
Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 1

Foundations and Applications of Foundations and Applications of

Graph Transformation Graph Transformation

Reiko HeckelReiko Heckel

University of Leicester, UKUniversity of Leicester, UK

SBMF / ICGT 2006, Natal - Rio Grande do Norte - Brazil
17th - 23rd September, 2006

Why it is fun: Why it is fun:

Programming By ExampleProgramming By Example

StageCastStageCast ((www.stagecast.comwww.stagecast.com): a visual programming): a visual programming

environment for kids (from 8 years on), based on environment for kids (from 8 years on), based on

�� behavioral rules associated to graphical objectsbehavioral rules associated to graphical objects

�� visual pattern matchingvisual pattern matching

�� simple control structures (priorities, sequence, choice, ...)simple control structures (priorities, sequence, choice, ...)

�� external keyboard controlexternal keyboard control

�� intuitive ruleintuitive rule--based behavior based behavior modellingmodelling

Next:Next: abstract from concrete visual presentationabstract from concrete visual presentation

States of the PacMan Game:States of the PacMan Game:

GraphGraph--Based Presentation Based Presentation

:Ghost

:Field

:Field :Field

:Field

:Field

:Field

:PacMan

marbles=3

instance graph
(represents a
single state;
abstracts from
spatial layout)

type graph
(specifies legal
instance graphs
� state space)

:Marble

typingtyping

Field
PacMan

marbles:int
Ghost

Marble

1

11 *

*

*

Rules of the PacMan Game:Rules of the PacMan Game:

GraphGraph--Based Presentation, PacMan Based Presentation, PacMan

f1:Field f2:Field

pm:PacMan

f1:Field f2:Field

pm:PacManmovePM

pm:PacMan
marbles=m

f1:Field f2:Field

:Marble

f1:Field f2:Field

pm:PacMan
marbles=m+1collect

Rules of the PacMan Game:Rules of the PacMan Game:

GraphGraph--Based Presentation, GhostBased Presentation, Ghost

f1:Field f2:Field

g:Ghost

f1:Field f2:Field

g:GhostmoveGhost

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghostkill

OutlineOutline

�� Graph TransformationGraph Transformation

�� why it is funwhy it is fun

�� how it workshow it works

�� Applications and TheoryApplications and Theory

�� ToolsTools

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 2

A Basic Formalism: Typed GraphsA Basic Formalism: Typed Graphs

Directed graphsDirected graphs

�� multiple parallel edgesmultiple parallel edges

�� undirected edges as pairs undirected edges as pairs

of directed onesof directed ones

Graph homomorphismGraph homomorphism asas

mappings preserving mappings preserving

source and targetsource and target

Typed graphsTyped graphs given bygiven by

�� fixed fixed type graphtype graph TGTG

�� instance graphsinstance graphs GG
typed over typed over TG by TG by
homomorphismhomomorphism

g:Ghost:Field

:Field :Field

:Field

:Field

f:Field

gg

Field
PacMan

marbles:int
Ghost

Marble

G

TG

Rules Rules

p: L p: L �� RR with with L L ∩∩∩∩∩∩∩∩ RR wellwell--defined, in different defined, in different
presentationspresentations
�� like above (cf. PacMan example)like above (cf. PacMan example)

� with L ∩ R explicit [DPO]: L  K � R

f1:Field f2:Field

pm:PacMan
movePM:

f1:Field f2:Field

pm:PacMan

Rules Rules

p: L p: L �� RR with with L L ∩∩∩∩∩∩∩∩ RR wellwell--defined, in different defined, in different
presentationspresentations
�� like above (cf. PacMan example)like above (cf. PacMan example)

� with L ∩ R explicit [DPO]: L  K � R

�� with with L, RL, R integrated [UML, integrated [UML, FujabaFujaba]:]:
L L ∪∪ RR and markingand marking
�� L L -- RR as {destroyed} as {destroyed}

�� R R -- LL as {new}as {new}

f1:Field f2:Field

pm:PacMan
movePM:

{destroyed} {new}

Transformation StepTransformation Step

1.1. select rule select rule p : L p : L �� RR ; occurrence ; occurrence ooLL : L : L �� GG
2.2. remove from remove from G G thethe occurrence of occurrence of LL \\ RR
3.3. add to result a copy of add to result a copy of RR \\ LL

f1:Field

f2:Field
pm:PacMan
marbles=3

m2:Marble

oL

G

L Rp
pm:PacMan
marbles=m

f2:Field f1:Field

m1:Marble

f2:Field f1:Field

pm:PacMan
marbles=m+1

f3:Field

m1:Marble

oR

pm:PacMan
marbles=4

H f1:Field

f2:Field

m2:Marblef3:Field

Semantic Questions: Dangling EdgesSemantic Questions: Dangling Edges

�� conservative solution: application is forbiddenconservative solution: application is forbidden

�� invertible transformations, no sideinvertible transformations, no side--effectseffects

�� radical solution: delete dangling edgesradical solution: delete dangling edges

�� more complex behavior, requires explicit controlmore complex behavior, requires explicit control

a:A

a:A :B ??

Semantic Questions: ConflictsSemantic Questions: Conflicts

�� conservative solution: application is forbiddenconservative solution: application is forbidden

�� invertible transformations, no sideinvertible transformations, no side--effectseffects

�� radical solution: give priority to deletionradical solution: give priority to deletion

�� more complex behavior, requires explicit controlmore complex behavior, requires explicit control

a1:A

a:A

a2:A a1:A

??

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 3

Advanced FeaturesAdvanced Features

Dealing with unknown contextDealing with unknown context

�� setset--nodes (multinodes (multi--objects): match all nodes with the required objects): match all nodes with the required

connections connections

�� explicit (negative) context conditionsexplicit (negative) context conditions

(turns f1 into a trap by reversing all outgoing edges to Field (turns f1 into a trap by reversing all outgoing edges to Field

vertices, but only if there is no Ghost)vertices, but only if there is no Ghost)

Control StructuresControl Structures
�� prioritiespriorities
�� programmed transformationprogrammed transformation

:Field:Field
f1:Field :Field f1:Field :Field:Ghost

A bit of History …A bit of History …

Chomsky
Grammars

Term
Rewriting

Petri
Nets

Graph Transformation and Graph Grammars

Diagram
Languages

Behaviour
Modelling and

Visual Programming

Models of
Computation

OutlineOutline

�� Graph TransformationGraph Transformation

��why it is funwhy it is fun

�� how it workshow it works

�� Applications and TheoryApplications and Theory

� Modelling and Analysis of Functional Requirements

�� Model Transformation and SemanticsModel Transformation and Semantics

�� ToolsTools

Motivation: Software Development as Motivation: Software Development as

Integration of ViewsIntegration of Views

Req. A

User View A

Req. B

User View B
ensure

consistency
Model A Model B

capture

integrate &
transform

System

Make sure there is
an implementation

satisfying all
requirements !

1. Aspects of requirements models
2. Conflicts between functional requirements
3. Theory and tool support

Aspects of Requirements ModelsAspects of Requirements Models

Model A Model B

1.1. Static domain model: Agree on vocabulary first !Static domain model: Agree on vocabulary first !
�� class and object diagramsclass and object diagrams

2.2. Business process model: Which actions are performed Business process model: Which actions are performed
in which order ?in which order ?
�� use case description in natural language, activity or sequence use case description in natural language, activity or sequence

diagrams, etc. diagrams, etc.

Structure: Class and Object DiagramsStructure: Class and Object Diagrams

Rack

Customer

cash

Cart

ShopBill

total

owns

ow
ns

0..1 0..1

0..1

0..1

0..1

0..1

0..1

1 1

1

0..1

CashBox
amount

1

1

Item
value

typing

�� formal, e.g., attributed formal, e.g., attributed
graphs at the type and graphs at the type and
instance levelinstance level

�� established techniques established techniques
for view integration for view integration

:Customer

cash = 50

:Cart

:Shop

:Bill

total = 40

:Cash Box
amount = 1000

:Item
value = 30

:Item
value = 10

ownsowns

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 4

BehaviourBehaviour: Use Case Description by : Use Case Description by

Structured TextStructured Text

�� take shopping carttake shopping cart

�� select items from rackselect items from rack

�� take items out of cart take items out of cart

�� pay required amountpay required amount

�� collect itemscollect items

�� create empty bill for create empty bill for
new customernew customer

�� take items out of take items out of
customer’s cart customer’s cart

�� add them to the billadd them to the bill

�� collect paymentcollect payment

�� pack and give items to pack and give items to
customercustomer

<<refine>>

Customer Clerk

buy items

sell items

Shop

�� based on vocabulary based on vocabulary

of integrated domain of integrated domain

modelmodel

�� no way to no way to

tell if views are tell if views are

consistent consistent

Aspects of Requirements ModelsAspects of Requirements Models

Model A Model B

�� Static domain model: Agree on vocabulary first !Static domain model: Agree on vocabulary first !
�� class and object diagramsclass and object diagrams

�� Business process model: Which actions are performed Business process model: Which actions are performed
in which order ?in which order ?
�� use case description in natural language, activity or sequence use case description in natural language, activity or sequence

diagrams, etc. diagrams, etc.

3.3. Functional model: What happens if an action is Functional model: What happens if an action is
performed ?performed ?
�� prepre--/post conditions as logic constraints/post conditions as logic constraints

�� transformation rules on object diagrams transformation rules on object diagrams
(Fusion, Catalysis, (Fusion, Catalysis, FujabaFujaba, formally: graph transformations) , formally: graph transformations)

Function:Function: Transformation Rules on Transformation Rules on

Object DiagramsObject Diagrams

:Shop

:Item
:Bill
total = x

:CashBox
amount = y

ow
ns

:Shop

:Item
:Bill
total = x

:CashBox
amount = y+xClerk::

close bill

:Customer
cash=y

:Cart :Item

:Bill

total=x

:Shop

ow
ns

:Customer
cash=y-x

:Cart :Item

:Bill

total=x

owns

:Shop

Customer::
pay bill

conflicting
actions

:Customer

cash = 40

:Cart

:Shop

:Bill

total = 10

:Cash Box
amount
= 1000

pay bill

:Item
value = 10

owns

ConflictsConflicts BetweenBetween FunctionalFunctional

RequirementsRequirements
:Customer

cash = 50

:Cart

:Bill

total = 10

:Cash Box
amount
= 1000

owns

:Item
value = 10

:Shop

:Customer

cash = 50

:Cart

:Shop

:Bill

total = 10

:Cash Box
amount
= 1010

:Item
value = 10

owns

close bill

both delete
owns link

customer
updates
cash

clerk updates
amount

Customer Clerk

Theory: Independence, Causality and Theory: Independence, Causality and

Conflicts in Graph TransformationConflicts in Graph Transformation

� Alternative steps are parallel
independent if they do not
disable each other.

Otherwise they are in conflict.

� Consecutive steps are
sequentially independent if
they may be swapped without
affecting the result.

Otherwise they are causally
dependent.

Idea: Find potential conflicts and
causal dependencies between
rules by critical pair analysis

Characterization [EPS73]:Characterization [EPS73]:
Two (alternative or
consecutive) steps are
independent iff all
commonly accessed items
are in read-access only.

G

H1 H2

p2p1

X

p1 p2

Tool Support: Critical Pair Analysis with Tool Support: Critical Pair Analysis with AGGAGG

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 5

UsageUsage ScenarioScenario

1.1. inputinput modelmodel to CASE to CASE tooltool

2.2. importimport modelmodel byby analysisanalysis tooltool

3.3. analyzeanalyze modelmodel forfor conflictsconflicts

4.4. back back annotateannotate modelsmodels withwith conflictsconflicts

5.5. interpreteinterprete and and improveimprove modelsmodels

Modeller

UML
CASE Tool

Analysis
Tool

1. 2.

3.

4.5.

Customer Clerk

buy items

sell items

Shop

<<disables>>

Domain expert: “Domain expert: “buy items buy items
and sell items should and sell items should
not be in conflict”not be in conflict”

Modeller: Modeller: ““inconsistency inconsistency
between viewsbetween views””

OutlineOutline

�� Graph TransformationGraph Transformation

��why it is funwhy it is fun

�� how it workshow it works

�� Applications and TheoryApplications and Theory

� Modelling and Analysis of Functional Requirements

�� Model Transformation and SemanticsModel Transformation and Semantics

�� ToolsTools

Visual Modeling TechniquesVisual Modeling Techniques

p3

p2

t2

t0

p1t3

t1

Petri netsPetri nets

MediaMedia

ContinuousContinuous

MediaMedia
DiscreteDiscrete

MediaMedia

AudioAudioVideoVideo AnimationAnimation

GraphicsGraphics ImageImage TextText

Class Diagrams (UML)

DB_FF

S1

R

Q1OFF_TMR

TON

IN

PT

Q

ET

OUT

DB_TIME

IN IN

PT

Q

ET

TON

ON_TMR

SR

Function Block
Diagrams Structured AnalysisStructured Analysis

ModelModel--driven Developmentdriven Development

�� Focus and primary artifacts Focus and primary artifacts

are models instead of are models instead of

programsprograms

�� Core activities includeCore activities include

�� maintaining consistencymaintaining consistency

�� evolutionevolution

�� translationtranslation

�� executionexecution

of modelsof models

�� These are examples of These are examples of

model transformationsmodel transformations

�� A math. foundation is A math. foundation is

needed for studyingneeded for studying

�� Expressiveness and Expressiveness and

complexitycomplexity

�� Execution and optimisationExecution and optimisation

�� WellWell--definednessdefinedness

�� Semantic correctnessSemantic correctness

of transformations of transformations

�� Graph transformations can Graph transformations can

be one such foundationbe one such foundation

OutlineOutline

�� Model transformationModel transformation

�� denotational semanticsdenotational semantics

�� analysis analysis �� synthesissynthesis

�� operational semanticsoperational semantics

�� refactoringrefactoring
Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

refactoring

ContextContext--FreeFree Graph GrammarGraph Grammar

do something

out

in

ActStart Graph:

Act

in

out

Act

Act

in

out

::=

Productions in EBNF-like notation:

Act

in

out

Act

[c] [not c]

Concrete Syntax of Well-Formed Activity Diagrams

Abstract

Syntax

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 6

AnalysisAnalysis

check availability

receive order

notify client

calculate prize

send receipt

[product not
available]

[product available]

0 1

2

3

4

56

7

8

Pair GrammarPair Grammar

A:Act

in

out

A1:Act

in

out

A2:Act

do something

out

in

::=

A:Act

A1:Act

in

out

A2:Act

[c] [not c]

Proc(A) ::=
Proc(A1) ����
Proc(A2)

if [c] then Proc(A1)
else Proc(A2)

do something

Source: well-structured
activity diagrams

Proc(A)Target: CSP

Abstract

Syntax

Semantic

Domain

denotational

semantics

SynthesisSynthesis

Proc(A0)Proc(A0)

Proc(A1Proc(A1)) �������� Proc(A2)Proc(A2)

……

Proc(A3) Proc(A3) ��
Proc (A4) Proc (A4) ��
ifif [product available][product available]

thenthen Proc(A5)Proc(A5)
elseelse Proc(A8)Proc(A8)

……

receive order receive order ��������

check availability check availability ��������

ifif [product available][product available]

thenthen calculate prizecalculate prize

�������� send receiptsend receipt

elseelse notify clientnotify client

check availability

receive order

notify client

calculate prize

send receipt

[product not
available]

[product available]

0 1

2

3

4

56

7

8

Is this Good Enough?Is this Good Enough?

�� VisualVisual

�� abstract syntax or abstract syntax or

concrete syntax concrete syntax

templatestemplates

�� BiBi--directionaldirectional

�� swap source and target swap source and target

grammarsgrammars

�� DeclarativeDeclarative

�� Expressive Expressive ??

�� contextcontext--free graph free graph

languages onlylanguages only

�� Traceable Traceable ??

�� through naming through naming

conventionsconventions

�� Efficient Efficient ??

�� NP complete parsing NP complete parsing

problemproblem

�� ……

� Triple Graph Grammars

A NonA Non--WellWell--Structured ExampleStructured Example

ActionsActions
Place_orderPlace_order, , Pay_billPay_bill

ProcessesProcesses
AA = = Place_orderPlace_order �� BB

BB = if = if ‘‘nonnon--emptyempty’’

then then CC else STOPelse STOP

CC = = Pay_billPay_bill �� EE

E E == if if ‘‘paidpaid’’

then then AA else STOPelse STOP

[else]

[non-empty]

[paid]

[else]

Place order

Pay bill

A

B

C

E

Correspondence Rules:Correspondence Rules:

Initial, Action, and Final NodesInitial, Action, and Final Nodes

A A = …= …

AA == act act �������� BB

B B = = ……

AA == STOPSTOP

start A

act

A

B

action

stop
A

�� Rule pairs, in Rule pairs, in

condensed condensed

presentationpresentation

�� Green/bfGreen/bf ��

{new}{new}

�� No restriction to No restriction to

contextcontext--freenessfreeness

�� Correspondence Correspondence

via common via common

names names

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 7

Correspondence Rules:Correspondence Rules:

Split and JoinSplit and Join

A =A = if if condcond

then then BB else else CC

B B = = ……

C C = = ……

AA == BB

B B = = ……

split

B

[else]

C
[cond]

A

B

[cond]
A

join

Negative
application
condition

Correspondence Rules:Correspondence Rules:

Connection to Existing NodesConnection to Existing Nodes

AA == BB

A

A

merge act

A

B

B

B

Either alternative is
consistent with left side

Formally: Triple Graph GrammarsFormally: Triple Graph Grammars

�� Meta model for correspondenceMeta model for correspondence

�� traceabilitytraceability

�� Symmetric rule triplets (left, Symmetric rule triplets (left, corrcorr, right), , right),

generating directed rulesgenerating directed rules

�� Declarative Declarative �� operationaloperational

Target

Metamodel

Corresp.

Metamodel

Source

Metamodel<<use>> <<use>>

Example TGG RuleExample TGG Rule

:Edge

:Node
op = act

:ProcEdge
:Proc

name = A

:Prefix
name = act

tar

{new}

exp

{new}

act

A

B

AA == act act �������� BB
B B = = ……

:Edge

src

{new}

:ProcEdge
:Proc

name = B
{new}

{new}

:Var
name = B

{new}

succ

left corr right

Derived Operational GT Rule: Derived Operational GT Rule:

right right �� leftleft

Alternatively: Alternatively:
�� left left �� rightright

�� (left, right) (left, right) �� corrcorr

:Edge

:Node
op = act

:ProcEdge
:Proc

name = A

:Prefix
name = act

tarexp

{new}

:Edge

src

:ProcEdge
:Proc

name = B
{new}

{new}

:Var
name = B

{new}

succ

left corr right

OutlineOutline

�� Model transformationModel transformation

�� denotational semanticsdenotational semantics

�� operational semanticsoperational semantics

�� refactoringrefactoring Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

refactoring

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 8

Example: Example:

Executable Business ProcessExecutable Business Process

�� refactoringrefactoring of business of business

processes, replacing processes, replacing

centralised by distributed centralised by distributed

executionexecution

�� How to demonstrate How to demonstrate

preservation of behaviour?preservation of behaviour?

1.1. specify operational specify operational

semantics of processessemantics of processes

2.2. define transformationsdefine transformations

3.3. show that transformations show that transformations

preserve semanticspreserve semantics

Receive

order

Undo

order
Shipment

Warehouse Office

Operational Semantics: IdeaOperational Semantics: Idea

�� diagram syntax plus diagram syntax plus runtime stateruntime state

�� GT rules to model state transitionsGT rules to model state transitions

op(…) op(…)

op(…)

Abstract

Syntax

operational

semantics

Operational Semantics: FormallyOperational Semantics: Formally

GTS = (TG, P)GTS = (TG, P) with start graph with start graph GG00

defines transition system defines transition system

LTS(GTS, GLTS(GTS, G00) = (S, L,) = (S, L, ��))

takingtaking

�� as states as states SS all graphs reachable from all graphs reachable from GG00

�� observations on rules as labelsobservations on rules as labels

�� transformations as transitionstransformations as transitions

Edge Node

Basic
op: String

Structured

Orch
name: String

Msg
op: String

id: String

Switch Invoke

src
tar

current

tofrom

partner

request

Reply

response

Elem

corresponds

responsible

Type Graph:Type Graph:

MetamodelMetamodel

……

with runtime statewith runtime state

Rules:Rules:

Invoke another ServiceInvoke another Service

e:Edge
tar

i:Invoke

o1:Orch o2:Orch

current

partner

e:Edge
tar

i:Invoke

o1:Orch o2:Orch

current

partner

m:Msg
id=new()

op=i.op

from
to

req(i.id, m.id)
request

Rules:Rules:

Answer the InvocationAnswer the Invocation

e:Edge
tar

r:Reply

o1:Orch o2:Orch

current

m1:Msg
op=r.op

fromto

e:Edge
tar

r:Reply

o1:Orch o2:Orch

current

m1:Msg
op=r.op

fromto

m2:Msg
id=new()

op=r.op

from to

reply(r.id, m1.id, m2.id)

response

src
e:Edge

src
e:Edge

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 9

Rules:Rules:

Receive the ResponseReceive the Response

i:Invoke

o1:Orch o2:Orch

current
src

m1:Msg

tofrom

m2:Msg
to from

e:Edge

partner

i:Invoke

o1:Orch o2:Orch

current

src
e:Edge

partnerresp(i.id, m2.id)

request

response

SimulationSimulation

:Edge

tar

i:Invokeo1:Orch o2:Orch
current partner

:Edge

src

:Edge

tar

r:Reply

:Edge

src

current

m1:Msg
op=i.op

from

to
request

m2:Msg
op=r.op

from

to

response

Observations: req(i.id, m1.id); reply(r.id, m1.id, m2.id); resp(i.id, m2.id)

OutlineOutline

�� Model transformationModel transformation

�� denotational semanticsdenotational semantics

�� operational semanticsoperational semantics

�� refactoringrefactoring Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

refactoring

Example: Example:

Executable Business ProcessExecutable Business Process

�� refactoringrefactoring of business of business

processes, replacing processes, replacing

centralised by distributed centralised by distributed

executionexecution

�� How to demonstrate How to demonstrate

preservation of behaviour?preservation of behaviour?

�� specify operational specify operational

semantics of processessemantics of processes

2.2. define transformationsdefine transformations

3.3. show that transformations show that transformations

preserve semanticspreserve semantics

Receive

order

Undo

order
Shipment

Warehouse Office

RefactoringRefactoring Executable Business Executable Business

ProcessesProcesses

�� replace local control flow by message passingreplace local control flow by message passing

…

Orch 1 Orch 2

… …

Orch1 Orch 2

<<invoke>>

Orch2.op

<<receive>>

op

<<reply>>

op

… …

… …

…

delegate

Preservation of SemanticsPreservation of Semantics

Show for each Show for each refactoringrefactoring P P �� PP’’ thatthat
P’ simulates P, i.e.P’ simulates P, i.e.
�� P P ��obsobs Q implies PQ implies P’’ ��obsobs QQ’’

�� QQ’’ simulates Qsimulates Q

and vice versa.and vice versa.

Approach: Approach:
�� mixed (local) confluence mixed (local) confluence

�� critical pair analysiscritical pair analysis

P Q

P’ Q’

obs

obs

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 10

Relevant TheoryRelevant Theory

Chomsky
Grammars

Term
Rewriting

Petri
Nets

Graph Transformation and Graph Grammars

� Formal language
theory of graphs;

� Diagram compiler
generators

� Concurrency theory
� Causality and conflict

� Processes, unfoldings
� Event-structures

� Well-definedness
� Termination

� Confluence

� Semantics of
process calculi

OutlineOutline

�� Graph TransformationGraph Transformation

��why it is funwhy it is fun

�� how it workshow it works

�� Applications and TheoryApplications and Theory

� Modelling and Analysis of Functional Requirements

�� Model Transformation and SemanticsModel Transformation and Semantics

�� ToolsTools

ToolsTools

�� Two main groups:Two main groups:

�� General purpose modeling environmentsGeneral purpose modeling environments

�� PROGRES, AGG, PROGRES, AGG, FujabaFujaba, …, …

�� Environments for specifying visual notationsEnvironments for specifying visual notations

�� DIAGEN, DIAGEN, GENGEdGENGEd, , MetaEnvMetaEnv, , ConWorkConWork, …, …

PROGRESPROGRES
((PROgrammedPROgrammed Graph Rewriting Systems)Graph Rewriting Systems)

�� Graphical/textual Graphical/textual

language to specify language to specify

graph transformationsgraph transformations

�� Graph rewrite rules with Graph rewrite rules with

complex and negative complex and negative

conditionsconditions

�� Cross compilation in Cross compilation in

Modula 2, C and JavaModula 2, C and Java

AGGAGG
(The Attributed Graph Grammar System)(The Attributed Graph Grammar System)

�� Algebraic approach to Algebraic approach to

graph transformationgraph transformation

�� Annotations are in JavaAnnotations are in Java

�� Efficient graph parsingEfficient graph parsing

�� Parse grammarParse grammar

�� Critical pair analysisCritical pair analysis

�� Easy integration with Easy integration with

Java codeJava code

FujabaFujaba
(From UML to Java and (From UML to Java and BAckBAck))

�� Round trip engineering Round trip engineering

with UML, Java, and with UML, Java, and

design patternsdesign patterns

�� Class, collaboration and Class, collaboration and

activity diagrams for activity diagrams for

story diagramsstory diagrams

�� Dynamic behaviorDynamic behavior

�� Automatic generationAutomatic generation

�� Reverse engineeringReverse engineering

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 11

DiaGenDiaGen
(The Diagram Editor Generator)(The Diagram Editor Generator)

�� Notations are specified Notations are specified

through through hypergraphshypergraphs

�� Framework of Java Framework of Java

classes classes

�� to provide basic to provide basic

functionalityfunctionality

�� Generator programGenerator program

�� to produce Java source to produce Java source

codecode

GenGEDGenGED
(Generation of Graphical (Generation of Graphical Env.sEnv.s for Design)for Design)

�� Graphical editors and Graphical editors and

simulation environmentssimulation environments

�� Syntax grammarSyntax grammar

�� Actual syntaxActual syntax

�� Parse grammarParse grammar

�� FreeFree--hand editinghand editing

�� Simulation grammarSimulation grammar

�� To simulate modelsTo simulate models

�� AGG and graphical constraint AGG and graphical constraint

solving techniquessolving techniques

MetaEnvMetaEnv

�� Customizable engine to Customizable engine to

map diagram notations map diagram notations

onto highonto high--level timed level timed

Petri netsPetri nets

�� Rules are pairs of graph Rules are pairs of graph

grammarsgrammars

�� Results are mapped Results are mapped

back onto the diagram back onto the diagram

modelmodel

ConWorkConWork

(Consistency Workbench)(Consistency Workbench)

�� GT to translate models into CSPGT to translate models into CSP

�� rulerule--based generation of based generation of

constraintsconstraints

�� visual definition of visual definition of

analysis process analysis process

�� catalog of consistency catalog of consistency

problemsproblems

�� Contact:Contact:

�� JochenJochen KuesterKuester, IBM Zurich, IBM Zurich

JKU@zurich.ibm.comJKU@zurich.ibm.com

Visual JMLVisual JML

ToolTool

�� GT rules as GT rules as

visual contractsvisual contracts

�� maps into JML maps into JML

for runfor run--time time

monitoringmonitoring

�� Contact:Contact:

M. M. LohmannLohmann, ,

PaderbornPaderborn

lohmann@upb.delohmann@upb.de

(see ICGT talk)(see ICGT talk)

AnalysisAnalysis

�� CheckVMLCheckVML

�� Encodes graph transformation systems into SPIN Encodes graph transformation systems into SPIN

to reason on the reachability of specific to reason on the reachability of specific

configurations by means of sequences of rules configurations by means of sequences of rules

�� GrooveGroove

�� Verifies model transformation and dynamic Verifies model transformation and dynamic

semantics through an (automatic) analysis of the semantics through an (automatic) analysis of the

resulting graph transformation systems using resulting graph transformation systems using

model checkingmodel checking

Foundations and Applications of Graph

Transformation

SBMF / ICGT 2006 Tutorial

September 2006, Natal, Brazil

Reiko Heckel, Univ. of Leicester 12

GRaphsGRaphs for Objectfor Object--Oriented Oriented

VErificationVErification (GROOVE)(GROOVE)

�� generation of LTS from generation of LTS from

GT systemsGT systems

�� edgeedge--labelled labelled

graphsgraphs

�� application application

conditionsconditions

�� prioritiespriorities

http://http://wwwhome.cs.utwente.nlwwwhome.cs.utwente.nl/~groove/groove/~groove/groove--indexindex

ConclusionConclusion

�� The tutorial has The tutorial has

�� Motivated the use of graph transformation in Motivated the use of graph transformation in

software engineeringsoftware engineering

�� Introduced the foundations of graph Introduced the foundations of graph

transformationtransformation

�� Shown example applications of graph Shown example applications of graph

transformationtransformation

�� GT for behavior modeling and analysisGT for behavior modeling and analysis

�� GT for model transformationGT for model transformation

�� Presented available toolsPresented available tools

Future workFuture work

�� Dissemination to Dissemination to

potential userspotential users

�� this tutorial this tutorial ☺☺

�� examples and case examples and case

studies studies

�� coco--operations with operations with

domain expertsdomain experts

�� More userMore user--friendly and friendly and

efficient tools (we have efficient tools (we have

come a long way come a long way

already)already)

�� Analysis and verificationAnalysis and verification

�� Refinement / modularityRefinement / modularity

�� relation with other relation with other

areasareas

�� process calculi process calculi

(Milner, (Milner, MontanariMontanari))

�� DNA computing DNA computing

((RozenbergRozenberg))

�� XML, Meta data, XML, Meta data,

Semantic Web (Rising)Semantic Web (Rising)

Some basic referencesSome basic references

�� Handbook of Graph Grammars and Computing by Handbook of Graph Grammars and Computing by
Graph TransformationGraph Transformation
1.1. FoundationsFoundations

2.2. Applications, Languages and ToolsApplications, Languages and Tools

3.3. Concurrency, Parallelism, and DistributionConcurrency, Parallelism, and Distribution

�� Graph Transformation for Specification and Graph Transformation for Specification and
ProgrammingProgramming

AndriesAndries, , EngelsEngels, , HabelHabel, Hoffmann, , Hoffmann, KreowskiKreowski, , KuskeKuske, Plump, , Plump,
SchürrSchürr, , TaentzerTaentzer; Science of Computer Programming, Vol. ; Science of Computer Programming, Vol.
34, No. 1, April 1999, pp.134, No. 1, April 1999, pp.1--54 54

�� Tutorial Introduction to Tutorial Introduction to Graph TransformationGraph Transformation: A : A
Software Engineering PerspectiveSoftware Engineering Perspective

BaresiBaresi, Heckel; Proc. 1st Intl. Conference on Graph , Heckel; Proc. 1st Intl. Conference on Graph
Transformation (ICGT 02), Barcelona, Spain, Transformation (ICGT 02), Barcelona, Spain,
Springer LNCS 2505Springer LNCS 2505

DiscussionDiscussion

