Fundamenta Informaticae 72 (2006) 1-22 1
IOS Press

Stochastic Graph Transformation Systems

Reiko Heckel*!
Department of Computer Science
University of Leicester, United Kingdom

reiko@mcs.le.ac.uk

Georgios Lajios! and Sebastian Menge
Software-Technology

University of Dortmund, Germany

Abstract. In distributed and mobile systems with volatile bandwidth and fragile connectiv-
ity, non-functional aspects like performance and reliability become more and more important.
To formalize, measure, and predict such properties, stochastic methods are required. At the
same time such systems are characterized by a high degree of architectural reconfiguration.
Viewing the architecture of a distributed system as a graph, this is naturally modeled by
graph transformations.

To combine these two views, in this paper we introduce stochastic graph transformation sys-
tems associating with each rule its application rate—the rate of the exponential distribution
governing the delay of its application.

Beside the basic definitions and a motivating example, we derive continuous time Markov
chains, establish a link with continuous stochastic logic, deal with the problem of abstrac-
tion through graph isomorphisms, and discuss the analysis of properties by means of an
experimental tool chain.

1. Introduction

Non-functional requirements, concerning the quality or resources of a system, are often difficult
to capture, measure, and predict. At the same time they are usually critical for success. Many

*European Community’s Human Potential Programme under contract HPRN-CT-2002-00275, [SegraVis]
fAddress for correspondence: Department of Computer Science, University of Leicester, United Kingdom
Research funded in part by Deutsche Forschungsgemeinschaft, grant DO 263/8-1 [Algebraische Eigenschaften
stochastischer Relationen]

2 R. Heckel et al. / Stochastic Graph Transformation Systems

failures of software engineering projects have been attributed to a lack of understanding of
non-functional aspects in the early stages of development [17].

With the success of Internet and mobile technology, properties like the reliability of connections,
available bandwidth and computing resources become an even greater concern. Since individual
occurrences of failures are generally unpredictable, stochastic concepts are required to formal-
ize such properties. Many specification formalisms provide corresponding extensions, including
stochastic transition systems (or Markov chains [2, 30]), stochastic Petri nets [1, 5, 27, 29] or
process algebras [6, 10]. Most of these formalisms specialize on describing behavior in terms
of orderings of events, neglecting aspects like data transformations and changes to software
architecture or network topology.

A noticeable exception is the m-calculus [26] which allows communication of channel names be-
tween interacting processes. It is thus possible to describe changes of data structures or network
topologies. The stochastic 7-calculus [32], extending the original by assigning rates to the com-
munication actions of a process, allows to address non-functional aspects. However, while the
m-calculus is an adequate semantic framework for programming, it is too low-level for express-
ing requirements in the early stages of a project. Here communication between developers and
clients requires a direct, diagrammatic description of what changes are required, instead of a
detailed description of how they are achieved.

A more visual and more abstract formalism of similar expressiveness are graph transformation
systems. In this approach, only pre- and post-conditions of an operation (what it should achieve)
are specified as graphical patterns while the underlying mechanisms for achieving these changes
are ignored. In order to account for the non-functional aspects, we introduced stochastic graph
transformation systems [20]. Associating an exponentially distributed application delay with each
rule, we derived continuous time Markov chains (CTMCs), the standard model for stochastic
analysis. The exclusive use of exponential distributions imposes a certain restriction on the pos-
sible applications, but it opens the door to Model Checking tools. We are thus able to establish a
link to continuous stochastic logic (CSL) to express and verify properties like the probability of
being connected within 20 seconds after start-up, the long-term probability for connectedness,
etc. A way to model more general distributions on the base of exponential distributions would
be to introduce virtual states, a procedure known from Queuing Theory as the Cox method [23,
4.7]. This paper provides an elaborated account of the concepts and theory presented in [20],
improved in several respects.

e Instead of plain typed graphs, the present paper uses attributed typed graph transforma-
tions systems [15]. Beside the obvious advantage of using abstract data types to deal with
information that is not structural in nature, it also provides a way of identifying graph
elements by means of name attributes across transformation sequences, as well as a notion
of variables and assignments used for expressing properties of graphs in logic formulae.

These features are not easily obtained otherwise, since graph transformation steps are only
defined up to isomorphism (renaming). In [20], dedicated sets of identifiers and parameter
lists with partial assignment functions were employed for this purpose.

e We deal explicitly with abstraction, i.e., conceptually and in the tools we use, concrete
graphs are understood as representatives of isomorphism classes of graphs. We are able

R. Heckel et al. / Stochastic Graph Transformation Systems 3

to keep track of the identity of “interesting” nodes by means of dedicated attributes (see
above).

Stochastic bisimulation is the standard equivalence relation on states of CTMCs used by for
model checkers for state space reduction because bisimilar states are undistinguishable by
CSL formulae. We show that certain graph isomorphisms are compatible with bisimilarity,
thus justifying the use of isomorphism classes as states.

The paper is structured as follows. After discussing related work and outlining our approach,
in Sect. 3 we present the basic definitions of typed attributed graph transformation systems
along with a simple example of a wireless network. Sect. 4 is devoted to the definition of Markov
Chains and CSL. In Sect. 5 we make use of stochastic concepts by associating rates of exponential
probability distributions with the rules of a graph transformation system, describing the Markov
chain generated from it, investigating the relation of bisimilarity and graph isomorphisms. Sect. 7
concludes the paper with a discussion of tools and relevant theoretical problems.

2. Related Work

The presented approach inherits from two lines of research: stochastic modeling and analysis and
graph transformation for mobility. We discuss both of them in turn.

Stochastic modeling and analysis. The underlying model for stochastic analysis is provided
by Markov chains, i.e., transition systems labeled with probability distributions on transitions [2,
30, 4]. Stochastic Petri nets provide a convenient method of describing Markov chains. The
reachability graph of the net provides the underlying transition system, and its state transitions
are decorated with the probabilities of the net transitions from which they are generated [5]. A
similar idea lies behind stochastic process algebras where process algebras like CCS [26] or the
m-calculus are used to describe the transition system [6].

Generalizing from these examples, the idea of stochastic modeling can be phrased as follows. A
state-based formalism is used to specify the desired behavior. From suitable annotations in the
specification, probability distributions for the transitions of the generated transition systems are
derived which provide the input to stochastic analysis techniques.

Our approach follows the same strategy, replacing Petri nets or process algebra with graph
transformation systems. In this way, we obtain a high-level formalism in which both functional
and non-functional aspects of mobile systems can be adequately specified.

Graph transformation for mobility. Graph transformation systems have been used for
describing the semantics of languages for mobility, like the Ambient calculus [16] as well as cor-
responding extensions of the UML [3]. However, we will be more interested in direct applications
to the modeling of mobile and distributed systems.

Generally, we may distinguish approaches which take a strictly local perspective, modeling a
distributed system from the point of view of a single node [22, 9], from those taking a global
point of view, [41, 18]. In the latter case, each rule specifies the preconditions and effects of a
potentially complex protocol with multiple participants, rather than a single operation as in the
former case.

4 R. Heckel et al. / Stochastic Graph Transformation Systems

Our approach follows the second, global style of specification, with the running example derived
from [18]. However, we think that the same combination of graph transformation with stochastic
concepts could be applied to the more local style of specification.

Stochastic Context-Free Graph Grammars While our approach clearly targets system
modelling and analysis, the use of stochastic grammars in other fields is definitely worth mention-
ing. In bioinformatics and speech recognition, for example, different kinds of stochastic grammars
have been known for a long time [7, 33]. Recently, interest in modelling biochemical processes by
graph transformation has grown [35] again. Given the structures of a set of glucans as training
data, [39] shows how inferred rules of a stochastic graph grammar can be used to predict the
structure of glucan given a set of unknown glucoprotein.

Oates et al. present in [31] an algorithm to estimate the maximum likelihood parameters for
stochastic context-free graph grammars, adapting the Inside-Outside algorithm of [25].
Mosbah did early work on probabilistic graph grammars, using them to generate random graphs.
He is able to derive the statistical behavior of the grammar and to find the “right” production
probabilities so that the generated graphs fit some conditions (graph properties)[28].

3. Typed Attributed Graph Transformation

In this section, we provide the basic definitions of graph transformation systems based on the
so-called algebraic or double-pushout (DPO) approach to the transformation of typed attributed
graphs [13, 8, 15]. Fundamental notions of algebraic specification [12], like signature, algebra and
homomorphism, term algebra, etc. are assumed.

We use directed and attributed graphs, in which both the vertices and the edges can carry
attribute values of an arbitrary -algebra. The elements of the algebra are a special kind of
vertices in the graph and the attribution is given by special edges mapping vertices and edges
to the data. First we need

Definition 3.1. (E-graph)
An E-graph G = (V1,Va, E;, 84, t;),1 = 1,2,3 consists of

e Vi, the set of graph nodes and V5, the set of data nodes,

e Fy, the set of graph edges, FEs, the set of node attribute edges and Fj3, the set of edge
attribute edges

and source and target functions
e s1:Fy —Viand ty: E; — V7,
e 59:Fy—Viand ty: By — V5 and
e s3: 3 — Fyand t3: E3 — Vs.

An E-graph morphism f : Gi — Ga is a tuple (fvy, fis, fE1s fEy. fEy) With fy, 1 Gy, = Gay,
and fg; : G1,p; = Gog; for i = 1,2 and j = 1,2,3 such that f commutes with all source and
target functions.

R. Heckel et al. / Stochastic Graph Transformation Systems 5

Thus, an E-graph is the algebraic formulation of the kind of graphs described above. The edges
FE4 specify the graph structure on Vi, whereas Fs and E3 specify the attribution of vertices in
V1 and edges in E;. Attributed graphs then just use the elements of a -algebra as V5.

Definition 3.2. (attributed graph)
Let ¥ = (Sx,0Px) be a data signature with attribute value sorts S’ C Sy. An attributed

graph consists of an E-graph together with a X-algebra D, such that UseS'Ds = Gy,. An
attributed graph morphism is a pair f = (fq, f4) with an E-graph morphism f; and a X-algebra
homomorphism f4 such that (1) is a pullback for all s € §".

fA,s
D1y —— Dy

Giv, — Gavy
fa, vy

Together with the corresponding morphisms one can construct categories of both E-graphs and
attributed graphs, opening the door to the theory of adhesive high level replacement (HLR).
The requirement of (1) being a pullback is needed to ensure that data and graph elements, as
well as data elements of different sort, are kept entirely separate, that is, fq 1, preserves and
reflects the different subsets. It is also needed to show that the category of attributed graphs is
adhesive HLR [15, 14].

In the sequel, we assume a distinguished sort ID € S’ of identity attributes which we need to
keep track of individual nodes.

Definition 3.3. (typed attributed graphs)

We fix the attributed type graph ATG = (TG, Z) where Z is the final Y-algebra. A typed
attributed graph (or instance graph) (AG,t) over ATG is an attributed graph AG together
with an attributed graph morphism ¢ : AG — ATG. A typed attributed graph morphism is an
attributed graph morphism f : (AG1,t1) — (AGa,ty) such that to o f = ¢1. We will omit the
typing morphism ¢ if the situation allows doing so.

With just one element for each sort, Z provides a representation of the signature X as an algebra.
Finality means that every 3-algebra has a unique homomorphism into Z, by which every data
element is mapped to the element of Z representing its sort.

Typed attributed graphs provide a simple data model quite similar to basic class and object
diagrams of UML. We use this well-known notation in the example below.

Example 3.1. (mobile systems: types and configurations)

As a running example, a mobile system is modeled, consisting of cells and devices, as well as the
spatial and connectivity relations between them.

Fig. 1 shows the attributed type graph AT'G consisting of V; = {Device, Cell}, Vo = {Bool, ID}
in UML notation. Note that we assume an additional attribute type ID to model identities of
vertices. The edge types on Vi are Ey = {connection,located,neighbor} and we have vertex
attributes Ey = {ok,id} of type Bool, ID respectively (the I D-attribute is not shown explicitly
in the type graph). Edge attributes are not used in this example, so E3 = ().

6 R. Heckel et al. / Stochastic Graph Transformation Systems

ATG
neighbor
connection -
ok:Bool
located
t

AG

CLCell neighbor C2:Cel

ok = true ok = true
located connection located

D1:Device D2:Device

Figure 1. Type graph ATG and sample instance graph (AG,)

Using the type graph AT'G we can model a nomadic wireless network like a mobile phone network
or wireless LAN. Cells are linked by a geographic neighborhood relation. To communicate with
mobile devices within the cell, connections are established. The base stations of a cell can be
broken, indicated by the Boolean attribute ok with value ok = false, otherwise ok = true.

In the lower of Fig. 1 an AT'G-typed instance graph is depicted modelling two devices located
in adjacent cells. As usual, an undirected edge is used to model two directed edges in opposite
directions. The left of them has established a connection. The typing morphism ¢ should be
obvious. Using UML-like notation, we write C1:Cell for a node of type Cell having C'1 as ID-
attribute. We will also use the notation C1.0k for the ok-attribute of cell C1.

After having defined the objects and morphisms of the category we are working in, we are now
ready to formulate graph transformation.

Definition 3.4. (typed attributed rule spans)
Given an attributed type graph ATG, an ATG-typed (attributed) rule span is an injective span

of ATG-typed attributed graph morphisms L <L K -3 R such that the data algebra is shared
between the three graphs (Ly = K4 = R4) and preserved by the morphisms of the span
(lA =74 = idA).

For an attribute edge type atir, rule span L < K Iy Riscalled attr-preserving if the following
conditions hold

e For every node = € Ky, and edge e : attr € Lg, with sf(e) = I(z), there is an edge
€' : attr € Kp, such that [(e/) = e.

R. Heckel et al. / Stochastic Graph Transformation Systems 7

e For all nodes = € Ly;,2' € Ry, and edges e : attr € Lg,, e’ : attr € Rp,: sk(e) =
z,s8(e') = 2’ and t&(e) = tl(e’) implies the existence of 2" € Ky, such that [(z") = =

and r(z") = 2.

The requirement to preserve the data algebra in rules and transformations is motivated by
pre-defined data types, like integers or booleans, which are not changed in the course of a
computation. In the context of this paper, the condition also ensures that the set of identities
for vertices and edges is preserved, thus providing a constant name space for nodes and edges.
Whenever a distinguished set 1D of identity attributes is used, we shall implicitly assume that
rule spans are attr-preserving for all attr € ID. We always require the I D-attributes in a typed
attributed graph AG to be unique, i.e. t3%(e) = t5\%(e') of sort ID implies e = ¢ for all e, e’ € Es.
The first attribute condition assures that certain attributes are not deleted without the graph
elements to which they are attached. This is particularly interesting for attributes serving as
identifiers for these elements. The second condition requires that attribute values are not reused,
i.e., when a vertex occurs in both L and R, it is assigned to the same attribute.

Definition 3.5. (attributed graph transformation system)
An attributed graph transformation system G = (3, ATG, P) consists of

e a data signature ¥ = (Sy, OPy)

e an attributed type graph ATG over %

e a set P of ATG-typed rule spans p(z1,...,2,) = (L PRI ' GRLIN R) rule span attributed
over Tx(z1,...,Ty), the X-term algebra with variables z1,..., z,.

Attributing rules with the X-term algebra enables us to use the variables in X as “formal param-
eters”, to be replaced by “actual parameters” (nodes of the state graphs) as part of transition
labels. This provides us with a notion of object variables that we will use in the stochastic logic
introduced in section 4.

Assume an attributed graph transformation system G = (3, ATG, P) and let p(z1,...,z,) =

(a1,...an)

(L PR LN R) in P. An attributed graph transformation step G PLgt) g given by a
double-pushout (DPO) diagram as shown below, where

e (1), (2) are pushouts

e the bottom is a rule span attributed over a X-algebra A

e a; = ou(x;) for all i+ = 1...n where 04 : Tx(z1,...,2,) — A is the ¥-homomorphism
representing the shared data type mapping of or,0x,0r, i.e. 04 := (0or)a = (0g)a =
(OR)A-

L<~'—K-">R
OL\L (1) lOK(Q) lOR
G<=—D—H

9 h

8 R. Heckel et al. / Stochastic Graph Transformation Systems

repair (c)

cCell @ cCell
ok =true W2 | ok=fdse

fail(c)

Figure 2. Failure and repair rules

c:Cell c:.Cell

ok = true ok = true
connect(c,d)

Figure 3. Establishing a connection

Thus the X-homomorphism o4 maps the formal parameters of the rule to concrete values in A.
This can be thought of as the instantiation of a rule scheme. Homomorphism o4 is uniquely
determined by aq,...,a, because the term algebra is initial, so the notation p(a; - - - a,) is well-

defined, meaning the use of rule p together with morphism 04. To ease the notation we write
(a1,...,an)

p(a) for p(ay - - - ay). We call the graph transformation step G e attr-preserving, if its
underlying rule span is attr-preserving. For more details on DPO graph transformation (e.g. the
existence of the pushout complement D) we refer to [36].

Example 3.2. (rules and transformations)

Graph transformation rules model the failure and recovery of components, their movement, the
establishment and loss of connections, etc. Failure and repair of stations are expressed by the
rules in Fig. 2.

If a device is located in a working cell and not already connected (a negative application condi-
tion, shown as a crossed out edge [19]), a connection may be established as shown in Fig. 3.
Devices may move into and out of cells, thus loosing and regaining the signal as specified in Fig. 4.
Another negative application condition ensures that there is at most one signal edge between a
station and a device. Devices should move between cells covered by neighboring stations more
often than moving out of range entirely, as shown in Fig. 5. When the sending station of a cell
fails, its connections break down too as shown in Fig. 6.

cCel moveOut(c,d) cCel
(=] o =]

/,Lgealﬁ located
d:Device @ d:Device
moveln(c,d)

Figure 4. Movement of devices into and out of a cell

R. Heckel et al. / Stochastic Graph Transformation Systems

neighbor neighbor
‘ clL:Cell ‘ ‘ c2:Cell ‘ ‘ cl:Cell ‘ ‘ c2:Cell

move(cl,d,c2)

located :‘> located

Figure 5. Movement of devices between cells

c:.Cell c:.Cell

ok=fase | 1 cakdown(cd) ok = false

connected >

Figure 6. Breakdown of connection if cell fails

disconnect(c,d)

d:Device

Figure 7. Establishing a connection and loosing it due to loss of a signal

neighbor neighbor

‘ cl:Cell ‘ ‘ c2:Cell

handover (c1,d,c2) connected

Figure 8. Handover between two stations

10 R. Heckel et al. / Stochastic Graph Transformation Systems

If a device moves out of a cell while staying connected, there are two possibilities: The connection
is simply lost as well, cf. Fig. 7. Or, in order to ensure continuous connectivity, a handover is
performed as shown in Fig. 8: If a device has just moved out of a cell, but is still located in
another adjacent cell, the connection may be handed over to the second station.

Note the use of lowercase letters for the variables in the rules, e.g. d1, co, in contrast to the use
of capitals in the instance graph of figure 1.

Definition 3.6. (transformation sequence)
A transformation sequence in G
G G, 2R)

is a sequence of consecutive transformation steps using the rules in P, briefly denoted by G =,

Gg. We call Gy = Gy attr-preserving, if every span G; pg) Giy1 (1 =0,...,n—1) is

attr-preserving. System G is called attr-preserving with respect to an attribute type attr if all
transformation sequences Go =g Gy are attr-preserving.

It is thus not possible to delete a node with attr value v in one transformation step and then
re-introduce a new node with the same attr value in a later step, or to delete attr values before
the graph elements they are attached to. We will require this property for all I D-attributes in
order to identify individual nodes through transformation sequences.

Example 3.3. (transformation sequence)

Fig. 9 shows a sample transformation sequence. Device D1 moves into cell C'1 and establishes a
connection. In the next step, the station in C'1 fails. Before the connection of D1 can breakdown,
the device moves into the adjacent cell C2 and handover occurs. Our sample system is ID-
preserving, but of course not Bool-preserving, as the status of a station can change from ok =
true to ok = false and vice versa.

Now we are ready to define the labeled transition system induced by a graph transformation
system with the state space built from isomorphism classes of graphs, and transitions labeled
by rule names with actual parameters.

Definition 3.7. (induced labeled transition system)
Let G = (X, ATG, P) be a graph transformation system and G an attributed graph typed over
ATG. The labeled transition system induced by G and Gy is given by LTS(G,Go) = (L, S,T),

where

e Sis the set of all isomorphism classes of graphs reachable from G, i.e. S = { [Gy] | Go =
G’n} ’

o L ={plai,...,an) | p(z1,...,2p) : (L ALY RN R)€ PAay,...,an € (Gg)a} is the set
of rule names, with formal parameters replaced by actual ones from the data algebra of
Go

e T'C S x L x S is the transformation relation, where (G, p(ay,...,a,), H) € T iff there is

a transformation step G © (“gan) %8

R. Heckel et al. / Stochastic Graph Transformation Systems

GO
ClL:.Cell neighbor _C2:Cell
ok = true ok =true
G2
CL:.Cell neighbor _C2:Cell
ok =true ok =true
located connection
D1l:Device
G4
ClL.Cell neighbor C2:Cel
ok =false ok =true
connection

D1:Device located

Figure 9.

moveln(C1,D1)

connect(CLD1)

=

fail(C1)

move(C1,D1,C2)

handover (C1,D1,C2)

Gl
CL:Cell neighbor _C2:Cell
ok =true ok = true
located
G3
CL:Cell neighbor _C2:Cell
ok =false ok = true
located connection
D1:Device
G5
ClL.Cel neighbor C2:Cel
ok =false ok = true
connection
located

A transformation sequence

11

12 R. Heckel et al. / Stochastic Graph Transformation Systems

2 0 2
/ \ 4 -6 2
2°\/>°3 0 2 =2

Figure 10. Example CTMC with Q-matrix

4. Markov Chains and Stochastic Logic

After having described how to model mobility with graph transformation systems, and how based
on this model non-functional requirements can be expressed, in this section we define Continuous
Time Markov Chains (CTMCs) and explain how they can be analyzed. Furthermore, Continuous
Stochastic Logic CSL is introduced to make assertions on CTMCs.

Markov Chains First we provide some basic notions adopting the Q-matrix, a kind of “inci-
dence matrix” of the Markov Chain, as elementary notion (cf. [30]).

Definition 4.1. (Q-matrix)
Let S be a countable set. A Q-matrix on S is a real-valued matrix @ = Q(s, s'), s cs satisfying
the following conditions:

(i) 0< —Q(s,8) < ¢ for all s € S,
(i) Q(s,s') >0 for all s # ',
(iii) Y egQ(s,s') =0 forall s € S.

The Q-matrix is also called transition rate matriz. Some authors (e.g. [2]) use a more general
notion of Q-matrix and call the matrices defined above stable and conservative. The most im-
portant notion is captured in the following

Definition 4.2. (CTMC)
A (homogeneous) Continuous Time Markov Chain is a pair (S, Q) where S is a countable set of
states and @ is a Q-matrix on S.

If s # s and Q(s,s') > 0, then there is a transition from s to s’. The transition delay is
exponentially distributed with rate Q(s, s’). Consequently, the probability that, being in s, the
transition s — s can be triggered within a time interval of length ¢ is 1 — =950t The
total exit rate Q(s) = —Q(s, s) specifies the rate of leaving a state s to any other state. If the
set {s’' | Q(s,s") > 0} is not a singleton, then there is a competition between the transitions
originating in s. The probability that transition s — s’ wins the 'race’ is [2, §1.2].

Q(s, s")
Q(s)

The transition probability matrix P(t) = (Pss(t)); ¢cg describes the dynamic behavior of a
CTMC. It is the minimal non-negative solution of the equation

R. Heckel et al. / Stochastic Graph Transformation Systems 13

P'(t) = QP(t), P(0)=1I.

Minimality means that for any other non-negative solution P, the inequality P(t) < P(t) holds
for all ¢t > 0. The (s, s’)-indexed entry of P(t) specifies the probability that the system is in
state s’ after time ¢ if it is in state s at present. Given an initial distribution 7(0), the transient
solution m(t) = (ms(t)),cg is then

7(t) = 7(0)P(t).

In the finite case, P(t) can be computed by the matrix exponential function, P(t) = e?, but
the numerical behavior of the matrix exponential series is rather unsatisfactory [40]. Apart from
the transient solution, which specifies the behavior as time evolves, the steady state or invariant
distribution is of great interest.

Definition 4.3. (invariant distribution)
A map 7: S — [0,1] is an invariant distribution if

Q=0

Zﬂ's =1.

sES

In the example system shown in figure 10, the vector 7 = (%, %, %) is an invariant distribution
and the transient solution is given by

1 e a1 11,1 11,
3¢ te t3 T3¢ tgze© 2 2°
4 1 4 11 11
P(t) = —at _ 4 6t , 1 4 et L1 4y L ey
(t) ¢ 3¢ T3 3¢ T§ 3¢ 2 2°
1 a4t 2 et T 4e 2 6:, 1 1.1 4
3 e +36 26 36 +6 2+2€

Note that each row of P(t) converges to m as t — oo, so the invariant distribution is always
approached in the long term and is independent of the initial distribution, a property which can
only be assured under certain reachability conditions. We say that a state s’ can be reached from
s, and write s — s, if there are states s = sg,...,s, = s, such that Q(sg,s1) - Q(s1,52) - ... -
Q(8p—1,8,) > 0.If s = s’ and s’ — s, then we say that s and s’ communicate, and write s = 5.

Definition 4.4. (irreducible Q-matrix)
A Q-matrix @ is irreducible if s = s’ for all s5,s" € S.

Non-irreducible matrices can be partitioned into their irreducible components for analysis. We
will therefore consider only irreducible matrices. It can be shown that the first condition of
Definition 4.3 is equivalent to 7P = 7 if () is finite and irreducible. The entries of the transition
probability matrix then converge to the steady state,

tlir& Py (t) =my.

In the infinite case, stronger assumptions are necessary (positive recurrence, [30], Th. 3.5.5 and
3.6.2).

14 R. Heckel et al. / Stochastic Graph Transformation Systems

A Stochastic Temporal Logic. We use extended Continuous Stochastic Logic CSL as pre-
sented in [4] to describe properties of CTMCs. Suppose that a labelling function L : S — 24P
is given, associating to every state s the set of atomic propositions L(s) C AP that are valid in
s. The syntax of CSL is:

Du=tt | a| 0| O ADy | Sep(®) | Pup(®1UU' D)

where « € {<, >}, p € [0,1], a € AP and I C R is an interval. The other boolean connectives
are defined as usual, i.e., ff = —tt, DV = (=P A—-TV) and & — U = =P A V. The steady-state
operator Sq,(®) asserts that the steady-state probability of the formula ¢ meets the bound <p.
The operator 7341,((1)11/[[®,) asserts that the probability measure of the paths satisfying o, U D,
meets the bound ap.!

A path through a CTMC M is an alternating sequence o = sgtgsity - -+ with Q(s;, sj+1) > 0.
The time stamps ¢; denote the sojourn time in state s;. For ¢ € R>g and ¢ the smallest index with
t < Z;‘:o tj, let 0@t = s;, the state of o at time ¢. Let Path™ be the set of all paths through M.
The exponentially distributed application delays, together with an initial distribution, induce a
probability measure Prs on sets of paths that start in s, for a formal definition see [4]. Then,
Prob™ (s, p1d! o) is defined as Prs{o € Path™ | 3t € I 0Qt |= &3 A Yu € [0,t] 0Qu |= @1},
so @, U ®y asserts that @, will be satisfied at some time instant in the interval I and that at all
preceding time instants ®; holds. We define the semantics of CSL as follows:

sEtt & seS s =1 A do & skE¢ and s ¢
skEFa & a€L(s) s = Sqp(d) S D Ts 9P
sE-p & sF¢ s | Pap(drld! o) & Prob™ (s, ¢1d'¢2) ap

CSL Example. Consider the CTMS of Fig. 10 with initial distribution 7(0) = (1, 0,0). Define
an atomic proposition a to be true in states 1 and 2, i.e. L(1) = L(2) = {a}, L(3) = (. Then the
formula S>¢.5(a) is true, because in the steady-state, a is fulfilled with probability 0.5, whereas
Pso.9(a U =a) is false, as the probability is only 0.86.

Model Checking huge CTMCs is a challenge which can be mastered by reducing them to smaller
systems with the help of stochastic bisimulations.

Definition 4.5. Let FF C AP be a subset of atomic propositions. A stochastic F'-bisimulation
on (S,Q, L) is an equivalence R on S such that whenever (s,s’) € R then L(s)NF = L(s')NF
and Y7, .- Q(s,t) = >, Q(s',t) for every equivalence class C' € S/R. States s and s' are
F-bisimilar if there exists an F-bisimulation R that contains (s, s’).

F-bisimilar states satisfy the same CSL-formulae containing only atomic propositions from F
and we can consider a quotient system (S/R,Qgr,Lg) with Qr([s],[s']) = Z(t,s)eRQ(s,t) and
Lg([s]) = L(s) N F'. There is an invariance result for this construction [4]:

Proposition 4.1. Let R be an stochastic bisimulation on (S, Q, L) and s a state in S. Then for
all CSL-formulae ¢ containing only atomic propositions from F"

skEson ¢ it (sl Fs/ronLr) ¢

'The other path and state operators can be derived. Details are given in [4].

R. Heckel et al. / Stochastic Graph Transformation Systems 15

5. Stochastic Graph Transformation Systems

A stochastic graph transformation system associates with each rule name a positive real number
representing the rate of the exponentially distributed delay of its application.

Definition 5.1. (stochastic GTS)
A stochastic graph transformation system SG = (X, AT G, P, p) consists of a graph transforma-
tion system (X, ATG, P) and a function p : P — RT associating with every rule its application

rate p(p).

Example 5.1. (mobile system: application rates)
The application rates for the rules of our mobility example, which are needed to define the
Q-matrix, are shown in the following table.

rule name p ‘ rate p(p) ‘

repair 500

fail 1
moveln 1
moveOut 1
move 100
connect 10000
disconnect 10000
breakdown 100000
handOver 100000

For convenience, we only use integer values for rates. We assume that the average time needed
to repair a broken host is optimistically much smaller than the average time until the next
failure (the expected value of the application delay is just the inverse of the rate). If one likes to
interpret the proposed values with the unit per day, this means that in the mean term, an error
occurs once a day and can be repaired in approximately three minutes.

Moving in and out are assumed to happen equally often, but much more scarcely than moving
into another cell. When a station fails, the connection is lost almost immediately, so the rate for
rule breakdown is very high. Connecting, and disconnecting when the signal is lost, are assumed
to happen equally fast. Finally, handover has to be possible within a few seconds to guarantee
stability of connection.

Exponential distributions are single-parameter distributions that have a wide range of applica-
tions in analyzing the reliability and availability of electronic systems. Modeling a component’s
reliability with an exponential distribution presupposes that the failure rate is constant, which is
generally true for electronic components during the main portion of their useful life. This means
that the life of a component is independent of its current age (the memoryless property).

While reliability is one of the standard examples for exponential distributions, user mobility
and connection duration can — at least in a coarse model — also be described as exponentially

16 R. Heckel et al. / Stochastic Graph Transformation Systems

distributed, see [11, 44]. Of course, more detailed and realistic models are not confined to this
approach but use other stochastic techniques, too, in order to take into account aspects like
speed or direction [45].

From Stochastic GTS to Markov Chains. We now show how a stochastic graph transfor-
mation system gives rise to a Markov Chain, so that the analysis techniques described in Sect.
4 can be applied. First, we need an important notion.

Definition 5.2. (finitely-branching)

Let LTS = (L, S,=) be a labeled transition system. Let R(s,s’) :={l | 3s': s =L s'} be the
set of all transition labellings between s and s'. LTS is called finitely-branching iff R(s,S) is
finite for all s € S.

We are now ready for the main result:

Proposition 5.1. (and Definition: induced Markov chain)

Let §G = (X, ATG, P, p) be a stochastic graph transformation system with start graph G¢ and
let the induced labeled transition system LT S(G,Gy) = (L, S,=) be finitely-branching. Assume
for all s € S that p(p) = 0 if p € R(s,s). We set?

> plp) for s#ES

(@)

Qls,s") =4 =2
- > Q(s,t) , for s=3s".

t#s

Then (S, Q) is a Continuous Time Markov chain, the induced Markov chain of SG.

Proof:

We have to show that) is a Q-matrix on the set of all graphs reachable from the start graph Gg
by applying the transformation rules, and so (S, Q) is a CTMC. The finite-branching property
is crucial to ensure that condition (i) of Def. 4.1 is fulfilled, because the sum 3~z c gs oy P(P)
is finite as is its indexing set.

It also implies that R(s,s’) is finite for all s # s’. So compliance with (4i) is secured by Def. 5.1
as all p(p) have to be finite, and part (7i7) of Def. 4.1 is fulfilled trivially because of the definition
of Q(s, s).

The assumption that p(p) = 0 if p € R(s,s) for all s € S is not needed formally, but as we ignore
loops, we require them to have infinite delay, so that they will never be applied. O

Note that we sum over all transformations between two isomorphism classes of states. All mul-
tiple rules p,p’ linking two states have to be considered for the Q-matrix.

The initial distribution 7(0) is given by 75(0) = 1 for s = [Gy] and 75(0) = 0 else. As discussed
above, for assuring existence of a unique steady state solution it is beneficial if the Markov Chain
is finite and irreducible, i.e., every state is reachable from every other state in the system. This
property, which can be checked on the graph transition system, is typical for non-deterministic

*We use the convention Y~ = 0 for the empty sum.
]

R. Heckel et al. / Stochastic Graph Transformation Systems 17

models like the one given by our running example. Indeed, this model does not specify an
individual application with determined behavior, but rather a whole class of mobile systems
with similar structure and behavior, comparable to an architectural style [18]. For the case of
infinite systems, analysis is possible under certain conditions (positive recurrence).

Stochastic Logic for induced Markov Chains. In order to use CSL for analyzing stochas-
tic graph transformation systems, we have to define the set of atomic propositions AP as well
as the labeling function L.

Definition 5.3. (stochastic logic over graph transformation systems)
Assume a stochastic graph transformation system SG = (T'G, P, m, p), a set of variables X, and
an initial graph Go. We define

AP ={p(a) |p: (L + K — R) € P,a = (a1,....a,)}

as the set of all instantiated rules, and the labeling of states

L(s) = {p(a) € AP | 3t: s 24 1)
to be the set of all instantiated rules on transitions outgoing from a state.

Thus, we can reason about the applicability of instantiated rules to attributed graphs, with the
special case of property rules whose left- and right hand sides are copies of a pattern defining
a structural graph property. The transition rates of property rules are set to 0, so that they do
not affect the Q-matrix.

This enables us to answer the following questions.

e In the long run, is station z broken at most 1% of the time: S-g.01 z.0k = false?
e Is the overall connectivity of device = greater than 5 %: Sx¢.5 con(z)?

e Is the probability of device y being connected before ¢ days from now at least 0.9:
P>o.9 (true ulo:t] con(y))?

Bisimulation for induced CTMCs Let’s assume we are only interested in properties con-
cerning a certain subset of nodes with identities in ID' C I D, say, only the cells C1 and C2. We
can thus forget about the attributes in ID\ID' and delete the corresponding attribute edges in
a graph G = (V1, Vo, Ej, si, ti)i—1,2,3, setting

El = Es\{e | ta(e) is of type ID\ID'},

which gives us a reduced graph G|;p (the other vertex and edge sets remain unchanged). Let G
and H be graphs such that the reduced graphs G|;pr and H|;p are isomorphic via an isomor-
phism ¢, cf. Fig. 11. As all instantiated rules derive from (abstract) rules, the transitions out of G
and H are instantiations of the same rules, and therefore have the same rates. For instance, while
G allows a rule application moveOut(C1, D1), H allows the production moveOut(C1, D2). We
thus have to adapt the instantiations of rule moveOut to show that there are similar production
steps in H. This means that states [G] and [H]| are F-bisimilar, if F' is the set of all attributes
which are not of type ID\ID'.

18 R. Heckel et al. / Stochastic Graph Transformation Systems

C1:Cell ‘Cl:(\:ell ‘ ‘ C2:(;e|| ‘

located

located

D1:Device ‘Dl:Device ‘ ‘DZ:Device ‘

Figure 11. Two isomorphic reductions for ID' = {C1,C2, D1, D2}.

Proposition 5.2. Let (S, @, L) be an induced CTMC, ID' C ID a subset of identity attributes
and F the set of all attributes which are not of sort ID\ID'. The relation R on S comprising
all pairs ([G], [H]) with G|;p = H|;p is an F-bisimulation.

Proof:
Let G, H be two graphs such that G|;ps = H|rps via an isomorphism ¢. It is clear that L([G]) N
F = L([H]) N F, because G and H agree with respect to all non-ID\ID’-attributes, i.e. those
relevant for atomic propositions in F'.
To establish the summation condition, we show that for every rule application
([G],p(a1,...,an),[G']) € T, there is a similar transition ([H], p(ai,...,an), [H']) € T such
that G'|;pr = H'|;p. We thus have to find an appropriate instantiation ai,...,a, for rule p.
For values a; concerning attributes of sort other than ID\ID', we set a; = a;.
The a; of sort ID\ID’, e.g. those we like to ignore, have to be adapted: Let a; be such an
attribute with node v be associated to it in G — as it is an identity attribute, there can not be
more than one such node in each graph. Now set a; to be the attribute value of ¢(v). Then,
we have ([H], p(a1,...,a,), [H']) € T, where H' is the graph resulting from the application of
p(ay,...,a,) to H. The reductions of G' and H' are isomorphic, G'|;pr = H'|;pr. Altogether,
we see that [G] and [H] are F-bisimilar.

O

We can thus, by a suitable adaptation of the attributation, apply the same rules to two states
which differ only with respect to the attributes in ID\ID’. This means that we can reduce the
CTMC dramatically for model checking purposes. There is also a way to obtain the quotient
system immediately: Use as states isomorphism classes of graphs disregarding the attributes of
no interest, but take multiple transitions for the same rule application if there are differently
attributed instantiations.

If the initial graph is finite, the same holds for all graphs in the system if transformations preserve
finiteness. In this case, the finite-branching condition is ensured if every finite graph has only a
finite number of applicable rules. This is trivial in the case of a finite set of rules in the system.
However, there may by occasions where the set of rules is infinite, e.g., when rules with path
expressions are regarded as a rule schema expanding to countably infinite sets of rules. In this

R. Heckel et al. / Stochastic Graph Transformation Systems 19

case, the condition may be violated if the given graph contains a cycle and thus an infinite
number of paths.

6. Tool Support

Our interpretation of stochastic logic, although semantically satisfactory, has the disadvantage
of being “non-standard”: The construction of states with assignments is not supported by any
graph transformation tool. However, even when analyzing the small example in this paper, we
have found that tool support is indispensable in a stochastic setting, much more so than for the
analysis of standard transition systems.

A possible way out that worked well in the example is the encoding of assignments into the
graphical structure. The idea is to introduce a vertex for each logical variable together with an
edge pointing to the referenced graph element. Extending the rules in a similar way, we obtain
a slightly awkward, but semantically equivalent encoding of the transition system.

We have implemented this idea in the GROOVE tool [34] which allows the simulation of graph
transformation systems and exports the labeled transition system generated from it. While
GROOVE can in theory generate arbitrary large state spaces, we were only able to generate
state spaces to the order of 107 due to hardware and time limitations. To our best knowledge,
GROOVE is the only available tool with a strong focus on state space generation including
import/export functionality.

Given this system and providing in a separate file the rule application rates, we generated the
Markov Chain in various formats for analysis in numerical tools like MAPLE or probabilistic
model checkers like PRISM [24] or E = MC? [21]. Extracting loops via property rules from the
transition system we also generate the labeling of states by atomic propositions. Thus we can
verify CSL formulae with instantiated graph patterns as atomic propositions against CTMCs
generated from stochastic graph transformation systems.

It is ongoing work to port our tool chain in a usable modelling and analysis tool. While PRisM has
exciting features like calculating exact probabilities for CSL formulae or performing test runs, it
has no well defined API to use from other programs. Since our focus is not to perform elaborated
stochastic analyses, we consider using E = MC? which is more suitable as a model-checking
component. Integrating F = MC? with GROOVE we will obtain a prototype for stochastic graph
transformation.

7. Conclusion

We have proposed an approach for analyzing graph transformation systems with stochastic
methods. We have shown that under certain conditions, a stochastic graph transformation system
induces a Continuous Time Markov Chain. This opens the door to a wide range of applications
in modeling, and to tools and numerical methods for analysis.

We have constructed an experimental tool chain consisting of GROOVE and PRISM. Another
approach to generate the input to the model checker is followed by [43, 37]. In that work,
a transition system specification is generated directly from the given graph grammar. This
approach could allow us to benefit from built-in optimizations or on-the-fly techniques, because

20 R. Heckel et al. / Stochastic Graph Transformation Systems

the construction of the transition system is done inside the model checker. It also allows the use
of different modeling tools, like AGG or PROGRES [42, 38], which support attributed graph
transformation systems. These options are currently under investigation.

Another line of research is the generalization of the basic theory of graph transformation systems
concerning independence and critical pairs, concurrency, and synchronization to the stochastic
case. In particular, the last issue could be relevant for a compositional translation of graph
transformation systems into transition system specifications which are composed of modules
combined by synchronous parallel composition.

Acknowledgement. The authors wish to thank Arend Rensink for his help with the
GROOVE tool and enlightening discussions on graph transformation and temporal logic.

References

[1] M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Gener-
alized Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley and Sons, 1995.

[2] William G. Anderson. Continuous-Time Markov Chains. Springer, 1991.

[3] L. Andrade, P. Baldan, and H. Baumeister. AGILE: Software architecture for mobility. In Recent
Trends in Algebraic Develeopment, 16th Intl. Workshop (WADT 2002), volume 2755 of Lecture Notes
in Computer Science, Frauenchiemsee, 2003. Springer-Verlag.

[4] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Model checking
continuous-time markov chains by transient analysis. In Computer Aided Verification, pages 358372,
2000.

[5] Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets. Vieweg Verlag, 2nd edition, 2002.

[6] Ed Brinksma and Holger Hermanns. Process algebra and markov chains. In J.-P. Katoen
E. Brinksma, H. Hermanns, editor, FMPA 2000, number 2090 in Lecture Notes in Computer Science,
pages 183-231. Springer, 2001.

[7] G.A. Churchill. Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol., 51(1):79-94,
1989.

[8] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae, 26(3,4):241-
266, 1996.

[9] A. Corradini, L. Ribeiro, and F.L. Dotti. A graph transformation view on the specification of
applications using mobile code. In G. Taentzer L. Baresi, M. Pezze and C. Zaroliagis, editors,
Proceedings 2nd Int. Workshop on Graph Transformation and Visual Modeling Technique (GT-VMT
01), volume 50.3 of Elect. Notes in Th. Comput. Sci. Elsevier Science, 2001.

[10] P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. IPA Dissertation Series
1999-10, CTIT PhD-Thesis Series 99-25, University of Twente, November 1999.

[11] J. Diederich, L. Wolf, and M. Zitterbart. A mobile differentiated services QoS model. In Proceedings
of the 3rd Workshop on Applications and Services in Wireless Networks, 2003.

[12] H. Ehrig and B. Mahr. Fundamentals of algebraic specifications 1: Equations and initial semantics,
volume 6 of EACTS Monographs on Theoretical Computer Science. Springer, Berlin, 1985.

[13]

[14]

[23]
[24]

[25]

[26]
[27]

[28]
[29]

[30]

R. Heckel et al. / Stochastic Graph Transformation Systems 21

H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach. In 1/th Annual
IEEE Symposium on Switching and Automata Theory, pages 167-180. IEEE, 1973.

Hartmut Ehrig, Annegret Habel, Julia Padberg, and Ulrike Prange. Adhesive high-level replacement
categories and systems. In Hartmut Ehrig, editor, Proceedings of the Second International Conference
on Graph Transformations, volume 3256 of Lecture Notes in Computer Science, pages 144-160.
Springer, 2004.

Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory for typed attributed
graph transformation. In Hartmut Ehrig, editor, Proceedings of the Second International Conference
on Graph Transformations, volume 3256 of Lecture Notes in Computer Science, pages 161-177, 2004.

F. Gadducci and U. Montanari. A concurrent graph semantics for mobile ambients. In St. Brooks and
M. Mislove, editors, Proc. Mathematical Foundations of Programming Semantics, Aarhus, volume 45
of Elect. Notes in Th. Comput. Sci. Elsevier Science, 2001.

T. Gilb. Principles of Software Engineering Management. Addison-Wesley, 1988.

P. Guo and R. Heckel. Conceptual modelling of styles for mobile systems: A layered approach based
on graph transformation. In Proc. IFIP TC8 Working Conference on Mobile Information Systems,
Oslo, Norway, pages 65—78, 2004.

A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application conditions. Fun-
damenta Informaticae, 26(3,4):287 — 313, 1996.

Reiko Heckel, Georgios Lajios, and Sebastian Menge. Stochastic graph transformation. In Proceedings
of the 2nd International Conference on Graphtransformation, ICGT 04, Lecture Notes in Computer
Science, 2004.

H. Hermanns, J. P. Katoen, J. Meyer-Kayser, and M. Siegle. A tool for model checking markov
chains. Software Tools for Technology Transfer, 2002.

D. Hirsch and U. Montanari. Consistent transformations for software architecture styles of distributed
systems. In G. Stefanescu, editor, Workshop on Distributed Systems, volume 28 of Electronic Notes
in TCS, 1999.

Leonard Kleinrock. Queueing Systems, Volume 1: Theory. Wiley-Interscince, 1975.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker. In
T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th Int. Conf. on Modelling Tech-
niques and Tools for Computer Performance Evaluation (TOOLS’02), volume 2324 of Lecture Notes
in Computer Science, pages 200-204. Springer, April 2002.

K. Lari and S.J. Young. The estimation of stochastic context-free grammars using the inside-outside
algorithm. Computer Speech and Language, 4:35-56, 1990.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

M. K. Molloy. On the Integration of Delay and Throughput Measures in Distributed Processing
Models. PhD thesis, University of California, 1981.

M. Mosbah. Probabilistic graph grammars. Fundamenta Informaticae, vol. 26:pp. 341-360, 1996.

S. Natkin. Les Réseaux de Petri Stochastiques et leur Application é I’Evaluation des Systémes
Informatiques. PhD thesis, CNAM Paris, 1980.

James R. Norris. Markov Chains. Cambridge University Press, 1997.

22

31]

[32]
[33]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

R. Heckel et al. / Stochastic Graph Transformation Systems

Tim Oates, Shailesh Doshi, and Fang Huang. Estimating maximum likelihood parameters for stochas-
tic context-free graph grammars. In Inductive Logic Programming: 13th International Conference,
ILP 2003, pages 281-298, 2003.

Corrado Priami. Stochastic pi-calculus. Computer Journal, 38(7):578-589, 1995.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recog-
nition, pages 267-296. Morgan Kaufmann Publishers Inc., 1990.

A. Rensink. The GROOVE simulator: A tool for state space generation. In J.L. Pfaltz, M. Nagl,
and B. Bohlen, editors, Applications of Graph Transformation with Industrial Relevance Proc. 2nd
Intl. Workshop AGTIVE’03, Charlottesville, USA, 2003, volume 3062 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2004.

F. Rossell”o and G. Valiente. Graph transformation in molecular biology. In H.-J. Kreowski, U. Mon-
tanari, F. Orejas, G. Rozenberg, and G. Taentzer, editors, Formal Methods in Software and System
Modeling, volume 3393 of Lecture Notes in Computer Science, pages 116—133. Springer, 2005.

G. Rozenberg, editor. Handbook on Graph Grammars: Foundations, volume 1. World Scientific,
Singapore, 1997.

Akos Schmidt and Déniel Varré. CheckVML: A tool for model checking visual modeling languages.
In Perdita Stevens, Jon Whittle, and Grady Booch, editors, UML 2003 - The Unified Modeling
Language. Model Languages and Applications. 6th International Conference, San Francisco, CA,
USA, October 2003, Proceedings, volume 2863 of Lecture Notes in Computer Science, pages 92-95.
Springer, 2003.

Andy Schiirr. PROGRES: a VHL-language based on graph grammars. In Proc. 4th Int. Workshop
on Graph-Grammars and Their Application to Computer Science, number 532 in Lecture Notes in
Computer Science, pages 641-659. Springer-Verlag, 1991.

Baozhen Shan. Stochastic context-free graph grammars for glycoprotein modelling. In CIAA, pages
247-258, 2004.

W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University Press,
1994.

G. Taentzer. Hierarchically distributed graph transformation. In 5th Int. Workshop on Graph
Grammars and their Application to Computer Science, Williamsburg ’94, LNCS 1073, pages 304 —
320, 1996.

Gabriele Taentzer. AGG: A graph transformation environment for modeling and validation of soft-
ware. In John L. Pfaltz, Manfred Nagl, and Boris Bohlen, editors, Applications of Graph Transfor-
mations with Industrial Relevance, Second International Workshop, number 3062 in Lecture Notes
in Computer Science, pages 446453, 2004.

Daniel Varré. Automated formal verification of visual modeling languages by model checking. Journal
of Software and Systems Modelling, 2003. Accepted to the Special Issue on Graph Transformation
and Visual Modelling Techniques.

Oliver T. W. Yu and Victor C. M. Leung. Adaptive resource allocation for prioritized call admission
over an ATM-based wireless PCN. IEEE Journal on Selected Areas in Communications, 15:1208—
1224, 1997.

M. Zonoozi and P. Dassanayake. User mobility modeling and characterization of mobility patterns.
IEEE Journal on Selected Areas in Communications, 15:1239-1252, 1997.

