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Abstract. The Model-Driven Architecture focuses on
the evolution and integration of applications across het-
erogeneous platforms by means of generating implemen-
tations from platform-independent models. Most of the
existing realizations of this idea are limited to static
models.

We propose a model-driven approach to the develop-
ment of reactive information systems, like dynamic Web
pages or Web services, modeling their typical request-
query-update-response pattern by means of graph trans-
formation rules.

Rather than generating executable code from these
models we focus on the verification of the consistency be-
tween different sub-models and an implementation that
may have been produced manually. The main techni-
cal tool for achieving this goal is a mapping of graph
transformation rules to contracts expressed in the Java
Modeling Language (JML).

1 Introduction

Most business applications developed today depend on a
specific middleware platform providing services for com-
munication, persistence, security, etc. while supporting
interoperability across different kinds of hardware and
operating systems. If such systems have to interact over
the Web, for example to provide integrated services, we
face the problem of the interoperability of these plat-
forms. Solutions at different levels have been proposed
to overcome this problem.

At implementation level, standards like Web Services
provide a collection of languages and protocols to sup-
port interoperability by interchanging XML-documents
representing, e.g., remote procedure calls. At the level
of design, the OMG has proposed the Model-Driven

Architecture (MDA) [35,36] to achieve interoperabil-
ity among models. Starting from standard UML mod-
els [29] specifying the intended functionality, the MDA
approach is largely concerned with the vertical structure
of the mappings required to implement this functional-
ity on any given platform. The idea is to distinguish be-
tween platform-independent models (PIMs) that are re-
fined into platform-specific models (PSMs) which carry
annotations for the generation of platform-specific code.

The idea seems realistic enough for mappings to data
type or interface definition languages like SQL DDL,
XML Schemata, or CORBA IDL, and for static aspects
of Java and EJB, thanks to the relative simplicity and
stability of these more mature languages. Siegel [34],
for example, describes the use of MDA for applications
based on Web services, focusing on the integration of ser-
vice interfaces in applications developed with the MDA
approach. However, the integration does not take into
account dynamic information about how the services
should be used.

Other approaches, mostly based on statecharts [14],
focus on reactive behavior, ignoring the aspect of data
states and their evolution. In this paper, we are inter-
ested in what we call Reactive Information Systems, i.e.,
applications like Web services or HTML-based interac-
tive Web applications, which follow the basic request-
query/update-response pattern. An external request is
answered (or causes further requests) in combination
with a non-trivial query and update of the data state
of the application or its associated database. Thus, data
state transformations are an important aspect of our
models.

Our approach to integrate data state transformations
and reactivity at the level of models is based on graph
transformation rules. Such a graph transformation rule
is a transformation rule on the internal object structure
of the server which is applied in response to a request,
i.e., an incoming operation call or event corresponding
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to the name and parameters of the rule. This rule-based
way of specifying reactive behavior goes back to object-
oriented graph transformation approaches, like the one
used in the Fujaba CASE tool [1]. In this approach,
graph transformation rules represent method implemen-
tations from which stand-alone and fully executable code
can be generated.

This complete implementation of the MDA para-
digm, however, is not always realistic. A standardized
mapping of behavioral models to implementations could
be too inflexible, especially when project- or enterprise-
specific technologies, libraries, patterns, or coding con-
ventions have to be used. Moreover, automated genera-
tion of methods requires a fairly complete and low-level
model to start with. The production of such low-level
models can become very expensive, e.g., when special-
ized experts have to be employed. Finally, performance
issues may create further obstacles.

Hence, for the near future, we do not expect that
method implementations are generated fully automati-
cally from models. Rather, in order to verify the consis-
tency of models with manually derived code, we aim to
support the model-based monitoring and testing of im-
plementations by translating graph transformation rules
to contracts in JML, the Java Modeling Language [5,
26]. Thus, in contrast to Fujaba, which facilitates a
rule-based specification of system behavior, our behavior
specification with graph transformation rules is rather
declarative.

In the following sections we show how graph transfor-
mation rules are embedded into a typical development
process of reactive information systems, starting from re-
quirements expressed in terms of use cases and sequence
diagrams in Section 2 via architectural and detailed de-
sign in Section 3 to the integration with platform-specific
code in Section 4. Much of this is standard, except for
the way in which graph transformation rules are used,
but we intend to demonstrate that, beside the techni-
cal advantages graph transformations have to offer (and
which are discussed in detail later in the paper) they also
fit into mainstream development processes. The tech-
nical core of the paper is Section 5 where we describe
how to generate JML contracts from our models. In Sec-
tion 6, we discuss in more detail some applications of
these contracts to the vertical consistency problems aris-
ing between the implementation and models at different
levels.

2 Requirements Specification

Following the Unified Process [25], the functional re-
quirements of Web-enabled applications are captured
as use cases where interesting scenarios are detailed by
means of sequence diagrams.

As a running example throughout the paper we use
the model of an online shop. As shown by the use case

Fig. 1. Use case diagram of the shop example

Fig. 2. Sequence diagram describing one scenario for the use case
order product

diagram in Figure 1, a client of the online shop can
query products, order a product, or pay for an order.
The use case diagram structures the fundamental ac-
tor’s goals, while abstracting from necessary subtasks,
of Web-application and user to reach these goals.

Sequence diagrams are used to model scenarios for
use cases in a more formal way as sequences of mes-
sages exchanged, in our example, between the client and
the online shop. Variants can be expressed by different
sequence diagrams associated with the same use case.
Figure 2 shows one scenario detailing the use case order
product. The client who triggers the use case is asked by
the online shop to enter his customer number for identi-
fication. Then the online shop sends information about
the actual order to the client. The user can add a product
to the actual order by transferring a product number to
the online shop. The product is added to the order and
client gets a positive feedback.
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Fig. 3. Components of the online shop example

3 Platform-Independent Design

The requirements specification presented in Section 2
focuses on specific scenarios of the externally visible be-
havior of the application. In this section, we will com-
plement this view, first moving from specific scenarios
to general specifications and then from external require-
ments to the internal realization. The first step, called
architectural design, describes the involved components
and their possible interactions. This model is refined in
the detailed design adding internal data state transfor-
mations.

3.1 Architectural design

The structural view of the architectural design describes
the components and interfaces of the online shop. We
provide an interface for every use case, which is later
implemented by a control class to execute the use case.
Figure 3 shows the two components of our online shop
system. The online shop itself is a component with three
interfaces for the three use cases in the diagram of Fig-
ure 1. For each interface we can list the operations of the
online shop that can be called by a client through that
interface. In Figure 3 we have only detailed the interface
for the use case order product. This interface contains op-
erations for creating a new order for existing customers,
adding products to an existing order, removing all prod-
ucts from an order, and for saving an order.

Whereas sequence diagrams are used to describe sin-
gle scenarios from a global point of view, protocol stat-
echarts are used to specify the sequences of requests
individual components are willing to accept. Figure 4
shows the statechart for the interface orderProduct cor-
responding to the use case order product.

3.2 Detailed design

After having described components from an outside per-
spective, in this section their data structures and com-
putations are modeled.

Fig. 4. Protocol statechart for the online shop component

Fig. 5. Platform-independent class diagram for the online shop
component

Class diagrams are used to represent static as-
pects. Figure 5 shows the result of detailing the use
case order product. We use the stereotypes control
and entity as introduced in the Unified Process [25].
Each of these stereotypes expresses a different role
of a class in the implementation. Instances of con-
trol classes coordinate other objects, encapsulating the
control related to a specific use case. Entity classes
model long-lived or persistent information. The con-
trol class ShopImplementation implements the interface
orderProduct. The control class is connected to the en-
tity classes of the system via qualified associations. A
qualified association defines an attribute of the refer-
enced class as a qualifier and uses it as a key to get
direct access to a specific object.

In addition to the static and dynamic diagrams of our
models we now introduce a functional view integrating
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the other two by describing the effect of an operation on
the data structure of the system. This requires moving
the focus both from sequences to single operations and
from the externally visible behavior to its internal re-
alization. Therefore, we take an operation-wise view on
the internal behavior.

To describe the effect of an operation we use graph
transformation rules as shown in Figure 6. Structurally,
a graph transformation rule consists of two graphs, the
left- and the right-hand side, here visualized by UML
object diagrams. Both graphs are typed over the design-
level class diagram, see e.g., [15] for technical details.
The basic intuition is that every object or link which is
only present in the right-hand side of the rule is newly
created, and every object or link which is present only in
the left-hand side of the rule is deleted. Objects or links
which are present in both sides are not affected by the
rule. If there is only one object of a given type, it can
remain anonymous. Otherwise, different objects should
be distinguished by names, separated from their type
by a colon. Beside the two graphs, transformation rules
specifying operations of classes include the name of the
operation as well as a list of parameters and a return
value. The parameter list is an ordered set of variables,
while the return value is a single variable. These vari-
ables can be used in the graph transformation rule as
place holders for attribute values or object identities.

Let us have a closer look at the example rule
in Figure 6 describing the behavior of the opera-
tion createOrder. The link between the objects on
the left-hand side of this rule requires that the ob-
ject this:ShopImplementation references an object
c:Customer whose value for the attribute customerNo
is given as specified by the input parameter cNo. That
means, only existing customers can execute this op-
eration. As a result, the operation creates a new ob-
ject of type Order and two links, between the objects
this:ShopImplementation and o:Order as well as be-
tween o:Order and c:Customer. Additionally, the value
of the attribute orderNo of o:Order becomes the return
value of the operation createOrder, as indicated by the
variable oNo.

The benefit of this form of specification is the formal
integration of static models, in the form of class dia-
grams, providing the types of the objects within rules,
and dynamic models (in the form of statecharts speci-
fying the possible order of invocations of the operations
that are specified by the rules). Due to this detailed de-
scription, transformation rules allow for automatic code
generation [12] as well as model-based testing [17,18].

The idea of specifying an operation in terms of
pre- and post-conditions is known from Design by Con-
tract [28]. Contracts are an design technique sharing
similarities with establishing a legal contract, i.e., the
relationship between a class and its clients is viewed as
a formal agreement, expressing each party’s rights and
obligations. At the level of components, developers use

Fig. 6. Graph transformation rule describing internal behavior of
operation createOrder

design by contract to specify interfaces. The contract
describes what the component expects of its clients and
what clients can expect of it, independently of how it is
accomplished.

Figure 7 shows a more complex graph transforma-
tion rule specifying the operation addProductToOrder.
This operation adds a product to an existing order.
For a successful execution of the operation, the object
this:ShopImplemenation must know three different ob-
jects with the following characteristics: an object of type
Customer which has an attribute customerNo with the
value cNo, an object of type Order which has an at-
tribute orderNo with the value oNo, and an object of
type Product which has an attribute productNo with
the value prNo. The concrete argument values are bound
when the client calls the operation. If these objects are
found, a further prerequisite is that there is a link be-
tween the objects c:Customer and o:Order. The nega-
tive application condition additionally requires that the
object p:Product must not be previously connected to
the order. As a result, the operation adds the identi-
fied object p:Product to the order (by adding a link).
Additionally, we can support negative application con-
ditions on the right-hand side of a rule to express that
some structure must not exist after the application of
the rule.

Universally quantified operations, involving a set of
objects whose cardinality is not known at design time,
can be modeled using multiobjects. An example is shown
in Figure 8. This graph transformation rule specifies an
operation which removes all products from an existing
order. The multiobject p:Product in the pre-condition
indicates that the operation is executed if there is a set
(which maybe empty) of objects of type Product. After
the execution of the operation, all objects conforming
to p:Product (as well as the corresponding links) are
deleted, i.e., the order is cleared.
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Fig. 7. Graph transformation rule describing internal behavior of operation addProductToOrder

Fig. 8. Graph transformation rule describing internal behavior of operation clearOrder

4 Integrating Platform-Specific Aspects

In the next two subsections, we show how to map the
platform-independent models developed in the previous
sections on platforms like HTML or SOAP which real-
ize the request-query/update-response pattern. The aim
is to deploy code generated from platform-independent
models on a specific middleware while keeping it sepa-
rate from platform-specific code.

4.1 Platform-specific design

In most reactive information systems, some middleware
serves as a link between clients and back-end services.
This middleware is normally responsible for the provi-
sion of basic information and communication services,
like a Web server implementing the Java Servlet tech-
nology [37] to support an HTML-based application or a
SOAP server to implement a Web service [38]. In both
cases, clients request are filtered through the middleware
via pre-defined interfaces with the application.

Figure 9 shows an abstract overview of the opera-
tion of applications realized with the Java Servlet tech-
nology. A user submits HTML form data to the server
(1). The server locates the requested application class,
which must implements the Servlet interface, and in-
vokes a method to handle the request (2). The ap-
plication processes the data and calculates a response
(3). The Servlet engine transfers this response back
to the client (4). The Servlet interface declares meth-
ods to manage the servlet and its communications with
clients. These methods have to be implemented by the

Fig. 9. Using a servlet (abstract overview)

application class. Other Internet-based communication
platforms, like the SOAP implementation of Apache
Axis [31], work in a similar way.

4.2 Implementation

In this section we describe the integration of the ap-
plication logic generated from the platform-independent
model with the platform-specific technology.

Figure 10 shows the integration for the Java Servlet
technology. Classes that are specific to the technology
are shown in grey. The new platform-independent ab-
stract class StatemachineHandler has the task of an
object controller. For every use case, an implementation
for the abstract method of this class is generated im-
plementing the protocol statechart of the corresponding
use case by filtering incoming requests according to the
ordering specified. As a result, the methods of the class
PayOrder are never called directly. Instead, every time
a method of the class PayOrder has to be called, the
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Fig. 10. Integration of PIM and PSM on implementation level

method executeMethod is called, which calls the cor-
rect method depending on the current state and the the
incoming data. This design follows the Command design
pattern [13] in order to reduce the dependencies between
the sender and the receiver, thus allowing their indepen-
dent development.

On the platform-dependent side the elementary class
GenericServlet, which has to be implemented by
a software developer, inherits from an abstract class
HTTPServlet, to allow for integration in a Java Servlet-
based server. This platform-dependent class calls the
platform independent classes realizing the application
logic. The class GenericServlet is called when a client
has submitted a form. It calls the method determined
by the protocol statechart. Auxiliary data encoded into
the form provides control information like sessionIDs to
obtain the correct statemachine object for each request
from a client.

Figure 10 shows another platform-specific class,
which has to be implemented manually. The
HTML-generator is responsible for the creation of
the HTML forms sent to the client in response to their
requests.

To use alternative platforms or other kinds of user
interfaces, only the platform specific classes of Figure 10
have to change. For example, to use XForms [39], a new
technology more powerful than HTML forms and based
on XML, only the HTML-Generator has to be changed
to create this new kind of user interface. Further you
have to ensure, that the middleware calling the servlet
is able to evaluate XForms. For other middleware, one
may have to replace the class GenericServlet by an-
other class which implements the required interface of
the technology.

5 Generation of executable contracts

Structural aspects of Java programs, like interfaces,
classes, fields, and signatures of methods, can be gen-
erated from class diagrams by most commercial CASE
tools. A programmer can complete the implementation
by filling in the behavioral code between the generated
Java fragments. Ideally, this code will conform to the be-
havioral design given by the graph transformation rules
by creating all the conditions and effects that are speci-
fied. However, we do not assume that the specifications
are complete, additional effects are allowed on public
classes, as well as new classes and methods.

Semantically, this assumption coincides with a loose
interpretation of graph transformation rules which are
seen as minimal descriptions of the data state transfor-
mation to be implemented [16]. Thus, a graph transfor-
mation specifies only what at least has to happen on a
systems state, but it allows the programmer to imple-
ment additional effects. This loose interpretation is nec-
essary to leave the opportunity for integrating additional
aspects, like security checks, statistics about system us-
age, etc.

To validate the consistency of models with the man-
ually derived code, we want to support the monitoring
and testing of the behavior modeled by graph transfor-
mations. Therefore, we show in the following the trans-
formation of our graph transformation rules into JML
constructs.

The Java Modeling Language (JML) [5,26] is a be-
havioral specification language for Java classes and in-
terfaces. The JML assertion language is based on Java
expressions following the example of Eiffel [27]. How-
ever, JML is more expressive than Eiffel, supporting con-
structs such as universal and existential quantifications.
The approach of JML is model-based like VDM and Z,
which means that JML specifications can be given se-
mantics in terms of mathematical models such as sets
and relations. However, since these models are expressed
in terms of the concepts of Java, programmers can deal
with it at an intuitive level without having to learn an-
other specification language. Thus, the same language
concepts can be used throughout specification and im-
plementation. Additionally, JML supports specification-
only variables and model methods which enhance the
expressiveness of specifications. Different tools are avail-
able to support, e.g., runtime assertion checking, testing,
or static verification based on JML.

With the mapping of graph transformation rules
into JML contracts these options become available
to us, adding important new applications to graph
transformation-based models.

The semantic idea of the mapping from graph trans-
formation rules to JML is the following: each rule speci-
fies a set of transitions according to its loose semantics,
allowing for additional, unspecified effects. When we call
a method m specified by a rule r while being in a state
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public class Product {

private String name;

private int no;

public String getName() {

return name;

}

public int getNo() {

return no;

}

public void setName(String string) {

name = string;

}

public void setNo(int i) {

no = i;

}

}

Fig. 11. Fragment of Java class Product

s, the method must terminate successfully (without ex-
ception) if there exists a corresponding graph transition
from s via r in the model. If the state resulting from the
execution of m in the implementation is t, there must
be a model transition from s to t via r, too. In terms
of transition system this means that the implementation
can have more transitions than the model, but whenever
there is a model transition matching the implementation,
they must agree on the successor state.

5.1 Translation of UML class diagrams to Java

Given a UML class diagram, each class is translated
into a corresponding Java class. All private or protected
attributes of the UML class diagram are translated to
private and protected Java class attributes with ap-
propriate types and constraints, respectively. Accord-
ing to the Java coding style guides [32], we translate
public attributes of UML classes to private Java class
attributes that are accessible via appropriate get- and
set-methods. Standard types may be slightly renamed
according to the Java syntax. Attributes with multi-
plicity greater than one map to a reference attribute
of some container type. Further, each operation speci-
fied in the class diagram is translated to a method dec-
laration in the corresponding Java class up to obvious
syntactic modifications according to the Java syntax. If
a class B is a direct subclass of a class A in the UML
model then the Java class B is a direct subclass of the
Java class A. A UML class Product representing prod-
ucts of our online shop is shown in Figure 5 with two
attributes productNo and name representing the identifi-
cation number and name of a product. Figure 11 shows a
fragment of the corresponding Java code. The attributes
are manipulated by the corresponding get- and set-
methods (c.f. [11]).

Associations are translated by adding an attribute
with the name of the association to the respective
classes. For example, association buyer of Figure 5 is

translated to a private variable buyer of type Customer.
Again, appropriate access methods are added to the
Java class. Because the UML association buyer is bi-
directional, we additionally add an attribute named
revBuyer to the class Customer. For associations that
have multiplicities with an upper bound bigger than
one, we use classes implementing the standard Java in-
terface Collection. A collection represents a group of
objects. Especially we use the class TreeSet as imple-
mentation of the subinterface Set of Collection. A
set differs from a collection in containing no duplicate
elements. For qualified associations, we use the class
HashMap implementing the standard Java interface Map.
An object of type Map represents a mapping of keys
to values. A map cannot contain duplicate keys; each
key can map to at most one value. For these container
class attributes, we provide appropriate access methods
that allow adding and removing elements. Examples are
the access methods addProduct or removeProduct. To
check the containment of an element we add operations
like hasProduct. In case of qualified attributes, we ac-
cess elements via keys by adding additional methods like
getProductByNumber. As described in [11], in order to
guarantee the consistency of the pairs of references that
implement an association, the respective access methods
for reference attributes call each other.

Based on this mapping of class diagram, below we
start to develop the translations of rules into JML con-
tracts. We proceed in two iterations.

5.2 From graph transformation rules to JML: First
attempt

For the transformation of our visual contracts intro-
duced in Section 3.2 to JML, we assume a translation of
UML class diagrams into Java as described above. For
each method specified by a graph transformation rule,
we generate a corresponding method signature and JML
specification of the pre- and post-condition as shown in
Figure 12. The example shows a declaration of a Java
method. Using JML it is possible to describe the inter-
face of a method by its signature and the behavior of a
method by pre- and post-conditons. The behavioral in-
formation is specified in annotation text (first four lines
of method m in Figure 12). Due to the embedding into
Java comments, the annotations are ignored by a normal
Java compiler. The keywords public normal_behavior
are used to specify that the specification is intended
for clients and that when the pre-condition is satisfied
a call must return normally, without throwing an ex-
ception [26]. Normally, in such a public specification,
only names with public visibility may be used. How-
ever, JML allows the formulation of public specifications
where private variables are regarded as public for spec-
ification purposes. JML pre-conditions follow the key-
word requires, and post-conditions follow the keyword
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public class A implements {

...

/*@ public normal_behavior

@ requires JML-PRE;

@ ensures JML-POST;

@*/

public Tr m(T1 v1, ... Tn vn) {...}

...

}

Fig. 12. Template for specifying pre- and post-conditions by JML

ensures. JML-PRE and JML-POST represent Boolean ex-
pressions. The pre-condition states properties of the
method arguments and the current state of the systems.
If the pre-condition is true, the execution of the method
must lead to a state satisfying the post-condition.

If in the class diagram a subclass A* of A redefines
the method m with an additional contract described by
a graph transformation rule, then the method m of the
subclass A* must satisfy the pre- and post-conditions of
both classes, i.e., it inherits the contract of the super-
class. In JML this is indicated by adding the keyword
also at the beginning of a JML construct. This is the
basic structure to describe a contract between a caller of
a method and the implementer of the method.

For a meaningful mapping of graph transformation
rules, JML-PRE and JML-POST must interpret their left-
and right-hand side, respectively. That means, evaluat-
ing a JML pre-condition should correspond to finding an
occurrence of the left-hand side of the rule in the current
system state. To find such an occurrence, a JML pre-
condition (post-condition) implements a search starting
from the object this, i.e., the one executing the method.
If a JML pre-condition (post-condition) succeeds in find-
ing an occurrence, it returns true, otherwise it returns
false. Our algorithm for generating the JML assertions
applies the same matching strategy for both pre- and
post-conditions.

The algorithm for translating graph transforma-
tion rules into JML is shown in pseudocode in Fig-
ure 13. We distinguish between two disjoint sets B
and U. Set B contains objects that have already been
processed by the translation, generating the correspond-
ing JML code. This set is initialized with the object
this:ShopImplementation representing an instance of
the class of the method called. The set U contains the
objects that have not yet been processed by the algo-
rithm. This set is initialized with all objects except for
the object this. In every iteration of our algorithm we
choose one object of the set B that is connected via a
link to an object u of the set U. We check every outgoing
link of u that is connected to an object in B. If u satisfies
all attribute conditions as well as all conditions related

generateJML(rulepart : ObjectGraph)

// rulepart is the pre- or post-condition

// of a graph transformation rule

set B := this;

// set of bound runtime objects

set U := rulepart/this;

// set of unbound objects

// representing one side of rule

while (U != empty) {

Set temp = B;

while (Temp != empty) {

Object ob = Temp.removeNext();

Set linkedObjects = ob.getLinkedObjects();

while (linkedObjects != empty) {

Object testLink = linkedObject.removeNext();

if (U containsObjectOfType testLink) {

Object uo = U.getObjectOfType;

if (testLink isSimilarTo uo) {

B.add(testLink);

}

U.remove(testLink);

}

}

}

}

Fig. 13. Pseudo-code for translation of left-hand side of graph
transformation rule into JML

to connections with objects in B, it is added to the set B
and we proceed with the next iteration.

The efficiency of the conditions, in terms of the num-
ber of navigation steps required to evaluate them, de-
pends on the order in which the objects are selected for
testing. The algorithm described above abstracts from
this ordering, leaving the choice of the next object to be
matched non-deterministic. Heuristics suggest that in or-
der to detect a mismatch as soon as possible, one should
prefer objects that are referenced by to-one or qualified
associations [40]. Such strategies have to be taken into
account in an implementation of the algorithm, but do
not affect its correctness.

Next we explain the translation in more detail by
means of an example, the method addProductToOrder
of Figure 7. The starting point for the creation of the
pre-condition is the node this. Figure 14 shows how the
algorithm traverses the object diagram of the rule’s left-
hand side. Next, we explain the code generated during
theses steps.

In the first iteration, we have to consider the out-
going edges of the object this:ShopImplementation.
At first, we test if there is an object of type
Product with attribute value prNo for the attribute
productNo. For this purpose, JML supports uni-
versal and existential quantifications, extending Java
expressions by the logical operators \forAll and
\exists. The general syntax of quantified expressions is
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Fig. 14. Order in which algorithm traverses the pre-condition of
Figure 7

/*@ public normal_behavior

@ requires (\exists Product p;

@ product.contains(p);

@ p.getNo() == productNo);

@*/

public boolean addProductToOrder(int productNo,

int customerNo, int orderNo) { ... }

Fig. 15. First iteration

(\forAll T x; r; p) and (\exists T x; r; p). The
expression (\forAll T x; r; p) is true when every ob-
ject x of type T that satisfies r also satisfies p. The
expression (\exists T x; r; p) is true if there is at
least one object x of type T that satisfies r and p. Us-
ing these expressions we get the JML expression of Fig-
ure 15. The keyword requires is followed by an exist-
quantifier that is satisfied if there is at least one ob-
ject of type Product that is reachable from the ob-
ject this:ShopImplementation and has an attribute
value of prNo for the attribute productNo. The object
pr:Product is directly added to B because it does not
contain any further outgoing edges.

In the second iteration, the algorithm creates the
code for testing if there is an object of type Customer
with an attribute value cNo. Again, this is achieved
by creating a corresponding exists-expression. Noth-
ing more has to be tested, because c:Customer does
not contain any further outgoing links to objects in
B. In the third iteration, the object o:Order has to
be added. It is accessible from the set B by two links.
Our algorithm takes the link starting from the object
this:ShopImplementation, which identifies the object
o:Order uniquely, due to the qualified association in the
class diagram. Again, we create a corresponding exists-
expression. However, in this iteration we require addi-
tional code because the object o:Order is connected to
other objects in set B. In this case, the generated JML
code tests if an object of type Order is linked to the
object of type Customer that was found in the second
iteration. After the JML code for the pre-condition is
created, our algorithm creates the JML code for test-
ing the negative application conditions. Figure 16 shows
the entire code generated from the graph transforma-
tion rule of Figure 7. The last line of the pre-condition

/*@ public normal_behavior

@ requires (\exists Product p;

@ product.contains(p);

@ p.getNo() == productNo);

@ && (\exists Customer c;

@ customer.contains(c);

@ c.getNo() == customerNo

@ && (\exists Order o;

@ order.contains(o);

@ o.getOrderNo() == orderNo

@ && o.getCustomer() == c

@ && o.containsProduct(p) == false)));

@

@ ensures (\exists Product p;

@ product.contains(p);

@ p.getNo() == no &&

@ (\exists Customer c;

@ customer.contains(c);

@ c.getNo() == customerNo

@ && (\exists Order o;

@ order.contains(o);

@ o.getOrderNo() == orderNo

@ && o.getCustomer() == c

@ && o.getProduct().contains(p))));

@*/

public boolean addProductToOrderWrong(

int productNo,

int customerNo,

int orderNo) {

Fig. 16. Operation addProductToOrder with pre- and post-
conditions

tests the negative application condition. It tests whether
the object o knows the object p, i.e., if the product has
already been added to the order. The creation of the
post-condition from the rule’s right-hand side follows the
same algorithm.

5.3 Shortcomings of the algorithm and second attempt

The JML contract of Figure 16 interprets the left- and
right-hand side of the rule in Figure 7 individually, each
as a complex boolean expression with no relation be-
tween them. This is in contrast to the semantics of graph
transformation rules, where variables for attribute val-
ues and object identifiers have a scope which includes
both sides of the rule. JML’s binding of universal and
existential quantifications, however, does not ensure that
the same objects are bound to the same variables in the
pre- and post-condition. For example, in Figure 16, the
object bound to the variable p in the pre-condition does
not need to be the same as the one bound to the variable
p in the post-condition—bindings of quantified variables
are not reusable in the post-condition.

Fortunately, JML provides an alternative way of
binding using the old expression. Figure 17 shows an ex-
ample where the old clause is used like a let-expression
evaluated in the pre-state. It adds a binding to a variable
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/*@ public normal_behavior

@

@ old Product p = getProductByNo(productNo);

@ old Customer c = getCustomerByNo(customerNo);

@ old Order o = c.findOrderByNo(orderNo);

@

@ requires p != null;

@ requires c != null;

@ requires o != null;

@ requires o.getCustomer() == c

@ && o.containsProduct(p) == false;

@

@ ensures p != null;

@ ensures c != null;

@ ensures o != null;

@ ensures \not_modified(p, c);

@ ensures o.getCustomer() == c;

@ ensures o.getProducts().contains(p);

@*/

public boolean addProductToOrder(int productNo,

int customerNo,

int orderNo) { ... }

Fig. 17. Relation between pre- and post-conditions

p in the specification. In that way the same object can
be referenced in both the pre- and the post-condition.
The method getProductByNo is obtained from the quali-
fied association between class ShopImplementation and
class Product in the class diagram.

If a link between two objects is not qualified, we can-
not rely on methods generated from the class diagram.
For example, in order to write the JML code for handling
the association between the class Customer and Product
we need additional methods searching for an object on
the other end of the association. As a solution we can
use JML model methods. Model methods are Java meth-
ods declared within comments that can only be used
in specifications, not in regular Java code. They offer
the full expressiveness of Java. We have defined a set of
model method templates to support our approach, defin-
ing operations that allow us to find objects with specific
properties, like particular attributes values. These tem-
plates are instantiated by binding their parameters to
model elements from the class diagram in the course of
the translation into JML. An example for such a model
method is the method findOrderByNo in Figure 18. It
allows to find an order that is identified by an orderNo
with the result being bound to the variable c. Also, these
model methods can be annotated by JML contracts.

After, we have used the let expression to create a
binding that can be used in both pre- and post-condition,
we can test in the pre-condition whether objects with
the given characteristics have been found (see first 3
requires-statements of Figure 17). Then we need to test
if the objects are linked as described by the left- and
right-hand side of the graph transformation rule. The
operation o.getCustomer() is a method generated from

/*@ normal_behavior

@ requires (\exists Order o; order.contains(o);

@ o.getOrderNo() == orderNo);

@ ensures \result.getOrderNo() == orderNo;

@

@public pure model Order findOrderByNo

@ (int orderNo) {...}

@*/

Fig. 18. model method findOrderByNo of class Customer

Fig. 19. Modified platform independent class diagram

Fig. 20. Pre-state with two possible embeddings

the class diagram. It allows to test if the object bound to
variable o knows an object c of type Customer. The op-
eration getProducts() called on variable o is also gen-
erated from the class diagram and returns a list over the
Java interface Set. We can use the operations from that
interface to test whether the product p is part of the or-
der o. The JML statement \not_modified asserts that
the values of objects are the same in the post-state as in
the pre-state.

The above translation works well if, given the in-
put parameters of the method, all objects in our graph
transformation rules have a unique match in the system
state, e.g., by means of unique attribute values, qualified
or to-one associations. Let us modify our model as shown
in Figure 19 (disregarding operations) such that classes
Product, Order and Customer are no longer connected
to class ShopImplementation via qualified associations.

Figure 20 shows an instance of our online shop ex-
ample representing a possible state of the online shop.
If the method addProductToOrder is executed at this
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/*@ public normal_behavior

@

@ old Vector embeddings = this.findEmbeddings();

@

@ requires embeddings != null;

@

@ ensures embeddings != null;

@ ensures this.testEmbedding(embeddings) == true;

@*/

public boolean addProductToOrder(int productNo,

int customerNo, int orderNo) {...}

Fig. 21. Handling non-deterministic embeddings with JML

state, we can find two possible embeddings of the
pre-condition of the corresponding graph transforma-
tion rule, namely ep1= {{pr,p1},{cr,c1}, {o, o1}}
and ep2= {{pr, p2}, {cr,c1}, {o, o1}}. On the one
hand, using the JML specification of Figure 17 it may
be possible that during the test of the pre-condition the
embedding ep1 is stored in the variables p, c and o as
the methods pre-state. Then, according to the contract
of Figure 17 it is assumed that there is a link between
p1:Product and o1:Order. On the other hand, the im-
plementation might add the object p2:Product to the
order. In this case, the post-condition of the contract
evaluates to false even if the method is implemented
correctly. The problem is that the implementation has
chosen another embedding than the pre-condition of the
JML contract, consequently adding a link between the
objects o1:Order and p2:Product, but not between the
objects o1:Order and p1:Product.

We can handle such non-deterministic embedding
problems by storing all possible embeddings of the pre-
condition into the pre-state before the operation is ex-
ecuted. For doing so, we generate corresponding model
methods that find all possible embeddings and return
them in an array, which is bound to a variable using
the JML old-expression. Figure 21 shows an example.
All embeddings are bound to the variable embeddings
by calling the model method findEmbeddings. This
method is similar to the graph pattern matching algo-
rithms as used in Fujaba [11]. In contrast to the code in
Figure 17, the old-expression binds a set of embeddings
rather than a single object. After the execution of the
method, we have to test if there is an embedding that
satisfies the post-condition. This is also achieved by a
model method that receives the embeddings generated
in the pre-condition as input.

Even if we can handle such a non-deterministic em-
bedding, we are of the opinion that a developer should
avoid such problems by a more detailed modeling of the
class diagrams or the graph transformation rules. Oth-
erwise, the behavior of the application would be non-
deterministic, which could lead to unexpected and very
hard to trace errors.

/*@ public normal_behavior

@

@ old Customer c = findCustomerByNo(customerNo);

@ old Order o = c.findOrder(orderNo);

@ old Vector p = o.getProduct();

@

@ requires p != null;

@ requires c != null;

@ requires o != null;

@ requires order.contains(o);

@

@ ensures p != null;

@ ensures c != null;

@ ensures o != null;

@ ensures \not_modified(c, o);

@ ensures order.contains(o);

@ ensures (\forall Product pr; p.contains(pr);

@ pr.getOrder() == null &&

@ pr.getShopImplementation() == null);

@*/

public boolean clearOrder(int customerNo,

int orderNo) {... }

Fig. 22. Handling multiobjects and object deletions with JML

To generate JML contracts for rules with multiob-
jects, as in Figure 8, we must be able to handle sets of
objects whose cardinality is not known at design time.
Again, this is achieved by a combination of the old-
expression and the use of model methods. Figure 22
shows an example of how to translate the graph trans-
formation rule of Figure 8. We add a binding to a vari-
able product of type Collection. This variable stores
all products that are connected to the object o of type
Order. In the last line of the post-condition we use the
forall-expression to check whether all objects of type
Product that were recorded in the pre-condition have
indeed been deleted. This is done by testing whether the
objects of type Product have a link to other objects. If
they do not reference other objects, then no object ref-
erences them. This is ensured by our code for handling
references generated from the class diagram. In order to
guarantee consistency of pairs of references that imple-
ment an association, the respective access methods for
reference attributes call each other (see Section 5.1). If
another object no longer references an object in Java, it
will be deleted by the Java garbage collection. Thus, we
can assume that the objects are deleted. Since sets are
unordered and the tests are performed only before and
after the operation, the programmer can implement the
removal of these links in an arbitrary order.

6 Consistency

In a model-driven approach, the quality of the system
developed depends on the quality of the model and its
correct implementation. One important quality aspect of
models is consistency. In general, consistency problems



12 Reiko Heckel, Marc Lohmann: Model-Driven Development of Reactive Information Systems

occur if different views of the same system are redundant
or dependent on each other. Depending on whether the
views are at the same or at different levels of abstrac-
tion, we distinguish horizontal and vertical consistency
problems, respectively.

Vertical consistency is a property of the transitions
between requirements, design, and implementation. As
such, it is at the heart of the MDA approach. Therefore,
in this section we concentrate on vertical consistency, in
particular, of behavioral models and their implementa-
tions. In this category, we face three different consistency
problems.

1. Requirements expressed in terms of scenarios in Sec-
tion 2 have to be consistent with the allowed se-
quences of operations between service provider and
client as specified by the protocol statecharts of the
architectural design in Section 3.1.

2. These protocols have to be fulfilled by the compo-
nents providing the services, as described by the
graph transformation rules of the detailed design in
Section 3.2.

3. This consistency relation has to be preserved by a
programmer of the platform independent code with
a correct implementation of the behavioral models.

The first consistency requirement relates sequence
diagrams and protocol statecharts. This is a standard
model checking problem and is addressed by quite a
number of publications. One possibility to validate such
a requirement is to translate statecharts and sequence di-
agrams into a common semantic domain, like CSP [19].
This allows for expressing and checking the requirements
as explained in the following (cf. [9]). The sequence of
requests (incoming messages in a sequence diagram) re-
ceived by a component instance must be acceptable by
the corresponding statechart diagram (or they must be
subsequences of an acceptable sequence if we want to
allow for sequence diagrams showing only a part of the
possible behavior). This is the case in our simple online
shop (see Figure 2 for a sequence diagram and the corre-
sponding protocol statechart in Figure 4). If we remove,
e.g., the createOrder(customerNo) message, the consis-
tency requirement is violated. We have to ensure that
for every sequence diagram there exists a corresponding
path through the protocol statechart.

The second problem is one of realisability. All se-
quences of requests accepted by the protocol statecharts
must be executable based on the operations as speci-
fied by the graph transformation rules. This is true if,
in each situation, the current internal data state satis-
fies the pre-conditions of all graph transformation rules
that may be applied at this stage according to the pro-
tocol. For example, the rule in Figure 7 requires in its
pre-condition the presence of an object of class Order. If
this is not available, this rule is not applicable and the
execution of the whole sequence fails.

To make this notion of consistency precise, we need
to exercise our graph transformation rules in all possible
ways prescribed by the protocol statechart. This is pos-
sible because of the formal background of graph trans-
formation, which provides us with an operational seman-
tics for such rules, i.e., a notion of graph transformation,
which, abstractly speaking, defines a binary relation on
states induced by rule applications. (See, e.g., [33] for
different ways of formalizing this concept.) The trans-
formation relation thus defined must produce a superset
of the traces obtained from the statechart.

Such a condition can be verified through testing by
executing the models, either by means of a model inter-
preter or through a model compiler, which translates
models into executable code. Examples of the former
include statechart simulators like [20], but also graph
transformation engines like AGG [10]. Compilers of stat-
echarts can be found, for example, in the Rhapsody [14]
and Fujaba [12] CASE tools, while the latter also trans-
forms graph transformation rules into executable Java
code.

The third problem is concerned with the correct im-
plementation of the graph transformation rules by the
programmer. This can be ensured in two different ways.
One can run tests to validate that the implementation is
correct according to its specification or verify statically
that the code satisfies its specification.

For both alternatives, we can use our translation of
the graph transformation rules into Java classes anno-
tated with JML specifications as described in Section 5.
For testing purposes the JML compiler [6], an extension
to a standard Java compiler, translates JML specifica-
tions into Java bytecode for checking runtime assertions
like pre- and post-conditions. Since the JML expressions
generated by our translation are side effect-free, the ex-
ecution of such checks is transparent in that, unless an
assertion is violated, the behavior of the original pro-
gram is unchanged.

In addition, the JMLUnit tool combines JML with
the popular unit testing tool JUnit for Java. The basic
idea of this tool is that a specification of a method by
pre- and post-conditions can be viewed as a test ora-
cle [30,2], and a runtime assertion checker can be used
as the decision procedure for the test oracle [7]. The JM-
LUnit tool frees the programmer from writing most unit
test code and significantly automates unit testing of Java
classes and interfaces.

Another crucial activity of testing is the generation
of test cases. For testing object-oriented software against
state diagrams, this problem has been discussed, for ex-
ample, in [3,4].

Generally more ambitious than testing is the static
verification of methods against their contracts. There
are several tools for verifying JML assertions which pro-
vide different levels of automation and support differ-
ent levels of expressivity in specifications (see [5] for an
overview). One interesting tool is the LOOP tool [24,21],
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developed at the University of Nijmegen, that translates
JML-annotated code to proof obligations that one can
try to prove interactively using the theorem prover PVS.
The verification of the proof obligations is accomplished
using a Hoare logic [23] and a weakest pre-condition cal-
culus [22] for Java and JML.

7 Conclusion

In this paper, we have presented a model-driven ap-
proach to the development of reactive information sys-
tems, e.g., based on Web technologies like HTML or
SOAP. We have discussed the separation of technology-
independent from platform-specific aspects of the imple-
mentation in order to focus on the platform-independent
part.

Here, graph transformation rules have been proposed
to specify reactive behavior in combination with data
state transformation. By translating the graph trans-
formation rules into executable contracts in JML, we
can ensure that models and manually derived code are
consistent. We have provided a discussion of the verti-
cal consistency problems arising from our approach, and
how they can be addressed, in particular, through graph
transformation and JML tools.

Although graph transformation rules are not part of
the mainstream UML methodology, our experience with
the use of this concept in a course on Web-based ap-
plication development at the University of Paderborn
suggests that the higher level of integration of static and
dynamic aspects adds to the understandability of mod-
els.

To support our methodology we have been imple-
menting an editor that allows developers to coherently
model class diagrams and graph transformation rules.
This implementation extends the Eclipse tool and uses
the Eclipse Modeling Framework. Currently, we are
working on an extension of this editor with the described
code generation facilities for generating executable JML
assertions.
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9. G. Engels, J.M. Küster, L. Groenewegen, and R. Heckel.
A methodology for specifying and analyzing consistency
of object-oriented behavioral models. In V. Gruhn, ed-
itor, Proc. European Software Engineering Conference
(ESEC/FSE 01), Vienna, Austria, volume 1301 of Lec-
ture Notes in Comp. Science, pages 327–343. Springer
Verlag, 2001.

10. C. Ermel, M. Rudolf, and G. Taentzer. The AGG ap-
proach: Language and tool environment. In Engels et al.
[8], pages 551 – 601.

11. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
unified modeling language. In G. Engels and G. Rozen-
berg, editors, Proc. of the 6th International Workshop
on Theory and Application of Graph Transformation
(TAGT), Paderborn, Germany, LNCS 1764, pages 296–
309. Springer Verlag, November 1998.

12. T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story diagrams: A new graph transformation language
based on UML and Java. volume 1764, pages 112–121.
Springer-Verlag, 2000.

13. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns - Elements of Reusable Object-
Oriented Software. Addsion-Wesley, 1994.

14. D. Harel and E. Gery. Executable object modeling with
Statecharts. IEEE Computer, 30(7):31–42, 1997.

15. R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. A view-
based approach to system modelling based on open graph
transformation systems. In Engels et al. [8].

16. R. Heckel, M. Llabrés, H. Ehrig, and F. Orejas. Concur-
rency and loose semantics of open graph transformation
systems. 12:349–376, 2002.

17. Reiko Heckel and Marc Lohmann. Towards model-driven
testing. volume 82 of Electr. Notes Theor. Comput. Sci.,
2003.

18. Reiko Heckel and Leonardo Mariani. Automatic confor-
mance testing of web services. In FASE, pages 34–48,
2005.

19. C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

20. B. Hoffmann and M. Minas. A generic model for diagram
syntax and semantics. In Proc. ICALP2000 Workshop on
Graph Transformation and Visual Modelling Techniques,
Geneva, Switzerland. Carleton Scientific, 2000.



14 Reiko Heckel, Marc Lohmann: Model-Driven Development of Reactive Information Systems

21. Marieke Huisman. Reasoning about Java Programs in
higher order logic with PVS and Isabelle. PhD thesis,
University of Nijmegen, Holland, February 2001.

22. B. Jacobs. Weakest precondition reasoning for Java pro-
grams with JML annotations. Journal of Logic and Al-
gebraic Programming, 2003.

23. Bart Jacobs and Erik Poll. A logic for the java model-
ing language jml. In Proceedings of the 4th International
Conference on Fundamental Approaches to Software En-
gineering, pages 284–299. Springer-Verlag, 2001.

24. Bart Jacobs, Joachim van den Berg, Marieke Huisman,
Martijn van Berkum, U. Hensel, and H. Tews. Reason-
ing about java classes: preliminary report. In Proceed-
ings of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applica-
tions, pages 329–340. ACM Press, 1998.

25. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison Wesley, 1999.

26. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Pre-
liminary design of JML: A behavioral interface specifica-
tion language for Java. Technical Report 98-06i, 2000.

27. Bertrand Meyer. Lessons from the design of the eiffel
libraries. Commun. ACM, 33(9):68–88, 1990.

28. Bertrand Meyer. Object-Oriented Software Construction.
Prentice-Hall, Englewood Cliffs, NJ 07632, USA, second
edition, 1997.

29. OMG. UML 2.0 Superstructure Specification, 2003.
30. Dennis K. Peters and David Lorge Parnas. Using test

oracles generated from program documentation. IEEE
Trans. Softw. Eng., 24(3):161–173, 1998.

31. The Apache XML Project. Axis user’s guide. http:

//xml.apache.org/axis/, 2002.
32. Achut Reddy. Java coding style guide. wwws.sun.com/

software/sundev/whitepapers/java-style.pdf, May
2000.

33. G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 1: Foun-
dations. World Scientific, 1997.

34. Jon Siegel. Using omg’s model driven architecture
(MDA) to integrate web services, 2002. http://www.

omg.org/mda/mdafiles/MDA-WS-integrate-WP.pdf.
35. Jon Siegel and OMG Staff Strategy Group. Model driven

architecture, revision 2.6, November 2001. ftp://ftp.

omg.org/pub/docs/omg/01-12-01.pdf.
36. Richard Soley and OMG Staff Strategy Group. Model

driven architecture, draft 3.2, November 2000. ftp://

ftp.omg.org/pub/docs/omg/00-11-05.pdf.
37. Sun Microsystems Inc. Java(tm) servlet specification 2.3.

http:://java.sun.com/products/servlet, 2001.
38. W3C. Soap version 1.2 part 1: Messag-

ing framework. http://www.w3.org/TR/2002/

WD-soap12-part1-20020626/, 2002.
39. W3C. Xforms 1.0 W3C candidate recommendation.

http://www.w3.org/TR/2002/CR-xforms-20021112/,
November 2002.

40. Albert Zündorf. Graph pattern matching in progres. In
Selected papers from the 5th International Workshop on
Graph Gramars and Their Application to Computer Sci-
ence, pages 454–468. Springer-Verlag, 1996.


