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University of
Why it is fun:
Programming By Example

Leicester

Foundations and Applications of StageCast (www.stagecast.com): a visual programming
environment for kids (from 8 years on), based on

G ra p h Tl’a n SfO rm at| on = behavioral rules associated to graphical objects

= visual pattern matching
= simple control structures (priorities, sequence, choice, ...)

. = external keyboard control
Reiko Heckel > intuitive rule-based behavior modelling

University of Leicester, UK
Next: abstract from concrete visual presentation
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Rules of the PacMan Game:

States of the PacMan Game:
Graph-Based Presentation, PacMan

Graph-Based Presentation

instance graph : collect
(represents a
single state;
abstracts from
spatial layout)
movePM
T

E- * 11 *| PacMan
Ghost Field
I marbles:int type graph

W, (specifies legal
instance graphs
> state space)

Rules of the PacMan Game:
Graph-Based Presentation, Ghost Outline

% Graph Transformation

kill
a ~ why it is fun
= how it works
% Applications and Theory
moveGhost % To 0| S
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A Basic Formalism: Typed Graphs

Directed graphs
=« multiple parallel edges
= undirected edges as pairs
of directed ones
Graph homomorphism as
mappings preserving
source and target

Typed graphs given by ! %
« fixed type graph 76 ¢ [Ghost | Field Je——ackan

1
1
marbles:int |1
1
1
1

Rules

p: L 2 Rwith L n R well-defined, in different
presentations

= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L €« K 2> R

f1:Field f2:Field

= instance graphs G
typed over 7G by Marble !
homomorphism P ...--.....7:6.;.'
Rules

p: L 2 Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L €« K 2> R
= with £, R integrated [UML, Fujaba]:
Lu R and marking
+ L - R as {destroyed}
* R-L as{new}

movePM:

Transformation Step

:
mMelel L, R
f2:Field f1:Field

Lo Lo,
pm:PacMan

1. selectrule p:L 2 R; occurrence o, : L 2 G
2. remove from G the occurrence of L\ R
3. add to result a copy of R\ L

marbles=3

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: delete dangling edges
= more complex behavior, requires explicit control
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Semantic Questions: Conflicts
[ ][2a ] > [ara]

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: give priority to deletion
= more complex behavior, requires explicit control
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Advanced Features A bit of History ...
Dealing with unknown context .
» set-nodes (multi-objects): match all nodes with the required Chomsky Term Petri
connections Grammars Rewriting Nets

= explicit (negative) context conditions

o~ [ raa] ! | ]

Graph Transformation and Graph Grammars

(turns f1 into a trap by reversing all outgoing edges to Field 1 1 1
vertices, but only if there is no Ghost)
Diagram Models of Behaviour
Control Structures Languages Computation Modelling and
= priorities Visual Programming
= programmed transformation
Motivation: Software Development as
Outline

Integration of Views

v Graph Transformation o .
v'why it is fun capture

v how it works User View A
% Applications and Theory
» Modelling and Analysis of Functional Requirements

Model Transformation and Semantics
_F | Make sure there is ‘ fransform
*® |0ools an implementation -
satisfying all S

i /
requirements ! 1. Aspects of requirements models

2. Conflicts between functional requirements
3. Theory and tool support

Aspects of Requirements Models Structure: Class and Object Diagrams
Model A Model B :Customer :Bill
) . v formal, e.g., attributed fotal = 40
1. Static domain model: Agree on vocabulary first ! graphs at the type and
-> class and object diagrams instance level “Cart

2. Business process model: Which actions are performed
in which order ?

v established techniques
- use case description in natural language, activity or sequence for view integration
diagrams, etc.

amount = 1000

typing

0. 1
|Cust0mer B 1 gl I Shop |

cash total &0t 1
0.1 0. >
P 1
0..1 s F 1
[ ct Pz Item 5 _Rack | |CashBox
value :

Reiko Heckel, Univ. of Leicester



Foundations and Applications of Graph SBMF / ICGT 2006 Tutorial

Transformation September 2006, Natal, Brazil
Behaviour: Use Case Description by Aspects of Requirements Models
Structured Text

Shop Model A Model B
,
%/ e > ,_% v Static domain model: Agree on vocabulary first !
v based on vocabulary -, omer // ’ Clerk - class and object diagrams
of integrated domain ¥ ) | .
model /. <<refine>> | ¥ Business process model: Which actions are performed
% take shopping cart ¥ ” in which order ?
% select items from rack = | *  create empty bill for - use case description in hatural language, activity or sequence
N new customer diagrams, etc.
» take items out of cart % take items out of
® pay required amount customer’s cart : . o - .
v rolect teme s yrasly Sl 3. Sg%g:rl%gl r_?odel. What happens if an action is
* t : ;«;Iéic;r;\); g;znizems @ -> pre-/post conditions as logic constraints
no way 0 customer - transformation rules on object diagrams
tell if views are (Fusion, Catalysis, Fujaba, formally: graph transformations)
consistent
Function: Transformation Rules on Conflicts Between Functional
Object Diagrams Requirements

x

ET

:Customer

Customer - Clerk
.

customer
updates [ ] e both delete
cash owns /ink

conflicting " i
» pay bill close bill
\ actions clerk updates
amount

T

‘CashBox
:Item
=T

Theory: Independence, Causality and Tool Support: Critical Pair Analysis with AGG
Conflicts in Graph Transformation o

»®  Alternative stePs are parallel

G
independent if they do not Py P>
disable each other.

Otherwise they are /n confiict.

H, H,
» Consecutive steps are pz\ ﬁ !
X

sequentially independent if
they may be swapped without
affecting the result.

Characterization [EPS73]:

Otherwise they are causally Two (alternative or
dependent. consecutive) steps are
Idea: Find potential conflicts and independent iff all .
causal dependencies between commonly accessed items
rules by critical pair analysis are in read-access only.

lapping raphs ofrles: payBil and setiBil- fnished.

Reiko Heckel, Univ. of Leicester 4
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Usage Scenario
1. 2.

—> uL |

Analysis :I 3
Modeller «——> | CASE Tool | «——| Tool ’
5

input model to CASE tool
import model by analysis tool
analyze model for conflicts

[T o

interprete and improve models

Domain expert: “buy items
and sell items should

Modeller: “inconsistency
between views” Customer

< buy items >
not be in conflict” / <<disables>2

back annotate models with conflicts

Shop

Clerk

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

Outline

v Graph Transformation
v'why it is fun
v how it works
% Applications and Theory
+ Modelling and Analysis of Functional Requirements
» Model Transformation and Semantics
% Tools

Petri nets

J

Function Block
on_THR Diagrams

oB_TIVE

Visual Modeling Techniques

40

Class Diagrams (UML)

Model-driven Development

» Focus and primary artifacts % A math. foundation is
are models instead of needed for studying
programs = Expressiveness and
complexity

= Execution and optimisation

= Well-definedness

» Core activities include
= maintaining consistency

= evolution = Semantic correctness

= translation of transformations

= execution

of models * Graph transformations can

be one such foundation

* These are examples of
model transformations

QOutline

% Model transformation
= denotational semantics
+ analysis - synthesis
= operational semantics
= refactoring

operational
semantics

refactoring
Abstract
Syntax

denotational
semantics

Sem
Dom:

Reiko Heckel, Univ. of Leicester

Abstract

Context-Free Graph Grammar e

Concrete Syntax of Well-Formed Activity Diagrams T

U

Start Graph: Act

Productions in EBNF-like notation. é
. in
n in
! Act
1
out out
out
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Analysis . s Pair Grammar
yntax
0 v i denotational
3 ) semantics Source: well-structured
j activity diagrams
1 Semantic ®
A 4 — 4 Domain
@ Target: CSP Proc(A)
[product not X [product available] 2 in in
available] ¥ 5 1
out out
v Proc(A1)> if [c] then Proc(A1) .
é Proc(A) u= Proc(A2) else Proc(A2) do something
Synthesis .
i ?
ProctA0) o T = 1 Is this Good Enoughs
e o>
Proc(Al) > Proc(A2) T v Visual x Expressive ?
4 = abstract syntax or = context-free graph
Proc(A3) > check availability concrete syntax languages only
Proc (A4) > templates x Traceable ?
if [product available] : , v Bi-directional * through naming
t':e" g oc(ﬁ.;) g?g;gﬁ;]not [product available] 2 = swap source and target conventions
else Proc(A8) @ 6] 5 grammars % Efficient ?
receive c.;.r.der > 8 = ¥ Dedlarative = NP complete parsing
check availability @@ + problem
if [product available] 7 x ...
then calculate prize
- send receipt —> => Triple Graph Grammar:
else notify client é ple Graph Gra ars
Correspondence Rules:
A Non-Well-Structured Example Initial, Action, and Final Nodes
% Rule pairs, in
Actions A= .. TA condensed
Place_order, Pay_bill presentation
= Green/bf >

new
Processes {new}

A = Place_order > B
B = if ‘non-empty’
then C else STOP
C=Pay_bill > £
E =if ‘paid’
then A else STOP

act> B8

A
A=
B=.. % No restriction to

context-freeness

A » Correspondence
A= STOP é via common

names

Reiko Heckel, Univ. of Leicester 6
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Correspondence Rules:
Split and Join
A =if cond !

c
[cond]|B

i

then B else C [else]

Negative

application
condition

Correspondence Rules:
Connection to Existing Nodes

Either alternative is
consistent with left side

Formally: Triple Graph Grammars

% Meta model for correspondence
+ traceability

jemset Source
Metamodel "\ . se>> <<use>s”| Metamodel
Corresp.

Metamodel

% Symmetric rule triplets (left, corr, right),
generating directed rules
+ Declarative > operational

|

Example TGG Rule

Derived Operational GT Rule:
right =2 left

:Proc [ | [
mame = A ] :ProcEdge | 1 :Edge |
exp tar
[ prefix ] succ] var | [ :Node |
[ name = act | [name = B
{new} {new} src
:Proc { 'Pr::x:EdgeI [:Ed e|
name = B L I =49
Inew? {new}
left corr right
Alternatively:
= left > right

u (left, right) > corr

Reiko Heckel, Univ. of Leicester

A
A=act> B <:>
B=.. m
B
na:rr':goi A I :ProcEdge |——| :Edge |
exp tar
| :Prefix | SUCC| :Var |
[name = act | [name = B {new}
{new} {new} src
:Proc [. .
mame =B 1 :ProcEdge |— | :Edge |
I—I{new} {new} {new}
left corr right
Outline
q operational
% Model transformation bl

+ denotational semantics
= operational semantics

refactoring
= refactoring Abstract >
Syntax

denotational
semantics

Semantic
Domain
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Transformation
Example: sprsionn
Executable Business Process Operational Semantics: Idea j

*  refactoring of ?US_iness Wareh o % diagram syntax plus runtime state
rocesses, replacin archouse ice .
4 - % GT rules to model state transitions

centralised by distributed

execution -

Receive
— ——

*  How to demonstrate op(..)

preservation of behaviour?

1. specify operational [

semantics of processes Shipment Undo
> define transformations order ( op(..) ) ( op(...) )

3. show that transformations
preserve semantics

Type Gra ph : response

Operational Semantics: Formally Metamodel Mg
op: String request
. . id: String
GTS = (TG, P) with start graph G, with runtime state from] [ 10

current Orch

name: String

defines transition system

partner

LTS(GTS, Gy) = (5 L, 2) corresponds

taking
= as states S all graphs reachable from G, A
= observations on rules as labels

» transformations as transitions

Rules: Rules:

Invoke another Service Answer the Invocation
tar Sre

T ar artner | e:Edge |—['| r:Reply |‘—| e:Edge |

current “Mso
o1:0rch tofmm 02:0rch

op=r.op ste
01:Orch 02:0rch | e:Edge |ﬂ'| r:Reply |'—| e:Edge |
current
tar [ partner
request

rom)

Op=r.0p

to

current

m:Msg |0
id=new() —'| 02:0rch :
id=new()

op=i.op
op=r.op

Reiko Heckel, Univ. of Leicester
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Rules:
Receive the Response

current
request partner
from to
| 01:Orch |‘—| ml:Msg l—'l 02:0rch |

TeSponse,

to

o1:0rch

resp(i.id, m2.id) current

Simulation

tar

- artner current
I i:Invoke I P I 02:0rch I

current
01:0rch

response r

Observations: req(i.id, m1.id); reply(r.id, m1.id, m2.id); resp(i.id, m2.id)

Outline

% Model transformation
» denotational semantics
+ operational semantics
= refactoring

operational
semantics

Abstract
Syntax

refactoring

denotational
semantics

Semantic

Domain

Example:
Executable Business Process

»  refactoring of business
processes, replacing
centralised by distributed
execution

Warehouse Office

Receive
order

®  How to demonstrate
preservation of behaviour?
v specify operational
semantics of processes
2. define transformations
3. show that transformations
preserve semantics

order

Processes

|

delegate

Orch 1 Orch 2 Orchl

<<invoke>>
Orch2.0p

Refactoring Executable Business

|

|

Orch 2

<<receive>>
0]

<<reply>>
op

% replace local control flow by message passing

Preservation of Semantics

Show for each refactoring P = P’ that
P’ simulates P, i.e.
n P>, Qimplies P’ >, Q
= Q' simulates Q
and vice versa.

Approach: p—> Q
= mixed (local) confluence |
= critical pair analysis l, l,
obs

Pl _>Ql

Reiko Heckel, Univ. of Leicester
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Relevant Theory

Chomsky Term Petri
Grammars Rewriting Nets

| ] |

Graph Transformation and Graph Grammars

| i !

= Formal language = Well-definedness = Concurrency theory
theory of graphs; = Termination = Causality and conflict
= Confluence = Processes, unfoldings
= Diagram compiler = Semantics of = Event-structures
generators process calculi

Outline

v Graph Transformation
v'why it is fun
v how it works
% Applications and Theory
+ Modelling and Analysis of Functional Requirements
» Model Transformation and Semantics

% Tools

Tools

% Two main groups:
= General purpose modeling environments
+ PROGRES, AGG, Fujaba, ...
= Environments for specifying visual notations
+ DIAGEN, GENGEd, MetaEnv, ConWork, ...

PROGRES
(PROgrammed Graph Rewriting Systems)

i) 9 ox Graphical/textual

' language to specify
graph transformations

% Graph rewrite rules with
complex and negative
conditions

» Cross compilation in
Modula 2, C and Java

M

AGG
(The Attributed Graph Grammar System)

% Algebraic approach to
graph transformation

* Annotations are in Java

x Efficient graph parsing
= Parse grammar
= Critical pair analysis

» Easy integration with
Java code

Fujaba
(From UML to Java and BAck)

* Round trip engineering
with UML, Java, and
design patterns

% Class, collaboration and
activity diagrams for
story diagrams

= Dynamic behavior
= Automatic generation
* Reverse engineering

Reiko Heckel, Univ. of Leicester
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DiaGen

(The Diagram Editor Generator )

» Notations are specified

[x[x=(@) &[] 2]e] o(E @

s 00 0 = /A smas | through hypergraphs
- * Framework of Java
classes
= to provide basic
functionality

* Generator program

= to produce Java source
code

GenGED

(Generation of Graphical Env.s for Design)

* Graphical editors and
simulation environments
= Syntax grammar
+ Actual syntax
= Parse grammar
+ Free-hand editing
= Simulation grammar
+ To simulate models

% AGG and graphical constraint
solving techniques

MetaEnv

[ oo o e

O Ch S Ly e G 0
AL L EE LS
E.

» Customizable engine to
map diagram notations
onto high-level timed
Petri nets

% Rules are pairs of graph
grammars

% Results are mapped
back onto the diagram
model

ConWork
(Consistency Workbench)

® GT to translate models into CSP

% rule-based generation of
constraints

» visual definition of
analysis process

» catalog of consistency
problems

» Contact:

= Jochen Kuester, IBM Zurich
JKU@zurich.ibm.com

€ Jzva_ PaperASE2006Madelshon. mm2

Visual JML
Tool

EH G- o Demsen Gesniees. B

® GT rules as
visual contracts

* maps into JML
for run-time
monitoring

»* Contact:

M. Lohmann,
Paderborn

lohmann@upb.de

(see ICGT talk)

Analysis

% CheckVML

» Encodes graph transformation systems into SPIN
to reason on the reachability of specific
configurations by means of sequences of rules

* Groove
= Verifies model transformation and dynamic
semantics through an (automatic) analysis of the
resulting graph transformation systems using
model checking

Reiko Heckel, Univ. of Leicester
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GRaphs for Object-Oriented
VErification (GROOVE)

% generation of LTS from

GT systems

= edge-labelled
graphs

= application
conditions

= priorities

http://wwwhome.cs.utwente.nl/~groove/groove-index

Conclusion

% The tutorial has
= Motivated the use of graph transformation in
software engineering
» Introduced the foundations of graph
transformation
= Shown example applications of graph
transformation
+ GT for behavior modeling and analysis
+ GT for model transformation
» Presented available tools

Future work

% Dissemination to
potential users
= this tutorial ©
= examples and case
studies

= co-operations with
domain experts

% More user-friendly and
efficient tools (we have

come a long way
already)

% Analysis and verification
% Refinement / modularity
% relation with other

areas
= process calculi
(Milner, Montanari)
= DNA computing
(Rozenberg)
= XML, Meta data,
Semantic Web (Rising)

Some basic references

* Handbook of Graph Grammars and Computing by
Graph Transformation
1. Foundations
2. Applications, Languages and Tools
3. Concurrency, Parallelism, and Distribution

* Graph Transformation for Specification and
Programming

Andries, Engels, Habel, Hoffmann, Kreowski, Kuske, Plump,

Schiirr, Taentzer; Science of Computer Programming, Vol.
34, No. 1, April 1999, pp.1-54
» Tutorial Introduction to Graph Transformation: A
Software Engineering Perspective

Baresi, Heckel; Proc. 1st Intl. Conference on Graph
Transformation (ICGT 02), Barcelona, Spain,
Springer LNCS 2505

Discussion

Reiko Heckel, Univ.

of Leicester
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