/ General Aims \

B To teach basics of category theory.

B To study programming language syntax with binding.

e We only cover the category theory we need.

e Some categorical machinery is simplified — you read the
abstract stuff after these lectures.

e We study syntax by examples — we omit the general theory of
binding syntax.

e Syntax with binding is a hot research topic ...

N /

\

/ Basics of Algebraic and Binding Syntax
See OHP for Examples

B Algebraic syntax specified by constructor symbols C;.
B Each symbol has an arity a € N.

B These generate (finite) expressions such as

Cz€p ... 651
B ... from datatypes of the form
datatype Exp = ... G Exp... EXp

Iena?h a

N /

/ B Binding syntax subsumes algebraic syntax. \

B Binding syntax is specified by giving some constructor
symbols C; where each symbol has an arity a€ N and a

binding depth (bg,...,ba_1) € N2,

B These generate (finite) expressions such as

Ca...(\°, ...Vt g

\ . J

Iena?ha

B ... from datatypes of the form

datatype BExp = ... C3(V, ... V.Exp) ... (V, V,Exp)
length b length b

\ . 7

~"

length a

\ /

-

Learning Outcomes: You Should \

know how examples of programming language syntax with
binding can be specified inductively;

be able to define basic categorical structures;
know, by example, how to compute simple initial algebras;

understand simple abstract models of syntax and know how to
manufacture categorical models from syntax;

be able to prove these models are essentially the same;

understand current issues concerning variable binding and

read the literature.

_/

4 N

Definition of a Category

A category (is specified by:
B A collection ob ¢ of objects; A, B,C...

B A collection mor ¢ of morphisms; f,g,h...

B Foreach f a source src(f)inob ¢ and a target tar(f)
in ob . Write

f:sre(f) — tar(f) or f:A—B

N /

/ B f and g composable if tar(f) = src(g). \

B If f:A— Band g:B— C then there is go f: A — C, called the
composition.

B For any object A there is an identity morphism ida: A — A.
For any f

idtar(f)O]c = f
foidsrc(f) = f

B o is associative: given f:A— B, g:B— C and h:C — D,

(hog)of = ho(go)

N /

/ Examples of Categories

B Consider Exp::=V V | S Exp | A Exp Exp with typical
elements

VP VVR A (S (VD) (VA

B There is a category with typical morphisms

VvV, V2 Vv S (V)]
6

-
>

, (A AV v AVEVE AVO (S VO)) ;

-

If
. SV AV TA AV V) vE AVEVO ANVD (S VY]

:2 =3

the composition is

[A (A (SVO) (AVCVD) (AW,
A (AVOVO) (SO,
A (SW) (S (AVPVD))]

4 s

B The objects are sets.

B Morphisms are triples (A, f,B) where f CAxBis a
graph of a function:

(Vae A)(d'beB)((a,b) € f)

B Composition is given by

def

(B,g,C) o (A, f,B) (A,go f,C)

W idais (Aid,A).

N

-

N

\

(X, <)

B (X, <)isapreordered set: < is reflexive and transitive.
B The collection of objects is the set X.

B The collection of morphisms is the set <. Typical
morphism (X,X).

=X

B Composition is given by (y,2) o (X,y) = (X, 2).

_ idxdz‘g“r (X, X).

10

4 N

Preset

B The objects are the preordered sets.

B The morphisms are the monotone functions.

A morphism (X, <x) — (Y, <y) is specified by a function
f: X —Y such that

x<xX = f(x)<yfX)

N

B The set of objects of F is N.

e Weregard ne Nastheset{0,....n—1}forn>1, and
0 is the empty set @.

B A morphism p:n— n' is any set-theoretic function.

12

/ Isomorphisms and Equivalences

B A morphism f:A— Bis an isomorphism if there is
some 0. B — A for which

fog=idg A gof=ida

B We say gis an inverse for f and vise versa.

B We say Ais isomorphic to B,
f . A=ZB . ¢

if such a mutually inverse pair of morphisms exists.

\I f and g witness the isomorphism.

\

13

-~

Examples of Isomorphisms

B Bijections in set are isomorphisms.

B In (X, <)

e if <is a partial order, the only isomorphisms are the
identities, or

e if <isa preorder and X,y € X we have x=2yiff x<y
and y < x, with only one witness:

(Xy) © X=y I (VX

14

-~

A

N

Definition of a Functor

functor F: ¢ — D is specified by

B assigning an object FA in » to any object Ain ¢, and

B assigning a morphism F f:FA— FBin D, to any
morphism f:A— Bin ¢,

for which

B F(idy) = idra

B F(gof)=FgoFf

\

15

-~

An Example of a Functor

Define F:set — set by

mFAY | A, the finite lists over A

mFi%® map(f) where

map(f):[A] — [B] is defined by

map(f)(as) ® caseasof

E—E&

ao,...,a_1] — [f(ag),...

\

16

-~

To see that F(go f) = FgoF f note that

F(go f)([ag,...,a_1])

17

-

N

More Examples

B The functors between two preorders A and B are
precisely the monotone functions from A to B.

B We can define a functor ?: set — set by setting
fB—-A — 2f.2(A — 2(B),
where the function ¢ f is defined by
P f(AN)L {f(a)cB|acA)

where A’ € 2 (A).

18

Definition of a Natural Transformation

\

Let F,G:c — D be functors. Then a natural transformation

aF -G 1S

such that for any f:A— Bin C,

FA

Ff

Y

FB

A

((XAZ FA — GA

GA

Gf

GB

A in ob)

19

N

/ An Example of a Natural Transformation \

o Recall F:set — set where FAY Al and F f o map(f).

e There is a natural transformation rev.:F — F with

components reva: [A] — [A] defined by

reva(as) ® case as of <

e Naturality is

Fforeva(lag,...,a_1])

p
E—E&E

[ao,...,a|_1] — [a4_1,...,ao]

\

= [f(&a-1),...,f(a0)]
= revgoFf(lag,...,q_1])

20

-~

Another Example

e Define Fx:set — set by
— Fx(A) ¥ (X = A) x X

- F(f):(X = A) x X — (X — B) x X where

(8,X) — (fog,X)

Q.

e Then ev:Fx — idse defined by eva(g,X) = g(X) is natural

(idset () oeva)(g,X)

f(a(x)
evg(fog,X)
eva(Fx()(9,x))
(evsoFx(f))(9,%).

21

-

N

Definition of Functor Category

B lLetF, G, H be functors ¢ — » and a:F — G and
B:G — H be natural transformations.

B Define foa:F — H by
(Boa)a ™ Baoaa

B Then »°¢ is the functor category of ¢ and », where

e objects are functors ¢ — D,

e morphisms are natural trans oa.:F — G.¢c — D

%

22

-

N

\

B An isomorphism in a functor category is referred to as
a natural isomorphism.

B If there is a natural isomorphism between the functors
F and G, then we say that F and G are naturally
isomorphic, written

¢.F=Gy

with witnesses the natural transformations ¢ and (.

23

/ Motivating Binary Products \

(Property ®(P))

e Given any two sets A and B,

e there are functions TtP — A, 17: P — B such that:

given any f:C — A, g:C — B there is a unique h:C — P s.t.

e

-~

N

B Suppose that A% {a,b} and B o {c,d,e}.

o LetPbe AxB¥ {(xy)|xcAycB}and

e Trand 17 be coordinate projections.

B let f:C— Aand g.C — B be any two functions. Define

hC—P z— (1(2),9(2))

B We can check (Property ®(P)) ...

25

/ , def \

B Now define P = {1,2,3,4,5,6} and

B p P — Aand g.P — B where

p(1), p(2), p3)=a q(1), aq(4)=c
p(4), p(5), p(6)=D>b q(2), q(5)=d
q(3), 0(6) =€

B We can check (Property ®(P')) ...

B ... the required function h:C — P’ exists and is
unique: for example, X € C and f(x) =aand g(x) =d
forces h(x) = 2

B Note P = {(ac),(a,d),(ae),(b,c),(bd),(be}=P

N /

-

Definition of Binary Products

A binary product of objects A and B in a category ¢ is
specified by

B an object A x B of ¢, together with

B two projection morphisms Ta: A x B — A and
Tg.:A X B— B,

for which given any object C and morphisms f:C — A,
g:C — B, there is a unique morphism (f,g):C — A x B for
which Tao (f,g) = f and T o (f,g) = Q.

N

\

27

-

N

B Diagrams are helpful

B The unique morphism (f,g):C — A x B is called the
mediating morphism

%

28

4)

B A property involving existence of a unique morphism
leading to a structure determined up to isomorphism is a

universal property.
B Call (f,g) the pair of f and g.

B ¢ has binary products if there is A x B for any A and B

e (has specified binary products if there is a canonical

choice.

o Insettake AxB% {(ab) | ac AbecB} with

standard projections.

\ /

29

-~

Examples of Binary Products

B rreset Given A% (X,<x) and p¥ (Y, <v),
AxB% (X xY,<xxy)
where X x Y is cartesian product, and
(X,Y) <xxv (X,Y) = Xx<x X Ay <yY
The projection
T (X XY, <xxy) — (X, <x)

is given by (X,y) — X, and is monotone

30

-~

N

B rart Given A and B,
PE (AxB)UAX {1)U(Bx {+g})

e Th:(AXB)UAX{*xa})UBx{*g}) — A
is undefined on Bx {*g }, Tg on A x {xa }

o Tia(a,xa) =aforallacA, ...

B [The product of n and mis written n x mand is given
by nxm, that is, the set {0,...,(nxm)—1}.

%

31

/ Additional Notation \

B Can define AxBxCand (f,g,h)

B Take f:A— Band f:A — B'. We write

fxf ¥ (formflon) : AxA —BxB

B Universal property means
ida < idy =idayy and (gxg)o(fxf')=gofxgof

where g:B— Cand ¢g:B' — C.

\I Write A2 or f2 for Ax Aand f x f

%

32

4 N

Another Example — Presheaves on [¥

F ®© set” If F and F/ are presheaves, F x F":F — set defined

by
(FxFYn) % (Fn)x (F'n)

fornin F and if p:n— n/

def

(F xF')(p) (Fp) x (F'p)

AISO
def
TI]::FXF/HF (Tl]:)n——Tl]:n

33

/ Definition of Binary Coproducts

A binary coproduct of A and B is specified by

B an object A+ B, together with

B two insertion morphisms Ia:A— A+ B and
Ig.B— A+ B,

such that there is a unique |f,g| for which

A+B<—B

A

\for all such f and g

34

-~

Example of Binary Coproducts

B et For sets A and B define

A+BE (Ax 1) U(Bx {2}
and

In:A— A+B a— (a,1)
Given f:A— Cand g:B — C, then [f,g]:A+B —C s
defined by
f,0](&) ® case & of

1a(€n)
18(¢B)

(&A1) = T(&p)
(&8,2) — T(p)

\

%

35

/ Additional Notation

B Can define A+ B+ C with the cotupling |f, g, N

B Take morphisms f:A— Band f":A' — B'. We write

frf ¥ ligofigof] : A+A -B4B

B Universality means

where g:B— Cand ¢g:B' — C.

B IfI:C—Dthenlo|f,g =[lof,log]

N

ida+idy = idany and (g+g)o(f+f)=gofigof

%

36

-~

N

More Examples

B [The coproduct of nand mis n+ mwhere we
interpret + as addition on N.

B 7 IfF and F’ are presheaves then F +F’ is defined
by
(F+F)E= (F&) + (F'E)

for any object or morphism ¢ in IF, and

EFAF SF (5)n % tgn (Fn) + (F'n) — Fn

Sometimes say + is defined pointwize.

37

/ Definition of Algebras

B Let F:c — C. An algebra for the functor F is a pair
(A,0a) where oa: FA — A.

B An initial F-algebra (I,0;) is an algebra for which
given any other (A, 0a),

O]
FI -~ |
Ff I f
FA - A
oA

38

/ Motivation for Initial Algebras

B (Some) Datatypes are initial algebras

B The datatype
Exp::=VV|SExp|AEXxpEXp
is modeled by an object E such that

E=V+E+ (ExXE) T
B We show how to solve T in Set.

B OIfS: et g6t is &R V&4 (£ xE), then the
\ solution we construct is an initial algebra (og,E).

%

39

-~

N

An Initial Algebra for 1+ (—):set — set

B 1:.set— setis defined by

fA—B = iduyi{*} — {*}

B 1+ (—)isdefined by

f:A—-B — 1d1+f:1+A—1+B

B The initial algebra is N up to isomorphism.

40

-~

N

B We setSod:erg and Sr+1d:er1+8(.

B Note there is an insertion 15§ — S41.

B Note also thati;:S — S 1 where ig o .S — S, and

: def . :
lr41 = 1dq +1y.

B Wealsowritei;:S < T where T aef UrS

B T is the object part of an initial algebra for 1+ (—).

%

41

-~

N

B Aso7:1+T — T then o1 must be a copair.

B We set o7 o [k,k'] where ki1 - Tand K:T — T
B Note that

| |

def .
and we set K= ijol7.

42

-~

N

B Note that

/
I

l 1
§ ——1+§=§1— T

def .
and we set ki =i,_;0ls.

|
e Infactk, ,oir =k by induction onr.

e Hence can legitimately define k': T — T by setting

K'(E) e ki (&) for any r such that § € S..

43

N

/ B We check initiality

9]
1+T — T
id1+T\ \T needs defining

B We define a family of functions f.:§ — A

_Od:efz:S)—>A A THld:ef[foll,foleTr]

e Infact f, 0i = f,.

I8

e Hence we can legitimately define f:T — A by f(&)

for any r where € € S. J

44

-

N

B To check that the diagram commutes, we have to

prove that
folk,k]= fo(id;+ f)

B By the universal property of coproducts, this is
equivalent to showing

[fok, fok]=[foly,folpof]

which we can do by checking that the respective
components are equal.

B We give details for fok' = foipo f.

45

-~

\

B fok = folaof. Take any element & € T. Then we
have

FKE) = f(s(©)
fri1(s(€)
[foly, folaoT,](1s(8))
= f(a(f(8)))
F1a(f(€)))

The first equality is by definition of k" and k! ; the second
by definition of f; the third by definition of f,_ ;.

B You check that T = N.

%

46

/ Some Results for Use In Modelling Syntax \

B lLet F and F’ be two presheaves in ¥ . Suppose for any
ninF, F'ncFn ,and

Fn < Fn
F'p Fp

Y Y

M c Fnf

commutes for any p:n—n'.

B There is a natural transformation

N /

47

-

N

\

B We define
O.F — F

Suppose that F is an object in . Then & F is defined by

pon—n — F(p+id):F(n+1) — F(n'+1)

B Ifoa:F —F' in 7, then the components of d a are

given by

(d0)n « On+1

48

-

N

\

'S — S.41. Then there is a union presheaf T in #, such
thati:S < T. We sometimes write U;S for T.

B (S |r>0)is afamily of presheaves in 7, with

B lLetp:n—n'. Then
Th® USn
and Tp:Tn— Tn' is defined by

(TP)(E) £ (Sp) (&)

where { € Tn, and § € S (n) for some r.

49

-

-

\

B let (¢:S — A|r >0) be natural transformations in #,
the S as before, and such that ¢ 10i; = @. Then there is
a unique natural transformation

oT—A
such that @oir = .

B The functions @,: Th— An defined by

d

(&) = (@)n(¢) &SN

yield the required natural transformation.

50

/ Syntax with Distinguished Variables and without Binding \

B The set of expressions Exp is inductively defined by

Exp::=VV |SExp|AExpExp

B V' occurs in eis written V' € e,
B The set of (free) variables of any e is denoted by fv(e).

B We will want to consider expressions e for which

fv(e) c {\°,... v 1}

\ and we give an inductive definition of such expressions.

%

51

\

B First we define inductively a set of judgements " -db g

-

def 1 .
where n>1, MM =W, ... v"1is a list, and of course eis
an expression.

B We refer to " as an environment of variables.
0<i<n pnpdbeg phpdbe pnpdbgy

ME®y pnpdbge M Aed

B One can then prove by rule induction that if " -db g
then fv(e) C I'". We prove by Rule Induction

(V (M, e) €) [(fu(e) c TN

N /

52

/ Syntax with Distinguished Variables and Binding

B Consider

Exp::=VV |LVExp|EExpEXp

B We inductively define a set of judgements " - e

where n > 1.
0<i<n Mipde Npdbe [Npdbd
MEPV rndb e M E ed

B One can then prove by rule induction that if " 9 e
then fv(e) C .

N

\

53

-

-

\

B Notice that the rule for introducing abstractions L V" e

forces a distinguished choice of binding variable.

B The advantage of distinguished binding is that the
expressions correspond exactly to the terms of the
A-calculus, without the need to define a-equivalence.

B In essence, we are forced to pick a representative of
each a-equivalence class.

%

54

-

N

Syntax with Arbitrary Variables and Binding

B Expressions are still defined by

Exp::=VV|LVExp|EExpEXp

B Now let A range over all non-empty finite lists of variables
which have distinct elements. Thus a typical non-empty A is
vi VB VIO 2 € [V]. Let xy,... range over V.

B Define A" eby

X< A AxFPe AFPe ARPd

AFPx AR xe AR E ed

%

55

-

N

B We define simultaneous substitution — used to define
a-equivalence, and to construct mathematical models.

B cly(A) is the pth element of A, with position 0 the
“first” element.

B We will define by recursion over expressions e, new
expressions e{c/c} and e{A"/A}, where len(A) = len(4").

B For example,

(LVB (AVIO V)V VAR VAL = L vt (AVIO V)

56

-~

(Vx){a/ay =

(Lxe){a'/ny €

(Eed){a/n} =

N

.

x i (Vp)(elp(l) £)

| elpl@) i (3P (elpld) =)

(Lxe{AN/A}
if (Vp)(elp(Q) #Xx V elp(d) ¢ fv(e))
L X' e{&N,X' /A, X}

if (3p)(elp(l) = xAely(B) € fv(e))

\

Ee{0/A} €{N /A}

%

57

4)

where

e A is A with x deleted (from position p, if it occurs) and,
if X does occur, /' is A with the element in position p
deleted, and is otherwise A’; and

e X is the variable V¥V where wis 1 plus the maximum of
the indices appearing in A’ and fv(e).

N /

58

-

N

\

B We inductively define the relation ~y of a-equivalence

e Single axiom (schema) L xe~q L X' e{X'/x} with
X' & fv(e)

e Rules such as
eNa d d ~a d/ eNa d

en~g €’ L xe~q LXx€

B Note that the terms of the A-calculus are given by the

o £ (€| € ~a e}

%

59

-

A Programme for Modelling Syntax

Step 1 define an abstract endofunctor Xy on ¥ @ et
(similar to the datatype in question);

Step 2 construct an initial algebra T for Zy;
Step 3 show that the syntax yields a functor EXp:F — Set;

Step 4 show that T = Exp

N

60

-~

N

\

Modelling Exp::=V V | S Exp | A Exp Exp
Step 1

B First, we define the functor V:[F — Set. Let p:m— nin
F. Then we set

VvmE (WO, vl A Vp(v) B
B Define a functor Sy: set” — set” by setting

syE vz ys2

61

-~

Step 2

B TEys r>0.
H S | @, the empty presheaf, and
Sr+1d=efZVSr =V+S+ &

B Need tochecki;:S — S 1 forallr>0. We use
induction over r.

B Itis immediate thatig:SH — .

N

-

o

~

B Now suppose that i;:S — S, 1. We are required to show
that iy, 1: 511 — S.2, that is,

Vn4+Sn+(Sn? Cc Vn+San+(S.1n)?
Vp+Sp+(Sp)? Vp+Si1p+ (S+1p)°

Y Y

V' +8n+(Sn)? C V' +San' +(San')?

B 2y, —idy+i, +ir2. Thus we have i1 = Zyly.

63

\

B We define the structure map ot S KK K VH+THT?2 =T

-~

B V=S sothatk: VS —T.5=V+2+22 and so
Sn=Vnx{1}.

B We define K’ by

|
Ki: S Y L V4S+F=S1—T

B check that K[;oir =K;, ie

IS s
Si1—> S ——T

]

i1 = idy 4 +i2

-~

N

B Write § o S. Consider the family of morphisms

l
S =T Vst R=S1T
B K/ satisfy the union conditions ...

B Hence they define k”:U — T where U «© UrS. But
note that

Un=U,Sn=U;(Sn)*= (USN)?=(Tn)*=T?n

and also Up = T?p. Hence U = T2

65

[m

We check initiality
9]
V4T+T2 — T
V+ﬁ+ﬁz} (%) \a
, «
V+A+A— A

To define O: T — A we specify a family 0;: S — A.

Note that 0p: @ — A and thus we define

(To)n = &: & — AN

Note that 0,,1: S 1=V+S + Sr2 — A and hence

— def — —2
Or11 = [0oly,00lpa00, 0012 007]

Need to verify G, 101y =0, for all r > 0.

66

proving

[@oK, 0ok ,0oK| =[0oly,00la0®,d ol 007

B We prove that O0,0K;; = Opola,o0n: Th— An.

On(Kn(€)) = Thn(1sn(§))
= (Ary1)n(lsn(§))

= An(tan((@r)n(8)))
= On(lan(0n(€)))

/ B Proving that the diagram (x) commutes is equivalent to \

B Suppose that ¢ is an arbitrary element of Tn, where & € Sn.

= |Op anaanOlAnO(ar>n70(nol(An)2O(ar> J(1sn(§))

%

67

-~

N

Step 3

B Suppose that p:n— n' is any function. We define

Expdbn_{e\ rdb ey

B We can define (Exp, p)e by recursion over e, by setting

o (Expgp)(VV)EVopi

o (Exp;P)(S€) LS (Expys p)e

o (Expg

0)(Ae€) ¥ A (Exp,; pe (Expy; p)€

68

-

N

B ... and then showing that if e € Exp n, then
(Expg; p)e € Exp 1.

B Thus we have a function
EXp,; P: EXpys N — EXps 1
for any p:n—n'.
B Note that there are natural transformations

SIEXp; — EXPgs /\ A EXpg; ° - EXP 5

69

-

o

Step 4

B We now show that T = Exp,; in ¥
B We define @ T — Exp,, and Y:Exp,, — T, such that
G : Tn=EBEXPgn : Yn
B To specify ¢: T — Exp; define a family ¢:S — Exp,; .
e (:SH =9 — Exp; has components ((p)n: & — EXpgi N

e Recursively we define

def

Gi1 = [V,So@,Aogf] : Sa=V+S+F—Exp,

_/

70

-

B To specify Y:Exp,; — T, for any nin IF we define
functions

Wn:EXpz N — Tn

as follows.

wn(VV) & (V.1) € Sin

1n(S €) & 15 n(Wn(€)) where r > 1 is the height of the

deduction of Se

Wn(A ee’) =i sm2((WUn(€),Wn(€))) where r > 1 is the
height of the deduction of A e€.

—

71

/ B We next check that for any nin F, \

(pn >
n =~ EXpgn

Wn

<

B Suppose & € SnC Tnfor some r. Then by definition,

Wn(Ph(&)) = Yn((@)n(€))

B By induction, for allr >0, if £ € Snand n any object of
[F, then

Wn((@)n(€)) =¢&

N /

72

-~

B letécS.in=Vn+Sn+Sn? Then we have

Wn((@+1)n(&)) = Wn([Vn,Sno (@&)n,Ano (@)

2(8))

B Consider the case when & = 15n(&’) for some & € Sn. We

have

Wn((@r+1)n(€))

73

-

N

\

Modelling Exp::=V V | LV Exp | E Exp Exp
Case " H9° e with Distinguished Binding

B Step 1 The abstract endofunctor 2vy: F — ¥ is

SyE L V88 +E2

Motto: Any constructor with 1 argument and which binds b
variables is modelled by &P&. Thus

Split Pas (X,y) in E

would be modelled by {+— & x 00 ¢

74

\

B Step 2 We can show that the functor Xy has an initial
algebra o1:2yT — T, by adapting the previous methods.
B Have to define

or & [K,K/,K//]ClzerV+5T+TXT—>T

via

|
K8~ V+8S+SL=S1—T

das

BTINETM+1) = Jsh+1) = JBS)n=(JdS)n

r r

N /

75

/ B Step 3 Suppose p:n— n'. Define
Exp, NZ {e| M el
B Letp{n/n}:n+1—n"+1be

def j if 0<j<n-1

p{n'/n}(i) = S

Consider
o (Exp, p)(LV'e) L LV (Exp,, p{n'/n})(e) and
o (Exp, p)(Ee€) L E ((Exp,, p)e) ((Exp,, P)€)

B Ifr"+%®eand p:n— ', then ' F9 (Exp,, p)eyielding a
\ functor Exp,, in ¥.

76

L:dExp, —Exp A E:Exp® — Exp

B The components are functions

Lh:Exp, (n+1) - Exp,n — e—LV'e

B Naturality is

L
(8 Exp,,)N = Exp,, (N+1) —> Exp,, N

(6 Expdb)p — Expdb (p+ idl) Expdb P

Y Y

(6 EXpdb)n, — Expdb (n/ T 1) T/’ EXpdb n

/ B There are natural transformations \

n

77

B Note that at the element e, this requires that
LV (Expy, p{n/n})e=L V" ((Exp,, (p+idy))e)
B This equality holds if and only if
p{n'/n} =p+idy
B ...which is true if and only if in F

11:1 —-m+1 *r—m ImM—m+1 1+ i

B Step 4 A routine calculation that T = Exp,,

78

-

N

Modelling Exp::=V V | LV Exp | E Exp Exp
Case A 2" ewith Arbitrary Binding

B Step 1 The abstract endofunctor 2. F — ¥ is

SyE L V88 +E2
Note: The functor is the SAME as before

B Step 2 Thus solving for the initial algebra is the same
as before!

79

-

N

B Step 3 We define Exp,, . For nin I we set

Exp,, nE { [| T"HFP e}

B Now let p:n— n'. We define
(Exp,, P)([Ela) £ [e{W0,... WD AL v-1y),

B One has to check that this is well defined ... see the
notes.

80

-

B Step 4 Note that current Step 2 was same as before.
Rather than prove Exp,, = T as a final step, we could in
fact make use of the previous work, which proved that
Exp,, = T. Thus we omit Step 2, and instead show

(p EXpab = EXpdb LlJ

81

-~

N

B The components of Y are functions Yn: Exp,, n — Exp,, n
def

given by Yn(e) = [€a.

B We consider the naturality of) at a morphism p:n—n/,
computed at an element ¢ of Exp,, n. We show naturality for
the case & =L V' e

(Bxp,, p)oPn(§) = (Bxp,, p)[LV'€q
|

o O

Let us consider the case when renaming takes place.

B Suppose that there is a j for which p(j) =nand V! € fv(e).

(Lvhe){vPO, ... wP(=D A0 yn=1,

82

-~

B Then
(L v e){vf’(o), ... ,Vp<”_1)/vo, . ,V”_l} —

LW e[(=1 WP -1y

e W=1+Maxindex(e; p(0),...,p(n—1)) thus p(i) < w for all

0<i<n-1
e Butfv(e)c\W,....v"and n=p(j) € p(0),...,p(n—1).
e Also p(i) </, and so we must have w <.

e Ifw<n,then V" is not free in
e{WwO =1 yWAh0 y=1 v and otherwise w=rn.

%

83

-~

Either way (why!?),

and so

= Wy o (Bxpy, p)(€)

O = [Lv"e{wo, . W=D A0
— [I— v (Expdb p{n’/n})e]q

LvWe{vp(. P(n=1) W/vO -1y

- ,”/vo,...,

Vn—17vn}

Vn—17vn}]a

84

-

_

B Next we define @,: Exp,, n — Exp,, n by setting
on(lelo) € R(e) where

e R"(VX) v x
o RM(Lxe) % L vnR™L(e{vm/x})
e R"(Ee€)% ERMe) RM(€)

B This is best understood by a simple example ...

B The verification that

(p: EXpab = EXpdb LlJ

is omitted from the lectures. See the notes.

85

v/ (LVP (EV/ (EVP (LW (EVAV9)))))

LV3R4(LV3(EV (EVO (L VP (EV?VP)
Lv3 RHLV* (Ev3 (EWP (L VP (Ev2VY)
VFRP(EV3 (EVP (L VP (E V2 VA
VH(EV3 (EVP (R(L VP (Ev2 Vv
VvV (Ev3 (EVP (LW RP(E V?
(Ev3 (EVP (L
(Ev3 (EVP (L

L
L

L v4
L v4

((Ev2v4

v (L
(L
(L
(
((Ev2v¥)))

%%%%

\V°
v° (E

)
)
)
)

1
)
)

)
)
)
)
)

)
)
)
))))

)))))

)
)
{Vi/v*})
)

\

{v’/v'}

VOV /1))

%

86

-

N

\

Where to Now? You might

B learn more Category Theory;
B learn more Type Theory;
B learn more Categorical Type Theory;

B spend some time trying to understand the key problems
and issues concerning modelling and reasoning about
binding syntax; and

B read the current research literature on modelling and
implementing binding syntax.

%

87

