
Summer School on Generic Programming 2002, Oxford, UK 1'

&

$

%

General Aims

� To teach basics of category theory.

� To study programming language syntax with binding.

• We only cover the category theory we need.

• Some categorical machinery is simplified – you read the

abstract stuff after these lectures.

• We study syntax by examples – we omit the general theory of

binding syntax.

• Syntax with binding is a hot research topic . . .

Summer School on Generic Programming 2002, Oxford, UK 2'

&

$

%

Basics of Algebraic and Binding Syntax

See OHP for Examples

� Algebraic syntax specified by constructor symbols Ci.

� Each symbol has an arity a ∈ N.

� These generate (finite) expressions such as

C3 e0 . . . ea−1

� . . . from datatypes of the form

datatype Exp = . . . C3 Exp . . . Exp
︸ ︷︷ ︸

length a

. . .

Summer School on Generic Programming 2002, Oxford, UK 3'

&

$

%

� Binding syntax subsumes algebraic syntax.

� Binding syntax is specified by giving some constructor

symbols Ci where each symbol has an arity a ∈ N and a

binding depth (b0, . . . ,ba−1) ∈ N
a.

� These generate (finite) expressions such as

C3 . . . (v0, . . . , vb j−1 ,e j) . . .
︸ ︷︷ ︸

length a

� . . . from datatypes of the form

datatype Exp = . . . C3 (V, . . . ,V
︸ ︷︷ ︸

length b

,Exp) . . . (V, . . . ,V
︸ ︷︷ ︸

length b

,Exp)

︸ ︷︷ ︸

length a

. . .

Summer School on Generic Programming 2002, Oxford, UK 4'

&

$

%

Learning Outcomes: You Should

• know how examples of programming language syntax with

binding can be specified inductively;

• be able to define basic categorical structures;

• know, by example, how to compute simple initial algebras;

• understand simple abstract models of syntax and know how to

manufacture categorical models from syntax;

• be able to prove these models are essentially the same;

• understand current issues concerning variable binding and

read the literature.

Summer School on Generic Programming 2002, Oxford, UK 5'

&

$

%

Definition of a Category

A category C is specified by:

� A collection ob C of objects; A, B, C . . .

� A collection mor C of morphisms; f , g, h . . .

� For each f a source src(f) in ob C and a target tar(f)

in ob C . Write

f :src(f) −→ tar(f) or f :A → B

Summer School on Generic Programming 2002, Oxford, UK 6'

&

$

%

� f and g composable if tar(f) = src(g).

� If f :A → B and g:B →C then there is g◦ f :A →C, called the

composition.

� For any object A there is an identity morphism idA:A → A.

For any f

idtar(f) ◦ f = f

f ◦ idsrc(f) = f

� ◦ is associative: given f :A → B, g:B →C and h:C → D,

(h◦g)◦ f = h◦ (g◦ f)

Summer School on Generic Programming 2002, Oxford, UK 7'

&

$

%

Examples of Categories

� Consider Exp ::= V V | S Exp | A Exp Exp with typical

elements

V v0 V v45 A (S (V v3)) (V v2)

� There is a category with typical morphisms

6
[V v4, V v2, V v1, S (V v5)]- 4

2
[A (A v0 v0) v1, A v1 v0, A v0 (S v0)]- 3

Summer School on Generic Programming 2002, Oxford, UK 8'

&

$

%

If

1
[S v0,A v0 v0]- 2

[A (A v0 v1) v1,A v1 v0,A v0 (S v1)]- 3

the composition is

1

[A (A (S v0) (A v0 v0)) (A v0 v0),

A (A v0 v0) (S v0),

A (S v0) (S (A v0 v0))]
- 3

Summer School on Generic Programming 2002, Oxford, UK 9'

&

$

%

Set

� The objects are sets.

� Morphisms are triples (A, f ,B) where f ⊆ A×B is a

graph of a function:

(∀a ∈ A)(∃!b ∈ B)((a,b) ∈ f)

� Composition is given by

(B,g,C)◦ (A, f ,B)
def
= (A,g◦ f ,C)

� idA is (A, id,A).

Summer School on Generic Programming 2002, Oxford, UK 10'

&

$

%

(X ,≤)

� (X ,≤) is a preordered set: ≤ is reflexive and transitive.

� The collection of objects is the set X .

� The collection of morphisms is the set ≤. Typical

morphism (x,x′).

� Composition is given by (y,z)◦ (x,y)
def
= (x,z).

� idx
def
= (x,x).

Summer School on Generic Programming 2002, Oxford, UK 11'

&

$

%

Preset

� The objects are the preordered sets.

� The morphisms are the monotone functions.

A morphism (X ,≤X) −→ (Y,≤Y) is specified by a function

f :X → Y such that

x ≤X x′ =⇒ f (x) ≤Y f (x′)

Summer School on Generic Programming 2002, Oxford, UK 12'

&

$

%

F

� The set of objects of F is N.

• We regard n ∈ N as the set {0, . . . ,n−1} for n ≥ 1, and

0 is the empty set ∅.

� A morphism ρ:n → n′ is any set-theoretic function.

Summer School on Generic Programming 2002, Oxford, UK 13'

&

$

%

Isomorphisms and Equivalences

� A morphism f :A → B is an isomorphism if there is

some g:B → A for which

f ◦g = idB ∧ g◦ f = idA

� We say g is an inverse for f and vise versa.

� We say A is isomorphic to B,

f : A ∼= B : g

if such a mutually inverse pair of morphisms exists.

� f and g witness the isomorphism.

Summer School on Generic Programming 2002, Oxford, UK 14'

&

$

%

Examples of Isomorphisms

� Bijections in Set are isomorphisms.

� In (X ,≤)

• if ≤ is a partial order, the only isomorphisms are the

identities, or

• if ≤ is a preorder and x,y ∈ X we have x ∼= y iff x ≤ y

and y ≤ x, with only one witness:

(x,y) : x ∼= y : (y,x)

Summer School on Generic Programming 2002, Oxford, UK 15'

&

$

%

Definition of a Functor

A functor F :C → D is specified by

� assigning an object FA in D to any object A in C , and

� assigning a morphism F f :FA → FB in D, to any

morphism f :A → B in C ,

for which

� F(idA) = idFA

� F(g◦ f) = Fg◦F f

Summer School on Generic Programming 2002, Oxford, UK 16'

&

$

%

An Example of a Functor

Define F :Set → Set by

� FA
def
= [A], the finite lists over A

� F f
def
= map(f) where

map(f): [A] → [B] is defined by

map(f)(as)
def
= case as of

ε → ε

[a0, . . . ,al−1] → [f (a0), . . . , f (al−1)]

Summer School on Generic Programming 2002, Oxford, UK 17'

&

$

%

To see that F(g◦ f) = Fg◦F f note that

F(g◦ f)([a0, . . . ,al−1])
def
= map(g◦ f)([a0, . . . ,al−1])

= [g(f (a0)), . . . ,g(f (al−1))]

= map(g)([f (a0), . . . , f (al−1)])

= map(g)(map(f)([a0, . . . ,al−1]))

= Fg◦F f ([a0, . . . ,al−1]).

Summer School on Generic Programming 2002, Oxford, UK 18'

&

$

%

More Examples

� The functors between two preorders A and B are

precisely the monotone functions from A to B.

� We can define a functor P :Set → Set by setting

f :B → A 7→ P f :P (A) → P (B),

where the function P f is defined by

P f (A′)
def
= { f (a) ∈ B | a ∈ A′}

where A′ ∈ P (A).

Summer School on Generic Programming 2002, Oxford, UK 19'

&

$

%

Definition of a Natural Transformation

Let F,G:C → D be functors. Then a natural transformation

α:F → G is (αA:FA → GA | A in ob C)

such that for any f :A → B in C ,

FA
αA- GA

FB

F f

?

αB

- GB

G f
?

Summer School on Generic Programming 2002, Oxford, UK 20'

&

$

%

An Example of a Natural Transformation

• Recall F :Set → Set where FA
def
= [A] and F f

def
= map(f).

• There is a natural transformation rev:F → F with

components revA: [A] → [A] defined by

revA(as)
def
= case as of







ε → ε

[a0, . . . ,al−1] → [al−1, . . . ,a0]

• Naturality is

F f ◦ revA([a0, . . . ,al−1]) = [f (al−1), . . . , f (a0)]

= revB ◦F f ([a0, . . . ,al−1])

Summer School on Generic Programming 2002, Oxford, UK 21'

&

$

%

Another Example

• Define FX :Set → Set by

– FX (A)
def
= (X → A)×X

– FX (f):(X → A)×X −→ (X → B)×X where

(g,x) 7→ (f ◦g,x)

• Then ev:FX → idSet defined by evA(g,x)
def
= g(x) is natural

(idSet(f)◦ evA)(g,x) = f (g(x))

= evB(f ◦g,x)

= evB(FX (f)(g,x))

= (evB ◦FX (f))(g,x).

Summer School on Generic Programming 2002, Oxford, UK 22'

&

$

%

Definition of Functor Category

� Let F, G, H be functors C → D and α:F → G and

β:G → H be natural transformations.

� Define β◦α:F → H by

(β◦α)A
def
= βA ◦αA

� Then DC is the functor category of C and D, where

• objects are functors C → D,

• morphisms are natural trans α:F → G:C → D

Summer School on Generic Programming 2002, Oxford, UK 23'

&

$

%

� An isomorphism in a functor category is referred to as

a natural isomorphism.

� If there is a natural isomorphism between the functors

F and G, then we say that F and G are naturally

isomorphic, written

φ:F ∼= G:ψ

with witnesses the natural transformations φ and ψ.

Summer School on Generic Programming 2002, Oxford, UK 24'

&

$

%

Motivating Binary Products

(Property Φ(P))

• Given any two sets A and B,

• there are functions π:P → A, π′:P → B such that:

given any f :C → A, g:C → B there is a unique h:C → P s.t.

C

A �
π

�
f

P

∃!h
?

π′
- B

g
-

Summer School on Generic Programming 2002, Oxford, UK 25'

&

$

%

� Suppose that A
def
= {a,b} and B

def
= {c,d,e}.

�

• Let P be A×B
def
= {(x,y) | x ∈ A,y ∈ B} and

• π and π′ be coordinate projections.

� Let f :C → A and g:C → B be any two functions. Define

h:C → P z 7→ (f (z),g(z))

� We can check (Property Φ(P)) . . .

Summer School on Generic Programming 2002, Oxford, UK 26'

&

$

%

� Now define P′ def
= {1,2,3,4,5,6} and

� p:P′ → A and q:P′ → B where

p(1), p(2), p(3) = a q(1), q(4) = c

p(4), p(5), p(6) = b q(2), q(5) = d

q(3), q(6) = e

� We can check (Property Φ(P′)) . . .

� . . . the required function h:C → P′ exists and is

unique: for example, x ∈C and f (x) = a and g(x) = d

forces h(x) = 2

� Note P′ ∼= {(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)} = P

Summer School on Generic Programming 2002, Oxford, UK 27'

&

$

%

Definition of Binary Products

A binary product of objects A and B in a category C is

specified by

� an object A×B of C , together with

� two projection morphisms πA:A×B → A and

πB:A×B → B,

for which given any object C and morphisms f :C → A,

g:C → B, there is a unique morphism 〈 f ,g〉:C → A×B for

which πA ◦ 〈 f ,g〉 = f and πB ◦ 〈 f ,g〉 = g.

Summer School on Generic Programming 2002, Oxford, UK 28'

&

$

%

� Diagrams are helpful

C

A �
πA

�

f

A×B

∃! 〈 f ,g〉
?

πB

- B

g

-

� The unique morphism 〈 f ,g〉:C → A×B is called the

mediating morphism

Summer School on Generic Programming 2002, Oxford, UK 29'

&

$

%

� A property involving existence of a unique morphism

leading to a structure determined up to isomorphism is a

universal property.

� Call 〈 f ,g〉 the pair of f and g.

� C has binary products if there is A×B for any A and B

�

• C has specified binary products if there is a canonical

choice.

• In Set take A×B
def
= { (a,b) | a ∈ A,b ∈ B } with

standard projections.

Summer School on Generic Programming 2002, Oxford, UK 30'

&

$

%

Examples of Binary Products

� Preset Given A
def
= (X ,≤X) and B

def
= (Y,≤Y),

A×B
def
= (X ×Y,≤X×Y)

where X ×Y is cartesian product, and

(x,y) ≤X×Y (x′,y′) ⇐⇒ x ≤X x′∧ y ≤Y y′

The projection

πA:(X ×Y,≤X×Y) −→ (X ,≤X)

is given by (x,y) 7→ x, and is monotone

Summer School on Generic Programming 2002, Oxford, UK 31'

&

$

%

� Part Given A and B,

P
def
= (A×B)∪ (A×{∗A})∪ (B×{∗B})

• πA:(A×B)∪ (A×{∗A})∪ (B×{∗B }) −→ A

is undefined on B×{∗B }, πB on A×{∗A }

• πA(a,∗A) = a for all a ∈ A, . . .

� F The product of n and m is written n×m and is given

by n∗m, that is, the set {0, . . . ,(n∗m)−1}.

Summer School on Generic Programming 2002, Oxford, UK 32'

&

$

%

Additional Notation

� Can define A×B×C and 〈 f ,g,h〉

� Take f :A → B and f ′:A′ → B′. We write

f × f ′
def
= 〈 f ◦π, f ′ ◦π′〉 : A×A′ → B×B′

� Universal property means

idA × idA′ = idA×A′ and (g×g′)◦ (f × f ′) = g◦ f ×g′ ◦ f ′

where g:B →C and g′:B′ →C′.

� Write A2 or f 2 for A×A and f × f

Summer School on Generic Programming 2002, Oxford, UK 33'

&

$

%

Another Example – Presheaves on F

F def
= SetF If F and F ′ are presheaves, F ×F ′:F → Set defined

by

(F ×F ′)(n)
def
= (Fn)× (F ′n)

for n in F and if ρ:n → n′

(F ×F ′)(ρ)
def
= (Fρ)× (F ′ρ)

Also

πF :F ×F ′ → F (πF)n
def
= πFn

Summer School on Generic Programming 2002, Oxford, UK 34'

&

$

%

Definition of Binary Coproducts

A binary coproduct of A and B is specified by

� an object A+B, together with

� two insertion morphisms ιA:A → A+B and

ιB:B → A+B,

such that there is a unique [f ,g] for which

A
ιA- A+B �ιB

B

C

[f ,g]

?�

gf

-

for all such f and g

Summer School on Generic Programming 2002, Oxford, UK 35'

&

$

%

Example of Binary Coproducts

� Set For sets A and B define

A+B
def
= (A×{1})∪ (B×{2})

and

ιA : A → A+B a 7→ (a,1)

Given f :A →C and g:B →C, then [f ,g]:A+B →C is

defined by

[f ,g](ξ)
def
= case ξ of

ιA(ξA) = (ξA,1) 7→ f (ξA)

ιB(ξB) = (ξB,2) 7→ f (ξB)

Summer School on Generic Programming 2002, Oxford, UK 36'

&

$

%

Additional Notation

� Can define A+B+C with the cotupling [f ,g,h]

� Take morphisms f :A → B and f ′:A′ → B′. We write

f + f ′
def
= [ιB ◦ f , ιB′ ◦ f ′] : A+A′ → B+B′

� Universality means

idA + idA′ = idA+A′ and (g+g′)◦ (f + f ′) = g◦ f +g′ ◦ f ′

where g:B →C and g′:B′ →C′.

� If l:C → D then l ◦ [f ,g] = [l ◦ f , l ◦g]

Summer School on Generic Programming 2002, Oxford, UK 37'

&

$

%

More Examples

� F The coproduct of n and m is n+m where we

interpret + as addition on N.

� F If F and F ′ are presheaves then F +F ′ is defined

by

(F +F ′)ξ def
= (Fξ)+(F ′ξ)

for any object or morphism ξ in F, and

ιF :F +F ′ → F (ιF)n
def
= ιFn:(Fn)+(F ′n) → Fn

Sometimes say + is defined pointwize.

Summer School on Generic Programming 2002, Oxford, UK 38'

&

$

%

Definition of Algebras

� Let F:C → C . An algebra for the functor F is a pair

(A,σA) where σA:FA → A.

� An initial F-algebra (I,σI) is an algebra for which

given any other (A,σA),

FI
σI - I

FA

F f
?

σA

- A

∃! f
?

Summer School on Generic Programming 2002, Oxford, UK 39'

&

$

%

Motivation for Initial Algebras

� (Some) Datatypes are initial algebras

� The datatype

Exp ::= V V | S Exp | A Exp Exp

is modeled by an object E such that

E ∼= V+E +(E ×E) †

� We show how to solve † in Set.

� If Σ :Set → Set is Σ ξ def
= V+ξ+(ξ×ξ), then the

solution we construct is an initial algebra (σE ,E).

Summer School on Generic Programming 2002, Oxford, UK 40'

&

$

%

An Initial Algebra for 1+(−):Set −→ Set

� 1:Set → Set is defined by

f :A → B 7→ id{∗}:{∗} → {∗}

� 1+(−) is defined by

f :A → B 7→ id1 + f :1+A → 1+B

� The initial algebra is N up to isomorphism.

Summer School on Generic Programming 2002, Oxford, UK 41'

&

$

%

� We set S0
def
= ∅ and Sr+1

def
= 1+Sr.

� Note there is an insertion ιSr :Sr → Sr+1.

� Note also that ir:Sr ↪→ Sr+1 where i0
def
= ∅:S0 → S1, and

ir+1
def
= id1 + ir.

� We also write i′r:Sr ↪→ T where T
def
= ∪rSr

� T is the object part of an initial algebra for 1+(−).

Summer School on Generic Programming 2002, Oxford, UK 42'

&

$

%

� As σT :1+T → T then σT must be a copair.

� We set σT
def
= [k,k′] where k:1 → T and k′:T → T

� Note that

1
ι1 - 1+∅ = S1

i′1 - T

and we set k
def
= i′1 ◦ ι1.

Summer School on Generic Programming 2002, Oxford, UK 43'

&

$

%

� Note that

Sr
ιSr - 1+Sr = Sr+1

i′r+1- T

and we set k′r
def
= i′r+1 ◦ ιSr .

�

• In fact k′r+1 ◦ ir = k′r by induction on r.

• Hence can legitimately define k′:T → T by setting

k′(ξ)
def
= k′r(ξ) for any r such that ξ ∈ Sr.

Summer School on Generic Programming 2002, Oxford, UK 44'

&

$

%

� We check initiality

1+T
σT- T

needs de f ining

1+A

id1 + f
?

f
- A

f
?

� We define a family of functions f r:Sr → A

f 0
def
= ∅:S0 → A ∧ f r+1

def
= [f ◦ ι1, f ◦ ιA ◦ f r]

�

• In fact f r+1 ◦ ir = f r.

• Hence we can legitimately define f :T → A by f (ξ)
def
= f r(ξ)

for any r where ξ ∈ Sr.

Summer School on Generic Programming 2002, Oxford, UK 45'

&

$

%

� To check that the diagram commutes, we have to

prove that

f ◦ [k,k′] = f ◦ (id1 + f)

� By the universal property of coproducts, this is

equivalent to showing

[f ◦ k, f ◦ k′] = [f ◦ ι1, f ◦ ιA ◦ f]

which we can do by checking that the respective

components are equal.

� We give details for f ◦ k′ = f ◦ ιA ◦ f .

Summer School on Generic Programming 2002, Oxford, UK 46'

&

$

%

� f ◦ k′ = f ◦ ιA ◦ f . Take any element ξ ∈ T . Then we

have

f (k′(ξ)) = f (ιSr(ξ))

= f r+1(ιSr(ξ))

= [f ◦ ι1, f ◦ ιA ◦ f r](ιSr(ξ))

= f (ιA(f r(ξ)))

= f (ιA(f (ξ)))

The first equality is by definition of k′ and k′r; the second

by definition of f ; the third by definition of f r+1.

� You check that T ∼= N.

Summer School on Generic Programming 2002, Oxford, UK 47'

&

$

%

Some Results for Use in Modelling Syntax

� Let F and F ′ be two presheaves in F . Suppose for any

n in F, F ′n ⊂ Fn , and

F ′n ⊂ Fn

F ′n′

F ′ρ
?

⊂ Fn′

Fρ
?

commutes for any ρ:n → n′.

� There is a natural transformation

i:F ′ ↪→ F

Summer School on Generic Programming 2002, Oxford, UK 48'

&

$

%

� We define

δ:F → F

Suppose that F is an object in F . Then δ F is defined by

ρ:n → n′ 7→ F(ρ+ id1):F(n+1) −→ F(n′ +1)

� If α:F → F ′ in F , then the components of δ α are

given by

(δ α)n
def
= αn+1

Summer School on Generic Programming 2002, Oxford, UK 49'

&

$

%

� (Sr | r ≥ 0) is a family of presheaves in F , with

ir:Sr ↪→ Sr+1. Then there is a union presheaf T in F , such

that i′r:Sr ↪→ T . We sometimes write ∪rSr for T .

� Let ρ:n → n′. Then

T n
def
=

[

r

Srn

and T ρ:T n → T n′ is defined by

(T ρ)(ξ)
def
= (Srρ)(ξ)

where ξ ∈ T n, and ξ ∈ Sr(n) for some r.

Summer School on Generic Programming 2002, Oxford, UK 50'

&

$

%

� Let (φr:Sr → A | r ≥ 0) be natural transformations in F ,

the Sr as before, and such that φr+1 ◦ ir = φr. Then there is

a unique natural transformation

φ:T → A

such that φ◦ i′r = φr.

� The functions φn:T n → An defined by

φn(ξ)
def
= (φr)n(ξ) ξ ∈ Srn

yield the required natural transformation.

Summer School on Generic Programming 2002, Oxford, UK 51'

&

$

%

Syntax with Distinguished Variables and without Binding

� The set of expressions Exp is inductively defined by

Exp ::= V V | S Exp | A Exp Exp

� vi occurs in e is written vi ∈ e.

� The set of (free) variables of any e is denoted by fv(e).

� We will want to consider expressions e for which

fv(e) ⊂ {v0, . . . ,vn−1 }

and we give an inductive definition of such expressions.

Summer School on Generic Programming 2002, Oxford, UK 52'

&

$

%

� First we define inductively a set of judgements Γn `db e

where n ≥ 1, Γn def
= v0, . . . ,vn−1 is a list, and of course e is

an expression.

� We refer to Γn as an environment of variables.

0 ≤ i < n

Γn `db vi

Γn `db e

Γn `db S e

Γn `db e Γn `db e′

Γn `db A e e′

� One can then prove by rule induction that if Γn `db e

then fv(e) ⊂ Γn. We prove by Rule Induction

(∀ (Γn,e) ∈ `db) (fv(e) ⊂ Γn)

Summer School on Generic Programming 2002, Oxford, UK 53'

&

$

%

Syntax with Distinguished Variables and Binding

� Consider

Exp ::= V V | L V Exp | E Exp Exp

� We inductively define a set of judgements Γn `db e

where n ≥ 1.

0 ≤ i < n

Γn `db vi

Γn+1 `db e

Γn `db L vn e

Γn `db e Γn `db e′

Γn `db E e e′

� One can then prove by rule induction that if Γn `db e

then fv(e) ⊂ Γn.

Summer School on Generic Programming 2002, Oxford, UK 54'

&

$

%

� Notice that the rule for introducing abstractions L vn e

forces a distinguished choice of binding variable.

� The advantage of distinguished binding is that the

expressions correspond exactly to the terms of the

λ-calculus, without the need to define α-equivalence.

� In essence, we are forced to pick a representative of

each α-equivalence class.

Summer School on Generic Programming 2002, Oxford, UK 55'

&

$

%

Syntax with Arbitrary Variables and Binding

� Expressions are still defined by

Exp ::= V V | L V Exp | E Exp Exp

� Now let ∆ range over all non-empty finite lists of variables

which have distinct elements. Thus a typical non-empty ∆ is

v1,v8,v100,v2 ∈ [V]. Let x,y, . . . range over V.

� Define ∆ `ab e by

x ∈ ∆

∆ `ab x

∆,x `ab e

∆ `ab L x e

∆ `ab e ∆ `ab e′

∆ `ab E e e′

Summer School on Generic Programming 2002, Oxford, UK 56'

&

$

%

� We define simultaneous substitution – used to define

α-equivalence, and to construct mathematical models.

� elp(∆) is the pth element of ∆, with position 0 the

“first” element.

� We will define by recursion over expressions e, new

expressions e{ε/ε} and e{∆′/∆}, where len(∆) = len(∆′).

� For example,

(L v8 (A v10 v2)){v3,v8/v8,v2} = L v11 (A v10 v8)

Summer School on Generic Programming 2002, Oxford, UK 57'

&

$

%

(V x){∆′/∆} def
=







x if (∀p)(elp(∆) 6= x)

elp(∆′) if (∃p)(elp(∆) = x)

(L x e){∆′/∆} def
=







L x e{∆′/∆}

if (∀p)(elp(∆′) 6= x ∨ elp(∆) 6∈ fv(e))

L x′ e{∆′,x′/∆,x}

if (∃p)(elp(∆′) = x∧ elp(∆) ∈ fv(e))

(E e e′){∆′/∆} def
= E e{∆′/∆} e′{∆′/∆}

Summer School on Generic Programming 2002, Oxford, UK 58'

&

$

%

where

• ∆ is ∆ with x deleted (from position p, if it occurs) and,

if x does occur, ∆′ is ∆′ with the element in position p

deleted, and is otherwise ∆′; and

• x′ is the variable vw where w is 1 plus the maximum of

the indices appearing in ∆′ and fv(e).

Summer School on Generic Programming 2002, Oxford, UK 59'

&

$

%

� We inductively define the relation ∼α of α-equivalence

• Single axiom (schema) L x e ∼α L x′ e{x′/x} with

x′ 6∈ fv(e)

• Rules such as

e ∼α e′ e′ ∼α e′′

e ∼α e′′

e ∼α e′

L x e ∼α L x e′

� Note that the terms of the λ-calculus are given by the

[e]α
def
= {e′ | e′ ∼α e}

Summer School on Generic Programming 2002, Oxford, UK 60'

&

$

%

A Programme for Modelling Syntax

Step 1 define an abstract endofunctor ΣV on F def
= SetF

(similar to the datatype in question);

Step 2 construct an initial algebra T for ΣV;

Step 3 show that the syntax yields a functor Exp:F → Set;

Step 4 show that T ∼= Exp

Summer School on Generic Programming 2002, Oxford, UK 61'

&

$

%

Modelling Exp ::= V V | S Exp | A Exp Exp

Step 1

� First, we define the functor V:F → Set. Let ρ:m → n in

F. Then we set

Vm
def
= {v0, . . . ,vm−1 } ∧ Vρ(vi)

def
= vρi

� Define a functor ΣV:SetF → SetF by setting

ΣVξ def
= V+ξ+ξ2

Summer School on Generic Programming 2002, Oxford, UK 62'

&

$

%

Step 2

� T
def
=

S

(Sr | r ≥ 0).

� S0
def
= ∅, the empty presheaf, and

Sr+1
def
= ΣVSr = V+Sr +S2

r

� Need to check ir:Sr ↪→ Sr+1 for all r ≥ 0. We use

induction over r.

� It is immediate that i0:S0 ↪→ S1.

Summer School on Generic Programming 2002, Oxford, UK 63'

&

$

%

� Now suppose that ir:Sr ↪→ Sr+1. We are required to show

that ir+1:Sr+1 ↪→ Sr+2, that is,

Vn+Srn+(Srn)2 ⊂ Vn+Sr+1n+(Sr+1n)2

Vn′ +Srn
′ +(Srn

′)2

Vρ+Srρ+(Srρ)2

?
⊂ Vn′ +Sr+1n′ +(Sr+1n′)2

Vρ+Sr+1ρ+(Sr+1ρ)2

?

� ΣVir = idV + ir + i2r . Thus we have ir+1 = ΣVir.

Summer School on Generic Programming 2002, Oxford, UK 64'

&

$

%

� We define the structure map σT
def
= [κ,κ′,κ′′]:V+T +T2 → T

� V ∼= S1, so that κ:V ∼= S1 ↪→ T. S1 = V+∅+∅
2, and so

S1n = Vn×{1}.

� We define κ′ by

κ′
r:Sr

ιSr - V+Sr +S2
r = Sr+1 ↪→ T

� check that κ′
r+1 ◦ ir = κ′

r, ie

Sr+1
ιSr+1- Sr+2

↪→- T

ir+1 = idV + ir + i2r

Sr

ir
6

ιSr

- Sr+1

ir+1
6

↪→
- T

w
w
w
w
w
w

Summer School on Generic Programming 2002, Oxford, UK 65'

&

$

%

� Write S′r
def
= S2

r . Consider the family of morphisms

κ′′
r :S′r = S2

r

ιS2
r - V+Sr +S2

r = Sr+1 ↪→ T

� κ′′
r satisfy the union conditions . . .

� Hence they define κ′′:U → T where U
def
= ∪rS′r. But

note that

Un = ∪rS
′
rn = ∪r(Srn)2 = (∪rSrn)2 = (T n)2 = T 2n

and also Uρ = T 2ρ. Hence U = T 2.

Summer School on Generic Programming 2002, Oxford, UK 66'

&

$

%

� We check initiality

V+T +T2 σT- T

(∗)

V+A+A2

V+α+α2

? α - A

α
?

� To define α:T → A we specify a family αr:Sr → A.

� Note that α0:∅ → A and thus we define

(α0)n
def
= ∅:∅ → An

� Note that αr+1:Sr+1 = V+Sr +S2
r → A and hence

αr+1
def
= [α◦ ιV,α◦ ιA ◦αr,α◦ ιA2 ◦α2

r]

� Need to verify αr+1 ◦ ir = αr for all r ≥ 0.

Summer School on Generic Programming 2002, Oxford, UK 67'

&

$

%

� Proving that the diagram (∗) commutes is equivalent to

proving

[α◦κ,α◦κ′,α◦κ′] = [α◦ ιV,α◦ ιA ◦α,α ◦ ιA2 ◦α2]

� We prove that αn ◦κ′
n = αn ◦ ιAn ◦αn:Tn → An.

� Suppose that ξ is an arbitrary element of Tn, where ξ ∈ Srn.

αn(κ′
n(ξ)) = αn(ιSrn(ξ))

= (αr+1)n(ιSrn(ξ))

= [αn ◦ ιVn,αn ◦ ιAn ◦ (αr)n,αn ◦ ι(An)2 ◦ (αr)
2
n](ιSrn(ξ))

= αn(ιAn((αr)n(ξ)))

= αn(ιAn(αn(ξ)))

Summer School on Generic Programming 2002, Oxford, UK 68'

&

$

%

Step 3

� Suppose that ρ:n → n′ is any function. We define

Exp
db

n
def
= { e | Γn `db e }

� We can define (Exp
db

ρ)e by recursion over e, by setting

• (Exp
db

ρ)(V vi)
def
= V ρi

• (Exp
db

ρ)(S e)
def
= S (Exp

db
ρ)e

• (Exp
db

ρ)(A e e′)
def
= A (Exp

db
ρ)e (Exp

db
ρ)e′

Summer School on Generic Programming 2002, Oxford, UK 69'

&

$

%

� . . . and then showing that if e ∈ Exp
db

n, then

(Exp
db

ρ)e ∈ Exp
db

n′.

� Thus we have a function

Exp
db

ρ:Exp
db

n → Exp
db

n′

for any ρ:n → n′.

� Note that there are natural transformations

S:Exp
db

→ Exp
db

∧ A:Exp
db

2 → Exp
db

Summer School on Generic Programming 2002, Oxford, UK 70'

&

$

%

Step 4

� We now show that T ∼= Exp
db

in F

� We define φ:T → Exp
db

and ψ:Exp
db

→ T, such that

φn : Tn ∼= Exp
db

n : ψn

� To specify φ:T → Exp
db

define a family φr:Sr → Exp
db

.

• φ0:S0 = ∅ → Exp
db

has components (φ0)n:∅ → Exp
db

n

• Recursively we define

φr+1
def
= [V,S◦φr,A◦φ2

r] : Sr+1 = V+Sr +S2
r →Exp

db

Summer School on Generic Programming 2002, Oxford, UK 71'

&

$

%

� To specify ψ:Exp
db

→ T, for any n in F we define

functions

ψn:Exp
db

n → Tn

as follows.

• ψn(V vi)
def
= (vi,1) ∈ S1n

• ψn(S e)
def
= ιSrn(ψn(e)) where r ≥ 1 is the height of the

deduction of S e

• ψn(A e e′)
def
= ι(Srn)2((ψn(e),ψn(e′))) where r ≥ 1 is the

height of the deduction of A e e′.

Summer School on Generic Programming 2002, Oxford, UK 72'

&

$

%

� We next check that for any n in F,

Tn
φn -
∼=�
ψn

Exp
db

n

� Suppose ξ ∈ Srn ⊂ Tn for some r. Then by definition,

ψn(φn(ξ)) = ψn((φr)n(ξ))

� By induction, for all r ≥ 0, if ξ ∈ Srn and n any object of

F, then

ψn((φr)n(ξ)) = ξ

Summer School on Generic Programming 2002, Oxford, UK 73'

&

$

%

� Let ξ ∈ Sr+1n = Vn+Srn+Srn2. Then we have

ψn((φr+1)n(ξ)) = ψn([Vn,Sn ◦ (φr)n,An ◦ (φr)
2
n](ξ))

� Consider the case when ξ = ιSrn(ξ′) for some ξ′ ∈ Srn. We

have

ψn((φr+1)n(ξ)) = ψn((Sn ◦ (φr)n)(ξ′))

= ψn(S (φr)n(ξ′))

= ιSrn(ψn((φr)n(ξ′)))

= ιSrn(ξ′)

= ξ

Summer School on Generic Programming 2002, Oxford, UK 74'

&

$

%

Modelling Exp ::= V V | L V Exp | E Exp Exp

Case Γn `db e with Distinguished Binding

� Step 1 The abstract endofunctor ΣV:F → F is

ΣVξ def
= V+δ ξ+ξ2

Motto: Any constructor with 1 argument and which binds b

variables is modelled by δbξ . Thus

Split P as 〈x,y〉 in E

would be modelled by ξ 7→ ξ×δ δ ξ

Summer School on Generic Programming 2002, Oxford, UK 75'

&

$

%

� Step 2 We can show that the functor ΣV has an initial

algebra σT :ΣVT → T, by adapting the previous methods.

� Have to define

σT
def
= [κ,κ′,κ′′]

def
= V+δ T +T ×T → T

via

κ′
r:δ Sr

ιSr - V+δ Sr +S2
r = Sr+1 ↪→ T

as

(δ T)n
def
= T (n+1) =

[

r

Sr(n+1) =
[

r

(δ Sr)n = (
[

r

δ Sr)n

Summer School on Generic Programming 2002, Oxford, UK 76'

&

$

%

� Step 3 Suppose ρ:n → n′. Define

Exp
db

n
def
= { e | Γn `db e }

� Let ρ{n′/n}:n+1 → n′ +1 be

ρ{n′/n}(j)
def
=







j if 0 ≤ j ≤ n−1

n′ if j = n

Consider

• (Exp
db

ρ)(L vn e)
def
= L vn′ (Exp

db
ρ{n′/n})(e) and

• (Exp
db

ρ)(E e e′)
def
= E ((Exp

db
ρ)e) ((Exp

db
ρ)e′)

� If Γn `db e and ρ:n → n′, then Γn′ `db (Exp
db

ρ)e yielding a

functor Exp
db

in F .

Summer School on Generic Programming 2002, Oxford, UK 77'

&

$

%

� There are natural transformations

L:δ Exp
db

→ Exp ∧ E:Exp2 → Exp

� The components are functions

Ln:Exp
db

(n+1) → Exp
db

n 7→ e 7→ L vn e

� Naturality is

(δ Exp
db

)n = Exp
db

(n+1)
Ln- Exp

db
n

(δ Exp
db

)n′ = Exp
db

(n′ +1)

(δ Exp
db

)ρ = Exp
db

(ρ+ id1)

?

Ln′
- Exp

db
n′

Exp
db

ρ
?

Summer School on Generic Programming 2002, Oxford, UK 78'

&

$

%

� Note that at the element e, this requires that

L vn′ (Exp
db

ρ{n′/n})e = L vn′ ((Exp
db

(ρ+ id1))e)

� This equality holds if and only if

ρ{n′/n} = ρ+ id1

� . . . which is true if and only if in F

ι1:1 → m+1 ∗ 7→ m ιm:m → m+1 i 7→ ρi

� Step 4 A routine calculation that T ∼= Exp
db

Summer School on Generic Programming 2002, Oxford, UK 79'

&

$

%

Modelling Exp ::= V V | L V Exp | E Exp Exp

Case ∆ `ab e with Arbitrary Binding

� Step 1 The abstract endofunctor ΣV:F → F is

ΣVξ def
= V+δ ξ+ξ2

Note: The functor is the SAME as before

� Step 2 Thus solving for the initial algebra is the same

as before!

Summer School on Generic Programming 2002, Oxford, UK 80'

&

$

%

� Step 3 We define Exp
ab

. For n in F we set

Exp
ab

n
def
= { [e]α | Γn `ab e }

� Now let ρ:n → n′. We define

(Exp
ab

ρ)([e]α)
def
= [e{vρ0, . . . ,vρ(n−1)/v0, . . . ,vn−1}]α

� One has to check that this is well defined . . . see the

notes.

Summer School on Generic Programming 2002, Oxford, UK 81'

&

$

%

� Step 4 Note that current Step 2 was same as before.

Rather than prove Exp
ab

∼= T as a final step, we could in

fact make use of the previous work, which proved that

Exp
db

∼= T . Thus we omit Step 2, and instead show

φ:Exp
ab

∼= Exp
db

:ψ

Summer School on Generic Programming 2002, Oxford, UK 82'

&

$

%

� The components of ψ are functions ψn:Exp
db

n → Exp
ab

n

given by ψn(e)
def
= [e]α.

� We consider the naturality of ψ at a morphism ρ:n → n′,

computed at an element ξ of Exp
db

n. We show naturality for

the case ξ = L vn e.

(Exp
ab

ρ)◦ψn(ξ) = (Exp
ab

ρ)[L vn e]α

= [(L vn e){vρ0, . . . ,vρ(n−1)/v0, . . . ,vn−1}]α
def
= 2

Let us consider the case when renaming takes place.

� Suppose that there is a j for which ρ(j) = n and v j ∈ fv(e).

Summer School on Generic Programming 2002, Oxford, UK 83'

&

$

%

� Then

(L vn e){vρ(0), . . . ,vρ(n−1)/v0, . . . ,vn−1} =

L vw e{vρ(0), . . .vρ(n−1),vw/v0, . . . ,vn−1,vn}

• w = 1+MaxIndex(e ; ρ(0), . . . ,ρ(n−1)) thus ρ(i) < w for all

0 ≤ i ≤ n−1.

• But fv(e) ⊂ v0, . . . ,vn and n = ρ(j) ∈ ρ(0), . . . ,ρ(n−1).

• Also ρ(i) < n′, and so we must have w ≤ n′.

• If w < n′, then vn′ is not free in

e{vρ(0), . . .vρ(n−1),vw/v0, . . . ,vn−1,vn} and otherwise w = n′.

Summer School on Generic Programming 2002, Oxford, UK 84'

&

$

%

Either way (why!?),

L vw e{vρ(0), . . .vρ(n−1),vw/v0, . . . ,vn−1,vn}

∼α L vn′ e{vρ(0), . . .vρ(n−1),vn′/v0, . . . ,vn−1,vn}

and so

2 = [L vn′ e{vρ0, . . . ,vρ(n−1),vn′/v0, . . . ,vn−1,vn}]α

= [L vn′ (Exp
db

ρ{n′/n})e]α

= ψn′ ◦ (Exp
db

ρ)(ξ)

Summer School on Generic Programming 2002, Oxford, UK 85'

&

$

%

� Next we define φn:Exp
ab

n → Exp
db

n by setting

φn([e]α)
def
= Rn(e) where

• Rm(V x)
def
= V x

• Rm(L x e)
def
= L vm Rm+1(e{vm/x})

• Rm(E e e′)
def
= E Rm(e) Rm(e′)

� This is best understood by a simple example . . .

� The verification that

φ:Exp
ab

∼= Exp
db

:ψ

is omitted from the lectures. See the notes.

Summer School on Generic Programming 2002, Oxford, UK 86'

&

$

%

R3(L v7 (L v3 (E v7 (E v0 (L v6 (E v2 v3))))))

= L v3 R4(L v3 (E v7 (E v0 (L v6 (E v2 v3))))){v3/v7}

= L v3 R4(L v4 (E v3 (E v0 (L v6 (E v2 v4)))))

= L v3 (L v4 R5(E v3 (E v0 (L v6 (E v2 v4)))){v4/v4})

= L v3 (L v4 (E v3 (E v0 (R5(L v6 (E v2 v4))))))

= L v3 (L v4 (E v3 (E v0 (L v5 R5(E v2 v4){v5/v6}))))

= L v3 (L v4 (E v3 (E v0 (L v5 (R5(E v2 v4))))))

= L v3 (L v4 (E v3 (E v0 (L v5 (E v2 v4)))))

Summer School on Generic Programming 2002, Oxford, UK 87'

&

$

%

Where to Now? You might

� learn more Category Theory;

� learn more Type Theory;

� learn more Categorical Type Theory;

� spend some time trying to understand the key problems

and issues concerning modelling and reasoning about

binding syntax; and

� read the current research literature on modelling and

implementing binding syntax.

