ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

Why it is fun:
Programming By Example

Tutorial Introduction to Graph 5 S)
) tageCast (www.stagecast.com): a visual programming
Transformation environment for kids (from 8 years on), based on
A software engineering perspective = behavioral rules associated to graphical objects
= visual pattern matching
= simple control structures (priorities, sequence, choice, ...)
= external keyboard control

Luciano Baresi Politecnico

Politecnico di Milano di Milano < intuitive rule-based behavior modelling

Reiko Heckel Universitat i i

University of Paderborn (N Paderborn Next: abstract from concrete visual presentation
States of the PacMan Game: Rules of the PacMan Game:
Graph-Based Presentation ~Graph-Based Presentation, PacMan

[
:Marble
instance graph colfect
(represents a T

single state; f1:Field f1:Field

bstracts from
:Marbl i
spatial layout)

movePM
typing >
neighbor,
[Ghost [*—3{ el |- —Pecten_| type graph
r s " ipe grap.

cardinaiities > 3], Martlesdink (specifis legal PacMan’s rules:
'S/ Iy aaditionar i o o
constraints on wellyped ﬁ gt il collect has priority over movePM

instance graphs)

Rules of the PacMan Game:
Graph-Based Presentation, Ghost ~Graph Transformation

(atos] [zactm] 4
collect ;
marbles=4 k///

moveGhost

a

Ghost's rules: (oot E‘e“‘ " Trarpesi
. 1 marbles:in
kill has priority over moveGhost

© 2004 - Baresi, Heckel 1

ICGT 2004, Rome, Italy

Foundations of
Graph Transformation

How it works.

Tutorial Introduction to Graph Transformation

Outline

% A Basic Formalism

» Light-weight presentation of a categorical
approach.

% Variations and Extensions

» Syntactic and semantic alternatives, and advanced
features.

* Where it Comes From
= Roots and inspiration

“How it works: Typed Graphs

Directed graphs as algebraic
structures G = (V, £, src,
tar)
with sr¢, tars E2> V

Graph homomorphism as
pair of mappings
h = (h,, hy): G, 2 G, with
A2
w helE,DE,
preserving src and far

! ; N
Typed graphs given by ' -ng PacMan
= fixed type graph 7G H Gliost Field

= instance graphs G
typed over 7G by
homomorphism

g G2>TG

Rules

p: L 2 Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L € K2 R

movePM:

Rules

p: L 2 Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L € K 2 R
= with £, Rintegrated [UML]:
L u R and marking
+ L - R as {destroyed}
* R-L as {new}

movePM:

© 2004 - Baresi, Heckel

Transformation Step: Operational

[omPactten | —
mbae}l , R

f2:Field f1:Field

o Lo

mi:Marble || G H [f1Field | Qm:lg’:lacMa:
marbles=
Do

1. selectrule p:L 2 R; occurrence g, ;L 2 G
2. remove from G the occurrence of L\ R
3. add to result a copy of R\ L

ICGT 2004, Rome, Italy

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: delete dangling edges
= more complex behavior, requires explicit control

Tutorial Introduction to Graph Transformation

Semantic Questions: Conflicts

[ara[22a] @ [ara]

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: give priority to deletion
= more complex behavior, requires explicit control

~Transformation Step: Declaratively

\ Set-theoretic: Assume G and H with G n H well-defined.
Then, G =) H iff there exists a homomorphism o: LUR — G
UH

such that
= o(L) CGando(R) CH
= oL\R)=G\H ando(R\L)=H\G
(on the underlying sets and functions)
L— K= R
Category-theoretic: G =, H LNR
iff (1) and (2) are pusi\outs

= conservative solution

o () loK @ |og
(DPO, Ehrig et al 73)

G D H

Advanced Features

Dealing with unknown context

= set-nodes (multi-objects): match all nodes with the required
connections

= explicit (negative) context conditions

S| (] les]l @ [Greale | nea]]

(turns f1 into a trap by reversing all outgoing edges to Field
vertices, but only if there is no Ghost)

Control
= priorities: movePM only if collectis not possible
= programmed transformation: IF NOT collect THEN
movePn;

“Where it comes from ...

Chomsky Term Petri
Grammars Rewriting Nets

] 1]

Graph Transformation and Graph Grammars

© 2004 - Baresi, Heckel

Chomsky Grammars:

Rewriting of Strings

Production A - aAb as (context-free: one vertex or
edge in L) graphical production rule

» Theory of graph grammars as formal language
theory for graphs
= hierarchies of language classes and grammars
= decidability and complexity results
= parsing algorithms

ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

Petri Nets: Term Rewriting:
~Rewriting of Multisets ~Rewriting of Trees or DAGs

A PT net transition as graph transformation rule TR Rule f(x) = g(x, f(x))
as DAG rewrite rule

) T
-- >

% Theory of term graph rewriting
= soundness and completeness of TGR w.r.t. TR
= termination, critical pairs, and confluence

% Theory of concurrency for graph
transformation
= independence, causality, and conflicts
= processes, unfoldings
= analysis techniques

Where it comes from
“and what it is good for

Applications of

Chomsky Term Petri
Gra ph Tra nsformatlon Grammars Rewriting Nets
What it is_ all good for Graph Transformation and Graph Grammars
(except video games).
Diagram Models of Behaviour
Languages Computation Modelling and

Visual Programming

Software Development as Integration
“Applications of Graph Transformation ~of Views

Behaviour modelling: conflicts and
dependencies in functional requirements

Model of computation: the rules of service-
oriented architectures

tra nsform

1. Aspects of requirements models
2. Conflicts between functional requirements
3. From conflicts to (in)consistency

Make sure there is \X
Diagram languages: the “complete” definition an implementation

X satisfying all
of visual languages requirements !

© 2004 - Baresi, Heckel 4

ICGT 2004, Rome, Italy

Tutorial Introduction to Graph Transformation

1. Aspects of Requirements Models

Model A Model B
1. Domain model: Agree on vocabulary first !
- class and object diagrams

2. Business process model: Which actions are performed
in which order ?
-> use case description in natural language
-> activity diagrams

Structure: Class and Object Diagrams

v formal, e.g., attributed
graphs at the type and
instance level

v established techniques for

view integration

:Customer :Bill

total = 40

0. 1
| Customer | 1 sill _| Shop |
cash total 0.1 [t 1
0.1 0. 7
o..1 5 F 1
Cart Item |_| Rack CashBox
| 1 e 0 |

Behaviour: Use Case Description by
~Structured Text

Shop
X1/ <t
Customer |/ Clerk
v
v/ <<refine>> \

take shopping cart " ¥ e
i ® create em ill for
selecF items from rack non cusmﬁ%’r
take items out of cart % take items out of
pay required amount customer’s cart
collect items % add them to the bill
% collect payment
% pack and give items to
customer

v based on vocabulary of
integrated domain model

% no way to
tell if views are consistent

Behaviour: Activity Diagrams

Shop

1
v identifies actions and Customer |/

their ordering

% no formal integration
with structural model

% still no indication as to
whether the views are
consistent

¥
/ <<refine>> |

/ v
(select item)

7

(il item

Clerk

1. Aspects of Requirements Models

Model A Model B

v Domain model: Agree on vocabulary first !
-> class and object diagrams

v Budsine7ss process model: Which actions are performed in which
order ?
-> use case description in natural language
- activity diagrams

3. Functional model: What happens if an action is performed ?
- pre-/post conditions as logic constraints
- transformation rules on object diagrams
(Fusion, Catalysis, Fujaba, formally: graph transformations)

Function: Transformation Rules on
Object Diagrams

actions

\canﬂicting

[CashBox |

amount = y

amount = y+x|

© 2004 - Baresi, Heckel

ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

2. Conflicts Between Functional Independence, Causality and Conflicts
Requirements in Graph Transformation: Outline
[cash =50] 1. Alternative steps are paralle/
customer 7 Clerk sdepencent I ey o G
Otherwise they are in conflict. p / \02
customer *
updates e T S both delete 2. Consecutive steps are H,; H,
cash owns /ink sequentially in gpendent if they
may be swapped without pz\ P;
. . affecting the result.
pay b'“/c/erk updates close bill Sggzwgﬁt.they are causally X
amount
*, Characterization:

Two (alternative or consecutive) f— . .
steps are independent iff all Proabr:s?a'uz'gld dg"éﬁ'gg‘;ldcegnﬂ'c's
con&monly accelssed items are in between pstatically (at
read-access only.

v development time)

Can |
.

:Customer V] (i |
cash = 40 total = 10
wh

= 1000

=1010

Critical Pair Analysis with AGG
e — : — “Summary

S Eottorpayein

% Specification of actions by means of transformation
rules on object diagrams
il i = precise, yet visual and intuitive
mmmmnmm@' = integrates structural and behavioral aspect
e % Graph transformation background
= allows formal analysis of conflicts and causal dependencies
= combined with domain knowledge this reveals potential
inconsistencies between views
» Scalability

= how to live with the computational complexity of critical pair
analysis

= how to organize and filter large amounts of analysis data

=)
bilGood
LR setesil

[payil and cetlegil - fnshad |

Application Scenario:
“Applications of Graph Transformation ~Shopping with Max

Behaviour modelling: conflicts and
dependencies in functional requirements
ooking for the most
recent Harry Polter, -
we employ a Shopping Agent to
= find a book shop
= obtain further info: availability, payment methods, ...
Diagram languages: the “complete” definition = choose the best offer
of visual languages = order and pay via bank transfer

Model of computation: the rules of service-
oriented architectures

© 2004 - Baresi, Heckel 6

ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

As component-based system
(CBS) “Service-Oriented Architectures (SOA)

get product info

A Web service is a component deployed on a Web accessible
2 | . > . .
: place order <<component>> platform provided by a service providerto be discovered
3: pay bill and invoked over the Web by a service requestor
4: request transfer

Service
Description
Discovery

Service

<<component>>|

< <component>>| < <component>>|

Buecher.de: Amazon.com: SparkassePB:
Online Shop Online Shop Bank Query Publish
[] Service
But, ... Servi Bind and Servi Description
= how does myAgent know Amazon.com? — ervice inc an ervice =
4 Requestor Provider @
= why does myAgent not ask Buecher.de?

SOA Scenario _.mowss>

Buecher.de:

> Amazon.com:
Online Shoj

Online Shop

1 - < <specifies>
! <<discovery>> N . . .
<<k >> -
! noks myReg: | ~Service-Oriented Architectures (SOA)
Registry \ €
. 1 M % What are the rules of the game?
1.2 1
\ P <<requires>>i b
N N ol | <ccomponent> j_‘ % What can we do to reach configuration where
T~ myAgent: - =t ->rDesc
. ShooaoR i Fekn = X can talk to Y?
\\\<<specilies>>\\<<\5990“i95>> :
1.1: publish(a)™~ < _ <32 i
12:{a)=find) “~~<___ .l T” :
1.3: get product info Py <o :
1
1
1
1

T <<knows>>
* how does myAgent know Amazon.com? 2 i i i
* why does myAgent not ask Buecher.de?
SOA Rules: Publishing a service SOA Rules: Discovering service
description at a registry descriptions satisfying requirements
<<discovery>> <<discovery>> T ! < <knows>> HEIRE I l<<knows>>
r:Registr r:Registr I <<knows>> <<discovery>> <<discovery>>
L] publish L] r:Regist : find r:Regist : O
[] d:Descl|5 [] d:Desc f I
| @ <<matches>>} <<matches>>] 1
d:Desc d:Desc 1 1 I
1 1 1
- ST :Req <! :Req !
Z<specifies>> <<specifies>> CRe [] ERe I
<<SeI'VIC.e>> - <.<;e|'V|ClZ>> - <<component>> »l\ <<component>> ? I
pProvider =t c:Requestor [<<requires>> questor [<<requires>> |

<<knows>>
g]

|

© 2004 - Baresi, Heckel 7

ICGT 2004, Rome, Italy

SOA Rules: Binding to a service
“based on its descriptions

<<service>>
p:Provider
[R

<<service>>

p:Provider
[R “g<specifies>> bind “g<specifies>>
1 1
\ -{ \
N N
d:Desc b Ml
] ~ L] *
<<component>>|__ i <<component>>|__ }
c:Requestor | <<knows>> c:Requestor | <<knows>>

Tutorial Introduction to Graph Transformation

~Service-Oriented Architectures (SOA)

% What are the rules of the game?
= full spec of about 25 rules
» based on a meta model structured into 3 packages

% What can we do to reach configuration where
X can talk to Y?

= a reachability property ...

~Applications of Graph Transformation

Behaviour modelling: conflicts and
dependencies in functional requirements

Model of computation: the rules of service-
oriented architectures

Diagram languages: the “complete” definition
of visual languages

Visual Modeling Techniques

E e e

Function Block

on TR Diagrams Structured Analysis

DB_TIME

‘What do we need?

% Concepts, theory, tools like for textual
programming / specification languages

operational
semantics

Let's try with an example
(UML Activity diagrams) !

% UML spec provides

» formally defined syntax
= informal semantics

* Semantics of the model

render

scan
arse
Graphical | &7 - | Concrete }\ Abstract
Elements | <<._47| Syntax |<=./”| Syntax
layout

denotational
feedback semantics

Semantic
Domain

© 2004 - Baresi, Heckel

depends on [product not
» semantics of the 2>aaple]
language

[product available]

Y
®

ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

Graphical elements -0l Concrete syntax
(SVG - Scalable Vector Graphics) S (Spatial Relationship Graph)
: <?xml version="1.0" encoding="utf-8" ?> :

addess o] P60 |unks
<ellipse cx="6! x="10. ="10.0" style="fill: ; Norkan Antivirus b5l -
stroke: #000000; stroke-width:1"/> Google - [

="63" width="88" height="23" rx="16" ry="16" O Merriam Webster - [|

tyle="fil:none; stroke: #000000; stroke-width: 1"/
<text x="36" y="77" style="font-family:Dialog; font-size:10;">

receive order</text> e SVG

"15" y="111" width="99" height="23" rx="16" ry="16" AV
one; stroke:#000000; stroke-width:1"/> (-mw- order)
25" style="font-family:Dialog; font-size:10;"> [product available]

check availability</text> . &“\v‘:”mw—\ ilable]

<polyline style="fill:none; stroke:#000000; stroke-width:1" LN =

points="66,33 66,63"/>
<line x1="59" y1="50" x2="66" y2="62" style="fill: #000000;
stroke: #000000; stroke-width:1"/> It |
<line x1="73" y1="50" x2="66" y2="62" style="fill: #000000;
stroke:#000000; stroke-width:1"/>
<polyline style="fill:none; stroke:#000000; stroke-width:1"

points="62,86 62,111"/>
Graphical
</svg> Elements

1 scan =l

Graphical | & - | Concrete

'How can we create this? An example rule Sement| . (o

render

<1: element> := <2: element>
<3: polyline>
<4: line>
<5: line>
<6: element>

Attributes

1x1=2x1
1yl =2yl
1x2=6.x2
1y2 =6.y2

Typed graph (metamodel)

Conditions
3.points = 2.x2, 2.y2 6.x1, 6.y1
6.

. 4.x1 = 6.x1-7 4.y1 y1-12 4.x2 = 6.x1 4.y2 = 6.y1
» Textual attributes 5x1 = 6.x1+7 5.yl = 6.y1-12 5.x2 = 6.x1 5.2 = 6.yl

% Pairs of rules Scanning :
» Shared metamodels i)
Concrete <)—R&m1guug—‘
Syntax

1 1
Layout and parsing S

Abstract
Syntax

This is only for building the
abstract syntax representation

Abstract Syntax graph

© 2004 - Baresi, Heckel 9

ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

Concrete
Syntax

- In a slightly different way

Syntax

layout

Example parsing steps 0 3 1

» Rules are applied right to left) @

1
v
P 4
) [T) T) O)
[product not [product available] 2
available] 3
. 6| 5
O

calculate prize
8
R4 R4 R2 R2 R1 @@

arse =
P Abstract ‘ N
<= /| Syntax ‘
oot é

send receipt

A

Concrete
Syntax

Integrated representations “Semantics

» Operational: abstract operational

<<interface>> interpreter semantics
placeOrder Interface = concrete syntax: animation n

placeOrder(Client, Product):Bill rules
= abstract syqtax: graph P—
parse & integrate ﬂ transformation rules Syntax
® Denotaponal: mapping to derotational
Activit [ActivityNode semantic domain feedhack semantics

activity. = analyze model (cf. compiler

front-end) Semantic

i N Domain

petion :Operation :Interface = generate semantic .
:éalloéerationAction Soeration] "ame = Teaturing| name = representation (cf. compiler
P “placeOrder(’ CT:s:'i-gg “Interface” back-end)

Extended Meta Model:

Operational Semantics ~Original Fragment plus Runtime State

% diagram syntax plus runtime state

% visual rules to model state transitions @
DO o, T .

- Node | | ActivityEdge |
e =

Cotr D Co) [|

operational
operational semantics
% produce sequences of states / labels, ?i [bergeose | [pecmont: | n
visualized as animations

Abstract
Abstract Syntax
Syntax

© 2004 - Baresi, Heckel 10

ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

Operational Rules:
GT on Meta Model Instances Animation
—— source Trace:
: i stakl |: | @ |: Runtime 81314 |:ActivityEdg(|
placeOrder;
m m placeOrder
operational operational
semantics semantics
A
Abstract Abstract
Syntax Syntax
Analysis: Atmract
H Syntax
Semantics Context-Free Graph Grammar
* Operational: abstract - Concrete Syntax of Wel/-Formed Activity Diagrams T
interpreter semantics
= concrete syntax: animation n Start Graph: Act
rules
= abstract syntax: graph P— Productions in EBNF-like notation: é
transformation rules Syntax
» Denotational: mapping to derotatioral in in "
semantic domain feedback semantics |
= analyze model (cf. compiler|
front-end) Semantic Act =
= generate semantic Pomain
representation (cf. compiler] T
back-end) out out
out
' Generating ‘
Pair Grammar ¥
Abstract Source: well-formed P Proc(A0) 0 v 3 1
SO activity -
denotational diagrams Proc(Al) > Proc(A2) T
semantics ® v)
Semantic Target: CSP Proc(A) Proc(A3) > @
Domain X Proc (A4) >
F n in . if [product available] -
[c] A [notc] in hen Proc(A5) [product not [product available] 2
! O else Poca8) ||available] 5 =—
receive order ——— 8 T
T Q check availability > @@ 7
ot . out if [product available]
out ou then calculate prize
- - AD -> send receipt —><>
v ProcA1)> if [c] then Proc(A1 . else notify client
Proc(A) = Proc(A2) else Proc(A2) do something fy

© 2004 - Baresi, Heckel 11

ICGT 2004, Rome, Italy

Feedback

% We need to keep track of the mapping
created to establish some reverse
transformation.

% This means triple graph grammars (see slides
at the School, www.segravis.org/school).

Tutorial Introduction to Graph Transformation

Tool support

Qutline

* Two main groups:
» General purpose modeling environments
+ PROGRES, AGG, Fujaba, ...
= Environments for specifying visual notations
+ DIAGEN, GENGEd, MetaEnv, ConWork, ...

% Good prototype tools developed in academia

PROGRES
~(PROgrammed Graph Rewriting Systems)

* Graphical/textual
language to specify
graph transformations

* Graph rewrite rules with
complex and negative
conditions

% Cross compilation in
Modula 2, C and Java

AGG
~(The Attributed Graph Grammar System)

» Algebraic approach to
graph transformation

* Annotations are in Java

» Efficient graph parsing

= Parse grammar
= Critical pair analysis

% Easy integration with
Java code

© 2004 - Baresi, Heckel

Fujaba
(From UML to Java and BAck)

» Round trip engineering
with UML, Java, and
design patterns

» Class, collaboration and
activity diagrams for
story diagrams

= Dynamic behavior
= Automatic generation
* Reverse engineering

ICGT 2004, Rome, Italy

DiaGen
~(The Diagram Editor Generator)

» Notations are specified
through hypergraphs
* Framework of Java
classes
= to provide basic
functionality
% Generator program

= to produce Java source
code

Tutorial Introduction to Graph Transformation

GenGED

(Generation of Graphical Env.s for Design)
%‘*

% Graphical editors and

simulation environments
= Syntax grammar
+ Actual syntax
= Parse grammar
+ Free-hand editing
= Simulation grammar
~ @lelsl @ + To simulate models
ol

* AGG and graphical constraint
solving techniques

BB i

MetaEnv
4:)*

* Customizable engine to
map diagram notations
onto high-level timed
Petri nets

% Rules are pairs of graph
grammars

% Results are mapped
back onto the diagram
model

orx]

ConWork
~(Consistency Workbench)

* GT to translate models into

% rule-based generation of
constraints

% visual definition of analysis
process

% catalog of consistency
problems

* Contact:
= Jochen Kuester
U. of Paderborn
jkuester@upb.de

“Analysis

% CheckVML

» Encodes graph transformation systems into SPIN
to reason on the reachability of specific
configurations by means of sequences of rules

* Groove
» Verifies model transformation and dynamic
semantics through an (automatic) analysis of the
resulting graph transformation systems using
model checking

© 2004 - Baresi, Heckel

GRaphs for Object-Oriented
VErification (GROOVE)

‘% generation of LTS from
GT systems S
= edge-labelled R
graphs
= application
conditions
= priorities

http://wwwhome.cs.utwente.nl/~groove/groove-index

13

ICGT 2004, Rome, Italy

Conclusions

Tutorial Introduction to Graph Transformation

“Main results

» The tutorial has
= Motivated the use of graph transformation in software
engineering
= Introduced the foundations of graph transformation
= Shown example applications of graph transformation
+ GT as semantic domain for behavior modeling
+ GT as meta language for visual modeling techniques
= Presented available tools
»* Now, attendees are likely to be able to
= Better understand the different proposals
= Better evaluate if and how they can exploit it in their work

Future work
~ (Applications)

% GT should become more “usable” by non

experts:

= It should be better disseminated (This tutorial)

= More examples and case studies to “convince”
skeptical users

» Further co-operations between GT experts and
domain experts

= More friendly tools (even if they are much better
than a few years ago)

Future work

~(Foundations)

% analysis and verification techniques
% refinement and modularity
% relation with other areas

= process calculi (Milner, Montanari)

= DNA computing (Rozenberg)

» XML, Meta data, Semantic Web (Rising)

Research Training Network SegraVis*
[10/02 —9/06]

You want to learn more?

® ApFIy for a grant with one of 12 European partners in
Belgium, Germany, Italy, NL, and UK (only citizens
of EU and associated)

» Participate in our network events

For details, see www.segravis.org or contact Reiko
Heckel

* Syntactic and Semantic Integration of Visual Modeling
Techniques

© 2004 - Baresi, Heckel

A few basic references

»x Handbook of Graph Grammars and Computing by
Graph Transformation
1. Foundations
2. Applications, Languages and Tools
3. Concurrency, Parallelism, and Distribution

»x Graph Transformation for Specification and
Programming

Andries, Engels, Habel, Hoffmann, Kreowski, Kuske, Plump,

Schiirr, Taentzer; Science of Computer Programming, Vol.
34, No. 1, April 1999, pp.1-54
* Tutorial Introduction to Graph Transformation: A
Software Engineering Perspective
Baresi, Heckel; Proc. 1st Intl. Conference on Graph
Transformation (ICGT 02), Barcelona, Spain,
Springer LNCS 2505

14

ICGT 2004, Rome, Italy

Web sites

»x Home of the ICGT
steering committee
= www.gratra.org

» SegraVis home page
= Www.segravis.org

» Graph Grammar
Bibliography
= www.informatik.uni-

bremen.de/theorie//appli
graph/bibliography.html

* AGG home page
= tfs.cs.tu-berlin.de/agg/
% PROGRES home page
= www-i3.informatik.rwth-
aachen.de/research/proje
cts/progres/
»* DiaGen home page
= www2.informatik.uni-
erlangen.de/DiaGen/
* GenGED home page
= tfs.cs.tu-
berlin.de/~genged/

Tutorial Introduction to Graph Transformation

Open discussion

Our Addresses

* Luciano Baresi
= Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 — 120133 Milano (Italy)

Dbaresi@elet.polimi.it
» Reiko Heckel
= University of Paderborn

Faculty of Computer Science Electrical Engineering and

Mathematics

D-33095 Paderborn (Germany)

reiko@upb.de

Exercise 1:

“Be a (slightly) more clever player!

Extend the movePM rule so that Pacman does
not move next to a Ghost.

movePM

Exercise 2:

Give Pacman another chance

Let Pacman have a counter for his lives.

NP
Field

PacMan

marbles:int

Refine the rule i/ to remove Pacman only if he
has run out of lives. Otherwise decrease
the counter and remove the Ghost.

© 2004 - Baresi, Heckel

“Refine rule kil

il

ill

15

ICGT 2004, Rome, Italy Tutorial Introduction to Graph Transformation

Solution 1:

Solution 2:
Be a (slightly) more clever player!

~Give Pacman another chance

Extend the movePM rule so that Pacman does

Let Pacman have a counter for his lives.
not move next to a Ghost.

' PacMan Solution:
Field

marblesiint | add an attribute.
lives:int

Refine the rule i/ to remove Pacman only if he
has run out of lives. Otherwise decrease
Solution: a negative application condition. the counter and remove the Ghost.

“Refine rule il
o [esws] [remn] [s:Ghos]
T

Solution: match attribute value.

:PacMan
lives = 0

g:Ghost | [sPachan | kill
n>0 f1:Field
pm:PacMan pm:PacMan
lives = n Solution: an attribute lives = n-1

application condition.

© 2004 - Baresi, Heckel 16

