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Abstract

Even sophisticated techniques start out from simple ideas. Later, in reply to application needs
or theoretical problems new concepts are introduced and new formalisations proposed, often to a
point where the original simple core is hardly recognizably. In this paper we provide a non-technical
introduction to the basic concepts of typed graph transformation systems, completed by a survey
of more advanced concepts, and explain some of its history and motivations.
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1 Introduction

Graphs and diagrams provide a simple and powerful approach to a variety
of problems that are typical to computer science in general, and software en-
gineering in particular. In fact, for most activities in the software process,
a variety of visual notations have been proposed, including state diagrams,
Structured Analysis, control flow graphs, architectural description languages,
function block diagrams, and the UML family of languages. These notations
produce models that can be easily seen as graphs and thus graph transfor-
mations are involved, either explicitly or behind the scenes, when specifying
how these models should be built and interpreted, and how they evolve over
time and are mapped to implementations. At the same time, graphs provide
a universally adopted data structure, as well as a model for the topology of
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object-oriented, component-based and distributed systems. Computations in
such systems are therefore naturally modelled as graph transformations, too.

Graph transformations have originally evolved in reaction to shortcom-
ings in the expressiveness of classical approaches to rewriting, like Chomsky
grammars and term rewriting, to deal with non-linear structures. The first
proposals, appearing in the late sixties and early seventies [10,11], are con-
cerned with rule based image recognition, translation of diagram languages,
etc.

In this paper, we first introduce the basic concepts of graph transformation
systems. Section 3 provides a high-level survey of more advanced concepts,
and Section 4 gives references for further reading.

2 The Basic Approach

Modelling can be described as a two-dimensional abstraction process. The first
dimension consists in building models as representations of reality. The sec-
ond dimension is generalisation, i.e., the extraction of concepts from concrete
objets, or of rules from observed behaviour. We will deal with generalisation
first, reserving representation issues for Sect. 2.2.

2.1 Modelling by Example

It is a matter of philosophical debate if generalisations exist in reality or if,
e.g., the concept of car as generalisation of individual cars is part of the
human perception of the world. Avoiding this discission, we will illustrate
two forms of generalisation by means of a simple video game of PacMan, for
didactic purposes playing the role of “reality”. Later, the insights gained from
this example shall be transferred to the graph-based representation to explain
some of the elementary concepts of graph transformation.

Figure 1 exemplifies both conceptual and behavioural generalisation. Our
observation of the game is represented by the scenario in the middle of the
figure in three successive snapshots. Conceptual generalisation extracts three
types of characters, PacMan, Ghost, and Marble shown in the bottom, each
of which has several instances in the scenario. This conceptual generalisation
and the corresponding relation between a concept (type) and its instances is
the first basic idea.

From the observed transformations, behavioural generalisation extracts the
rules in the top, encapsulating the changes from one snapshot to the next.
Rules can be derived systematically by determining their scope in the trans-
formation and cutting off (abstracting from) the irrelevant context. For the
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Fig. 1. From snapshots and scenarios to concepts and rules

rules collect and kill in the top of the figure, their scope is given by the areas
in the dashed and dotted boxes, respectively.

The actual game, from which the snapshots are taken, has been produced
using the StageCast visual programming environment for video games. The
environment evolved out of a didactic experiment on teaching the basics of
programming to children from the age of 7. The idea of extracting rules
as general behaviour descriptions from sample state transformations is called
programming by example and represents the main didactic tool of the Stage-
Cast environment. It also provides a perfect example of the second basic
idea of graph transformation: the definition of rules as specifications of state
transformations.

In the following, we shall turn back to the first dimension of modelling,
transferring the generalisations described above from “reality” to its repre-
sentation in a model. We will use graphs as means to represent snapshots,
concepts, and rules—the third basic idea of the approach.

2.2 Type and Instance Graphs

Graphs provide the most basic mathematical model for entities and relations.
A graph consists of a set of vertices V and a set of edges E such that each
edge e in E has a source and a target vertex s(e) and t(e) in V , respectively.
Like the graph G in the upper right of Fig. 2, graphs can represent snapshots
by modelling concrete entities as vertices and relations between theses entities
as edges. In our model, vertices P:PacMan, G:Ghost M:Marble represent the
corresponding characters in the snapshot. Another type of vertex is used to
represent fields, i.e., the open spaces in the snapshot where characters can
be located. Edges represent the current location of characters as well as the
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Fig. 2. Type and instance graph of the PacMan example

neighbourhood relation of fields.

In modelling the snapshot we have implicitly assumed that vertices have
a type, like F1 to F4 having type Field. The type of a vertex (or an edge)
represents the conceptual generalisation of the corresponding real-world entity.
Like an individual snapshot, also a collection of interrelated concepts may be
represented as a graph. Figure 2 in the bottom right shows an example of
a type graph representing the conceptual structure of the PacMan game and
providing the types for the instance graph in the top.

The relation between concepts and their occurrences in snapshots is for-
mally captured by the notion of typed graphs : A fixed type graph TG represents
the type (concept) level and its instance graphs the individual snapshots. This
distinction is a recurring pattern, like in class and objects, data base schema
and states, XML schema and documents, etc.

We use the notation of class and object diagrams in the Unified Modelling
Language (UML) to visualise type and instance graphs and their relationship,
i.e., o : C represents a vertex o (an object) of type C (a class). In addition to
vertices and edges, graphs may contain attributes to store values of pre-defined
data types. In our example, this notion is used to represent the number of
marbles PacMan has collected before the current snapshot. Also attributes
have a type-level declaration a : T , where a is the name of the attribute and
T is the data type, and an instance-level occurrence a = v where attribute a
is assigned value v.

The relation between type and instance level is subject to the usual com-
patibility conditions, i.e.,

• for each vertex o : C in the instance graph there must a vertex type C in
the type graph;

• for each edge between objects o1 : C1 and o2 : C2 there must be a corre-

R. Heckel / Electronic Notes in Theoretical Computer Science 148 (2006) 187–198190



G:Ghost

F1:Field

F4:Field

F2:Field

F3:Field
M:Marble

P:PacMan
marbles=3

G:Ghost

F1:Field

F4:Field

F2:Field

F3:Field
:PacMan

marbles=4

G:Ghost

F1:Field

F4:Field

F2:Field

F3:Field

collect

kill
typingtyping

Field
PacMan

marbles:int
Ghost

Marble

1

11 *

*

* typingtyping

ty
pi

ng

ty
pi

ng

G1G0

G2

TG

Fig. 3. From scenarios to rules: graph representation
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p:PacMan
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p:PacManmovePM(p)

p:PacMan
marbles=m
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:Marble
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marbles=m+1collect(p)

Fig. 4. Rules for PacMan

sponding edge type in the type graph between vertex types C1 and C2;

• for each attribute value a = v associated with a vertex o : C in an instance
graph, there must be a corresponding declaration a : T in vertex type C
such that v is of data type T ;

2.3 Rules and Transformations

Having represented snapshots as instance graphs over a type graph built as a
representation of the game’s concepts, we are turning to the genuine core of
the approach: the specification of instance graph transformations by means
of rules. Following the idea of extracting rules from transformation scenarios,
Fig. 3 shows a graph representation of the behavioural generalisation illus-
trated in the upper part of Fig. 1.

The generalisation is achieved by focussing on the relevant subgraph in the
source state and observing its changes in the target state. But besides cutting
off context, we also abstract from the concrete attribute values replacing, e.g.,
3 in G0 by m and 4 in G1 by m + 1. The resulting rules are shown in the top
of Fig. 4 and 5, with the rules for moving PacMan and Ghost in the bottom.

More formally, fixing a type graph TG, a graph transformation rule p :
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Fig. 5. Rules for Ghosts
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Fig. 6. Transformation step using rule collect

L → R consists of a name p and a pair of instance graphs over TG whose
structure is compatible, i.e., vertices with the same identity in L and R have
the same type and attributes, and edges with the same identity have the same
type, source, and target. The left-hand side L represents the pre-conditions
of the rule while the right-hand side R describes the post-conditions.

But rules do also have a constructive meaning, besides being generalisa-
tions of transformations. They generate transformations by replacing in a
given graph an occurrence of the left-hand side with a copy of the right-hand
side. Thus, a graph transformation from a pre-state G to a post-state H,

denoted by G
p(o)
=⇒ H, is performed in three steps.

(i) Find an occurrence oL of the left-hand side L in the given graph G.

(ii) Delete from G all vertices and edges matched by L \ R.

(iii) Paste to the result a copy of R \ L, yielding the derived graph H.

In Fig. 6 the occurrence oL of the rule’s left-hand side is indicated next to
the left downward arrow. The variable m representing the value of the marble
attribute before the step, is assigned value 3. The transformation deletes the
edge from PacMan P to Field F2, because it is matched by the edge from f1
to p in L, which does not occur in R. The same applies to the value 3 of the
marbles attribute of vertex P . To the graph obtained after deletion, we paste
a copy of the edge from p to f2 in R. The occurrence oL tells us where this
edge must be added, i.e., to the images of p and f2, P and F1, respectively.
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a:A

a:A b:B ??
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a:A ??

a2:A a1:A

Fig. 7. More difficult examples

At the same time, the new attribute value marbles = 3 + 1 = 4 is computed
from the memorised old value m = 3.

However, this is not the only possibility for applying this rule. Another
option would be to map f1 �→ F2, f2 �→ F3, p �→ P, m �→ M2, collecting the
lower marble instead. Also, we could have chosen to apply the movePM rule.
That means, there are two causes of non-determinism: choosing the rule and
the occurrence at which it is applied.

The total behaviour of our PacMan game is given by the set of all sequences

of consecutive transformation steps G0
p1(o1)
=⇒ · · · pn(on)

=⇒ Gn using the rules of
the game and starting from a valid instance graph G0. As a simple example,
we recall the two-step sequence in Fig. 3 which is re-generated by application
of the two previously extracted rules. Note that all graphs of a sequence must
be valid instances of the fixed type graph TG.

The example of Fig. 6 is not entirely representative of the problems that
may be caused by deleting elements in a graph during step 2. In fact, we have
to make sure that the remaining structure G \ o(L \ R) is still a graph, i.e.,
that no edges are left dangling because of the deletion of their source or target
vertices. The problem is exemplified in its simplest form by the step in Fig. 7
on the left. A related problem is depicted on the right, where we observe a
conflict between deleting vertex a : A as required by a1 : A and preserving it
as suggested by a2 : A.

In both cases, there exist a radical and a conservative solution: The first
gives priority to deletion, deleting the vertex along with the dangling edge in
the left example and vertex a in the right example of Fig. 7. Both may lead to
surprising and undesired effects and may require additional control to restrict
rule applications to the intended cases.

The safer alternative consists in formulating standard applications condi-
tions which exclude the depicted situations as valid transformations. This
is achieved by the gluing conditions of the algebraic (or double-pushout) ap-
proach to graph transformation, which provides the basis for the presentation
in this text.

Next we discuss some extensions to this basic approach.

R. Heckel / Electronic Notes in Theoretical Computer Science 148 (2006) 187–198 193



g:Ghost

f:Field

p:PacMan

Fig. 8. A graphical constraint

3 Advanced concepts

The phenomenon of “dangling edges” is caused by the fact that a node in a
graph may, in general, have an unknown number of connections. This is in
contrast with, e.g., the rewriting of strings where the linear structure provides
exact information about the connections of any substring. The additional
complication has led to a number of extensions of the basic approach, some
of which shall be discussed below.

3.1 Constraints

One way of solving the problem is to constrain the number of connections.
However, type graphs are not expressive enough to define such restrictions.
For example, in order to model the PacMan game board it makes sense to
require that each Ghost, Pacman, or Marble vertex is linked to exactly one
Field vertex. Such constraints need to be expressed by additional cardinality
annotations as shown in the type graph of Fig. 2.

More complex constraints could deal with the (non-) existence of certain
patterns, including paths, cycles, etc. They can be expressed in terms of logic
formulae or as graphical constraints. An example for the latter is given in
Fig. 8. The constraint expresses by means of a forbidden subgraph that there
must not be a Ghost and a PacMan situated at the same Field. In order to
satisfy the constraint, a graph G must not contain a subgraph isomorphic to it.
In first order logic, the same property could read ¬∃g : Ghost; p : PacMan; f :
Field. at(g, f) ∧ at(p, f).

Constraints restrict the set of admissible instance graphs and can be used
to control the transformation process by ruling out transformations leading
to non-admissible graphs. This is comparable to the integrity mechanism in
a data base management system which checks the validity of constraints after
each update, but before the new state is committed.

3.2 Multi-objects

Also more complex operations, like “delete all Ghosts located on Fields di-
rectly reachable from PacMan’s current position”, can only be specified in
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Fig. 9. Rule application with multi object

the presented approach if the number of reachable fields is known in advance.
This is not the case in our example. Thus, for expressing such universally
quantified operations, we have to adopt the additional concept of multi object
from UML object diagrams.

A multi object like f2 in the rule of Fig. 9 stands for the maximal set of
objects that have the specified connections to the fixed objects in the rule, in
our case all the neighbouring fields of the match F2 of f1. Similarly, g : Ghost
stands for all ghosts in G located at these fields. The example shows that the
universal quantification extends smoothly to the actions of the rule, i.e., the
deletion of the ghosts.

3.3 Application conditions

Generalizing the pre-defined gluing conditions of the algebraic approach, user
defined application conditions are used, for example, to ”sense” the existence
or non-existence of connections in the vicinity of the occurrence of the rule’s
left hand side. Figure 10 shows an improved rule movePM checking that there
is no marble in the place PacMan is moving to. Graphically, this is indicated
by the crossed out vertex in the left-hand side.

Intuitively, the rule is applicable at an occurrence if this cannot be extended
to the forbidden elements. That means, the applicability does not only depend
on the graph G, but also on the chosen occurrence, as indicated in the figure.

3.4 Control conditions

Beside extensions that restrict the applicability of individual rules, global con-
trol structures lead to programmed graph transformations. Here, rules embed-
ded them into imperative programming constructs or a visual control flow
language, as shown in Fig. 11 where UML activity diagrams are used to ex-
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oL = {f1 � F2, f2 � F1, p � P}
violates application condition
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F2:Field
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marbles=3

F3:Field
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Fig. 10. Rule application with negative application condition

[success]

collect(p) movePM(p)
[failure]

[success]

kill(p) moveGhost(g)
[failure]

Behavior(p:PacMan) : Behavior(g:Ghost) :

Fig. 11. Controlling rules by activity diagrams

press, respectively, the order of rule applications to individual PacMan and
Ghost vertices.

Special conditions [failure] and [success] are introduced to make the control
flow dependent of the (non-)applicability of rules. Another notable feature is
the possibility of passing parameters to rules. In our example it is intended
that, e.g., the order of collect and movePM operations is understood locally
for any individual PacMan vertex.

4 Further Reading

Fundamental approaches to graph transformation [12] include the algebraic
or double-pushout (DPO) approach [6], the node-label controlled (NLC) [9]
approach, and the Progres approach [13] which represents the first major
application of graph transformation to software engineering [7].

The simple core model introduced in Section 2 is based on (a set-theoretic
presentation of) the double-pushout approach [6]) whose features are common
to most graph transformation approaches. Generally, we distinguish two fun-
damentally different views of graph transformation referred to as the gluing
and the connecting approach. They differ for the mechanism used to embed
the righthand side of the rule in the context (the structure left over from the
given graph after deletion): In a gluing approach like DPO, the new graph is
formed by gluing the right-hand side with the context along common vertices.
In a connecting approach like NLC, the embedding is realised by a disjoint
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union, with as many new edges as needed to connect the right-hand side with
the rest of the graph.

This feature, which provides one possible answer to a fundamental prob-
lem, the replacement of substructures in an unknown context, is known in
software engineering-oriented approaches by the name of set nodes or multi
objects, e.g., Progres [13,14], a language and tool for PROgrammed Graph
REwriting Systems, and Fujaba [1], an environment for round trip engi-
neering between UML diagrams and Java based on graph transformation as
computational model.

Both approaches have extended the basic approach by programmed trans-
formations, concerned with controlling the (otherwise non-deterministic) rewrite
process, as well as application conditions, restricting the applicability of in-
dividual rules, as well as structural constraints over graphs, comparable to
invariants or integrity constraints in data bases, deal with the (non-) existence
of certain patterns, including paths, cycles, etc. They are expressed as car-
dinalities, in terms of first- or higher-order logic, or as graphical constraints.
The latter are also supported by AGG [8], which implements the algebraic
approach by means of a rule interpreter and associated analysis techniques.

For recent surveys on graph transformations and its applications see the
handbooks [12,4,5] the survey paper [2] and the tutorial paper [3].
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