Foundations and Applications of Graph SBMF / ICGT 2006 Tutorial
Transformation September 2006, Natal, Brazil

University of
Why it is fun:
Programming By Example

Leicester

Foundations and Applications of StageCast (www.stagecast.com): a visual programming
environment for kids (from 8 years on), based on

G ra p h Tl’a n SfO rm at| on = behavioral rules associated to graphical objects

= visual pattern matching
= simple control structures (priorities, sequence, choice, ...)

. = external keyboard control
Reiko Heckel > intuitive rule-based behavior modelling

University of Leicester, UK
Next: abstract from concrete visual presentation

SBMF / ICGT 2006, Natal - Rio Grande do Norte - Brazil
17th - 23rd September, 2006

Rules of the PacMan Game:

States of the PacMan Game:
Graph-Based Presentation, PacMan

Graph-Based Presentation

instance graph : collect
(represents a
single state;
abstracts from
spatial layout)
movePM
T

E- * 11 *| PacMan
Ghost Field
I marbles:int type graph

W, (specifies legal
instance graphs
> state space)

Rules of the PacMan Game:
Graph-Based Presentation, Ghost Outline

% Graph Transformation

kill
a ~ why it is fun
= how it works
% Applications and Theory
moveGhost % To 0| S

Reiko Heckel, Univ. of Leicester

Foundations and Applications of Graph
Transformation

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

A Basic Formalism: Typed Graphs

Directed graphs
=« multiple parallel edges
= undirected edges as pairs
of directed ones
Graph homomorphism as
mappings preserving
source and target

Typed graphs given by ! %
« fixed type graph 76 ¢ [Ghost | Field Je——ackan

1
1
marbles:int |1
1
1
1

Rules

p: L 2 Rwith L n R well-defined, in different
presentations

= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L €« K 2> R

f1:Field f2:Field

= instance graphs G
typed over 7G by Marble !
homomorphism P ...--.....7:6.;.'
Rules

p: L 2 Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L €« K 2> R
= with £, R integrated [UML, Fujaba]:
Lu R and marking
+ L - R as {destroyed}
* R-L as{new}

movePM:

Transformation Step

:
mMelel L, R
f2:Field f1:Field

Lo Lo,
pm:PacMan

1. selectrule p:L 2 R; occurrence o, : L 2 G
2. remove from G the occurrence of L\ R
3. add to result a copy of R\ L

marbles=3

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: delete dangling edges
= more complex behavior, requires explicit control

Reiko Heckel, Univ. of Leicester

Semantic Questions: Conflicts
[][2a] > [ara]

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: give priority to deletion
= more complex behavior, requires explicit control

Foundations and Applications of Graph SBMF / ICGT 2006 Tutorial

Transformation September 2006, Natal, Brazil
Advanced Features A bit of History ...
Dealing with unknown context .
» set-nodes (multi-objects): match all nodes with the required Chomsky Term Petri
connections Grammars Rewriting Nets

= explicit (negative) context conditions

o~ [raa] ! |]

Graph Transformation and Graph Grammars

(turns f1 into a trap by reversing all outgoing edges to Field 1 1 1
vertices, but only if there is no Ghost)
Diagram Models of Behaviour
Control Structures Languages Computation Modelling and
= priorities Visual Programming
= programmed transformation
Motivation: Software Development as
Outline

Integration of Views

v Graph Transformation o .
v'why it is fun capture

v how it works User View A
% Applications and Theory
» Modelling and Analysis of Functional Requirements

Model Transformation and Semantics
_F | Make sure there is ‘ fransform
*® |0ools an implementation -
satisfying all S

i /
requirements ! 1. Aspects of requirements models

2. Conflicts between functional requirements
3. Theory and tool support

Aspects of Requirements Models Structure: Class and Object Diagrams
Model A Model B :Customer :Bill
) . v formal, e.g., attributed fotal = 40
1. Static domain model: Agree on vocabulary first ! graphs at the type and
-> class and object diagrams instance level “Cart

2. Business process model: Which actions are performed
in which order ?

v established techniques
- use case description in natural language, activity or sequence for view integration
diagrams, etc.

amount = 1000

typing

0. 1
|Cust0mer B 1 gl I Shop |

cash total &0t 1
0.1 0. >
P 1
0..1 s F 1
[ct Pz Item 5 _Rack | |CashBox
value :

Reiko Heckel, Univ. of Leicester

Foundations and Applications of Graph SBMF / ICGT 2006 Tutorial

Transformation September 2006, Natal, Brazil
Behaviour: Use Case Description by Aspects of Requirements Models
Structured Text

Shop Model A Model B
,
%/ e > ,_% v Static domain model: Agree on vocabulary first !
v based on vocabulary -, omer // ’ Clerk - class and object diagrams
of integrated domain ¥) | .
model /. <<refine>> | ¥ Business process model: Which actions are performed
% take shopping cart ¥ ” in which order ?
% select items from rack = | * create empty bill for - use case description in hatural language, activity or sequence
N new customer diagrams, etc.
» take items out of cart % take items out of
® pay required amount customer’s cart : . o - .
v rolect teme s yrasly Sl 3. Sg%g:rl%gl r_?odel. What happens if an action is
* t : ;«;Iéic;r;\); g;znizems @ -> pre-/post conditions as logic constraints
no way 0 customer - transformation rules on object diagrams
tell if views are (Fusion, Catalysis, Fujaba, formally: graph transformations)
consistent
Function: Transformation Rules on Conflicts Between Functional
Object Diagrams Requirements

x

ET

:Customer

Customer - Clerk
.

customer
updates [] e both delete
cash owns /ink

conflicting " i
» pay bill close bill
\ actions clerk updates
amount

T

‘CashBox
:Item
=T

Theory: Independence, Causality and Tool Support: Critical Pair Analysis with AGG
Conflicts in Graph Transformation o

»® Alternative stePs are parallel

G
independent if they do not Py P>
disable each other.

Otherwise they are /n confiict.

H, H,
» Consecutive steps are pz\ ﬁ !
X

sequentially independent if
they may be swapped without
affecting the result.

Characterization [EPS73]:

Otherwise they are causally Two (alternative or
dependent. consecutive) steps are
Idea: Find potential conflicts and independent iff all .
causal dependencies between commonly accessed items
rules by critical pair analysis are in read-access only.

lapping raphs ofrles: payBil and setiBil- fnished.

Reiko Heckel, Univ. of Leicester 4

Foundations and Applications of Graph

Transformation

Usage Scenario
1. 2.

—> uL |

Analysis :I 3
Modeller «——> | CASE Tool | «——| Tool ’
5

input model to CASE tool
import model by analysis tool
analyze model for conflicts

[T o

interprete and improve models

Domain expert: “buy items
and sell items should

Modeller: “inconsistency
between views” Customer

< buy items >
not be in conflict” / <<disables>2

back annotate models with conflicts

Shop

Clerk

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

Outline

v Graph Transformation
v'why it is fun
v how it works
% Applications and Theory
+ Modelling and Analysis of Functional Requirements
» Model Transformation and Semantics
% Tools

Petri nets

J

Function Block
on_THR Diagrams

oB_TIVE

Visual Modeling Techniques

40

Class Diagrams (UML)

Model-driven Development

» Focus and primary artifacts % A math. foundation is
are models instead of needed for studying
programs = Expressiveness and
complexity

= Execution and optimisation

= Well-definedness

» Core activities include
= maintaining consistency

= evolution = Semantic correctness

= translation of transformations

= execution

of models * Graph transformations can

be one such foundation

* These are examples of
model transformations

QOutline

% Model transformation
= denotational semantics
+ analysis - synthesis
= operational semantics
= refactoring

operational
semantics

refactoring
Abstract
Syntax

denotational
semantics

Sem
Dom:

Reiko Heckel, Univ. of Leicester

Abstract

Context-Free Graph Grammar e

Concrete Syntax of Well-Formed Activity Diagrams T

U

Start Graph: Act

Productions in EBNF-like notation. é
. in
n in
! Act
1
out out
out

Foundations and Applications of Graph SBMF / ICGT 2006 Tutorial

Transformation September 2006, Natal, Brazil
Analysis . s Pair Grammar
yntax
0 v i denotational
3) semantics Source: well-structured
j activity diagrams
1 Semantic ®
A 4 — 4 Domain
@ Target: CSP Proc(A)
[product not X [product available] 2 in in
available] ¥ 5 1
out out
v Proc(A1)> if [c] then Proc(A1) .
é Proc(A) u= Proc(A2) else Proc(A2) do something
Synthesis .
i ?
ProctA0) o T = 1 Is this Good Enoughs
e o>
Proc(Al) > Proc(A2) T v Visual x Expressive ?
4 = abstract syntax or = context-free graph
Proc(A3) > check availability concrete syntax languages only
Proc (A4) > templates x Traceable ?
if [product available] : , v Bi-directional * through naming
t':e" g oc(ﬁ.;) g?g;gﬁ;]not [product available] 2 = swap source and target conventions
else Proc(A8) @ 6] 5 grammars % Efficient ?
receive c.;.r.der > 8 = ¥ Dedlarative = NP complete parsing
check availability @@ + problem
if [product available] 7 x ...
then calculate prize
- send receipt —> => Triple Graph Grammar:
else notify client é ple Graph Gra ars
Correspondence Rules:
A Non-Well-Structured Example Initial, Action, and Final Nodes
% Rule pairs, in
Actions A= .. TA condensed
Place_order, Pay_bill presentation
= Green/bf >

new
Processes {new}

A = Place_order > B
B = if ‘non-empty’
then C else STOP
C=Pay_bill > £
E =if ‘paid’
then A else STOP

act> B8

A
A=
B=.. % No restriction to

context-freeness

A » Correspondence
A= STOP é via common

names

Reiko Heckel, Univ. of Leicester 6

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

Correspondence Rules:
Split and Join
A =if cond !

c
[cond]|B

i

then B else C [else]

Negative

application
condition

Correspondence Rules:
Connection to Existing Nodes

Either alternative is
consistent with left side

Formally: Triple Graph Grammars

% Meta model for correspondence
+ traceability

jemset Source
Metamodel "\ . se>> <<use>s”| Metamodel
Corresp.

Metamodel

% Symmetric rule triplets (left, corr, right),
generating directed rules
+ Declarative > operational

|

Example TGG Rule

Derived Operational GT Rule:
right =2 left

:Proc [| [
mame = A] :ProcEdge | 1 :Edge |
exp tar
[prefix] succ] var | [:Node |
[name = act | [name = B
{new} {new} src
:Proc { 'Pr::x:EdgeI [:Ed e|
name = B L I =49
Inew? {new}
left corr right
Alternatively:
= left > right

u (left, right) > corr

Reiko Heckel, Univ. of Leicester

A
A=act> B <:>
B=.. m
B
na:rr':goi A I :ProcEdge |——| :Edge |
exp tar
| :Prefix | SUCC| :Var |
[name = act | [name = B {new}
{new} {new} src
:Proc [. .
mame =B 1 :ProcEdge |— | :Edge |
I—I{new} {new} {new}
left corr right
Outline
q operational
% Model transformation bl

+ denotational semantics
= operational semantics

refactoring
= refactoring Abstract >
Syntax

denotational
semantics

Semantic
Domain

SBMF / ICGT 2006 Tutorial

Foundations and Applications of Graph
September 2006, Natal, Brazil

Transformation
Example: sprsionn
Executable Business Process Operational Semantics: Idea j

* refactoring of ?US_iness Wareh o % diagram syntax plus runtime state
rocesses, replacin archouse ice .
4 - % GT rules to model state transitions

centralised by distributed

execution -

Receive
— ——

* How to demonstrate op(..)

preservation of behaviour?

1. specify operational [

semantics of processes Shipment Undo
> define transformations order (op(..)) (op(...))

3. show that transformations
preserve semantics

Type Gra ph : response

Operational Semantics: Formally Metamodel Mg
op: String request
. . id: String
GTS = (TG, P) with start graph G, with runtime state from] [10

current Orch

name: String

defines transition system

partner

LTS(GTS, Gy) = (5 L, 2) corresponds

taking
= as states S all graphs reachable from G, A
= observations on rules as labels

» transformations as transitions

Rules: Rules:

Invoke another Service Answer the Invocation
tar Sre

T ar artner | e:Edge |—['| r:Reply |‘—| e:Edge |

current “Mso
o1:0rch tofmm 02:0rch

op=r.op ste
01:Orch 02:0rch | e:Edge |ﬂ'| r:Reply |'—| e:Edge |
current
tar [partner
request

rom)

Op=r.0p

to

current

m:Msg |0
id=new() —'| 02:0rch :
id=new()

op=i.op
op=r.op

Reiko Heckel, Univ. of Leicester

Foundations and Applications of Graph
Transformation

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

Rules:
Receive the Response

current
request partner
from to
| 01:Orch |‘—| ml:Msg l—'l 02:0rch |

TeSponse,

to

o1:0rch

resp(i.id, m2.id) current

Simulation

tar

- artner current
I i:Invoke I P I 02:0rch I

current
01:0rch

response r

Observations: req(i.id, m1.id); reply(r.id, m1.id, m2.id); resp(i.id, m2.id)

Outline

% Model transformation
» denotational semantics
+ operational semantics
= refactoring

operational
semantics

Abstract
Syntax

refactoring

denotational
semantics

Semantic

Domain

Example:
Executable Business Process

» refactoring of business
processes, replacing
centralised by distributed
execution

Warehouse Office

Receive
order

® How to demonstrate
preservation of behaviour?
v specify operational
semantics of processes
2. define transformations
3. show that transformations
preserve semantics

order

Processes

|

delegate

Orch 1 Orch 2 Orchl

<<invoke>>
Orch2.0p

Refactoring Executable Business

|

|

Orch 2

<<receive>>
0]

<<reply>>
op

% replace local control flow by message passing

Preservation of Semantics

Show for each refactoring P = P’ that
P’ simulates P, i.e.
n P>, Qimplies P’ >, Q
= Q' simulates Q
and vice versa.

Approach: p—> Q
= mixed (local) confluence |
= critical pair analysis l, l,
obs

Pl _>Ql

Reiko Heckel, Univ. of Leicester

Foundations and Applications of Graph
Transformation

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

Relevant Theory

Chomsky Term Petri
Grammars Rewriting Nets

|] |

Graph Transformation and Graph Grammars

| i !

= Formal language = Well-definedness = Concurrency theory
theory of graphs; = Termination = Causality and conflict
= Confluence = Processes, unfoldings
= Diagram compiler = Semantics of = Event-structures
generators process calculi

Outline

v Graph Transformation
v'why it is fun
v how it works
% Applications and Theory
+ Modelling and Analysis of Functional Requirements
» Model Transformation and Semantics

% Tools

Tools

% Two main groups:
= General purpose modeling environments
+ PROGRES, AGG, Fujaba, ...
= Environments for specifying visual notations
+ DIAGEN, GENGEd, MetaEnv, ConWork, ...

PROGRES
(PROgrammed Graph Rewriting Systems)

i) 9 ox Graphical/textual

' language to specify
graph transformations

% Graph rewrite rules with
complex and negative
conditions

» Cross compilation in
Modula 2, C and Java

M

AGG
(The Attributed Graph Grammar System)

% Algebraic approach to
graph transformation

* Annotations are in Java

x Efficient graph parsing
= Parse grammar
= Critical pair analysis

» Easy integration with
Java code

Fujaba
(From UML to Java and BAck)

* Round trip engineering
with UML, Java, and
design patterns

% Class, collaboration and
activity diagrams for
story diagrams

= Dynamic behavior
= Automatic generation
* Reverse engineering

Reiko Heckel, Univ. of Leicester

10

Foundations and Applications of Graph
Transformation

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

DiaGen

(The Diagram Editor Generator)

» Notations are specified

[x[x=(@) &[] 2]e] o(E @

s 00 0 = /A smas | through hypergraphs
- * Framework of Java
classes
= to provide basic
functionality

* Generator program

= to produce Java source
code

GenGED

(Generation of Graphical Env.s for Design)

* Graphical editors and
simulation environments
= Syntax grammar
+ Actual syntax
= Parse grammar
+ Free-hand editing
= Simulation grammar
+ To simulate models

% AGG and graphical constraint
solving techniques

MetaEnv

[oo o e

O Ch S Ly e G 0
AL L EE LS
E.

» Customizable engine to
map diagram notations
onto high-level timed
Petri nets

% Rules are pairs of graph
grammars

% Results are mapped
back onto the diagram
model

ConWork
(Consistency Workbench)

® GT to translate models into CSP

% rule-based generation of
constraints

» visual definition of
analysis process

» catalog of consistency
problems

» Contact:

= Jochen Kuester, IBM Zurich
JKU@zurich.ibm.com

€ Jzva_ PaperASE2006Madelshon. mm2

Visual JML
Tool

EH G- o Demsen Gesniees. B

® GT rules as
visual contracts

* maps into JML
for run-time
monitoring

»* Contact:

M. Lohmann,
Paderborn

lohmann@upb.de

(see ICGT talk)

Analysis

% CheckVML

» Encodes graph transformation systems into SPIN
to reason on the reachability of specific
configurations by means of sequences of rules

* Groove
= Verifies model transformation and dynamic
semantics through an (automatic) analysis of the
resulting graph transformation systems using
model checking

Reiko Heckel, Univ. of Leicester

11

Foundations and Applications of Graph
Transformation

SBMF / ICGT 2006 Tutorial
September 2006, Natal, Brazil

GRaphs for Object-Oriented
VErification (GROOVE)

% generation of LTS from

GT systems

= edge-labelled
graphs

= application
conditions

= priorities

http://wwwhome.cs.utwente.nl/~groove/groove-index

Conclusion

% The tutorial has
= Motivated the use of graph transformation in
software engineering
» Introduced the foundations of graph
transformation
= Shown example applications of graph
transformation
+ GT for behavior modeling and analysis
+ GT for model transformation
» Presented available tools

Future work

% Dissemination to
potential users
= this tutorial ©
= examples and case
studies

= co-operations with
domain experts

% More user-friendly and
efficient tools (we have

come a long way
already)

% Analysis and verification
% Refinement / modularity
% relation with other

areas
= process calculi
(Milner, Montanari)
= DNA computing
(Rozenberg)
= XML, Meta data,
Semantic Web (Rising)

Some basic references

* Handbook of Graph Grammars and Computing by
Graph Transformation
1. Foundations
2. Applications, Languages and Tools
3. Concurrency, Parallelism, and Distribution

* Graph Transformation for Specification and
Programming

Andries, Engels, Habel, Hoffmann, Kreowski, Kuske, Plump,

Schiirr, Taentzer; Science of Computer Programming, Vol.
34, No. 1, April 1999, pp.1-54
» Tutorial Introduction to Graph Transformation: A
Software Engineering Perspective

Baresi, Heckel; Proc. 1st Intl. Conference on Graph
Transformation (ICGT 02), Barcelona, Spain,
Springer LNCS 2505

Discussion

Reiko Heckel, Univ.

of Leicester

12

