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tions by (calls to) concrete ones.
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1 Introduction

The Web Services platform provides the means to adopt the World Wide
Web for application integration based on standards for communication, inter-
face description, and discovery of services. The prosperity of this technology
strongly depends on the ability of applications to discover useful services and
select those that can be safely integrated with existing components. Much
work has been done to achieve this aim. The interface of an offered service
can be specified in the Web Service Description Language (WSDL). This spec-
ification along with some keywords characterising the service can be published
at a UDDI-registry which serves as a central information broker and supplies
this information to potential clients. However, current standards do not sup-
port the automation of checking behavioural compatibility of the requestor’s
requirements with service descriptions.

The academic community has proposed a number of approaches describing
the behaviour of services by contracts [1], usually expressed by means of pre-
and post-conditions in some form of logic (see Section 4 for a discussion).
The main obstacle of this idea is its lack of usability by professional software
engineers, whose skills in applying logic formalisms are scarce. In [2-4] it has
been observed that graph transformation rules could provide a more abstract,
visual representation of contracts, specifying preconditions and effects of op-
erations by graphical patterns. This has the advantage of blending intuitively
into standard modelling techniques like the UML, providing contracts with an
operational (rather than purely descriptive) flavour.

However, the use of the graph transformation technique for Web service con-
tracts is hampered by two problems. Firstly, the classical semantics of rules
(as formalised, for example by the double-pushout (DPO) approach to graph
transformation [5]) assumes that transformations are completely described by
rules, i.e., nothing changes beyond what is explicitly required. A contract, how-
ever, represents a potentially incomplete specification of an operation, rather
than its implementation, and the strict rule semantics does not reflect the loose
nature of contracts. Secondly, classical graph transformation rules do not con-
tain information on the signatures of the specified operations, like input and
output parameter types needed to ensure type safety in the interaction.

For the first problem, we propose to use the loose semantics of rules based on
graph transitions. This kind of semantics has been formalised in the double-
pullback (DPB) approach [6] which defines graph transitions as a general-
isation of DPO transformations, allowing changes that are not required by
the rules. In order to increase the expressiveness of our graphical contract
language, we consider rules with positive and negative application condi-
tions. Negative conditions are well-known to increase the expressive power



of rules [7]. In the classic approaches, positive application conditions can be
encoded by extending both the left- and the right-hand side of a rule by the
required elements: they become part of the context. This is no longer possible,
in the presence of unspecified effects. In fact, the implicit frame condition,
that all elements present before the application and not explicitly deleted, are
still present afterwards, is no longer true. Thus, an element matched by a pos-
itive application condition may disappear, while an element which is shared
between the left- and the right-hand side must be preserved.

Since a service may contain several operations, contracts represented by condi-
tional rules are collected in conditional graph transformation systems (GTS)
providing the behavioural specification of the entire service. All conditional
rules of GTS are constructed over a conceptual data type model, represented
as a type graph.

To tackle the second problem, the structural description of a service is given
by a signature similar to those known from algebraic specifications [8]. A sig-
nature comprises a type graph and operation declarations. An integral service
description is obtained by an amalgamation of the structural and behavioural
specifications, i.e., service signature and conditional GTS, and called condi-
tional parameterised GTS. Each rule of such system is equipped with the
parameters corresponding to a declaration of the specified operation.

In our work a compatibility of provided and required services is defined via
the compatibility of operations constituting the service interfaces: For all re-
quired operations it is necessary to find structurally and behaviourally com-
patible provided operations. Structural compatibility requires a correspon-
dence between service signatures, which is captured by a signature morphism.
Behavioural compatibility amounts to relate the required and provided con-
ditional GTSs. We establish semantic requirements underlying the contract
resemblance and use them for the construction of an appropriate relation.
This relation, formally defined by a substitution morphism, allows to match
service specifications developed in different type contexts, which is the first
main contribution of the paper. We demonstrate that substitution morphisms
satisfy the semantic requirements.

In our previous works (cf. [2,3]), structural and behavioural aspects of compat-
ibility have been considered separately, the current presentation introduces the
notion of integral compatibility absorbing the two compatibility aspects. The
intended correspondence between integral specifications of services is modelled
by a parameterised substitution morphism.

The rest of the paper is organised as follows: After presenting in the next
section the constituents of service specifications and their formalisation in
terms of graph transformation, specification matching is treated in Section 3.
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Fig. 1. Service interface specifications and their compatibility.

In Section 4 we discuss related approaches, and in Section 5 we summarise the
main achievements and list issues for future work.

2 Service Interface Specification

In this section we consider the basic ingredients of service specifications by
means of an example from the travel business domain. We discuss two sample
specifications reflecting the views of service provider and requestor of a Web
service for booking hotel rooms. The scenario is not complete, but it is in line
with standardisation efforts in the travel industry [9].

The overall structure of service specifications is illustrated in Fig. 1. We dis-
tinguish between requestor and provider specifications. Each service speci-
fication consists of two compartments, a structural and a behavioural one.
The structural compartment is composed of a data model and operation dec-
larations. This information is typical for interface descriptions of components
as supported by conventional middleware platforms (see, e.g., [10]). A be-
havioural compartment comprises semantic descriptions of the service opera-
tions in terms of contracts [11].

The structural compartment of interface specifications is considered in more
detail in the next subsection, while Subsection 2.2 introduces the behavioural
compartment containing operation contracts represented by transformation
rules and formalised by conditional graph transformation systems. An inte-
gration of the structural and behavioural compartments is presented in Sub-
section 2.3, where the entire service interface is captured by conditional pa-
rameterised graph transformation systems.
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Fig. 2. Structural compartment of the provided interface specification: data model
(top) and operation declarations (bottom).

2.1 Structural Specification

The structural compartment consists of data types and operation declarations.

2.1.1 Data Types

As already mentioned, the first ingredient of the structural compartment in the
required and provided interface specifications is a data model, corresponding to
an ontology in the context of the Semantic Web [12]. In general, the data model
describes the concepts and relations shared across a family of applications or
an entire business domain.

Example 2.1. The structural compartment of the provided interface specifi-
cation for the hotel reservation service is shown in Fig. 2. The upper part of
this figure represents a fragment of the data model whose constituents are
interpreted as follows: A customer (type Customer) intends to book a room
(type Room) of a specific kind (type RoomType) in a hotel (type Hotel). A
booking process whose execution may be allowed only for some specific group
of authorized users (type Authorization) is initiated by an order submission
(type Order) containing besides other information a reservation time slot (type
DateRange). A successful completion of booking is indicated by a reservation
document (type ReservDoc) and payment information being relevant to the
booking (type Fulfillment). The latter is derived from a price (type Pricinglnfo)
associated with each room.

The structural compartment of the required interface specification is given in
Fig. 3. In general, the required data model depicted in the left-hand side of the
figure is quite similar to the provided one. However, some semantically iden-
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bookHotel: Client,BookingInfo,LicenseInfo —-> Reservation
fareDisplay: Hotel -> PricingInfo

Fig. 3. Structural compartment of the required interface specification: data model
(top) and operation declarations (bottom).

tical types in the models have different identifiers, because the required and
provided systems are developed independently from each other. For example,
the types Bookinglnfo, Client, and Licenselnfo from the required data model ap-

pear in the provided one under the names Order, Customer, and Authorization.
VAN

In order to match required and provided specifications automatically, we need
to find an appropriate formalism for each constituent of the interface speci-
fication. The formal description of structural information is based on typed
graphs.

The distinction of types and instances, as it occurs in data modelling (ER
diagrams and instances) or object-oriented programming (classes and objects)
is formally captured by the notion of type and instance graphs.

By graphs we mean directed unlabelled graphs G = (Gy, G, src¥, tar®) with
set of vertices Gy, set of edges Gp, and functions src® : Gp — Gy and
tar® . Gp — Gy associating with each edge its source and target vertex. A
graph homomorphism f : G — H is a pair of functions (fy : Gy — Hy, fg :
Gp — Hp) preserving source and target, that is, src” o f = fi o src® and
tar o fp = fy o tar®. With componentwise identities and composition this
defines the category Graph.

Vertices and edges of the type graph represent types. Each type graph gives
rise to a number of instance graphs representing states or patterns that will
be relevant in the formalisation of the behavioural compartment. Given a type
graph TG, a TG-typed (instance) graph consists of a graph G together with a
typing homomorphism ¢ : G — T'G associating with each vertex and edge x
of G its type g(x) =t in TG. In this case, we also write 2 : ¢t € G.

A TG-typed graph morphism between two T'G-typed instance graphs (G, g)
and (H,h) is a graph morphism f : G — H which preserves types, that is,



ho f = g. With composition and identities this defines the category Graph,
which is the comma category of Graph over T'G.

2.1.2  Operation Declarations

In addition to data types, the structural compartment of service interfaces
provides a set of operation declarations.

FExample 2.2. Declarations of provided operations for the hotel reservation ser-
vice are shown in the lower part of Fig. 2. The operation reservHotel requires a
caller to submit a customer profile and a booking order, and yields a reserva-
tion document together with a financial fulfillment. The operation fareDisplay
obtains a hotel identifier as an input and returns hotel fairs. This operation
is implemented in such a way that its execution is not accompanied with an
inventory check for available places in a hotel whose fares are displayed.

The required operation declarations are depicted in the lower part of Fig. 3.
While the declaration of the operation bookHotel is slightly different from the
one of the provided operation reservHotel, their intended meaning coincides.
The declaration of the operation fareDisplay is identical to the corresponding
provided operation. However, the requestor intends to find an operation which
displays only the fares of hotels available for booking . A

Each operation p : v — w is identified by a name p and has associated lists
of input and output parameter types v = vy,...,v, and w = wy,..., Wy,
respectively, with w;,v; € TGy UTGg. A type graph with operation declara-
tions represents the structural description of a service, modelled by a service
stgnature.

Definition 2.3 (service signature). A service signature S is a pair
(T'G, P) consisting of a type graph T'G and a family of sets P = (P, )v,we|rc)*
with operation declarations of the form p: v — w for p € I, ,,. A

As discussed above, operations with identical declarations may provide differ-
ent behaviours (cf. operations fareDisplay in Example 2.2). If the parties are not
aware of this fact, interaction problems may occur. To avoid such problems,
the structural descriptions of the operations have to be accompanied with be-
havioural information expressing the intended meaning of the operations. In
our approach, the behaviour of operations is specified by contracts.



2.2 Behavioural Specification

Contracts were originally introduced by Bertrand Meyer in the object-oriented
design approach called Design by Contract [11]. An operation contract consist-
ing of pre- and post-conditions is used to ensure the correctness of interaction
between a supplier of operation and clients calling the operation. The pre-
condition describes the conditions which must be fulfilled prior to operation
invocation. The post-condition portrays the effect of the operation, i.e., state
changes that occur when the operation completes successfully. Typically, pre-
and post-conditions are assertions, e.g., Boolean expressions, stating some
properties of the entities in the system states.

There are different approaches to contract specification based on description
logics [13], algebraic specification languages [14], cte. As already mentioned,
such logic-based approaches are difficult to use and integrate into mainstream
software development approaches. Therefore, we aim at a notation that is
close to standard software modeling languages and that has at the same time
a formal semantics to allow for automation. This visual formal notation for
contracts is provided by typed graph transformation [15].

2.2.1 Typed Graph Transformation

Representing runtime states as typed graphs, state changing operations are
described by graph transformation rules (or productions) p : s consisting of a
rule name p, and a span s = (L O K C R), where L, K and R are TG-typed
instance graphs. The left-hand side L and the right-hand side R describe a
part of the system state before and after execution of the operation, that is,
the pre- and postconditions, and the context graph K contains those elements
that are read but not deleted by the operation. For a rule p : s we usually
assume that the graph K is the intersection K = LN R. In this case, we denote
the rule by p: L — R.

Example 2.4. Graph transformation rules specifying the required operation
bookHotel and the provided operation reservHotel are shown in Fig. 4. They
represent the first attempt at describing behaviour of the corresponding oper-
ations and will be refined latter. The left-hand sides of the rules contain ele-
ments standing for the input parameters of the operations and their relation-
ships. For example, the edges between the objects c:Client and bi:Bookinglnfo
in the requestor rule, and the objects cus:Customer and o0:Order in the provider
rule denote the fact that the booking request is submitted by a specific cus-
tomer. The output parameters of the operations appear in the right-hand sides
of the rules. A
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Fig. 4. Graph transformation rules bookHotel (top) and reservHotel (bottom).
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Fig. 5. Typed span morphism (left) and double-pushout (or -pullback) diagram
(right).

Formally, graph transformation rules are specified by spans of injective graph
morphisms L < K -5 R as shown in the following definition. While the
behaviour of a single operation is described by a graph transformation rule,
several behavioural descriptions can be aggregated in a (typed) graph trans-
formation system (GTS).

Definition 2.5 (typed span, graph transformation system). A TG-

typed span s is an cxpression of the form (L LY QLN R), where [ and r arc
injective T'G-typed graph morphisms.

Given TG-typed spans s = (L «— K - R) and s’ = (L' Ry N R, a
TG-typed span morphism e : s — s’ is a tuple (er, ek, er) of TG-typed graph
morphisms commuting with £, I, r and " (cf. Fig. 5 on the left).

A (typed) graph transformation system G = (T'G, P, ) consists of a type graph
TG, a set of rule names P, and a mapping 7 associating with each rule name
p a TG-typed span mw(p). If p € P is a rule name and 7(p) = s, we say that
p:sis arule of G. A

A change from state GG to state H under the execution of an operation specified
by rule p : L — R is modelled by a graph transformation step G == H. This
requires that a renaming of L occurs as a subgraph in GG. Then, L\ R (which
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Fig. 6. A sample transformation step via the rule reservHotel.

consists of all nodes and edges of L not belonging to R) is removed from G,
and R\ L is added to the result. This leads to the derived graph H which
contains a copy of R as a subgraph.

The effect encoded in the rule is defined by the elements which have to be
deleted (exist only in L), created (exist only in R), and preserved (exist in K)
under the rule application. The deleted and created elements are denoted by
del(p) and add(p), accordingly.

The semantics described above is called strict, because the application deletes
and creates exactly what is specified by the rule. An implicit frame condition
ensures that the remaining part of the graph is left unchanged.

Example 2.6. Fig. 6 demonstrates a transformation step via the rule reservHo-
tel. First of all, we look for an occurrence of the left-hand side L' of the rule
in the instance graph representing (a fragment of) the system state. This
occurrence is marked by the dashed polygon in the source graph G. Then,
the elements matching del(reservHotel), i.e., the edges between the object
7HG4:Order and the objects dr03:DateRange, id7H:Customer, and 172AC:Hotel
are deleted, and the elements corresponding to add(reservHotel) marked by
the dashed rectangle in the target graph H are added to the result. The newly
created objects 7TH39B4:ReservDoc and 7H39F:Fulfillment are obtained as the
output of the provided operation specified by the rule reservHotel. A

The strict semantics is formalised by the double-pushout (DPO) approach to
graph transformation [16], where transformations of graphs are defined by
pairs of pushout diagrams, called double-pushout constructions (cf. Fig. 5 on
the right).

10



Gluing the graphs L and D over their common part K yields again the graph
G, i.e., the left-hand square (1) forms a so-called pushout complement. Only
in this case the application is permitted. Similarly, the derived graph H is the
gluing of D and R over K, which creates the right-hand side pushout square
(2). The resulting double-pushout (DPO) diagram represents the transforma-
tion of G into H.

Definition 2.7 (DPO graph transformation). Given a graph transfor-
mation system G = (TG, P,7) and a rule p : (L R g R), a (DPO)

transformation step in G from G to H via p, denoted by G p:/d> H, is a dia-
gram d like in the right of Fig. 5, where both (1) and (2) are pushout squares.
We also write p/d if G and H are understood, and denote by top(d) and bot(d)
the top and bottom span of d.

A transformation sequence p = py...p, : G =" H in G via py,...,p, is a
sequence of transformation steps p; = (G; % H;) such that G, = G,H,, = H
and consecutive steps are composable, that is, G, 1 = H; for all 1 <7 < n.

The category of transformation sequences over G denoted by Trf(G) has all
graphs G € Graph,. as objects and all transformation sequences in G as
AITOWS. A

The existence of the pushout complement (1), and hence of a direct deriva-

tion! G L/(é H, is characterized by the gluing conditions [17]: The dangling
condition ensures that the structure D obtained by removing from G all ob-
jects to be deleted is indeed a graph, that is, no edges are left “dangling”
without source or target node. The identification condition states that objects
from the left-hand side may only be identified by the match if they also belong
to the context graph K (and are thus preserved).

2.2.2  Loose Semantics of Rules

The strict semantics is pertinent for the contracts of the provider, who obvi-
ously has complete information on supplied functionality. The required con-
tracts, in turn, are incomplete specifications of service behaviour, because a
developer of the requestor system has only loose idea of the provided ser-
vices. The loose contracts describe minimally required effects, allowed to be
extended in more powerful provided operations.

Therefore, the contract rules of the required operations have to be interpreted
in a more liberal way: at least the elements of the graph G matched by del(p)
are removed, and at least the elements matched by add(p) are added. This

L' The pushout (2) always exists since the category Graph¢ is cocomplete.

11
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Fig. 7. A sample graph transition via the rule bookHotel.

semantics of rules, called loose, is provided by the notion of graph transition
which leaves out the frame condition.

Like a transformation step, a graph transition G 28 H from G to H via P
requires that L occurs in G and carries out the transformations of G being
explicitly encoded in the rule, but there may be unspecified deletions and
additions as well.

Example 2.8. A sample graph transition is shown in Fig. 7. It applies the rule
bookHotel while in parallel the object 7HL:Licenselnfo and the edge connecting
this object with the object id7H:Client is deleted. The “spontaneous” deletion
illustrates an effect which is unspecified by the rule bookHotel. This unspecified
effect may be imposed by some compatible provided operation extending the
cffect defined in the rule bookHotel. A

The more liberal notion of rule application discussed above is provided by
the double-pullback (DPB) approach to graph transformation [6]. The DPB
approach introduces graph transitions and generalizes DPO by allowing ad-
ditional, unspecified changes. Formally, graph transitions are defined by re-
placing the double-pushout diagram of a transformation step with a double-
pullback.

Definition 2.9 (DPB graph transitions). Given a graph transformation
system G = (TG, P,w) and arule p: (L «— K —> R), a transition in G from

G to H via p, denoted by G 2y , is a diagram like in the right of Fig. 5,
where both (1) and (2) are pullback squares.

A transition is called injective if both g and h are injective graph morphisms.
It is called fasthful if it is injective, and the morphisms d; and dp satisfy the

12



following condition: for all z,y € L, y € I[(K) implies dj(x) # d.(y), and
analogously for dp.

A transition sequence p = p1...p, : G ~* H in G via py,...,p, is a se-
. .. pi/d;

quence of faithful transitions p; = G; Bi/d H, such that G, = G, H,, = H and

consecutive steps are composable, that is, G;;, = H; for all 1 < i < n.

The category of transitions over G, denoted by Trs(G), has all graphs G €
Graph,, as objects and all transition sequences in G as arrows. A

The condition ensuring the faithfulness of transitions means that d; and dg
satisfy the identification condition of the DPO approach with respect to [ and
r. Notice that any pushout square of two given morphisms such that one of
them is injective is also a pullback square. Thus, every DPO transformation
is also a DPB transition. Each faithful transition, in turn, can be regarded
as a transformation step plus a change-of-context [6]. This is modeled by
additional deletion and creation of elements before and after the actual step.
In the following we stick in our presentation to the faithful transitions.

2.2.3 Conditional Graph Transformation

As we will see in the next section, behavioural compatibility between the
required and provided operations is ensured via a matching of preconditions
and effects of rules. For this to be possible, the two parts of the rules have to
be clearly separated. However, normally the specification of the precondition
is mixed up with that of items to be deleted in the left-hand side of the rule.

A refinement of the rule’s structure avoiding this problem is obtained by using
positive application constraints in the form L C f)p, where L is the left-hand
side of a rule span and _i/p is a positive precondition pattern. The elements
constituting Lp compose a context required to be present for the rule appli-
cation.

Note that, in the case of the strict semantics, the use of positive constraints
does not increase the expressiveness of rules: They can be integrated by ex-
tending both the left- and the right-hand side with the elements required, but
not deleted by the rule. This is correct because we are sure that everything
that is not explicitly deleted is not deleted at all.

This is no longer true under the loose semantics, where the positive precondi-
tion may extend the left-hand side of the rule with elements that are required
to be there, but which may be deleted spontaneously, without explicit speci-
fication.

Positive constraints allow us to assert the existence of patterns in graphs.

13
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Fig. 8. Contract rules for the operations bookHotel (top) and reservHotel (bottom).

However, the language introduced so far does not allow to specify the non-
existence of patterns. To fill this gap, the expressive power of the contract
language is increased by negative application constraints L C f)N, where f)N,
called negative precondition pattern, extends L with the elements that must
not be present in a graph when the rule is applied.

Example 2.10. Fig. 8 shows conditional rules defining the contracts of the re-
quired operation bookHotel and the provided operation reservHotel. The parts
of Fig. 8 marked by the dashed rectangles portray the effects expected by the
requestor and guaranteed by the provider, accordingly. The output parame-
ters of the operations appear in the right-hand sides of the rules. Lp and IA/P
specify the positive precondition patterns containing the input parameters of
the operations.

Besides customer and order information being present in the positive precon-
dition patterns of both rules, Lp additionally contains the business license
code of the travel agency making the reservation. The requestor considers the
parameter |:Licenselnfo as the input which may be expected by the service
provider. At the same time, this parameter is not needed for the following

computations in the requestor system, so it appears only in the positive pre-
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Fig. 9. Conditional span.

condition pattern and its further behaviour is left unspecified, i.e., it can be
unrestrictedly manipulated by the provider. The negative precondition pat-
terns Ly and IA/N of the rules prevent us from booking a room which has been
already reserved. A

The positive and negative constraints compose an application condition over
a rule span. A rule span enriched with such application condition, called con-
ditional span, is formally introduced in the following definition.

Definition 2.11 (conditional span). An application condition A(s) =
(AP(s), AN(s)) over a TG-typed span s = (L L N R) consists of
two sets of injective typed graph morphisms AP(s), AN(s) outgoing from L
which contain positive and negative constraints, respectively. A(s) is called
positive (negative) if AN(s) (AP(s)) is empty.

Let L - L be a positive or negative constraint and L L G o be a typed

graph morphism (cf. Fig. 9). Then d; P-satisfies [, if there exists a typed
~ d: ~ - [

graph morphism L —= G such that d; ol = dj,. d;, N-satisfies [, if it does not

P-satisfy 1.

Let A(s) = (AP(s), AN(s)) be an application condition and L L G be a
typed graph morphism. Then d, satisfies A(s), if it P-satisfies at least one
positive constraint and N-satisfies all negative constraints from A(s).

A conditional span is an cxpression of the form sif A(s), where s = (L &
K > R) is a TG-typed span, A(s) is an application condition over s. It is

applicable to a graph G via L A Gt dy, satisfies A(s). A

Notice that positive application conditions consist of a disjunction of positive
constraints, in contrast with the conjunction in [7]. That means, positive and
negative conditions are, in fact, dual to each other.

Having defined conditional spans, we turn to graph transformation systems
with conditional rules being employed as a formal specification of the be-
havioural compartment.

Here, a transformation step or transition via a conditional rule requires a
match of L within G. Then, it is necessary to check whether occurrences
of the positive (negative) precondition patterns corresponding to the chosen
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match are contained (are not contained) in the source graph G. If it is the
case, we say that the match of L in G satisfies the application condition and
proceed similarly to the unconditional case. Otherwise application of the rule
at the chosen match is forbidden.

Definition 2.12 (conditional GTS). A conditional graph transformation
system C = (TG, P, ) consists of a type graph TG, a set of rule names P,
and a mapping 7 providing for each rule name p a T'G-typed conditional span
7m(p). If p € P is a rule name and 7(p) = sif A(s), we say that p : sif A(s) is
a conditional rule of C.

Given a conditional rule p : sif A(s) of C, then a transformation step (tran-
sition) in C from G to H via p is a transformation step (transition) via an
unconditional rule p : s such that dj, € d satisfics A(s) (cf. Fig. 9) A

For a rule p : sif A(s) with A(s) = (AP(s), AN(s)) we assume that the

injective morphisms L Ny representing positive or negative constraints are
indeed inclusions, and that the pairwise intersection of all the L is well-defined
and equal to L. That means, the left-hand side of a rule and all its constraints
are defined over a common name space, a fact that will be relevant when
introducing parameterised rules.

Structural and behavioural compartments of a service interface specification,
i.c., service signature S = (T'G, P) and conditional graph transformation sys-
tem C = (TG, P, ), are developed so far independently from each other. In
the following, we relate them in order to get an integral description of a service
interface.

2.8 Integration of Structural and Behavioural Compartments

An integration of the two specification compartments basically requires to
combine operation declarations and conditional rules describing the behaviour
of these operations. An operation declaration specifies types of input and out-
put parameters appearing as elements in the corresponding rule, i.e., in the
positive precondition patterns ﬁ");, and in the right-hand side R of the rule
span. The desired integration is captured by the notion of conditional parame-
terised rules. The names of such rules are given by parameter expressions of the
form p(z,y), where p: v — w is an operation declaration, and = = xy,..., 2,
and y = y1, ..., Yn are sequences of input and output parameters conforming
to the types constituting v and w.

Definition 2.13 (conditional parameterised rule). Given a signature
S = (TG, P), and a pair of TG-typed graphs (X,Y), a set of parameter
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expressions over S and (X,Y) is defined by Ep(X,Y) = {p(x,y)|p € Pyw,x €

X,y €Yy}

A conditional parameterised rule ¢p over S = (T'G, P) is an expression of the
form p(z,y) : sif A(s), where sif A(s) is a TG-typed conditional span, and
p(r,y) € Ep(L, R) is a parameter expression over (£, R), i.e, v € L, and
y€ Ry, forpe P,,, and L =UJ IED, assuming that the union £ of all positive
precondition patterns is well-defined. A

A transformation step or transition via a conditional parameterised rule is
analogous to the one via the ordinary rule, however it can be additionally
annotated with the elements from the source and target graphs matching the
declared parameters (cf. Fig. 6 and Fig. 7).

Now we are able to aggregate service signature S = (T'G, P) and conditional
graph transformation system C = (T'G, P, ) in order to get a formal specifi-
cation of the entire service interface.

Definition 2.14 (conditional parameterised GTS). A conditional pa-
rameterised graph transformation system CP = (TG, P, CP) is a triple, where
TG and P compose a signature, and C'P is a set of conditional parameterised
rules over this signature, such that p(x,y) : s;if A(s;) for ¢ = 1,2 implies
spif A(sy) = soif A(sg). A

The definition states that each rule in CP has unique name, so the con-
ditional parameterised GTS can be represented by the conditional GTS
C = (TG, P, ), where P contains parameter expressions for each rule from
CP, and 7 associates p(x,y) with sif A(s) if and only if the corresponding
rule appears in C'P. Hence transformations or transitions in CP are similar to
the ones in the graph transformation system C.

Next, we discuss the compatibility between the required and provided inter-
face specifications containing the client’s requirements for a useful service and
service descriptions.

3 Compatibility of Service Interface Specifications

The notion of compatibility is motivated by a substitution principle: a re-
placement of abstract operation descriptions in the required system with the
concrete operations implemented in the provided system should guarantee
that the behaviour of integrated system remains acceptable for the parties.

The structural aspect of compatibility (cf. Fig 1) is formalised in the next
subsection by a signature morphism associating the structural specifications
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of the two parties. Subsection 3.2 discusses and formalises behavioural com-
patibility as a substitution morphism between the conditional graph trans-
formation systems. Signature and substitution morphisms are aggregated in
Subsection 3.3, where we establish the integral compatibility in terms of a
parameterised substitution morphism.

3.1  Structural Compatibility

Structural compatibility between required and provided interface specifica-
tions is captured by matching service signatures which may be developed in
the context of different data models. In order to collate the signatures of the
parties, we have to provide an appropriate retyping which makes operation
declarations comparable with each other. The retyping is based on a mapping
between the required and provided type graphs representing the data models.

Due to the potential heterogeneity of service-oriented systems, their inter-
face specifications and, in particular, data models may arbitrarily diverge. To
compute a semantically meaningful relation automatically is a problem that
can hardly be solved in general. In practice, requestor and provider either
construct their specifications over a common standard ontology or use non-
standard models equipped with mappings to a standard one. An example of
a standard ontology for the travel business domain can be found, e.g., in [9].

A fragment of the retyping relation presented below illustrates a correspon-
dence between the types in the example scenario:

{Bookinglnfo «» Order, Client «» Customer,
Reservation < ReservDoc, Licenselnfo < Authorization, ...}

Next, we discuss operation declarations, assuming for the moment that the
required and provided signatures share the same types. Structural compatibil-
ity between two operation declarations is motivated by the following semantic
requirements: On the one hand, the provider needs all required inputs in order
to execute its operation. On the other hand, the requestor has to rely on the
fact that the provided operation returns all expected outputs.

Syntactic criteria ensuring these semantic requirements are based on the
matching of input and output type sequences composing the operation decla-
rations. We say that a sequence o = oy, ..., «a, is a subsequence of a sequence
8 = B1,...,0n, denoted as a < [, if there exist integers i1 < iy < ... < i,
such that a; = 3, for all a;. The sequences are equal, denoted as o = 3, if they
contain the same elements at the same positions. Different notions of struc-
tural compatibility between the required p : v — w and provided p' : v/ — w’
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Compatibility Inputs | Outputs

Exact v=v | w=w
Input-preserving v=1v | w=uw
Output-preserving | v = v | w=u'
Generalized v=v | w=w

Fig. 10. Structural compatibility of operation declarations.

operation declarations are demonstrated in Fig. 10.

The exact compatibility requires operations to have the same inputs and out-
puts. The next two variants relax the dependencies between the sequences of
input and output parameter types, respectively. The last notion of compatibil-
ity provides the most general condition, allowing more inputs in the required
operation as well as more outputs in the provided operation. An appropriate
notion of structural compatibility has to be chosen based on demands of the
business domain and the platform on which requestor and provider systems
are implemented.

Example 3.1. Let us consider the structural compatibility of the operations
reservHotel and bookHotel shown in Fig. 2 and Fig. 3. The declarations of the
operations differ in several ways. While the required operation has the extra
input Licenselnfo, the provided operation contains the extra output Fulfillment.
However, the input offered by the requestor is sufficient for the provider, and
the output proposed by the provider satisfies the requestor’s expectations.
The described deviations between the declarations are permitted under the
generalized notion of structural compatibility. A

At this point we are able to formulate a relation over the structural specifi-
cations of the entire services, i.e. service signatures. This relation is based on
the compatibility criteria developed for the solitary operation declarations.

The intended correspondence between the required and provided signatures is
modelled by a signature morphism formally described below.

Definition 3.2 (signature morphism). A signature morphism [ =
(fra, fp) : (TG, P) — (TG', P’y consists of a type graph morphism frq :
TG — TG and a mapping of rule names fp : P — P’ such that for each
operation declaration p: v — w € P, fp(p) : v — w' € P with f,(v) =

and fro(w) =w'. A
The definition captures the exact compatibility between the signature decla-

rations. We therefor speak of exact signature morphisms. The three remaining
variants of structural compatibility can be obtained if the equality between
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Fig. 11. Compatibility between required and provided operation contracts.

the sequences of input and output parameter types in Def. 3.2 are replaced
with the subsequent relations according to Fig. 10, leading to the notions of
mput-preserving, output-preserving, and generalised signature morphisms.

3.2 Behavioural Compatibility

Behavioural compatibility is verified by relating conditional graph transfor-
mation systems describing the required and provided services. To compare
behavioural specifications employing different types, their type systems have
to be adjusted, i.e. it is necessary to establish a mapping between the required
and provided type graphs. This mapping induces a retyping procedure which
enables to compare the rules sharing the same type context. We continue our
discussion under the assumption that the systems consistently use the same

types.

Rule names in a conditional GTS stand for the names of service operations,
whose behaviour is specified by contracts taking the form of conditional rules.
Before devising syntactic criteria for the behavioural compatibility for a pair
of contract rules, we have to understand the semantic requirements.

Fig. 11 shows the invocation of the provided operation by the requestor as well
as the provider’s reply, together with the relevant preconditions and effects
constituting the contracts. The interaction consists of the following steps:

(1) Requestor is willing to submit input data specified in pre to issue a call
of the provided operation.

(2) Provider assumes that the submitted input satisfies the invocation re-
quirements described in pre’ and calls its operation.

(3) Provider executes its operation and guarantees the effect described in
effect’.

(4) Requestor assumes that the provided effect fulfills assumptions specified
in effect and obtains the result of the operation call.

To make sure that the service implemented by the requestor system with the
help of provider works as expected, we have to verify that the assumptions
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given in 2 and 4 indeed hold. This would be the case if pre implies pre’, and
effect” implies effect.

Both semantic requirements will be checked through syntactic criteria on the
pair of the required and provided rules p : sif A(s) and p' : s"if A(s'), respec-
tively.

The precondition of a rule restricts its applicability. Thus, the first implica-
tion is guaranteed if the applicability of the required rule entails that of the
provided rule. This is the case if L’ C Lpand Ly C L’ The effect of a rule
describes the state changes induced by a transformation step or transition via
this rule. Thus, the second implication is ensured if the effect of the required
rule is included (and possibly extended) in the provided rule. This is the case
it L C LR C R (left- and right-hand sides are extended), del(p) C del(p')
(more is deleted by p'), and add(p) C add(p") (more is added by p').

Example 3.3. Let us examine the behavioural compatibility of the operations
bookHotel and reservHotel whose contracts are depicted in Fig. 8. To check
whether the required operation meets invocation requirements of the provider,
we compare the precondition parts of the rules. The invocation requirements
of the provided operation are stated in the positive and negative precondition
patterns L/ » and L 'v- While the former is enriched in the requestor rule by the
object l:Licenselnfo and the edge between this object and the object c:Client,
the latter is identical (modulo renaming) to the negative precondition pat-
tern Ly. That means the applicability of the required rule is extended in the
provided rule.

Then, we match the effect parts of the rules, because the benefit obtained via
applying the provided operation should satisfy the expectations of the client.
The object f:Fulfillment and the edge from this object to the object rd:ResrvDoc
are created in the system state after the execution of the operation reservHotel.
These elements are not present in the right-hand side of the requestor rule
bookHotel, because it is regarded as sufficient to obtain only a confirmation in
the form of a reservation tag. Nevertheless, the provided effect extending the
required one fits the client requirements. A

Due to the substitution principle declared in the beginning of this section, the
abstract rules of the requestor system C are expected to be replaced by the
concrete rules of the provider system C’. Semantically, this means to substitute
transformations in C’ for transitions in C, while preserving the applicability of
all substituted rules.

Definition 3.4 (substitutability). Given conditional graph transformation
systems C = (TG, P,w) and C' = (T'G', P', '), we say that C’ is substitutable
for C if there exists a functor F': Trf(C’) — Trs(C) such that for all graphs

|'Trf(C")| and for all transition sequences p : F(G') — _ € Trs(C) there
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Fig. 12. Forward (left) and backward (right) retyping functors.

exists a transformation sequence p' : G — - € Trf(C") with F(p") =p. A

[1ay)

The operator “_” in the definition denotes the fact that the targets of p and p/
are left unspecified. Functor F' translating states of C’ into states of C can be
realised by the retyping induced by a morphism between the two type graphs
of the system [18].

Definition 3.5 (retyping). A graph morphism frq : TG — TG’ induces a
Jorward retyping functor f7g : Graph,, — Graphyq, [7(g) = fog and
f7(k:g— h) =k by composition as shown in Fig. 12 on the left, as well as
a backward retyping functor [, : Graphyo — Graph,q, [~(¢) = ¢* and
f<(K ¢ — 1) =Fk*:g"— h* by pullbacks and mediating morphisms as
shown in Fig. 12 on the right. A

Now we are ready to formally define behavioural compatibility.

Definition 3.6 (substitution morphism). Given conditional typed graph
transformation systems C = (T'G, P,7) and C' = (TG, P', 7'}, a substitution
morphism f** = (frq, fp) is given by a type graph morphism frq : TG —
TG and a mapping of rule names fp : P — P’ such that for each 7(p) =
sif A(s) and 7'(p') = ¢"if A(s") where p € P and p' = fp(p) € P’

(1) there exist TG-typed graph morphisms e, : L — fro(L), ex : K —
fra(K'), and eg : R — fro(R') forming a faithful transition (cf. Fig. 13
on the right), and

(2) applicability of m(p) implies that of 7'(p’) in Graphy ., i.e.

(a) for each f7 (L — L) € frg(AP(s)) there exist L/ Lie AP(S)
and a graph morphism hp : L' — f7,(L) such that the corresponding
square in Fig. 13 on the left commutes;

(b) for each L' X I/ € AN(s') there exist f7a(L — L) € f7a(AN(s))
and a graph morphism hy : f7,(L) — L’ such that the corresponding
square in Fig. 13 on the left commutes.

JAN

Notice that the effect parts of the conditional rules are matched in the type
context of C in contrast with the precondition parts compared in the type
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Fig. 13. Substitution morphism of conditional rules (the functors f7, and fr. are
applied to the entire constraint of p in the left part of the figure and to the entire
bottom span in the right part of the figure, respectively).

context of C'. The precondition part of the requestor’s rule is forwardly retyped
for the matching, because the input data specified by this precondition will
be interpreted in the type system of the provider executing the operation.
Analogously, the effect part of the provider’s rule is backwardly retyped, since
the result of the operation will be interpreted and used in the requestor type
system.

While the semantic requirements on the structural compatibility are directly
reflected by the signature morphism, the correspondence between the semantic
requirements on the behavioural compatibility and the substitution morphism
is not so obvious. The justifications for the definition of the substitution mor-
phism are presented in the following theorem.

Theorem 3.7. The substitution morphism f*“* = (frq, fr) satisfies the se-
mantic requirements of Def. 3.4.

Proof. It is necessary to show that Def. 3.6 implies Def. 3.4. The existence
of a functor between two categories of sequences requires that each individual
step in C’ is mapped to a sequence in C. By induction, this mapping is ex-
tended to sequences in C. However, we will deal with the simpler case where
a transformation step in C’ is actually mapped to a single transition in C.

One should demonstrate, first of all, that transformation steps via C’ rule
can be considered as transitions via the corresponding C rule. Secondly, the
applicability of this C rule has to imply the applicability of the C’ rule under the
construction of the transformations and transitions associated by the functor
F.

Assume two conditional rules p : sif A(s) and p' : §"if A(s’) where p € P and
p'=frlp) € P

(1) Let us apply backwardly retyped p’ to the graph f7.(G) at [ (dr) and
construct a transformation step with the underlying span fr(G &
D - H) as depicted in Fig. 14 on the right. Since I’ and " are injective,
this transformation step is also a (faithful) transition. By assumption,
for each pair of rules p : sif A(s) and fp(p) : s if A(s") there exists a
TG-typed graph morphisms e;, : L — fr5.(L), ex : K — f5o(K'), and
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Fig. 14. Substitution morphism and semantic requirements (the functors f7 and
J7¢ are applied to the entire application constraint of p in the left part of the figure
and to the entire bottom span in the right part of the figure, respectively).

er: R — fio(R') forming a faithful transition (cf. Fig. 14 on the right).

Now, both transitions can be vertically composed using the composition

of the underlying pullback squares. The faithfulness of the composed tran-

sition via the rule of C follows from the preservation of the identification
condition under the composition of pullback squares.

(2) Tt is left to show that if f7(dy) satisfies the application condition of
forwardly retyped p, then d;, satisfies the application condition of p’.
This induces two problems:

(a) dp (cf. Fig. 14 on the left) must P-satisfy all positive constraints of p'.
Since hp exists by assumption (Def. 3.6.(2a)), d;, can be constructed
by f7a(d;) o hp. It is not difficult to sce that d;, ol =dy.

(b) dp (Cf Flg 14 on the left) must N-satisfy all negative constraints
of p/, ie., there does not exist d;, : L' — G such that d;, o k' =
dp. Assume to the contrary the existence of d;,. Since hy exists by
assumption (Def. 3.6.(2b)), we can construct f7(d;) = d;, ohy with
Jra(d;) o k= fZ.(dp) which is a contradiction.

Thus, d;- satlsﬁes the application condition of p'.

Combining the two parts of the proof, we obtain that the functor specified in
Def. 3.4 can indeed be constructed. O

3.3 Integral Compatibility

In the previous subsections we have established the relations which model
structural and behavioural kinds of compatibility between the interface spec-
ifications of the required and provided services. The structural compatibility
guarantees the appropriate relationship between input and output parameter
types of the associated operations, which may have, however, completely dif-
ferent meanings. The behavioural compatibility, in turn, relates semantically
compatible operations, which may be structurally inconsistent.

At this point, we discuss an integral compatibility combining the features of
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the structural and behavioural ones. The integral compatibility is represented
by a parameterised substitution morphism formally defined below. The param-
eterised substitution morphism associates the required and provided service
specifications in the form of conditional parameterised graph transformation
systems.

Definition 3.8 (parameterised substitution morphism). Given condi-
tional parameterised graph transformation systems CP = (TG, P,CP) and
CP' = (TG P,CP). A parameterised substitution morphism f*uo+

{fra, [p) is a signature morphism given by a type graph morphism frq :
TG — TG and a mapping of rule names fp : P — P’, where for all p € P
and p’ = fp(p) € P’ the conditional spans of rules ¢p = p(x,y) : sif A(s) € CP
and ¢p’ = p/(2/,y) : §'if A(s") € C'P’ satisfy the requirements of Def. 3.6 A

The newly introduced notion of integral compatibility is illustrated by the
following example.

Erample 3.9. Let us examine the integral compatibility of the operations
bookHotel and reservHotel which are specified by conditional parameterised
rules in Fig. 8. First of all, one should check the structural compatibility
between the parameter type declarations augmenting the rule names. In Ex-
ample 3.1, we have shown that the declarations of these operations satisfy the
requirements imposed by the generalized notion of structural compatibility.

Then, we check the behavioral compatibility which amounts to match the
conditional rules associated with the rule names bookHotel and reservHotel.
According to Example 3.3, under the appropriate renaming the applicability
and effect of the required rule are extended in the provided rule. This guar-
antees the behavioral compatibility between the considered operations. Com-
bining the outputs of structural and behavioral compatibility tests, we can
conclude that the operations bookHotel and reservHotel are indeed integrally
compatible. A

Two final sections discuss approaches related to our work and summarise the
main results.

4 Related Work

The problem of discovering a component or service satisfying specific require-
ments is not a new one. A significant amount of work has been done in the area
of Component-Based Software Engineering (CBSE) to increase the reliability
and maintainability of software through reuse. Central here is the development
of the techniques for reasoning about component descriptions and component
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matching. These techniques differ in the constituents involved in the matching
procedure (e.g., operation signatures, behavioural specifications) and the way
these constituents are specified (e.g., logic formulas, algebraic specification
languages).

One of the most elaborate approaches, along with a thorough overview of re-
lated work, is presented by Zaremski and Wing in [19] and [14], who have
developed matching procedures for two levels of descriptions (signatures and
specifications) and two levels of granularity (functions and modules). Struc-
tural and behavioural information about components is given using the alge-
braic specification language Larch/ML.

A pre/post-condition style of specification, like in [14], is also utilised by
other authors. For example, in the work of Perry [20] operations are specified
with pre- and post-conditions in first order logic. Order-sorted predicate logic
(OSPL) is employed by Jeng and Cheng in [21] for component and function
specifications. Basically, two features differentiate our approach from the works
described above. The first one is the operational interpretation of graph trans-
formation rules. Second, we have proposed a visual, model-based approach
which provides better usability, because it can be more easily integrated into
the standard model-driven techniques for software development.

Bracciali et al. in [22] propose a formal methodology for adapting compo-
nents with mismatching interaction behaviour. An interface specification in
this approach consists of two parts: a signature definition describing the func-
tionalities offered and required by a component, and a behaviour specification
describing the interaction protocol followed by a component. While signatures
are expressed in the style similar to our work, behaviour specifications are ex-
pressed by using a subset of m-calculus. Interaction patterns reflected by such
specifications can hardly be used to identify the semantics of operations de-
clared in the interfaces, they rather provide add-ons to the operation contracts
proposed in our work.

Matching required and provided interfaces is also an issue present in mod-
ularisation approaches for algebraic specification languages and typed graph
transformation systems (GTS), in particular for the composition of modules.
An algebraic module specification MOD in [8] consists of four parts called im-
port IM P, export EX P, parameter PAR, and body BOD. All components
are given by algebraic specifications, which are combined through specification
morphisms. GTS-modules in [18] are composed of three GTS, IMP, EXP,
and BOD, the only difference being the absence of a parameter part. IMP
and BOD are related by a simple inclusion morphism, whereas EX P and
BOD are connected by a refinement morphism, allowing a temporal or spa-
tial decomposition of rules.
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Composition of modules MOD; and MOD, is based on the morphisms con-
necting the import interface of MOD; with the export interface of MODs,.
Relating required (import) and provided (export) services, this morphism has
a similar role to the substitution morphism in this paper. A detailed com-
parison with [8] is hampered by the conceptual distance between the two
formalisms, i.e., graph transformation and algebraic specifications. While the
interconnection mechanism in [18] allows an extension and renaming of types,
a built-in feature of the substitution morphism, the relation between rules is
more general in our case. We have established the most general notion allowing
the entailment of applicability from import to export as well as the entailment
of effects in the opposite direction.

Finally, let us mention several approaches in the Semantic Web context.
Paolucci et al. in [23] propose a solution for automation of Web service dis-
covery based on DAML-S, a DAML-based language for service description.
While required and provided service descriptions contain specifications of pre-
conditions and effects, the matching procedure in [23] merely compares input
and output parameters of services. Such a kind of matching can be consid-
ered as an extended variant of the structural compatibility. Sivashanmugan et
al. in [24] extend WSDL using DAML4-OIL ontologies to support semantics-
based discovery of Web Services. The authors emphasise the importance of
matchmaking not only for input and output parameters, but also for func-
tional specifications of operations. Since the work contains only conceptual
descriptions of the matching procedure, we can not provide a more formal
analysis.

Hausmann et al. [4] use graph transformation rules defined over a domain
ontology to represent service specifications and introduce a matching relation
between them. The strength of this work is the implementation of the match-
ing procedure in a prototypical tool chain. Informally, the ideas introduced
in [4] are similar to those of this paper, but there are technical differences.
While the matching procedure has been defined in a set-theoretic notation,
the authors of [4] did not provide a formal operational semantics along with
semantic requirements towards the desired procedure. As a consequence, the
correctness of the proposed formalism has been justified only by means of ex-
amples. Besides, the lack of application conditions limits the expressiveness of
contracts to positive statements. As already mentioned in the introduction,
the additional flexibility gained through the matching of contracts over differ-
ent data type models is an original contribution of this paper, not only with
respect to [4], but also to our own work published in [2,3].

Another approach is presented by Pahl in [13]. He proposed to use description
logic for service specification and introduced a contravariant inference rule
capturing service matching. This approach is closely related to ours because
of the pre/post style of service specification and the contravariant character of
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the matching. But, as it was correctly stated by the author, the expressiveness
of description logic has negative implications for the complexity of reasoning.
Unlike our approach, the service matching in [13] has a problem with de-
cidability that can be guaranteed only under certain restrictions (the set of
predicates must be close under negation). Although, the sub-graph problem,
in general, is not solvable in polynomial time, there exist a number of heuristic
solutions which make it appear realistic [25].

5 Conclusion and Future Work

In this paper we have established a formal background for an approach to ser-
vice specification and matching based on conditional graph transformation.
While the structural compatibility between the interface specifications of the
required and provided services was modelled by a signature morphism, the
behavioural compatibility was specified by a substitution morphism over the
graph transformation systems containing operation contracts in the form of
conditional rules. We have used a loose interpretation of rules via DPB graph
transitions in order to obtain an operational understanding of contracts as
well as appropriate semantic requirements guaranteeing the behavioural com-
patibility. It has been demonstrated that substitution morphisms meet these
semantic requirements. The two aspects of compatibility have been absorbed
by the integral compatibility being ensured via a parameterised substitution
morphism relating graph transformation systems with conditional parame-
terised rules.

Several questions remain for future work. First, the formal presentation should
be extended towards typed graphs with attributes and subtyping [26]. Sec-
ond, the compatibility relation could be improved to allow the matching of
one requestor rule against a spatial /temporal composition of several provider

rules [18].

Third, the practical application of the concepts discussed in this paper requires
a mapping to the Web service platform, consisting of XML-based standards
like SOAP and WSDL. The first part of this mapping has to relate the type
systems of both levels, i.e. a type graph of GTS and an XML-schema of a
WSDL specification. The second part should associate operation signatures
given by UML interfaces with the corresponding specifications of operations in
a WSDL document. The last part should provide the mapping of contracts into
an adequate XML-representation. This should be integrated with WSDL and
should support the implementation of the corresponding matching procedures.
While there are isolated examples for all three mappings in the literature, their
integration yet remains an open issue.
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