Model-based Development of Web Services WS on Spec. and Design Methodology,
Bangalore, Jan 2005

&% University of

o Leicester

Model-based Development
of Web Services

Reiko Heckel

Workshop on Specification and Design
Methodology for Adaptive and Embedded Systems

Bangalore, January 2005

Application Scenario:
Online Shopping with Max &

Max, seeking —
“Harry Potter, The Order of the
Phoenix”, empons Shopping Agent to
® |ook for the book

B obtain further product info
(prize, availability, ...)

B choose the best offer

B order and pay (via bank transfer)

&% University of
o Leicester

Reiko Heckel, University of Leicester 1



Model-based Development of Web Services

WS on Spec. and Design Methodology,

Bangalore, Jan 2005

Scenario as UML Diagram

la: get product info
1b: get product info <<component>>
2: place order 4 myAgent:
3: request bank transfer /| ShoppingAgent
4: do transfer ,11a 1bl :lz
5: get list of transfers ! é
I

<<component>>| <<component>>| ‘L <<component>>|

Bank24: —Q Buecher.de: -O Amazon.com:
Bank : Online Shop Online Shop

<<component>>|

SparkassePB:
Bank

&% University of
‘o Leicester

But, ...

O How do SparkassePB and Amazon.com know
Bank24?

O How does myAgent know Buecher.de and
Amazon.com?

static compiled into component
loaded from configuration files
specified by the user
dynamic retrieved from a public

- service-oriented architecture

&% University of
‘o Leicester

Reiko Heckel, University of Leicester



Model-based Development of Web Services

WS on Spec. and Design Methodology,

Bangalore, Jan 2005

WSDL

&% University of
o Leicester

Service-Oriented Architectures (SoA)
and Web Services

Web Service: a component deployed on a Web

accessible platform provided by a service provider
to be discovered and invoked over the Web by a

service requestor

uDDI

Query

Service
Requestor

SOAP

Bind and
Interact

Service
Description
Discovery
Service

Pub&
Service escrlptlon

WSDL

( Service

Provider

O

9

O

- no interoperability —_J

&% University of
o Leicester

Problems

presentation: people ™
can’t read and write
XML very well
developers are likely to
make mistakes

standards evolution:
different
frameworks/libraries
my use different
versions

S

Idea: generate XML docs

O

O

describing service

from programs
implementing service

- PL binding
from models specifying

requirements towards
service

- model-based
development

Reiko Heckel, University of Leicester



Model-based Development of Web Services

WS on Spec. and Design Methodology,

Bangalore, Jan 2005

Class Diagrams - XML Schema

<xs:schema ...>

<xs:complexType name="Bill">
<Xs:sequence>

<xs:element name="pays" type="ns:Client"/>

<xs:element name="contains" type="ns:Product"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="to" type="ns:AccountInfo"/>

<xs:element name="Bill.status" type="xs:string"/>

<xs:element name="Bill.total" type="xs:string"/>

</xs:sequence>

</xs:complexType> _ Client
<xs:con'.1plexType name="Client"> name: string
<Xs:sequence>
<xs:element name="Client.name" 1 avs
type="xs:string"/> P Siad
</Xs:sequence> Bill
</xs:complexType>
</xs:schema> total: float
status: string

&% University of
‘o Leicester

Model-based Development:
UML = Web Service Languages

[0 Data model
B Class diagrams > XML Schema

[0 Data Integration
B Relations between class diagrams
> XSLT

O Service Description and Publication
B Component diagrams > WSDL and UDDI

O Web Service Processes
B Activity diagrams > BPEL4WS

# % University of

o Leicester

Reiko Heckel, University of Leicester



Model-based Development of Web Services

WS on Spec. and Design Methodology,

Bangalore, Jan 2005

Component Diagrams + Interfaces
—-> WSDL

<portType name="ShopPortType"> Shopint
<operation name="placeOrder">
<input message="ns:placeOrderinput"/> _
</operation> <<service>>
</portTypes> Online Shop

<<interface>>

Shopint

<message name="placeOrderlnput">
<part name="client" type="ns:Client"/>

placeOrder(Client, Product)

<part name="product" type="ns:Product"/>
</message>

&% University of
o Leicester

Activity Diagrams + Interfaces
- BPEL4WS

<<receive>> _
:shopping bill=placeOrder(client, product) e
~
Y

<<interface>>
<<invoke>> ShopInt
:billing bill = calcBill(client, product) - -

placeOrder(Client, Product):Bill

,
~ -
<<reply>> -_—
:shopping bill=placeOrder(client, product)

/
&% University of
o Leicester

Reiko Heckel, University of Leicester



Model-based Development of Web Services WS on Spec. and Design Methodology,
Bangalore, Jan 2005

Consistency and Transformation

IBM Hursley: UML profile for WSDL/BPEL4WS and implementation
of transformations

—_—— ——
- -
- -~
- ~~

-

[ AL "
Class Component Activity
Diagrams Diagrams Diagrams

XML
Schema WSDL BPEL4WS
e e N

-

- -
- ———

WS-I: industry consortium developing meta standards (profiles)
refining and combining existing WS specs.
So far: Basic Profile 1.1 (XML, WSDL, SOAP)
&% University of
o Leicester

Want to learn more?

O visit home page of lecture in Dortmund
(slides in English)
see http://www.uni-paderborn.de/cs/ag-
engels/ag dt/People/Heckel/DO/MEWA/index.html

[0 see one of the new MSc courses at
Leicester, e.q.
B Software Engineering for the E-Economy
B Advanced Distributed Systems
see http://www.cs.le.ac.uk/admissions/masters/

&% University of
o Leicester

Reiko Heckel, University of Leicester 6



Model-based Development of Web Services WS on Spec. and Design Methodology,
Bangalore, Jan 2005

Service Specification and Matching
based on Graph Transformation

With J.H. Hausmann and M. Lohmann.
Model-based Discovery of Web
services, Intl. Conference on Web
Services 2004, San Diego

With A. Cherchago. A Formal Approach
to Service Specification and Matching
based on Conditional Graph
Transformation, ICGT'04, Rome

&% University of
o Leicester

Service-Oriented Architectures (SoA)
and Web Services

Web Service: a component deployed on a Web
accessible platform provided by a service provider
to be discovered and invoked over the Web by a
service requestor

Service
Description

Service

uDDI

WsbL / Query Publish WSDL
SOAP Service
Service Bind and Service™ Description
Requestor Interact Provider @
# % University of
o Leicester

Reiko Heckel, University of Leicester



Model-based Development of Web Services WS on Spec. and Design Methodology,
Bangalore, Jan 2005

<<interface>>

Matching Service OnlineShopRequired
S peCIﬂ Catl 0 ns payBill(a:AccountData, b:Bill)

<<interface>>
OnlineShopProvided

payment( a:AccountData, b:Bill): Acknowledgement

Matching provider and requestor specification
must ensure compatibility of
Data types
O Does Bill have the same meaning for requestor
and provider?
Operation signatures

O Can provider operation be supplied with suitable
parameters from a call of requestor operation?

Behavior
O Does provided operation actually carry out what

is expected by a requestor?

&% University of
o Leicester

<<interface>>
Data Ty pes a n d OnlineShopRequired
. payBill(a:AccountData,
Signatures —
71
I
<<interface>> 1
OnlineShopProvided 1
payment( a:AccountData, : Acknowledgement ,'
|
3 1
|‘ I
1
= \
Data types: parties use \ I !
common domain model Client I | Bank
(ontology) \ !
\\ name I’ code
Operation signatures: AN pays ! provides
O Zaremski and Wing: s Bill vom
Signature matching: a === AccountData
}‘%ol for uglzggs Igleflftlvg%rSe Stotal o e [
ibraries. .
> gen. SIG morphisms alalis
for
Acknowledgement

&% University of
‘o Leicester

Reiko Heckel, University of Leicester



Model-based Development of Web Services

WS on Spec. and Design Methodology,

Bangalore, Jan 2005

Behavior: Semantic Idea

Requestor

2. return

Provider

&% University of

1. prepimplies prep
2. effect, implies effect,

o Leicester

(Meyer, 88)

Behaviour: Design by Contract

O component interface = contract:
O both expect benefits and accept obligations

requestor - provider

Precondition |Effect
Client’s I provide I expect that Bill will
requirements account data. |change status to
for payBill() ,payed”. A
Shop’s description You provide I guarantee that Bill will
for payment() YOUR account ‘(‘:hange”status to .
data. payelgl and you will get
an ack.

- graph transformation, logic, ...

# % University of

O Automatic matching requires formal specification

o Leicester

Reiko Heckel, University of Leicester



Model-based Development of Web Services

WS on Spec. and Design Methodology,

Bangalore, Jan 2005

a:AccountData | 1

| provides,

b:Bill
status="open”

provides

| :Bank |

owns

:Client
pays

b:Bill
status="open”

payBill(a, b)

b:Bill m b:Bill
status="open” status="payed”

ack:
Acknowledgement

ack = —
payment(a, b)

b:Bill b:Bill
status="open” status="payed”

b:Bill

[-—————=——=——==-=

provides

:Bank

:Client
pays

b:Bill
status="open”

payBill(a, b)

b:Bill m b:Bill
status="open” status="payed”

ack:
Acknowledgement

ack = for
payment(a, b)

b:Bill b:Bill
status="open” status="payed”

Reiko Heckel, University of Leicester

10



Model-based Development of Web Services WS on Spec. and Design Methodology,
Bangalore, Jan 2005

Implementation (Prototype)

DAML+OIL . DAML+OIL L DAML+OIL 0
Ontology Rules Rules

Matching L

(based on Jena) |

Generally: Formal Methods
for Semantic Consistency

Modelling Notation > Implementation

Diagram Language Prog. or XML Language
Rules as RDF
contracts

Semantic Domain
Formal Methods
[Syntax > Semantics] RDQL

Like in compilers, data base systems, ... formal
methods are there, but should be hidden.

&% University of
o Leicester

Reiko Heckel, University of Leicester 11



