refining an abstract model into a more concrete one, we build on a refine-
ment relationship between the meta-models involved. Formally, this relation-
ship is defined by means of an abstraction function, as explained in Section 2.
Abstraction is a mapping associating with each concrete model a correspond-
ing abstract model, usually by some kind of projection. Based on this, we can
check if a concrete model preserves the structure of an abstract model.

In Section 3, we provide conditions for what it means to also preserve the
behavior of an abstract model. We require that the behavior of the abstract
model can be simulated at the concrete level, and we discuss how this property
can be checked by model checking at the concrete level. For this purpose, we
introduce a translation function, contravariant to abstraction, which maps
abstract model properties to the concrete level.

2 Structural refinement

A dynamic meta-model is represented as a typed graph transformation system
G = 〈TG, C, R〉 consisting of a type graph TG, a set of structural constraints
C over TG, and a set R of graph transformation rules r : L ⇒ R over TG.
The set of valid instance graphs typed over TG is called GraphTG.



Like in a previous paper [1], we exemplify this technique by defining archi-
tectural styles as meta-models for software architectures: Graph-based models
of a software architecture have to conform to a meta-model representing the
underlying architectural style. We consider architectural styles as conceptual
models of platforms that systems are implemented on. Graph transformation
rules specifying the dynamics of a style capture the reconfiguration and com-
munication mechanisms which allow an architecture to evolve at run-time,
supported by the respective platform. We will come back to the dynamic as-
pect in Section 3.

For now, consider a model-driven development process starting with an
abstract, business requirements-driven architecture model of a software system
which is shall be refined into a concrete, platform-specific one. In our simplified
example, we assume a component-based architectural style for the platform-
independent level where components interact through ports that can only be
connected if the provided and required interfaces match.

For the platform-specific level, we assume a style that represents service-
oriented architectures (SOA). In SOA, the functionality of components is pub-
lished as services to service requesters. Special third-party components, called
discovery agencies, realize service discovery at run-time, i.e., service provider
and requester do not need to know each other in advance. For this purpose,
the service-providing component has to publish a description of the provided
interface to the discovery agency. A service-requesting component can then
use the lookup mechanisms of the discovery agency to find suitable service
descriptions for its own requirements.

We do not present the type graphs of these two architectural styles; they
can be found in [2]. Basically, they define node and edge types for the archi-
tectural concepts summarized above. Instance graphs of these type graphs are
used to represent platform-independent or service-oriented architectures re-
spectively. For the sake of readability, we use a UML 2.0-like concrete syntax
as shown in Fig. 1. The example describes the architecture of an electronic
travel agency application. It requests airline systems to book flights for jour-
neys its clients want to purchase.

Given an abstract transformation system G = 〈TG, C, R〉 like the platform-
independent architectural style and a concrete transformation system G ′ =
〈TG′, C ′, R′〉 like the service-oriented architectural style, structural refinement
establishes a relation between abstract instance graphs G ∈ GraphTG and
concrete instance graphs G′ ∈ GraphTG′ : We require that, in order to be a
valid refinement of abstract G, concrete G′ has to preserve the structure of
the abstract graph.

Since the two instance graphs which shall be compared are expressed over
different type graphs, this condition is expressed modulo an abstraction func-
tion abs : GraphTG′ → GraphTG that is assumed to be given together with
the type graphs, formally: G′ is a structural refinement of G if G ⊆ abs(G′).

Figure 1 exemplifies the abstraction function applied to the concrete,



SOA-specific model of the travel agency system (bottom) yielding the
abstract, platform-independent model (top). The abstraction removes all
platform-specific elements like the discovery component and the service
description and requirements documents. Moreover, the platform-specific
stereotype �service� is adapted to the platform-independent vocabulary
�component�.

1

«requirement»

«satisfies»

«component»
client

«service»
travel agency

«service»
airline

Book-
Flight

Book-
Flight

Book-
Journey

Book-
Journey

«description»

«describes»

«description»

«describes»«requires»

«requirement»

«requires»

«satisfies»

«discovery»
lookup

«knows»

«knows»

«description»

«describes»

«requirement» «requirement»

«requirement»
«requires»

«requires»

«requires»

«knows»

«satisfies»«satisfies»

«satisfies»

«component»
client

«component»
travel agency

«component»
airline

Book-
Flight

Book-
Flight

Book-
Journey

Book-
Journey

abs

Fig. 1. Abstraction from service-oriented to platform-independent style

There is a range of possibilities for the definition of abstraction functions,
from a simple mapping between the two type graphs which can be lifted to in-
stance graphs by renaming the types of the graph elements (cf. [2]) to complex
mappings defined by transformation rules, e.g., in order to detect design pat-
terns in reverse engineering. Rather than fixing one concrete way of definition,
in this paper we will axiomatize the relevant properties of such mappings.



3 Behavioral refinement

The behavioral part of a dynamic model is defined by the graph transformation
rules of its meta-model. For instance, for the abstract, component-based archi-
tectural style, we assume that components can dynamically bind to provided
interfaces at run-time. This can be realized by appropriate reconfiguration op-
erations for interface binding and unbinding as shown in Fig. 2. In this case,
the two transformation rules that define the desired bind and unbind operations
are symmetric.

1

«component»
c2

«component»
c1

«component»
c2

«component»
c1

bind

unbind

Int

Int Int

Fig. 2. Reconfiguration rules of abstract architectural style

Formally, the transformation rules are expressed by pairs of instance graphs
over the underlying type graph. However, for space reasons and for the sake
of better readability, we present them in a UML-like syntax, similar to the
instance graphs in the previous section.

Behavior is represented by transitions between instance graphs. The space
of possible behaviors is thus given by a transition system whose states are the
reachable graphs and whose transitions are generated by rule applications.
Given the initial state of the model as a start graph, one can generate and
explore the transition system by continuously applying transformation rules
to previously generated states. To give an example, Figure 3 shows the tran-
sition system for the travel agency system in the abstract architectural style.
The transitions are labeled by the names of the applied transformation rules.
Recently, the automated generation of transition systems from graph trans-
formation system is supported by tools like GROOVE [7] or CheckVML [8].

Similar to the platform-independent style, there are also graph transfor-
mation rules in the service-oriented architectural style. However, they have
to account for platform-specific restrictions. In the SOA case, for instance,
it is required to know the description of a service before it is possible to
access it. Therefore, the corresponding reconfiguration rule bind, shown in
Fig. 4, includes this additional precondition on its left-hand side. Thus, the
bind-operation can only be applied if the service description is known to the
component playing the role of the service requester. This is represented by the
UML dependency with sterotype �knows�.

The service-oriented style contains further platform-specific transformation
rules publish and find, which enable dynamic service discovery by publishing



1

«component»
client

«component»
travel agency

«component»
airline

BookFlight

Book-
Journey«component»

travel agency

«component»
airline

BookFlight

BookFlight

«component»
client

Book-
Journey

«component»
travel agency

«component»
airline

BookFlight

«component»
client

Book-
Journey

Book-
Journey

«component»
airline

«component»
client

«component»
travel agency

BookFlight

Book-
Journey

BookFlight

Book-
Journey

bin
d

un
bin
d

bin
d

un
bin
d

bind
unbind

bind
unbind

Fig. 3. Transition system for the abstract travel agency architecture

service descriptions to discovery agencies and by querying suitable descriptions
that satisfy certain requirements. These operations might be required before a
bind-operation can be performed. Due to space limitations, the rules presented
in Fig. 4 form a simplified version of the SOA style presented in [1,2].

Like at the platform-independent level, we can now apply the SOA rules to
the SOA-specific variant of the travel agency architecture (see Fig. 1), yielding
another transition system which represents the platform-specific behavior.

For checking the behavioral refinement of two models (architectures), we
now have to take into account the transition systems that can be generated
within the underlying dynamic meta-model (architectural style). Formally, we
consider again an instance graph G of an abstract system G = 〈TG, C, R〉
and an instance graph G′ of a concrete system G ′ = 〈TG′, C ′, R′〉. We assume
that G′ represents a structural refinement of G. In order to be a behavioral
refinement, the behavior of G′ must refine the behavior of G. This is the case
if every path G ⇒ G1 ⇒ . . . ⇒ Gn in the abstract transition system has
a correspondent path G′ ∗

=⇒ G′
1

∗
=⇒ . . .

∗
=⇒ G′

n in the concrete transition
system with G′

i refining Gi (that is, Gi ⊆ abs(G′
i)) for all i = 1 . . . n.

Each step in the abstract system can be matched by a sequence of steps in
the concrete system. A single transformation step Gi ⇒ Gi+1 of the abstract
path is refined by a transformation sequence G′

i
∗

=⇒ G′
i+1 at the concrete level

because it might be necessary to perform a set of consecutive concrete steps
in order to realize the abstract one (for example, additional publish and find
operations in the SOA case).

Building on the model checking approaches for graph transformation sys-



1

«discovery»
d

«service»
provider

«description»
«knows»

«describes»

«discovery»
d

«service»
provider

«description»

«describes»
publish

«discovery»
d«requirement»

«knows»«requirement»«description»«satisfies»

«component»
requester

«discovery»
d«requirement»

«knows»

«requires»

«requirement»«description»«satisfies»

«knows»

«component»
requester

find

«component»
requester

«requirement»

«knows»

«requires»

«description» «satisfies»

«describes»

«service»
provider

«component»
requester

«requirement»

«knows»

«requires»

«description» «satisfies»

«describes»

«service»
provider

bind

«service»
provider

«component»
requester

«service»
provider

«component»
requester

unbind

Fig. 4. Reconfiguration rules of the service-oriented architectural style

tems mentioned above, we would like to formulate the refinement of an abstract
path as a reachability problem in the concrete transition system. However, the
condition for behavior refinement includes the structural refinement of Gi by
G′

i which, in general, requires to project the concrete graph to the abstract
level in order to verify the desired inclusion.

In order to express the same property solely at the level of the concrete
system, we must assume a second mapping trans : GraphTG → GraphTG′ ,
contravariant to abstraction. It translates an abstract instance graph into a



concrete one representing the reformulation of the abstract state over the con-
crete type system. Note that the concrete graph does not necessarily represent
a complete state of the concrete model, but rather a minimal pattern which
has to be present in order for the requirements of the abstract graph to be ful-
filled. Thus, we consider a concrete instance graph as a valid refinement of an
abstract one if it contains this pattern as a subgraph, formally trans(G) ⊆ G′.

For example, Fig. 5 shows how the platform-independent model of the
travel system is translated into a pattern for the service-oriented style with ser-
vices instead of components where desired. According to the definition above,
a valid service-oriented architecture containing this pattern, e.g., the SOA
model at the bottom of Fig. 1, is a refinement of the abstract model.

1

«component»
client

«service»
travel agency

«service»
airline

Book-
Flight

Book-
Flight

Book-
Journey

Book-
Journey

«component»
client

«component»
travel agency

«component»
airline

Book-
Flight

Book-
Flight

Book-
Journey

Book-
Journey

trans

Fig. 5. Translation from platform-independent to service-oriented style

To make sure that the above condition is equivalent to the original one
for structural refinement, we have to ensure the mutual consistency of the two
contravariant mappings. This is formally expressed as a satisfaction condition,
reminiscent of similar conditions in algebraic specification or logics, i.e.,

trans(G) ⊆ G′ iff G ⊆ abs(G′).

In this case, we say that the two mappings are compatible.

Under this assumption, refinement can be formulated as follows. Concrete
graph G′ refines abstract graph G if

• trans(G) ⊆ G′

• for every transformation step G ⇒ H in the abstract system there exists a
transformation sequence G′ ∗

=⇒ H ′ such that H ′ refines H.

It follows from the satisfaction condition that the first clause above is equiva-
lent to the original condition G ⊆ abs(G′), expressed in terms of abstraction.
However, the new condition can be verified solely at the concrete level.

The second clause is effectively a co-inductive definition of a simulation
relation. Spelled out in terms of sequences, it says that for every (possibly
infinite) path G ⇒ G1 ⇒ G2 ⇒ . . . in the abstract system there exists a path

G′ ∗
=⇒ G′

1
∗

=⇒ G′
2

∗
=⇒ . . . in the concrete system with trans(Gi) ⊆ G′

i.



4 Related work

The use of meta-models for defining graphical languages has become very pop-
ular in the context of the Meta-Object-Facility (MOF) authored by the OMG.
They also define meta-models as type graphs with additional constraints like,
e.g., cardinalities. A model is an instance of the meta-model, if it conforms to
the type graph.

In our work, we extend the static declaration of the meta-model by graph
transformation rules which allow the definition of dynamic model evolutions as
a simulation of system evolution. The use of graph transformation techniques
to capture dynamic semantics of models has been inspired by Engels et al.
in [4]. That approach extends meta-models defining the abstract syntax of
a modeling language like UML by graph transformation rules for describing
changes to object graphs representing the states of a model.

In [2], we have already considered several levels of platform abstraction
that allow an MDA-like refinement from platform-independent architectures
to more platform-specific ones. This has brought us to the question of suitable
notions for refining graphs and graph transformation behavior: While struc-
tural refinement implies a relation between the involved type graphs, the idea
for behavioral refinement is to relate the transformation rules of the involved
graph transformation systems. In general, one can place these refinement re-
lationships in a continuum from syntactic to semantically defined relations.

Große-Rhode et. al. [5], for instance, propose a refinement relationship be-
tween abstract and concrete rules that can be checked syntactically. One of the
conditions requires that, e.g., the abstract rule and its refinement must have
the same pre- and post-conditions. Based on this restrictive definition they
can prove that the application of a concrete rule expression yields the same
behavior as the corresponding abstract rule. The draw-back of this approach
is that it cannot handle those cases where the refining rule expression should
have additional effects on elements of the concrete level that do not occur in
the abstract rule. And, the approach does not allow for alternative refinements
of the same abstract rule depending on the context of its application.

Similarly, the work by Heckel et. al. [6] is based on a syntactical rela-
tionship between two graph transformation systems. Although this approach
is less restrictive as it allows additional elements at the concrete level, it is
still difficult to apply if there are no direct correspondences between abstract
and concrete rules. Moreover, their objective is to project any given concrete
transformation behavior to the abstract level, and not vice versa as in our case.
Thus, refinement means a restriction of behavior rather than its extension.

In our work, we propose a more flexible, semantically defined notion of
refinement. We do not require a fixed relation between transformation rules
but only between the structural parts of the graph transformation system.
Then, we check whether selected system states in the abstract system are also
reachable at the concrete level, no matter by which sequence of transforma-



tions. By avoiding the functional mapping between rules, we can also relate
transformation systems with completely different behavior, and we are flexible
enough to cope with alternative refinements.

5 Conclusion

We have discussed semantic conditions for the refinement of dynamic mod-
els expressed as instances of graph transformation systems. Applications of
this technique include so far the refinement of architectural models based on
corresponding relations between architectural styles.

We are planning to support the approach by a coupling of CASE tools with
editors and analysis for graph transformation systems, presently conducting
experiments with existing model checkers.

References

[1] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Modeling and validation of
service-oriented architectures: Application vs. style. In Proc. European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE 03, pages 68–77. ACM Press, 2003.

[2] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based refinement of dynamic
software architectures. In Proc. 4th Working IEEE/IFIP Conference on Software
Architecture, WICSA4, pages 155–164. IEEE, 2004.

[3] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta
Informaticae, 26(3,4):241–265, 1996.

[4] G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In Proc. UML 2000 - The Unified Modeling Language, volume 1939 of LNCS,
pages 323–337. Springer, 2000.

[5] M. Große-Rhode, F. Parisi Presicce, and M. Simeoni. Spatial and temporal
refinement of typed graph transformation systems. In Proc. Math. Foundations
of Comp. Science 1998, volume 1450 of LNCS, pages 553–561. Springer, 1998.

[6] R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical
structuring of typed graph transformation systems. Math. Struct. in Computer
Science, 6:613–648, 1996.

[7] A. Rensink. The GROOVE simulator: A tool for state space generation. In
M. Nagl and J. Pfalz, editors, Proc. Application of Graph Transformations with
Industrial Relevance (AGTIVE ’03), LNCS. Springer, 2003. To be published.

[8] D. Varró. Towards symbolic analysis of visual modeling languages. In Proc.
GT-VMT 2002 - Int. Workshop on Graph Transformation and Visual Modeling
Techniques, volume 72 of ENTCS, pages 57–70. Elsevier, 2002.


	Introduction
	Structural refinement
	Behavioral refinement
	Related work
	Conclusion
	References

