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1 Introduction

1.1 Prerequisites

These notes form the basis of four lectures given at the Summer School on

Generic Programming, Oxford, UK, which took place during August 2002. The

audience consisted mainly of mathematically mature postgraduate computer

scientists. As such, we assume that readers already have a reasonable under-

standing of

– very basic (naive) set theory;

– simple discrete mathematics, such as relations, functions, preordered sets,

and equivalence relations;

– simple (naive) logic and the notion of a formal system;

– a programming language, preferably a functional one, and in particular of

recursive datatypes; language syntax presented as finite trees;

– inductively defined sets; proof by mathematical and rule induction;

– the basics of � -calculus, especially free and bound variables.

Some of these topics will be reviewed as we proceed. The appendix defines

abstract syntax trees, inductively defined sets, and rule induction. We do not

assume any knowledge of category theory, introducing all that we need.

1.2 The Aims

Through these notes we aim to teach some of the very basics of category the-

ory, and to apply this material to the study of programming language syntax

with binding. We give formal definitions of the category theory we need, and

some concrete examples. We also give a few technical results which can be

given very abstractly, but for the purposes of these notes are given in a simpli-

fied and concrete form. We study syntax through particular examples, by giv-

ing categorical models. We do not discuss the general theory of binding syn-

tax. This is a current research topic, but readers who study these notes should

be well placed to read (some of) the literature.

1.3 Learning Outcomes

By studying these notes, and completing at least some of the exercises, you

should
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– know how simple examples of programming language syntax with binding

can be specified via (simple) inductively defined formal systems;

– be able to define categories, functors, natural transformations, products

and coproducts, presheaves and algebras;

– understand a variety of simple examples from basic category theory;

– know, by example, how to compute initial algebras for polynomial func-

tors over sets;

– understand some of the current issues concerning how we model and im-

plement syntax involving variable binding;

– understand some simple abstract models of syntax based on presheaves;

– know, by example, how to manufacture a categorical formulation of sim-

ple formal systems (for syntax);

– be able to prove that the abstract model and categorical formal system are

essentially the same;

– know enough basic material to read some of the current research material

concerning the implementation and modeling of syntax.

2 Syntax Defined from Datatypes

In this section we assume that readers are already acquainted with formal

(programming) languages. In particular, we assume knowledge of syntax trees;

occurrences of, free, bound and binding variables in a syntax tree; inductive

definitions and proof by (rule) induction; formal systems for specifying judge-

ments about syntax; and elementary facts about recursive datatype declara-

tions. Some of these topics are discussed very briefly in the Appendix, page 47.

Mostly, however, we prompt the reader by including definitions, but we do not

include extensive background explanations and intuition.

What is the motivation for the work described in these notes? Computer

Scientists sometimes want to use existing programming languages, and other

tools such as automated theorem provers, to reason about (other) program-

ming languages. We sometimes say that the existing system is our metalan-

guage, (for example Haskell) and the system to be reasoned about is our ob-

ject language (for example, the � -calculus). Of course, the object language will

(hopefully) have a syntax, and we will need to encode, or specify, this object

level language within the metalanguage. It turns out that this is not so easy,
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even for fairly simple object languages, if the object language has binders.

This is true of the � -calculus, and is in fact true of almost any (object level)

programming language.

We give four examples, each showing how to specify the syntax, or terms,

of a tiny fragment of a (object level) programming language. In each case we

give a datatype whose elements are called expressions. Such expressions de-

note abstract syntax trees—see Appendix. The expressions form a superset of

the set of terms we are interested in. We then give further definitions which

specify a subset of the datatype which constitutes exactly the terms of interest.

For example, in the case of � -calculus, the expressions are raw syntax trees,

and the terms are such trees quotiented up to � -equivalence. What we would

like to be able to do is

Write down a datatype, as one can do in a functional program-
ming language, such that the expressions of the datatype are pre-
cisely the terms of the object language we wish to encode.

Then, the “further definitions” alluded to above would not be needed. We

would have a very clean encoding of our object level language terms, given

by an explicit datatype and no other infrastructure (such as � -equivalence).

2.1 An Example with Distinguished Variables and without Binding

Take constructor symbols
�

, � and � with arities one, one and two respec-

tively. Take also a set of variables � whose actual elements will be denoted

by ��� where �
	�� . The set of expressions 
���� is inductively defined by the

grammar1


���������� � ������
���������
�����
����

The metavariable � will range over expressions. It should be intuitively clear

what we mean by � � occurs in � , which we abbreviate by � �!	�� . We omit a

formal definition. The set of (free) variables of any � is denoted by "$#&%'�)( .
Later in these notes, we will want to consider expressions � for which

"$#&%'�)(+*-,.�0/01324232�15��687:9<;
1 This formal BNF grammar corresponds to a datatype declaration in Haskell.
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Fig. 1. Expressions in Environment—Distinguished Variables, No Binding

The idea is that when “constructing” an expression by using the grammar

above, we build it out of the initial segment (according to the indices) of vari-

ables. It is convenient to give an inductive definition of such expressions. First

we inductively a set of judgements � 6� "! # � where $&%(' , � 6
)+*-,
� � / 142324231 � 687:9

is a list, and of course � is an expression. We refer to � 6 as an environment

of variables. The rules appear in Figure 1. � 6. /! # � is simply a notation for a

binary relationship, written infix style, with relation symbol  ! # . Strictly speak-

ing, we are inductively defining the set (of pairs)  0! # . One can then prove by

rule induction that if � 61 /! # � then "$# %'�)( *&� 6 . Check the simple details as an

Exercise. Hint: With the notation of the Appendix, we prove by Rule Induction

%32�%4� 6&1 �)(+	  ! # ( % "$#&%'�)( *5� 6 (

See Figure 6, page 50. One has to check property closure for each rule in Figure 1.

2.2 An Example with Distinguished Variables and Binding

We assume that readers are familiar with the syntax of the � -calculus. One

might want to implement (encode) such syntax in a language such as Haskell.

If 6 and 7 are new constructors then we might consider the grammar (datatype)


������ ��� � ���86 � 
 � � ��7 
 � ��
 � �

We assume that readers are familiar with free, binding and bound variables,

in particular the idea that for a particular occurrence of a variable in a syntax

tree defined by the grammar above, the occurrence is either free or bound. In

particular recall that "$#&%96 �8�:�)( � "$#&%'�)(�: ,.��� ; ; any occurrence of � � in 6 �8� �
is bound, and in particular we call the occurrence � � binding. We will want

to consider expressions � for which "$# % �)( * ,.� / 1323242�1 � 687:9 ; , and we also give

an inductive definition of such expressions. More precisely we inductively de-

fine a set of judgements � 6; /!�# � where $<%=' . The rules appear in Figure 2.
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Fig. 2. Expressions in Environment—Distinguished Variables and Binding
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Fig. 3. Expressions in Environment—Arbitrary Variables and Binding

One can then prove by rule induction that if � 6  /! # � then "$#&%'�)( * � 6 . Check

the simple details as an Exercise. Notice that the rule for introducing abstrac-

tions 6 � 6 � forces a distinguished choice of binding variable. This means that

we lose the usual fact that the name of the binding variable does not matter.

However, the pay-off of what we call distinguished binding is that the expres-

sions inductively defined in Figure 2 correspond exactly to the terms of the � -

calculus, without the need to define � -equivalence. In essence, we are forced

to pick a representative of each � -equivalence class.

2.3 An Example with Arbitrary Variables and Binding

Expressions are still defined by


������ ��� � ���86 � 
 � � ��7 
 � ��
 � �

Now let � range over all non-empty finite lists of variables which have distinct

elements. Thus a typical non-empty � is � 9 15���01 � 9 / / 15��� 	�� ��� . We will use typ-

ical metavariables � , � , � which range over � . If � contains $;% ' variables, we

may write � ��� / 142323231 � 6 7 9 . Once again we inductively a set of judgements,

this time of the form �  "! # � . The rules appear in Figure 3. One can then prove

by rule induction that if �  "! # � then "$# % ��(+*#� . Check the simple details as an

Exercise.

It is convenient to introduce a notion of simultaneous substitution of vari-

ables at this point. This will allow us to define the usual notion of � -equivalence
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of expressions—yielding the terms of the � -calculus. Such substitution will

also be used in our mathematical models, later on. Suppose that �������� �	� % � (�
 ' . Then
�	� � % � ( is the � th element of � , with position � the “first” el-

ement. We write 
 for the empty list. We will define by recursion over expres-

sions � , new expressions � ,�
���
4; and �0, ����� �!; , where
� ��� % � ( � � �	� % ��� ( . Infor-

mally, �0, ����� �!; is the expression � in which any free occurrence of
�	� � % � ( in �

is replaced by
�	� � % ��� ( , with bound variables being changed to avoid capture of�	� � % ��� ( . For example,

%96 � � %'� � 9 / � � ( ( ,4����15� � ��� � 15� � ; � 6 � 9 9 % � � 9 / � � (
where the binding variable ��� is changed to � 9 9 . We set �0,�
���
4; )+*-,� � for any � .

We also define

% � � ( , � � � �!;
)+*-,
�

������� ������
�

if %32��&(�% �	� � % � ( �� �&(�	� � % ��� (
if %"!��&(�% ��� � % � ( � �&(

% 6 � � ( , ���#� �!;
)+*-,
�

�������� �������

6 ���0, � � � ��;
if %32��&(�% �	� � % ��� ($��#�&% �	� � % � ( �	 "$# %'�)( (

6 �'� �0, � � 1 �(�#� ��1 �:;
if %"!��&(�% ��� � % � � ( �#�*) �	� � % � ( 	 "$#&%'�)( (

% 7 � ����( , ���#� �!;
)+*-,
� 7 �0, ���+� �!; ��� , �*��� �!;

where

– � is � with � deleted (from position � , if it occurs) and, if � does occur, � �
is �*� with the element in position � deleted, and is otherwise �,� ; and

– �(� is the variable ��- where . is 1 plus the maximum of the indices appear-

ing in � � and "$# % �)( .

We can inductively define the relation /10 of � -equivalence on the set of

all expressions with the single axiom2 (schema) 6 �!�2/ 0 6 � � �0, � � � �.; where

�(� %3�� � ( is any variable not in "$# % �)( , and rules ensuring that /40 is an equiv-

alence relation and a congruence for the constructors. Congruence for 6 , and

2 Base rule.
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transitivity, are given by the rules (schemas)

�$/$0 � � � � /$0 � � �
�$/ 0 � � �

� /$0 � �
6 �!� / 0 6 �!� �

Write down all of the rules as an Exercise.

Note that the terms of the � -calculus are given by the

� � � 0 )+*-,� ,�� � �)� � / 0 �0;
where � is any expression. One reason for also defining the judgements �  ! # �
is that they will be used in Section 4 to formulate a mathematical model.

2.4 An Example without Variables but with Binding

As mentioned, we assume familiarity with de Bruijn notation, and the no-

tion of index level. Note: You can follow the majority of these notes, without

knowing about de Bruijn terms. Just omit the sections on this topic. Here is

our grammar of raw de Bruijn expressions


 � ��� ��� � � � � 
 � ��� � 
�����
����

Recall the basic idea is that the property of syntax which is captured by vari-

able binding, can also be embodied by node count in an expression. An exam-

ple may make this more transparent. Consider

�
) *-,
� 6 � 9 %96 ����6 ��� % 7 ���3� 9 ( (

The first occurrence of � 9 (binding) indicates that the second occurrence is

bound. However, if we draw out the finite tree, we can see that there is a single

path between the two variables, and the fact that the second � 9 is bound by

the first is “specified” by counting the number, 2, of nodes 6 strictly between

them. There is also one 6 between the two occurrences of � � . In de Bruijn no-

tation, � is rendered � % � % � % 7 '���( ( ( . For example, � � corresponds to 6 � / � /
and 6 � / % 6 � 9 � / ( to � % � ' ( . Now let $ range over � . We will regard $ as the set

, � 1423232 1 $ 
5' ; of natural numbers, with the elements treated as De Bruijn in-

dices. We inductively define a set of judgements, this time of the form $  �� # � .

The rules appear in Figure 4. One can then prove by rule induction that if

$  � # � then � is a de Bruijn expression of level $ . Check the simple details

as an Exercise.
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Fig. 4. Expressions in Environment—Binding via Node Depth

We finish this section with an Exercise. Write down rules of the form �  �
with � corresponding to the datatype of Section 2.1, and � as defined in Sec-

tion 2.3. Show that in this example, where variables are arbitrary and there

is no binding, the set of expressions � for which �  � is precisely the set of

elements of the datatype.

3 Category Theory

3.1 Categories

A category consists of two collections. Elements of one collection are called

objects. Elements of the other collection are called morphisms. Speaking in-

formally, each morphism might be thought of as a “relation” or “connection”

between two objects. Here are some informal examples.

� The collection of all sets (each set is an object), together with the collection

of all set-theoretic functions (each function is morphism).
� The collection of all posets, together with all monotone functions.
� The set of real numbers � (in this case each object is just a real number � in

� ), together with the order relation � on the set � (a morphism is a pair %��)1�� � (
in the set � ).

It is important to note that the objects of a category do not have to be sets

(in the fourth example they are real numbers) and that the morphisms do not

have to be functions (in the fourth example they are elements of the order

relation � ). Of course, there are some precise rules which define exactly what

a category is, and we come to these shortly: the reader may care to glance

ahead at the definition given on page 10. We give a more complete example

before coming to the formal definition.

We can create an example of a category using the definitions of Section 2.1.

We illustrate carefully the general definition of a category using this example.
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The collection of objects is � and the collection of morphisms is���� 9 � , � ��� �  ! # � ; �

Given any morphism ��� , there is a corresponding source and target. We define���
	 % ����( ) *-,����
�� , ��� � � 	 ��) � 	 ��� ;��<'
and ��� � %'����( )+*-,� �����������! 
#" �

�5� / 1324232�1 � 6 7 9 �$" $
We write ���0�&%'" $ or % (*)" $ to indicate the source and target of ��� . For

example, we have

�
� � %'��� / � / ( � 9 15� � 9 � / 15��� / % � � / ( �+-,

In the following situation .
����� + % ��� + $

we say that ��� and ����� are composable. This means that there is a morphism

���0/ ��� � � . " $ which can be defined using ��� and ����� , and is said to be their

composition. For example, if

' �5� � / 1 � � / � / �+ � � � % � � / � 9 ( � 9 15��� 9 � / 1 � � / % � � 9 (��+1,
then the composition is

' � � % � % � � / ( %'��� / � / (5( % � � / � / ( 1 � %'��� / � / ( % � � / ( 1 � % � � / ( % �
% � � / � / ( (��+ ,
Informally, the general definition of composition is that the element in posi-

tion � in ���2/ ����� is the element in ��� in position � in which the % elements of

����� are substituted simultaneously for the free variables � / 1324232 � � 7 9 . We leave

the actual definition as an Exercise—do not forget what happens if either ��� or

����� is empty. Finally, for any object % there is an identity morphism,% � � / 142323241 � � 7 9 �+ %
We now give the formal definition of a category. A category 3 is specified

by the following data:
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� A collection � � 3 of entities called objects. An object will often be denoted

by a capital letter such as � , � , � 24232
� A collection ��� � 3 of entities called morphisms. A morphism will often be

denoted by a small letter such as � , � , 	 23242
� Two operations assigning to each morphism � its source ���
	 %
� ( which is an

object of 3 and its target

� � � %
� ( also an object of 3 . We write � � � ��	 %
� ( 
 "��� � %
� ( to indicate this, or perhaps � ��� "�� where �-� � ��	 %
� ( and ���
� � � %
� ( .

Sometimes we just say “let � ��� " � be a morphism of 3 ” to mean � is a

morphism of 3 with source � and target � .
� Morphisms � and � are composable if

� � � %
� ( � � ��	 %�� ( . There is an operation

assigning to each pair of composable morphisms � and � their composition

which is a morphism denoted by � /�� and such that ���
	 %�� /�� ( � ���
	 %
� ( and��� � %�� /�� ( � � � � %�� ( . So for example, if � ��� "�� and �&��� "�� , then there is a

morphism � /�� ��� "�� . There is also an operation assigning to each object �
of 3 an identity morphism ����� ��� "�� . These operations are required to be

unitary
�������! #"%$'& /��
�(�
� / �)�+*
 ),�"%$'& �(�

and associative, that is given morphisms � ��� "-� , �&��� "-� and 	.��� "/.
then

%
	 /0� ( /1� ��	 / %���/�� ( 2
As an Exercise check that the operations from the previous example are uni-

tary and associative.

Here are some more examples of categories.

1. The category of sets and total functions, 243
�
. The objects of the category

are sets and the morphisms are functions which are triples %5� 1�� 1�� ( where

� and � are sets and �768�:9;� is a subset of the cartesian product of �
and � for which

%32=<�	>� (�% !=? @ 	>� (3% %
< 1A@�( 	B� (
We sometimes call � the graph of the function %
� 1�� 1�� ( . The source and

target operations are defined by � ��	 %5� 1�� 1�� ( ) *-,��� and

� � � %5� 1�� 1�� ( ) *-,��� .

Suppose that we have another morphism %5�!1C�&1�� ( . Then

� � � %5� 1�� 1�� ( �� ��	 %
��1!� 1A� ( , and the composition is given by

%
��1C�&1�� ( / %5� 1A� 1�� ( ��%
� 1C� /�� 1�� (
11



where � /�� is the usual composition of the graphs � and � . Finally, if � is

any set, the identity morphism assigned to � is given by %
� 1���� � 1�� ( where

����� 6 �(9 � is the identity graph. We leave the reader to check as an Exer-

cise that composition is an associative operation and that composition by

identities is unitary. Note: we now follow informal practice, and talk about

“functions” � as morphisms, even though � is strictly speaking the graph

component of the function %5� 1A� 1�� ( .
2. The category of sets and partial functions, �

� � � . The objects are sets and

the morphisms are partial functions. The definition of composition is the

expected one, namely given � ��� " � , � ��� " � , then for each element

< of � , �1/ � %5< ( is defined with value � %
� %5< (5( if both � %5< ( and � %
� %
< ( ( are

defined, and is otherwise not defined.

3. Any preordered set %�� 1 � ( may be viewed as a category. Recall that a pre-

order � on a set � is a reflexive, transitive relation on � . The set of objects

is � . The set of morphisms is � . %�� 1 � ( forms a category with identity mor-

phisms % �.1 � ( for each object � (because � is reflexive) and composition

% �&1 �8( / % �<1 � ( )+*-,� % �.1 ��( (because � is transitive). Note for � and � elements

of � , there is at most one morphism from � to � according to whether

� � � or not.

4. The category � � 3 � 3 � has objects all preordered sets, and morphisms the

monotone functions. More precisely, a morphism with source %�� 1 ��� (
and target %�	 1 ��
 ( is specified by giving a function � ��� "�	 such that

if � �
� �(� then � % �&( � 
 � % �(� ( .
5. A discrete category is one for which the only morphisms are identities. So

a very simple example of a discrete category is given by regarding any set

as a category in which the objects are the elements of the set, there is an

identity morphism for each element, and there are no other morphisms.

6. The objects of the category � are the elements $ 	 � , where we regard $
as the set , � 1324232�1 $2
<'�; for $ %(' , and � is the empty set � . A morphism
� � $ " $ � is any set-theoretic function.

7. Let 3 and � be categories. The product category 3 9�� has as objects all

pairs %
� 1�. ( where � is an object of 3 and . is an object of � , and the

morphisms are the obvious pairs %
� 1C� ( � %
� 1�. (#" %
�1� 1�. � ( .
It is an Exercise to work through the details of these examples.
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In category theory, a notion which is pervasive is that of isomorphism. If

two objects are isomorphic, then they are very similar, but not necessarily

identical. In the case of 243
�
, two sets � and 	 are isomorphic just in case there

is a bijection between them—informally, they have the same number of ele-

ments. The usual definition of bijection is that there is a function � ��� " 	
which is injective and surjective. Equivalently, there are functions � � � " 	
and �&� 	 " � which are mutually inverse. We can use the idea that a pair

of mutually inverse functions in the category 243
�

gives rise to bijective sets to

define the notion of isomorphism in an arbitrary category.

A morphism � ��� "�� in a category 3 is said to be an isomorphism if there

is some �&��� " � for which �-/ ��� ��� � and � /�� � ��� � . We say that � is an

inverse for � and that � is an inverse for � . Given objects � and � in 3 , we say

that � is isomorphic to � and write � /� � if such a mutually inverse pair of

morphisms exists, and we say that the pair of morphisms witnesses the fact

that � /� � . Note that there may be many such pairs. In the category deter-

mined by a partially ordered set, the only isomorphisms are the identities, and

in a preorder � with �<1 ��	 � we have � /� � iff � � � and � � � . Note that in

this case there can be only one pair of mutually inverse morphisms witnessing

the fact that � /� � . Here are a couple of Exercises.

(1) Let 3 be a category and let � ��� " � and �&1�	.��� " � be morphisms. If

� / 	!� ��� � and � / ��� ��� � show that � � 	 . Deduce that any morphism � has

a unique inverse if such exists.

(2) Let 3 be a category and � ��� "�� and � ��� "�� be morphisms. If � and �
are isomorphisms, show that � /1� is too. What is its inverse?

3.2 Functors

A function � � � " 	 is a relation between two sets. We can think of the func-

tion � as specifying an element of 	 for each element of � ; from this point

of view, � is rather like a program which outputs a value � % �&( 	 	 for each

� 	 � . We might say that the element � % �&( is assigned to � . A functor is rather

like a function between two categories. Roughly, a functor from a category 3
to a category � is an assignment which sends each object of 3 to an object

of � , and each morphism of 3 to a morphism of � . This assignment has to

satisfy some rules. For example, the identity on an object � of 3 is sent to the
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identity in � on the object
� � , where the functor sends the object � in 3 to

� � in � . Further, if two morphisms in 3 compose, then their images under

the functor must compose in � . Very informally, we might think of the func-

tor as “preserving the structure” of 3 . Let us move to the formal definition of a

functor.

A functor
�

between categories 3 and � , written
� �&3 " � , is specified by

– an operation assigning objects
� � in � to objects � in 3�1 and

– an operation assigning morphisms
� � � � � " � � in � , to morphisms

� ��� "�� in 3 ,

for which
� % ��� � ( � ����� � , and whenever the composition of morphisms � / �

is defined in 3 we have
� %�� / � ( � � � / � � . Note that

� � / � � is defined

in � whenever � /�� is defined in 3 , that is,
� � and

� � are composable in �
whenever � and � are composable in 3 .

Sometimes we give the specification of a functor
�

by writing the opera-

tion on an object � as ���" � � and the operation on a morphism � , where

� ��� "�� , as � ��� "����" � � � � � " � � . Provided that everything is clear, we

sometimes say “the functor � �*3 " � is defined by an assignment

� ��� 
 "�� �" � � � � � 
 " � �

where � ��� " � is any morphism of 3 .” We refer informally to 3 as the source

of the functor
�

, and to � as the target of
�

. Here are some examples.

1. Let 3 be a category. The identity functor ����� is defined by ����� %
� (
)+*-,
� �

where � is any object of 3 and ��� � %
� (
) *-,
� � where � is any morphism of 3 .

2. We may define a functor
� �C2 3

� " 2 3
�

by taking the operation on objects

to be
� �

)+*-,
� ��� � and the operation on morphisms

� �
) *-,
���

�
��%
� ( , where

the function �
�
��%
� ( � ��� �$" ����� is defined by

�
�
� %
� (3%5< ��( )+*-,� �����&�����  
 " 


% � < / 1323242�1�<
	 7:9 � ( � � � %5< / ( 142323231�� %5<
	 7:9 ( �
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Being our first example, we give explicit details of the verification that
�

is

indeed a functor. To see that
� % ��� � ( � ��� � � note that on non-empty lists

� % ��� � (3% � < / 1324232�1�<
	 7 9 � (
) *-,
� �

�
� % ��� � (�% � < / 1423242�1�<
	 7:9 � (

� � < / 142323241�< 	 7:9 �
� ��� � ��� % � < / 132423231�< 	 7 9 � () *-,
� ��� � � % � < / 132423241�<
	 7 9 � (�1

and to see that
� %�� / � ( � � ��/ � � note that

� %���/�� (3% � < / 142323231�<
	 7 9 � ( )+*-,� �
�
��%���/�� (�% � < / 142324231�<
	 7:9 � (

� � � %
� %
< / ( (�132324231!�&%
� %5< 	 7 9 ( ( �
� �

�
��%�� (3% � � %5< / (�132324231A� %5<
	 7 9 (�� (

� �
�
��%�� (3%C�

�
� %
� (�% � < / 1324232�1�< 	 7 9 � (5(

� � ��/ � � % � < / 132423231�< 	 7 9 � (�2
3. Given categories 3 and � and an object . of � , the constant functor�
. �*3 " � sends any object � of 3 to . and any morphism � ��� " � of3 to ����� ��. "�. .

4. Given a set � , recall that the powerset �!%
� ( is the set of subsets of � . We

can define a functor �!%
� (��C2 3
� " 243

�
which is given by

� ��� " � �" �!%
� ( ���!%5� ( " �!%5� (�1

where � ��� "�� is a function and �!%
� ( is defined by

�!%
� (�%
� � ( )+*-,� , � %
< � ( � < � 	B� � ;
where � �:	 �!%
� ( . We call �!%
� ( �C243

� "�243
�

the covariant powerset functor.

5. Given functors
� �&3 " 3 � and � � � " �*� , the product functor

� 9�� �&3 9 � " 3 � 9 � �
assigns the morphism % � � 1	��� (��4% � � 1 � .!( " % � �1� 1 � . � ( to any morphism

%
� 1!� (��4%
� 1�.!( " %
�$� 1�. � ( in 3;9 � .

6. Any functor between two preorders � and � regarded as categories is pre-

cisely a monotone function from � to � .

It is an Exercise to check that the definitions define functors between cate-

gories.
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3.3 Natural Transformations

Let 3 and � be categories and
� 1	� �*3 " � be functors. Then a natural trans-

formation � from
�

to � , written � � � " � , is specified by an operation which

assigns to each object � in 3 a morphism � � � � � " � � in � , such that for any

morphism � ��� "�� in 3 , we have � �0/�� ��� � � / � � . We denote this equality

by the following diagram

� � � � + � �
� �

� �
�

� �

+ � � � ��

which is said to commute. The morphism � � is called the component of the

natural transformation � at � . We also write � � � " � �&3 " � to indicate that

� is a natural transformation between the functors
� 1	� �*3!" � . If we are given

such a natural transformation, we refer to the above commutative square by

saying “consider naturality of � at � ��� "�� .”

1. Recall the functor
� �!243

� "�2 3
�

defined on page 14. We can define a nat-

ural transformation � 33# � � " �
which has components � 3�# � � �!� �#" �!� �

defined by � 33# � %5< ��( ) *-,� �����&��� �  
#" 

�!< / 1423242�1�<
	 7:9 �$" � <
	 7 9 1324232�1�< / �

where �!� � is the set of finite lists over � (see Appendix). It is trivial to see

that this does define a natural transformation:

� � / � 3�# � % � < / 132423231�< 	 7 9 � ( � � � %
< 	 7 9 ( 142323231�� %5< / (�� � � 33# � / � � % � < / 142324231�< 	 7:9 � ( 2
2. Let � and � be sets. Write � "�� for the set of functions from � to � , and

let %�� "�� (�9 � be the usual cartesian product of sets. Define a functor
� � �!2=3

� "�243
�

by setting
� � %
� (

)+*-,
� %�� "/� (�9 � where � is any set and

letting
� � %
� ( � %�� "�� ( 9 � 
 " %�� "�� (19 �

be the function defined by %�� 1 � ( �" %
� / �&1 � ( where � ��� " � is any func-

tion and %�� 1 � (
	 %�� " � ( 9 � . Then we can define a natural transfor-
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mation �4� � � � " ������� � by setting � � � %��&1 �&(
)+*-,
� �&% � ( . To see that we have de-

fined a natural transformation � � with components � � � � %�� "�� ( 9 � " �
let � ��� "�� be a set function, %��&1 � ( 	�%�� " � (�9 � , and note that

% ��� ��� � %
� ( /+�4� ��(3%��&1 � ( � � % �4� � %�� 1 � ( (
� � %��&% � ( (
� � � � %
� /0�&1 �&(
� � � � % � � %
� (�%��&1 �&( (
� % �4� � / � � %
� (5(�%��&1 �&( 2

It will be convenient to introduce some notation for dealing with meth-

ods of “composing” functors and natural transformations. Let 3 and � be

categories and let
�

, � ,
�

be functors from 3 to � . Also let � � � " � and
� � � " �

be natural transformations. We can define a natural transformation
� / � � � " �

by setting the components to be % � / � ( � )+*-,� � � / � � . This yields

a category � � with objects functors from 3 to � , morphisms natural transfor-

mations between such functors, and composition as given above. � � is called

the functor category of 3 and � . As an Exercise, given categories 3 and � , ver-

ify that � � is indeed a category. For example, one thing to check is that
� / �

as defined above is indeed natural.

An isomorphism in a functor category is referred to as a natural isomor-

phism. If there is a natural isomorphism between the functors
�

and � , then

we say that
�

and � are naturally isomorphic.

Lemma 1. Let � � � " � �&3 " � be a natural transformation. Then � is a natu-

ral isomorphism just in case each component ��� is an isomorphism in � . More

precisely, if we are given a natural isomorphism � in � � with inverse
�

, then

each
�
� is an inverse for ��� in � ; and if given a natural transformation � in

� � for which each component � � has an inverse (say
�
� ) in � , then the

�
� are

the components of a natural transformation
�

which is the inverse of � in � � .

Proof. Direct calculations from the definitions, left as an Exercise.

In order to consider categorical models of syntax, we shall require some

notation and facts concerning a particular functor category. The following

definitions will be used in Section 4.
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Recall the category � defined on page 12. The functor category which will

be of primary concern is 2 3
���

. We will write
�

for it. A typical object
� � � " 243

�
is an example3 of a presheaf over � . A simple example is given by the powerset

functor � , defined on page 15, restricted to sets of the form $ . Another (trivial)

example is the empty presheaf � which maps any � � $ " % to the empty

function with empty source and target.

Now let
�

and
� � be two such objects (presheaves). Suppose that for any $

in � ,
� � $�* � $ , and that the diagram

� � $ * � $

� � $ �
� � �

�

* � $ �
� �

�

commutes for any � � $ " $ � . This gives rise to a natural transformation, which

we denote by �5� � ��� " �
.

We also need a functor �8� � " �
. Suppose that

�
is an object in

�
. Then

� � is defined by assigning to any morphism � � $ " $ � in � the function

%�� � ( � )+*-,� � % � � ��� 9 ( �
� % $1�&'�( 
 " � % $ � �<' (

If � � � " � � in
�

, then the components of � � are given by %�� � ( 6
)+*-,
� � 6��<9 . It

is an Exercise to verify all the details.

Lemma 2. Suppose that %�	�
 � �=% �0( is a family of presheaves in
�

, with

��
��
	�
�� " 	�
 �<9 for each � . Then there is a union presheaf � in
�

, such that

� �
 �
	 
 � "�� . We sometimes write � 
 	 
 for � .

Proof. Let � � $ " $ � be any morphism in � . Then we define � $ )+*-,��� 
 	�
�$ , and

the function � � ��� $ "�� $ � is defined by %�� � (�%�� ( )+*-,� %�	 
 � (�%�� ( where � 	�� $ ,

and � is any index for which ��	�	�
�% $.( . It is an Exercise to verify that we have

defined a functor. Why is it well-defined? Hint: prove that

%32 �)1�� � % �0(3% � � % � ��� 	�
�� "�	�

 '(
Lemma 3. Let %�!"
 �
	�
 " � � � % �0( be a family of natural transformations in

�
with the 	�
 as in Lemma 2, and such that !�
 � 9 / ��
 �#!"
 . Then there is a unique

natural transformation !<��� "�� , such that ! /�� �
 �#! 
 .
3 In general, we call $&%('*) the category of presheaves over + .
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Proof. It is an Exercise to prove the lemma. The proof requires a simple calcu-

lation using the definitions. Hint: Note that there are functions ! 6 ��� $ " � $
where we set ! 6 %�� (

) *-,
� %�!"
�( 6 %�� ( for �
	 	�
�$ . The conditions of the lemma (triv-

ially) imply the existence and uniqueness of the ! 6 , which are natural in $ .

3.4 Products

The notion of “product of two objects in a category” can be viewed as an ab-

straction of the idea of a cartesian product of two sets. The definition of a

cartesian product of sets is an “internal” one; we specify the elements of the

product in terms of the elements of the sets from which the product is com-

posed. However the cartesian product has a particular property, namely

(Property
�

) Given any two sets � and � , then there is a set � and func-

tions ����� " � , � �'��� " � such that the following condition holds: given any

functions � ��� " � , �&��� " � with � any set, then there is a unique function

	:�A� "�� making the diagram

�

�
� �

�
�	�

�
�

	
�

� � + �
commute. End of definition of (Property

�
).

Let us investigate an instance of (Property
�

) in the case of two given sets �
and � . Suppose that �

)+*-,
� ,'< 1�@ ; and �

)+*-,
� ,�
)1�� 1 �0; . Let us take � to be � 9 �

)+*-,
�

,�% �<1 � ( � � 	 � 1 � 	 ��; and the functions � and � � to be coordinate projection

to � and � respectively, and see if %�� 1
��1
� � ( makes the instance of (Property
�

)

for the given � and � hold. Let � be any other set and � �A� "�� and � �A� " �
be any two functions. Define the function 	.��� "�� by � �" %
� % �8( 1!�&% ��(5( . We

leave the reader to verify that indeed � ��� /�	 and � ��� � /�	 , and that 	 is

the only function for which these equations hold with the given � and � . Now

define �4� ) *-,� , ' 1 � 1 , 1
� 1�� 1�� ; along with functions �.���4� " � and �8���4� " �
where � %9'�( 1 �<% � ( 1 � % , ( � < � % ' (�1�� %��8( ��
� %��8( 1 �<%�� ( 1 � %���( � @ � % �0( 1�� %�� ( � �

� % , ( 1�� %��0( � �
In fact %�� � 1 �<1���( also makes the instance of (Property

�
) for the given � and �

hold true. To see this, one can check by enumerating six cases that there is a
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unique function 	:�A� " �4� for which � � �1/�	 and � � �0/�	 (for example, if

��	 � and � % � ( � < and �&% � ( � � then we must have 	<% �&( � � , and this is one

case).

Now notice that there is a bijection between � (the cartesian product

,�%
< 1�
3( 1 %5< 1��8( 1 %5< 15�)(�14%
@)1�
3(�14%
@)1��8( 14%
@�15�)( ;

of � and � ) and �1� . In fact any choices for the set � can be shown to be

bijective. It is very often useful to determine sets up to bijection rather than

worry about their elements or “internal make up,” so we might consider tak-

ing (Property
�

) as a definition of cartesian product of two sets and think of

the � and � � in the example above as two implementations of the notion of

cartesian product of the sets � and � . Of course (Property
�

) only makes sense

when talking about the collection of sets and functions; we can give a defini-

tion of cartesian product for an arbitrary category which is exactly (Property
�

)

for the “category” of sets and functions.

A binary product of objects � and � in a category 3 is specified by

� an object � 9>� of 3 , together with
� two projection morphisms � � ��� 9B� "�� and � � ��� 9 � "�� ,

for which given any object � and morphisms � �A� "�� , �&��� "/� , there is a

unique morphism
� � 1C��� �A� "��>91� for which � ��/ � � 1C��� �(� and � � / � � 1C��� �7� .

We refer simply to a binary product � 9�� instead of %
� 9���1�� � 1�� � ( , with-

out explicit mention of the projection morphisms. The data for a binary prod-

uct is more readily understood as a commutative diagram, where we have

written !4? to mean “there exists a unique”:

�

�

� �
�

� �
� � � 9 �

!=? � � 1C���
�

� �

+ �
Given a binary product � 9 � and morphisms � ��� " � and �&��� " � , the

unique morphism
� � 1C��� ��� "�� 9>� (making the above diagram commute) is

called the mediating morphism for � and � . We sometimes refer to a property

which involves the “existence of a unique morphism” leading to a structure
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which is determined up to isomorphism as a universal property. We also call� � 1C��� the pair of � and � . We say that the category 3 has binary products if

there is a product in 3 of any two objects � and � , and that 3 has specified

binary products if there is a given canonical choice of binary product for each

pair of objects. For example, in 243
�

we can specify binary products by setting

� 9 �
)+*-,
� , %5< 1�@�( ��< 	 � 1�@ 	 � ; with projections given by the usual

set-theoretic projection functions. Talking of specified binary products is a

reasonable thing to do: given � and � , any binary product of � and � will be

isomorphic to the specified �89>� .

Lemma 4. A binary product of � and � in a category 3 is unique up to isomor-

phism if it exists.

Proof. Suppose that %�� 1 � � 1 � � ( and %��4�'1"�(�� 1 �'�� ( are two candidates for the bi-

nary product. Then we have
� �=� 1"� � � ��� " �1� by applying the defining prop-

erty of %��1� 1 �'�� 1 �(�� ( to the morphisms � � ��� " � , � � ��� " � , and further� �(�� 1"�(�� �����1� " � exists from a similar argument. So we have diagrams of the

form

�

�

� � � �

�
� � � �� � �

� � � 1"� � �
�

� �� + �
� �

�

�'�� �'��
�

� � � � �

� �(�� 1 �'�� �
�

� �

+ �
But then �

) *-,
� � �'�� 1 �'�� � / � � � 1"� � � ��� " � and one can check that �=� / ��� � �

and that � � / � � � � , that is � is a mediating morphism for the binary product

%�� 1 � � 1 � � ( ; we can picture this as the following commutative diagram:

�

�

� � � �

�
� � � � �

�
�

� �

+ �
But it is trivial that ����� is also such a mediating morphism, and so uniqueness

implies ��� ��� � . Similarly one proves that
� � � 1"� � � / � � �� 1 � �� � � ��� �  , to deduce

� /� �1� witnessed by the morphisms
� � � 1"� � � and

� �'�� 1 �'�� � .
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Here are some examples

1. The category � � 3 � 3 � has binary products. Given objects �
)+*-,
� %�� 1 � � ( and

�
)+*-,
� %�	 1 � 
 ( , the product object � 9B� is given by %�� 9 	 1 � ��� 
 ( where

� 9 	 is cartesian product, and % �.1 � ( ����� 
 % �(� 1 ��� ( just in case � �
� �(�
and � � 
 � � . It is an Exercise to check the details.

2. The category �
� � � has binary products. Given objects � and � , the binary

product object is defined by

%
�89 � (���%5�89�,�� � ;�(���%
� 9 ,�� � ;�(

where 9 is cartesian product, and � � and � � are distinct elements not in

� nor in � . The project � � is undefined on � 9�,�� � ; and � � is undefined

on � 9 ,�� � ; . Of course � � %
< 1�� � ( �:< for all < 	 � , and � � %
@�1�� � ( �:@ for

all @ 	B� .

3. The category � has binary products. The product of $ and % is written

$ 9 % and is given by $�� % , that is, the set , � 1323242 14% $�� % ( 
 '�; . We leave

it as an Exercise to formulate possible definitions of projection functions.

Hint: Think about the general illustration of products at the start of this

section.

4. Consider a preorder %�� 1 � ( which has all binary meets � ) � for �<1 � 	 � as

a category. It is an Exercise to verify that binary meets are binary products.

It will be useful to have a little additional notation which will be put to use

later on.

We can define the ternary product � 9 � 9 � for which there are three

projections, and any mediating morphism can be written
� � 1C�&1�	 � for suitable

� , � and 	 . It is an Exercise to make all the definitions and details precise.

Let 3 be a category with finite products and take morphisms � ��� "�� and

� � ��� � "�� � . We write

� 9>� � ��� 9>� � "�� 9>� �
for the morphism

� ��/ ��1�� ��/ � � � where ����� 9 � � "�� and � �'��� 9 � � "�� � . The

uniqueness condition (universal property) of mediating morphisms means

that in general one has

��� � 9
�)� �� :� ��� ���+�� and %�� 9 � � ( / %
� 9B� � ( �7��/�� 9 � � /�� � 1
22



where �&��� " � and � �'��� � " �$� . Thus in fact we have a functor

9 �*3;9-3 
 " 3
where 3 9 3 is a product of categories. Note that we sometimes write the image

of %
� 1�� ( or %
� 1A� ( under 9 as � � or ��� .

We finish this section with another example, and some exercises.

The category
� ) *-,

� 2 3
���

has binary products. If
�

and
� � are presheaves in�

, the product object
� 9 � �'��� " 2=3

�
is defined on objects $ in � by

% � 9 � � ( $ )+*-,� % � $.(�9 % � � $.( 2
Now let � � $ " $ � be a morphism in � . Hence % � 9 � � ( � should be a morphism

with source and target

% � $.(�9 % � � $.( 
 " % � $ � (�9 % � � $ � (
In fact we define % � 9 � � ( � )+*-,� % � � ( 9 % � � � ( where we consider 9 �!2=3

�
9 2=3

�

$"

243
�
. The projection � � � � 9 � � " �

is defined by giving components %�� � ( 6
)+*-,
�

� � 6 where $ is an object of � , with � �  defined similarly.

1. Verify that the projections are natural transformations (morphisms in
�

),

and that these definitions do yield a binary product.

2. Verify the equalities (uniqueness conditions) given above.

3. Let 3 be a category with finite products and let.
� � "�� � ��� "�� �&��� "��
	.��� " . � ��� "��

be morphisms of 3 . Show that

%
	 9 � ( / � � 1C��� � � 	 /�� 1 � /0��� � � 1C��� / . � � � / . 1C�0/ . �
3.5 Coproducts

A coproduct is a dual notion of product. A binary coproduct of objects � and

� in a category 3 is specified by

� an object � � � of 3 , together with
� two insertion morphisms �
� ��� "�� � � and � � ��� "�� � � ,
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such that for each pair of morphisms � ��� " � , � ��� " � there exists a unique

morphism � � 1!� � ��� �;� " � for which � � 1C����/ � � � � and � � 1!� ��/ � � � � . We can

picture this definition through the following commutative diagram:

� �5� + � � � �
� � �

�
� �

�

�

� � 1C���
�

1. In the category 2=3
�
, the binary coproduct of sets � and � is given by their

disjoint union together with the obvious insertion functions. We can de-

fine the disjoint union � � � of � and � as the union %5�79�, '�;)( �!%5� 9�, �8;)(
with the insertion functions

� � � � "�� � � � � � � �

where �
� is defined by < �" %5< 1 ' ( for all < 	(� , and � � is defined analo-

gously. Given functions � ��� " � and �&��� " � , then � � 1!� � ��� �7� " � is

defined by

� � 1C��� %�� ( )+*-,� �����&� � ���
�
� %��#� ( ��%��#� 1 ' ( �" � %��#��(
� � %�� � ( ��%�� � 1 � ( �" � %�� � (

We sometimes say that � � 1!� � is defined by case analysis.

2. The category � � 3 � 3 � has binary coproducts. Given objects �
) *-,
� %�� 1 � � (

and �
) *-,
� % 	 1 � 
 ( , the product object � � � is given by %���� 	 1 � � � 
 (

where � � 	 is disjoint union, and � � � � 
 �	� just in case �
� % �.1+'�( and

�	� � % �(� 1 ' ( for some �.1 �'� such that �2� � �'� , or � ��% �&1 � ( and �	� � % ��� 1 �0( for

some �&1 � � such that � � 
 � � . It is an Exercise to check the details.

3. In � the coproduct object of $ and % is $ � % where we interpret � as

addition on � . It is an Exercise to work out choices of coproduct insertions.

What might we take as the canonical projections?

4. Suppose that
�

and
� � are presheaves in

�
. Let � be any object or mor-

phism of � . We define
� � � � by setting % � � � ��( � )+*-,� % � � ( �-% � � � ( , where

the latter � means coproduct in 2 3
�
, extended to morphisms in the sec-

tion immediately after these exercises (recall the definition of products in
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� ( ! The insertion morphism (natural transformation) � � � � � � � " �
has

components % � � ( 6
) *-,
� � � 6 � %

� $.( � % � � $.( " � $ . �"�� is defined analogously.

We leave it as an Exercise to verify that
� � � � is indeed a functor, that the

insertions are natural, and that the definitions above do give rise to binary

coproducts.

5. When does a preordered set have binary coproducts?

We end this section with notation that will be used later on.

One can define the ternary coproduct of three objects, which will have

three insertions, and mediating morphisms � � 1C�&1�	�� . Fill in the details as an

Exercise. Of course we can generalize to an $ -ary coproduct, and call the me-

diating morphism a cotupling.

Let 3 be a category with finite coproducts and take morphisms � ��� "/�
and � � ��� � "��*� . We write

� � � � ��� � � � "�� � � �
for the morphism � � � / � 1 � �  / � � � where � � ��� "�� � �*� and � �  ��� � " � � �*� .
The uniqueness condition of mediating morphisms means that one has

��� � � �)� �� � ��� � � �� and %���� � � ( / %
� � � � ( � ��/�� � � � /�� � 1
where �&��� " � and � �'��� � " �$� . So we also have a functor� �*3;9-3 
 " 3
In a category with binary coproducts, then for any morphisms � 1!� 1A	:1 � 1

.
with

certain source and target, the equalities. / � � 1!� �&� �

. /�� 1 . /0� � � � 1C��� / %
	 � � ( ��%
� /�	 ( � %���/ � (
always hold due to the universal property of (binary) coproducts. What are the

sources and targets? Prove the equalities.

3.6 Algebras

Let
�

be an endofunctor on 3 , that is a functor
� �*3 " 3 . An algebra for the

functor
�

is specified by a pair %
� 1�� � ( where � is an object of 3 and � � � � � "
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� is a morphism. An initial
�

-algebra % � 1 ���)( is an algebra for which given any

other %5� 1 � � ( , there is a unique morphism � � � " � such that

��� ��� + �

� �

� �
�

� �
+ � ��

commutes. As an Exercise, show that if � � � ��� " �
is initial, then so too is

���  � ��� � " � � where
� � is any object isomorphic to

�
, and ���  is a morphism for

you to define.

One reason for defining initial algebras is that certain datatypes can be

modeled as instances. Here is the rough idea. Each constructor of a datatype

can be thought of as a coproduct insertion.4 Each constructor is applied to a

finite number (eg 2) of expressions, constituting a tuple of expressions. This

can be thought of as a product (eg binary). The datatype


���������� � ������
���������
�����
����

corresponds to (is modeled by) an object � � � � % � 9 � ( . The recursiveness

of the datatype declaration is modeled by requiring

� /� � � � � % � 9 � ( �

In these notes we shall see how to solve an equation such as � in the category

243
�
. In fact if we define a functor � �!2=3

� " 243
�

by � � )+*-,� �
� � ��� %�� 9 � ( , then

it will turn out that the solution we would construct using the methods below

is an initial algebra % ��� 1 � ( . We now give a few examples, and illustrate the

solution method.

3.7 The Functor 	�

�����������������������

We write '0�C243
� " 243

�
for the functor which maps any function � ��� " � to

����� � !)�3,�� ; " ,�� ; where , � ; is a one element set. Note that we will often also

write ' for such a set. The functor maps � ��� "�� to ��� 9 � � � ' � � " '#� � .

4 Such insertions must be injective. There are categories in which insertions are not
injective! In all of the examples in these notes, however, insertions will be injective.
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The initial algebra is � up to isomorphism. We show how to construct an

initial algebra—the method will be applied in later sections, in adapted form,

to produce models of datatypes which represent syntax (see Section 2).

We set 	 /
) *-,
� � and 	�
 �<9

) *-,
� ' ��	�
 . Note that there is a coproduct inser-

tion ����� � 	 
 " 	 
 �<9 . Note also that there is an inclusion5 function (morphism)

��
��
	�
 � "�	�
 � 9 where � /
)+*-,
� � �
	 / "�	 9 , and ��
 �<9

) *-,
� ��� 9 � ��
 . The difference is an

elementary, but subtle, point! For example, we have � 9 1 �����)�
	 9 " 	 � �=' � 	 9
for which � � ��% �81 ' (���% % � 1+'�( 1 �0( , where % �81 ' (+	 	 9 � ' � � . But � 9 � ��� 9 � � / and

so

� 9 % � 1+'�( � � � 9 /���� 9 1 � � � /�� / � % � 1+'�( � � 9 /���� 9 % � ( � % �81+'�(
We also write � �
 � 	 
 � " � where � ) *-,

� � 
 	 
 , and claim that � is the object

part of an initial algebra for ' ��% 
 ( . Note that as ��� � ' � � " � , �	� must be the

copair of two morphisms. We set � �
)+*-,
� � � 1 � � � where

� � ' " � and
� � ��� " � ,

with
�

and
� � defined as follows. Note there is a function

' � 9 + '#� �-� 	 9
� �9 + �

and we set
� ) *-,� � �9 / � 9 . Note there are also functions

	 
 � � � + '#��	 
 � 	 
 �<9
� �
 �<9 + �

whose composition we call
� �
 . It is an Exercise to check that

� �
 � 9 / ��
 � � �
 by

induction on � . Hence we can legitimately define the function
� � ��� "�� by

setting
� � %�� ( )+*-,� � �
 %�� ( for any � such that � 	 	 
 .

We have to verify that ��� � ' � � " � is an initial algebra, namely, there is

exactly one commutative diagram

'#� � �	� + �
'#� ���� 9 � �

�

�
+ � ��

for any such given � . We define a family of functions � 
 �
	�
!" � by setting

� /
)+*-,
� � � 	 / "-� , and recursively � 
 �<9

) *-,
� � �-/ � 9 1A�-/ �
� / � 
 � . It is an Exercise

5 That is,

���
�
�� �"� for all ��� � .
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to check that � 
 � 9 / ��
 � � 
 . Hence we can legitimately define �<�(� " � by

� %�� ( )+*-,� � 
 %�� ( for any � where � 	 	 
 .
To check that the diagram commutes, we have to prove that

� / � � 1 � � �&�(� / %���� 9 � � (
By the universal property of coproducts, this is equivalent to showing

� � / � 1 � / � � �&� � � / � 9 1�� / � � / � �
which we can do by checking that the respective components are equal. We

give details for � / � � �(� / �
� / � . Take any element � 	 � . Then we have

� % � � %�� (5( � � % � � ��%�� ( (
� � 
 �<9 % � � �8%�� (5(
� � � / � 9 1A� / � � / � 
 � % ��� �0%�� ( (
�(� % �
� % � 
 %�� ( (5(
�(� % � � % � %�� (5( (

The first equality is by definition of
� � and

� �
 ; the second by definition of � ; the

third by definition of � 
 �<9 .
A final Exercise is to check that � /� �

.

3.8 The Functor � 
 ��������� �������������
Let � be a set, � denote coproduct. Then the functor � � % 
 ( has an initial

algebra %
�89�� 1 � ����� ( where � �����.��� � %5�89���( "��89�� is defined by

� �����<%�� ( ) *-,� ������� � ���
�
� %5< ( �" %
< 1 �0(
�
�����<%
< 1 $.( �" %
< 1 $-�&'�(

where �
� and �
����� are the left and right coproduct insertions, and $;% � .

Then given any function � ��� � 	 " 	 , we can define � where

� � %
�89
��( � ����� + � 9
�

� ��	���+� � �
�

�
+ 	 ��
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by setting

� %
< 1 �0( ) *-,� � % � � %
< ( (
� %5< 1 $1�<' ( ) *-,� � % � ����� % �<%
< 1 $.( (5(

3.9 The Functor 	�

� � � � � � ����� �������

For
� % ' we define the set �

�
to be the collection of functions ,�' 1423242 1 � ;0"�� .

We identify � with � 9 ; an element < 	 � is essentially a function ' " � . If

< 	;� and

.
	 � � , then we define <

.
	 � � � 9 by <

.
% ' (

) *-,
� < and <

.
%���(

) *-,
�

.
%�� 
 '�(

for � % � .

The functor ' ��%
� 9 
 ( has an initial algebra %�� 1 ��� ( , where we set �
)+*-,
�

, ��� � ; ��%�� 9 	
����
 �
� ( , and � � � '#� %
�89�� ( "�� is defined by

� � % � 9 % ��(5(
)+*-,
� ��� �

� � % �
��� � %5< 1 $ �

.
(5(
)+*-,
� <

� � % �
��� � %
< 1

.
(5(
)+*-,
� <

.
It is an Exercise to verify that this does yield an initial algebra.

4 Models of Syntax

Recall that in Section 2 we defined the syntax terms of an object level program-

ming language by making use of recursive datatypes. Note the phrase “making

use of”. Recall (pages 4 and 26) that we would like to have an ideal situation

(IS) in which

– we could write down a recursive datatype, whose elements are precisely

the terms which we are interested in; and

– we have a mathematical model of our syntax which is given as a solution

to a recursive equation derived directly from the datatype.

Unfortunately, this is not so easily done when we are considering syntax in-

volving binding. It can be done (as is well known, and illustrated in these

notes) for simple syntax terms which involve algebraic constructors, such as

the example in Section 2.1. We can come close to (IS) for binding syntax, but

we can’t achieve it exactly using the traditional techniques described here.
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In Section 2.1 we wrote down a datatype for expressions � , and then re-

stricted attention to expressions for which � 6  /! # � , that is, the variables oc-

curring in � must come from � / 132423241 � 687 9 . This does not conform to standard

practice. We would expect to deal with expressions specified using metavari-

ables � which would denote any of the actual variables � � . We could of course

change the judgement � 61 /! # � to �  "! # � (as in Section 2.3 and recall the ex-

ercise at the end of Section 2) where � is any finite environment of metavari-

ables � / 132423241 � 6 7 9 and any ��� denotes an actual variable. In this case, the ex-

pressions � such that �  "! # � correspond exactly with the expressions given

by the datatype, and moreover are the terms of the object syntax. Further, we

have a mathematical model described in the first half of Section 4.1, and we

manage to achieve (IS).

The reason for describing the judgements � 6� /! # � in this simple setting,

is that they illustrate a methodology which we must apply if we are to get

near to (IS) when dealing with binding syntax. In order to “avoid” the extra

infrastructure of � -equivalence, and define the terms of the � -calculus induc-

tively (although not exactly as the elements of a datatype), we can restrict to

environments � 6 so that we can choose unique, explicit binding variables in

abstractions. Further, the use of environments � 6 with variables chosen sys-

tematically from a specified order will be used crucially when formulating the

mathematical models in presheaf categories. Here is the rough idea of how we

use presheaves over � to model expressions. A presheaf associates to every $
the set of expressions whose (free) variables appear in � 6 . And given any mor-

phism � � $ " $ � in � , the presheaf associates to � a function which, roughly,

maps any expression � to

� , ��� " / & 1324232�15��� " 6 7 9 & ����/ 142323231 �8687 9);
Thus � renames the (free) variables in � .

In this section we give some mathematical models of each system of syntax

from Section 2. In each case, we

Step 1 define an abstract endofunctor over
� ) *-,

� 2 3
���

, which bears similari-

ties to the datatype in question;

Step 2 construct an initial algebra � for the endofunctor;

Step 3 show that the datatype and system of syntax gives rise to a functor


���� ��� " 243
�
, that is a presheaf in

�
;
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Step 4 complete the picture by showing that � /� 
���� so that � forms an ab-

stract mathematical model of the syntax.

Note: In the remainder of this section, we make considerable use of the

notation and lemmas in Section 3.3, the fact that the category
� � 2 3

� �
has

products and coproducts, and the fact that both 9 and � can be regarded as

functors.

4.1 A Model of Syntax with Distinguished Variables and without Binding

Step 1 We define a functor ��� which “corresponds” to the signature of Sec-

tion 2.1. First, we define the functor � ��� "�243
�
. Let � ��% " $ in � . Then we

set �2% ) *-,
� ,<� / 1323242�1 � � 7 9 ; and � � % �8� (

) *-,
� � � � . It is trivial that � is a functor.

Recall that 2 3
� �

has finite products and coproducts, and moreover that the

operations � and 9 can be regarded as functors. Thus we can define a functor

��� �C243
��� "�243

�*�
by setting ����� )+*-,� � ���0� � � where � is either an object or a

morphism.

Step 2 We now show that the functor ��� has an initial algebra, which we de-

note by ��� � � � � " �
. We define � as the union of a family of presheaves

%�	�
 � � % �0( which satisfy the conditions of Lemma 2. We set 	 /
)+*-,
� � which is

the empty presheaf, and then set

	 
 � 9
)+*-,
� � � 	 
 � � � 	 
 ��	 �


We now check that the conditions of Lemma 2 hold, that is, � 
 �
	�
 � " 	�
 �<9 for

all �;% � . We use induction over � . It is immediate that � / � 	 / � " 	 9 from the

definition of 	 / . Now suppose that for any � , � 
�� 	�
�� "�	�
 �<9 . We are required to

show that � 
 �<9 �
	 
 �<9 � " 	 
 � � , that is, for any $ in � ,

� $ � 	�
 $1� %�	�
+$.( � * � $ � 	�
 �<9 $1� %�	�
 �<9 $.( �

� $ � � 	�
�$ � � %�	�
 $ � ( �
� � ��	�
 � � %�	�
 � ( �

�

* � $ � � 	�
 � 9 $ � � %�	�
 �<9 $ � ( �
� � ��	�
 �<9 � � %�	�
 �<9 � ( �

�

It follows from the induction hypothesis, 	 
 $�* 	 
 �<9 $ , and the definition of �
and 9 in 243

�
, that we have subsets as indicated in the diagram. As an Exercise
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make sure that you understand this—you need to examine the definitions of

9 and � . In fact the top inclusion is the component at $ of the natural trans-

formation ��� ��
 � ��� �-� ��
 � � �
 . Thus we have � 
 �<9 � ��� ��
 . It is an Exercise to

check that the diagram commutes. Thus we can define
� ) *-,� � 
 	 
 in

�
.

Next we consider the structure map � � . This natural transformation in
�

has source and target � � � � � � " �
and so it is given by ���

)+*-,
� � � 1 � � 1 � � � � ,

the cotupling of (insertion) natural transformations

� ��� " �

� � � � " �

� � �.� � ��" �

For the first morphism, note that � /� 	 9 , so that � � � /� 	 9 � " �
. It is a simple

Exercise to check that you understand the definition of � ; do not forget that

	 9 � � ��� ��� � , and so 	 9 $ � � $�9 ,�'�; . We define � � by specifying the family

of morphisms

� �
 �
	�
 � � � + � � 	�
 � 	 �
 ��	�
 �<9 � " �

and appealing to Lemma 3. Note that � �
 is natural as it is the composition of

natural transformations. We must also check that � �
 �<9 / � 
 � � �
 . To do this, we

have to check that the following diagram commutes

	 
 � 9
��� ��� � + 	 
 � � � " + �

	�

��

�

� � �
+ 	�
 �<9
��
 �<9

�

� " + �
����������

The right hand square commutes trivially. The left commutes by applying the

fact (deduced above) that � 
 � 9 � ��� � � � 
 � ���
 . We can also define � � � by applying

Lemma 3, but the definition requires a little care. Write 	 �
 )+*-,� 	 �
 . Consider the

family of morphisms

� � �
 � 	 �
 � 	 �
 � ���� + � � 	�
 � 	 �
 ��	�
 �<9 � " �

We can check that the � � �
 satisfy the conditions of Lemma 3, and so they define

a morphism � � � �	� "�� where �
) *-,
� � 
 	 �
 . But note that (why!?)

��$��#� 
 	 �
 $ ��� 
 %�	�
 $.( � ��%�� 
 	�
 $.( � ��%�� $.( � � � � $
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and one can also check that � � � � � � . Hence � � � � , and we have our defi-

nition of � � � . Thus � � is defined in
�

, as this category has ternary coproducts.

We verify that � � � ��� � " �
is an initial algebra. Consider

� � � � � � ��� + �
% ��(

� � � � � �

� � � � � �
�

� + � ��

To define �+� � "�� we specify a family of natural transformations � 
 � 	 
 "��
and appeal to Lemma 3. Note that � / � � " � and thus we define � / to be the

natural transformation with components the empty functions � � � " � $ for

each $ in � . Note that

� 
 �<9 �
	�
 �<9 � � � 	�
 � 	 �
 "��

and hence we can recursively define � 
 � 9
)+*-,
� � �-/ � � 15�-/ � � / � 
 1 �-/ � � � / � �
 � . It

follows very simply, by induction, that the � 
 are natural; if � 
 is natural, then

so too is � 
 �<9 , it being the cotupling of compositions of natural transforma-

tions. It is an Exercise to verify by induction that the conditions of Lemma 3

hold, that is, � 
 �<9 /���
 � � 
 for all � % � .

Using the universal property of finite coproducts, proving that the diagram

% ��( commutes is equivalent to proving

� � / � 1 � / � � 1 � / � � � � � � / � � 15� / �
� / � 1 � / � � � / � � �
which in turn is equivalent to proving that the respective components of the

cotuples are equal. We prove that � / � � � � / �
� / �+� � " � . This amounts to

proving that � 6 / � �6 � � 6 / �
� 6 / � 6 � � $ " � $ in 2=3
�

for any $ in � . Suppose

that � is an arbitrary element of
� $ , where � 	 	 
 $ . Then we have

� 6 %
� �6 %�� (5( � � 6 % � � � 6 %�� ( (

��% � 
 �<9 ( 6 % ��� � 6 %�� ( (
� � � 6 / � � 6 15� 6 / �5� 6 / % � 
 ( 6 15� 6 / �C" � 6 & � / % � 
 ( �6 � % � � � 6 %�� (5(
� � 6 % �5� 6 % % � 
3( 6 %�� (5( (
� � 6 % �5� 6 % � 6 %�� (5( (

Each step follows by applying an appropriate function definition.
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Step 3 Suppose that � � $ " $ � is any function. We define


���� � � $
)+*-,
� , � ��� 6  ! # � ;

For any expression � there is another expression denoted by % 
���� � � � ( � which

is, informally, the expression � in which any occurrence of the variable � � is re-

placed by � � " � & . We can define formally the expression % 
 � � � � � ( � by recursion

over � , by setting

– % 
���� � � � (�% � ��� (
)+*-,
� � � �

– % 
���� � � � (�% � ��(
) *-,
� �
% 
���� � � � ( �

– % 
���� � � � (�%'� � ����( ) *-,� � % 
 � � � � � ( � % 
���� � � � ( ���
Further, one can show that if ��	 
 � � � � $ , then % 
���� � � � ( ��	�
���� � � $ � . Thus

we have a function 
���� � � � �$
���� � � $ " 
���� � � $ � for any � � $ " $ � . It is an

Exercise to verify that these definitions yield a functor 
���� � � ��� " 243
�
. Further,

note that there are natural transformations (Exercise) �&� 
���� � � " 
 � � � � and

� �$
���� � � � " 
 � � � � whose obvious definitions are omitted.

Step 4 We have constructed an initial algebra � � � � � � " �
in the category

�
.

We now show that the presheaf algebra
�

is isomorphic to the presheaf 
���� � � .

To do this we need natural transformations !<� � " 
���� � � and
� �$
���� � � "

�
, such that for any $ in � , the functions ! 6 and

�

6 give rise to a bijection

between
� $ and 
 � � � � $ .

To specify !.� � " 
 � � � � we define a family of natural transformations

!&
 �
	�
 " 
���� � � , and appeal to Lemma 3.

– ! / � 	 / � � " 
���� � � has the empty function as components %�! / ( 6 � � "

���� � � $

– Recursively we define

!&
 �<9
) *-,
� � � 1 � / !"
 1 �!/ ! �
 � �
	�
 �<9 � � � 	�
#� 	 �
 " 
���� � �

Note that ! / is obviously natural, and that !�
 �<9 is natural if !"
 is, because
�

has ternary coproducts. It is an Exercise to verify the conditions of the lemma.

To specify
� �$
���� � � " �

, for any $ in � we define functions
�

6 �$
���� � � $ "
� $ as follows. First note that 	 
 $ * � $ for any � by definition of

�
. Then we

define
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–
�

6 %
� �8� (

) *-,
� %'���51+'�(+	 	 9 $

–
�

6 % � �)(
)+*-,
� � � � 6 %

�

6 %'�)( ( where � % ' is the height of the deduction of � �
–

�

6 % � � ��� ( )+*-,� �C" � � 6 & � % % �

6 %'�)( 1
�

6 %'��� ( ( ( where � % ' is the height of the de-

duction of ��� ��� .
We next check that for any $ in � ,

� $
! 6 +/�� �

6

���� � � $

We need the lemma

Lemma 5. For any �;% � , and ��	�	�
 �<9 $ , the expression %�!"
 �<9 ( 6 %�� ( has a de-

duction of height � .

Proof. By induction on � .

Suppose that � 	 	�
 $ * � $ for some � . Then by definition,
�

6 %�! 6 %�� ( ( �
�

6 %5%�!"
�( 6 %�� ( ( . We show by induction that for all � %�� , if � is any element of

	�
 $ and $ any object of � , then
�

6 % %�!"
 ( 6 %�� (5( � � . For ����� the assertion is

vacuously true, as 	 / $ is always empty. We assume the result holds for any

� % � . Let � 	 	�
 �<9 $ � � $ � 	�
 $1��	�
 $ � . Then we have

�

6 % %�!"
 �<9 ( 6 %�� ( ( �
�

6 % �
�
6 1 � 6 / %�!&
�( 6 15� 6 / %�!"
 ( �6 � %�� ( (

We can complete the proof by case analysis. The situation � � � requires a little

care, but we leave it as an Exercise. We just consider the case when � � � � � 6 %��	� (
for some �	�:	 	 
 $ (which implies that � % '�( . We have

�

6 %5%�! 
 �<9 ( 6 %�� (5( �
�

6 %5% � 6 / %�! 
 ( 6 (3%�� � ( ( (1)

� �

6 % �
%�!"
 ( 6 %�� � ( ( (2)

� ����� 6 %
�

6 % %�! 
 ( 6 %�� � (5( ( (3)

� � � � 6 %�� � ( (4)

��� (5)

where equation 3 follows from Lemma 5, and equation 4 by induction. It is an

Exercise to show that ! 6 is a left inverse for
�

6 . By appeal to Lemma 1 we are

done, and step 4 is complete.
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However, by way of illustration, we can check directly by hand that
�

is

natural, that is for any � � $ " $ � the diagram


���� � � $
�

6 + � $

���� � � $ �


���� � � �
�

� �6
+ � $ �

� �
�

commutes. We must prove that for all � 6  /! # � , we have

� � % �

6 % �)( ( �
�

6  % % 
���� � � � (�%'�)(5(

We consider only the inductive case of � � :

� � % �

6 % � ��( ( � � � % � � � 6 %
�

6 % ��(5( (
�#	 
 �<9 � % ��� � 6 %

�

6 % �)( ( (
��% � � ��	�
 � � %�	�
 � ( � (3% % � � � 6 %

�

6 %'�)( (5( (
� ��� � 6 % %�	 
 � (�%

�

6 %'�)( (5(
� � � � 6 % %

� � (3% �

6 % ��(5( (
� ��� � 6  %5%

� �6 % 
 � � � � � % ��(5( (5(
� �

6  % �
% 
���� � � � (�% ��(5(
� �

6  % 
���� � � � % � � (5(

It is an Exercise to check this calculation; the sixth equality follows by induc-

tion.

4.2 A Model of Syntax with Distinguished Variables and with Binding

Step 1 We define a functor which “corresponds” to the signature of Section 2.2.

This is � � � � " �
where � � � )+*-,� �-� � � � � � and � is either an object or a mor-

phism. The functor �8� � " �
was defined on page 18.

Step 2 We can show that the functor � � has an initial algebra, which we de-

note by � � � ��� � " �
, by adapting the methods given in Section 4.1. In fact

there is very little change in the details, so we just sketch the general approach

and leave the technicalities as an Exercise.
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We define a family of presheaves %�	 
 � � % ��( , such that we may apply

Lemma 2. We set 	 /
)+*-,
� � which is the empty presheaf, and set 	 
 �<9

)+*-,
� � � 	 
 .

We must check that the conditions of Lemma 2 hold, that is, � 
0�
	�
 � " 	�
 � 9 for

all �;% � . This can be done by induction over � , and is left as an exercise. We

can then define
� )+*-,� � 
 	�
 in

�
.

Next we consider the structure map � � . This natural transformation in
�

has source and target � � � � � � ��" �
and so it is given by � �

)+*-,
� � � 1 � � 1 � � � � ,

the cotupling of (insertion) natural transformations

� ��� " �

� � ��� � " �

� � �:� � �0" �

The definitions of � and � � � are the same as in Section 4.1. Note that %�� � ( $ )+*-,�
� % $ �5'�( � � 
 	 
 % $ � '�( �#� 
 %�� 	 
 (9$ ��%�� 
 � 	 
 (9$ . In fact we can easily check

that � � �#� 
 � 	�
 , as similar equalities hold if we replace $ by any � . Hence we

can apply an instance of Lemma 3 to give a definition of � � by specifying the

family of morphisms � �
 with the following definition

� �
 �(� 	�
 ��� � + � � � 	�
 � 	 �
 � 	�
 �<9 � " �

Note that we must check to see that � 	 
 � " � 	 
 �<9 for all � . Use induction to

verify this as an Exercise; note that for any
� � � " �

in
�

, we have � � �&� "�� � .

We must verify that � � � ��� � " �
is an initial algebra. Consider

� ��� � � � � � � + �
% � (

� � � � � � �

� ��� � � � �
�

�
+ � ��

To define �+� � "�� we specify a family of natural transformations � 
 � 	 
 "��
and appeal to Lemma 3. We define � / to be the natural transformation with

components the empty functions � � � "�� $ for each $ in � , and

� 
 � 9
)+*-,
� � � / � � 15� / �
� / � � 
�1 � / � � � / � �
 � �
	�
 �<9 � � � 	�
 � 	 �
 "��

The verification that % ��( commutes is technically identical to the analogous

situation in Section 4.1, and the details are left as an Exercise.
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Step 3 Suppose that � � $ " $ � . We write 
���� � � $ for the set , � � � 6� "! # �!;
of expressions deduced using the rules in Figure 2. Let � , $ �+� $ ;�� $ � '�" $ ��� '
be the function

� , $ �+� $ ;8% � (
)+*-,
�  �

if ��� � � $ 
5'
$ � if

� �<$
Consider the following (syntactic) definitions

– % 
���� � � � (�% � � � (
)+*-,
� � � � �

– % 
���� � � � (�% 6 � 6 � (
)+*-,
� 6 � 6  % 
���� � � � , $ �+� $ ; (3%'�)( and

– % 
���� � � � (�% 7 � ����( ) *-,� 7
% % 
 � � � � � ( ��( %5% 
���� � � � ( ��� (
One can prove by rule induction that if � 6. "! # � and � � $ " $ � , then � 6   /!�#
% 
���� � � � ( � . In fact we have a functor 
���� � � in

�
and the details are an Exer-

cise. Note also that there are natural transformations 6 �(� 
���� � � " 
���� and

7&�$
���� � " 
���� , provided certain assumptions are made about the category � !!

The latter’s definition is the obvious one. For the former, the components are

functions 6 6 � 
���� � � % $ � ' ( " 
 � � � � $ defined by � �" 6 � 6 � . Naturality is the

requirement that for any � � $ " $ � in � , the diagram below commutes

%�� 
���� � � ( $ �-
���� � � % $1�&'�( 6 6 + 
���� � � $

%�� 
 � � � � (9$ � �-
���� � � % $ � �<' (%�� 
 � � � � ( � �-
���� � � % � � ��� 9 (
�

6 6  
+ 
 � � � � $ �


���� � � �
�

Note that at the element � , this requires that

6 �86  % 
���� � � � , $ � � $ ;�( � � 6 ��6  % % 
 � � � � % � � ��� 9 ( ( �)(

and by considering when � is a variable, we conclude that this equality holds

if and only if
� , $ � � $ ; � � � ��� 9

which is true only if in � the coproduct insertion � 9 �+'1" % � ' maps � to % ,

and � � �&% " % �&' maps � to � � for any � 	 % .

Step 4 We now show that the presheaf algebra
�

is isomorphic to the presheaf


���� � � . We have to show that there are natural transformations !<� � " 
 � � � �
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and
� �$
 � � � � " �

, such that for any $ in � , the functions ! 6 and
�

6 give rise

to a bijection between
� $ and 
���� � � $ .

To specify !.� � " 
 � � � � we define a family of natural transformations

! 
 �
	 
 " 
���� � � , and appeal to Lemma 3.

– ! / � 	 / � � " 
���� � � has as components the empty function, and

– recursively we define

!"
 �<9
) *-,
� � � 1+6 / � !"
 1 70/ ! �
 � �
	�
 �<9 � � � � 	�
 � 	 �
 " 
���� � �

To specify
� �$
���� � � " �

, for any $ in � we define functions
�

6 �$
���� � � $ "
� $ as follows. First note that 	 
 $ * � $ for any � by definition of

�
. Then we

define

–
�

6 %
� �8� (

) *-,
� %'���51+'�(+	 	 9 $ .

–
�

6 %96 � 6 �)(
) *-,
� � � � " 6 � 9 & %

�

6��<9 % �)( ( where � % � is the height of the deduction

of 6 � 6 � .

–
�

6 % 7 � ����(
)+*-,
� ��" � � 6 & � %5%

�

6 %'�)(�1
�

6 %'��� ( ( ( where � %&� is the height of the de-

duction of 7 � ��� .
We check also that for any $ in � ,

� $
! 6 +/�� �

6

���� � � $

Suppose that � 	 	 
 $�* � $ . Then by definition,
�

6 %�! 6 %�� ( (�� �

6 % %�! 
 ( 6 %�� ( ( .
We show by induction that for all �5%�� , if � is any element in level � and $
any object of � , then

�

6 % %�!"
 ( 6 %�� ( (�� � . For � ��� the assertion is vacuously

true, as 	 / $ is always empty. We assume the result holds for any � % � . Let

� 	 	�
 �<9 $ � � $ � 	�
 % $ �<' ( � 	�
�$ � . Then we have

�

6 % %�!"
 �<9 ( 6 %�� ( ( �
�

6 % �
�
6 1 6 6 / %�!&
�( 6��<9 1 7 6 / %�!"
4( �6 � %�� ( (

We can complete the proof by analyzing the cases which arise depending on

which component � lives in. We just consider the case when � � � � � " 6��<9 & %��	� (
for some �	�:	 	 
 % $-�&'�( . We have

�

6 % %�! 
 �<9 ( 6 %�� ( ( �
�

6 % % 6 6 / %�! 
 ( 6 �<9 (�%�� � (5( (6)

� �

6 %96 �86
%�!"
4( 6��<9 %�� � ( ( (7)
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� � � � " 6 �<9 & 6 %
�

6��<9 %5%�!"
�( 6 �<9 %�� � ( (5( (8)

� � � � " 6 �<9 & 6 %�� � ( (9)

� � (10)

(11)

where equation 8 follows from Lemma 5, and equation 9 by induction. It is an

Exercise to show that ! 6 is a left inverse for
�

6 , and we are done appealing to

Lemma 1.

By way of illustration, we give a sample of the direct calculation that each
�

6 is natural. We prove that for all � 6  !�# � , we have

� � % �

6 % �)( ( �
�

6  % % 
���� � � � (�%'�)(5(

We consider the case of 6 � 6 � ; checking the details is an Exercise.

� � % �

6 %96 � 6 ��( ( � � � % � � � " 6 �<9 & %
�

6 �<9 %'�)(5( (
�#	�
 �<9 � % � � � " 6 �<9 &�%

�

6��<9 % ��(5( (
��% % � � � %�� 	 
 (3% � ( � %�	 
 � ( � ( � (�% � � � " 6 �<9 & %

�

6 �<9 %'�)(5( (
��% % � � � 	�
 % � � ��� 9 ( � %�	�
 � ( � ( � (3% � � � " 6 � 9 &�%

�

6 �<9 % �)( ( (
� � � � " 6  � 9 & %5%�	 
 % � � ��� 9 ( (3%

�

6 �<9 %'�)( (5(
� � � � " 6  � 9 & %5%

� % � � ��� 9 (5(�%
�

6��<9 % �)( ( (
� � � � " 6  � 9 & %5%

�

6  �<9 % 
���� � � % � � ��� 9 (�% ��(5( (
� � � � " 6  � 9 & %

�

6  �<9 % % 
���� � � � , $ � � $ ;�( ��(5( (5(
� �

6  % 6 � 6  % 
 � � � � � , $ � � $ ;)(�% ��( (
� �

6  %5% 
���� � � � (�%96 �86 �)(5(

4.3 A Model of Syntax with Arbitrary Variables and Binding

We define a functor which “corresponds” to the signature of Section 2.3. The

functor ����� � " �
is defined by setting ����� ) *-,� � � � �0� � � . As you see, it is

identical to the functor given at the start of Section 4.2, and thus has an initial

algebra ��� � � � � " �
.

We show in this section that we can define a functor 
������ � in
�

which cap-

tures the essence of the inductive system of expressions given in Section 2.3

and is such that 
 � � � � /� � . We could prove this by proceeding (directly) as we
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did in Section 4, undertaking the steps 2 to 4 of page 30. However, it is in fact

easier, and more instructive, to first define 
���� � � , step 3, and then prove that


���� � � /� 
 � � � � . Given previous results, this gives us steps 2 and 4.

We will need two lemmas which yield admissible rules (see Appendix). The

rules cannot be derived.

Lemma 6. Suppose that �  ! # � , and that � � is also an environment. Then

�*�  �! # � , ���+� ��; .

Proof. We prove by rule induction

%32 �  ! # �)( %32"� � ( % � �  ! # �0, � � � �!;�(

We prove property closure for the rule introducing abstractions 6 ��� . Suppose

that �  �! # 6 � � . Then � 1 �  �! # � . Pick any ��� . We try to prove that

� �  ! # %96 �!��($, � � � ��;

We consider only the case when � 	 ��� at position � , and �
)+*-,
� �	� � % � ( 	!"$#&%'�)( .

We must then prove

� �  ! # 6 � � � , � � 1 � � � � 1 �.; �

which is well-defined as � �	 � and � � �	 �*� . By induction, we have ��� 1 �'�  �! #
� , ���'1 �(��� � 1 �.; . Hence � follows.

Lemma 7. If �  �! # � , and � is a sublist of an environment � 9 , then � 9  �! # � .

Proof. Rule Induction. Exercise.

Back to the task at hand. First we must define 
 � � � � . For $ in � we set


���� � � $
) *-,
� , � � ��0 ��� 6  ! # � ;

Now let � � $ " $ � . We define

% 
������ � � (�% � � ��0 ( )+*-,� � � , ��� /01323242�1 � � " 687:9 & �)�0/01324232315��6 7 9 ; ��0
To check if this is a good definition, we need to show that if � 6  �! # � then

� 6   ! # �0,4� � / 132423241 � � " 687 9 & ����/ 142323241 �8687 9�;
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This follows from Lemma 6 and Lemma 7. We must also check that if there is

any ��� with � /$0 ��� , then

� , � � / 1323242�1 � � " 687:9 & �)� / 1324232315� 6 7 9 ; / 0 � � ,4� �5/ 1324232�15� � " 6 7 9 & ��� / 142323241 � 687 9 ;
This is proved by rule induction for /10 , a tedious Exercise.

We now show that !<�$
������ � /� 
���� � � � �
. The components of

�
are functions

�

6 � 
���� � � $ " 
���� � � $ given by
�

6 % �)(
)+*-,
� � � � 0 . We consider the naturality of

�
at a morphism � � $ " $ � , computed at an element � of 
���� � � $ . We show

naturality for the case � � 6 � 6 � .

% 
������ � � ( / �

6 %�� ( � % 
���� � � � ( � 6 � 6 � ��0
� ��%96 � 6 �)($, � � / 1323242�1 � � " 687:9 & �)� / 1324232315� 6 7 9 ; � 0) *-,
� �

Let us consider the case when renaming takes place. Suppose that there is a
�

for which � % � ( �&$ and � � 	 "$#&%'�)( . Then6

%96 � 6 �)($, � � " / & 1324232�15� � " 6 7 9 & ��� / 142323231 � 687 9 ; �
6 � - �0,4� � " / & 1423242 � � " 6 7 9 & 1 � - ��� / 1324232�15� 6 7 9 1 � 6 ;

where . is 1 plus the maximum of the indices occurring freely in � and the

indices � % ��( 142323241 � % $ 
 ' ( . Thus � % � (�� . for all � � � � $ 
 ' . But the free

variables in � must lie in � / 142323241 � 6 (why?) and moreover $ � � % � ( occurs in
� %"�0( 142324231 � % $ 
<' ( . Finally note that � % � (�� $ � , and so we must have . � $ � . If

.��($ � , then � 6  is not free in �0,4� � " / & 1323242 � � " 687 9 & 1 ��- ��� / 142323241 � 687 9 1 � 6 ; . Other-

wise (of course) .-�&$ � . Either way (why!?),

6 ��- �0,4� � " / & 1323242 � � " 687 9 & 1 ��- ��� / 142323241 � 687 9 1 � 6 ;/ 0 6 � 6  �0,4� � " / & 1323242 � � " 687 9 & 1 � 6  ��� / 132423241 � 687 9 1 � 6 ;
and so � � � 6 � 6  �0,4� � / 142323241 � � " 687 9 & 1 � 6  ��� / 132423241 � 687 9 1 � 6 ; � 0

� � 6 � 6  % 
���� � � � , $ � � $ ; ( � � 0
� �

6  / % 
���� � � � (3%�� (
Next we define the functions ! 6 � 
���� � � $ " 
���� � � $ by setting ! 6 % � � � 0 (

)+*-,
�

� 6 % �)( where

–
� � % � � (

) *-,
� � �

6 There is no deletion.
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–
� � % 6 �!��(

) *-,
� 6 � � � � �<9 %'�0,4� � � �:;)(

–
� � % 7 � ��� ( )+*-,� 7 � � %'�)( � � % ����(

To be well-defined, we require
� � %'�)( � � � %'��� ( for all � /10 ��� . We can prove

this by induction over / 0 . The only tricky case concerns the axiom for re-

naming, 6 ��� / 0 6 �'� �0, �'�+� �:; where �(� �	 "$#&%'�)( . We have

� � %96 �(� �0, �(��� �.;�( � 6 � � � � �<9 % �0, �(��� �.; , � � � �'� ;)(
� 6 � � � � �<9 % �0,4� � � �:;�(
� � � % 6 �!��(

with the second equality holding as � �4�	 "$# %'�)( . Let � 	 
���� � � $ . We will have

! 6 %
�

6 %'�)( ( � � provided that
� 6 %'�)( � � . We can prove this by rule induction,

showing

%320� 6  ! # �)(�% � 6 %'�)( � �)(
The details are easy and left as an Exercise. Let � 	 
���� � � $ . It remains to prove

that � � �

6 %�! 6 %'�)( ( . This will hold provided that
� 6 % ��( /$0 � . We prove

%32"�  ! # ��( % 2"� 6 ( % � �&� 6 ��� � 6 %'�)( /$0 �)(
We show property closure for the rule introducing abstractions. Suppose that

� 6  ! # 6 ��� . We must show that
� 6 % 6 � � (1/ 0 6 ��� . Now � 6 1 �  ! # � and so

by a careful use of Lemma 6 we get � 6��<9� �! # � , � 6 � �:; . Hence by induction
� 6��<9 % � , � 6 � �:;)( / 0 � , � 6 � �:; , and so

� 6 % 6 ����(
) *-,
� 6 �86 � 6 �<9�%'�0,4�86 � �.;�( / 0 6 ��6 �0,4�86 � �.;

If � � � 6 we are done. If not, noting that ���	5� 6 by assumption, � 6 �	�"$#&%'�)( .
Hence 6 � 6 � , � 6 � �:; / 0 6 �!� .

4.4 A Model of Syntax without Variables but with Binding

Again, we show how some syntax, this time the de Bruijn expressions of Sec-

tion 2.4, can be rendered as a functor. We give only bare details, and leave most

of the working to the reader. We do assume that readers are already familiar

with the de Bruijn notation.

For any $ in � we define 
������ � $
)+*-,
� , � � $  � # � ; . We define for � � $ " $ �

the function 
������ � � by recursion. Consider the following (syntactic) defini-

tions
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– % 
���� � � � (3% � � (
)+*-,
� � � �

– % 
���� � � � (3% �!��(
) *-,
� � % 
���� � � � � (�% �)( and

– % 
���� � � � (3% � � ��� ( ) *-,� � % % 
���� � � � ( �)( %5% 
���� � � � ( ����(
where � � � $2� ' " $ �*� ' and � � % ��( )+*-,��� and � � % � � ' ( )+*-,� � %'� (�� ' for ��� � �5$ 
 ' .
One can prove by induction that if $  � # � then $ �  � # % 
���� � � � ( � , and thus


������ � � is well-defined.

One can prove that 
���� � � /� �
by adapting the methods of Section 4.2,

establishing a natural isomorphism !<� � /� 
���� � � � �
. Such an isomorphism

exists only for a specific choice of coproducts in � .

To specify !<� � " 
 � � � � we define a family of natural transformations

!&
 �
	�
 " 
���� � � , and appeal to Lemma 3, as follows.

– ! / � 	 / � � " 
���� � � has as components the empty function, and

– recursively we define

! 
 �<9
)+*-,
� � � 1 � / � ! 
 1 � / ! �
 � �
	 
 �<9 � � ��� 	 
 ��	 �
 " 
������ �

where there are natural transformations �.�$
 � � � � " 
������ � and
� �4% 
���� � � ( � "


������ � . Of course � 6 % ��(
) *-,
� ��� for any � in 
 � ��� � $ . This is natural only if the

coproduct insertion � 9 � '0" % �<' maps � to � , and � � ��% " % � ' maps � �&'
to � %'� ( �&' for any ��� ��� %�
 ' .

We leave the definition of
�

, and all other calculations, as a long(ish) Exer-

cise.

4.5 Where to now?

There are a number of books which cover basic category theory. For a short

and gentle introduction, see [29]. For a longer first text see [19]. Both of these

books are intended for computer scientists. The original and recommended

general reference for category theory is [25], which was written for mathe-

maticians. A very concise and fast paced introduction can be found in [21]

which also covers the theory of allegories (which, roughly, are to relations,

what categories are to functions). Again for the more advanced reader, try

[31] which is an essential read for anyone interested in categorical logic, and

which has a lot of useful background information. The Handbook of Logic

in Computer Science has a wealth of material which is related to categorical
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logic; there is a chapter [30] on category theory. Equalities such as those that

arise from universal properties can often be established using so-called cal-

culational methods. For a general introduction, and more references, see [2].

Finally we mention [32] which, apart from being a very interesting introduc-

tion to category theory due to the many and varied computing examples, has

a short chapter devoted to distributive categories.

The material in these notes has its origins in the paper [6]. You will find

that these notes provide much of the detail which is omitted from the first few

sections of this paper. In addition, you will find an interesting abstract account

of substitution, and a detailed discussion of initial algebra semantics.

The material in these notes, and in [6], is perhaps rather closely allied to

the methodology of de Bruijn expressions. Indeed, in these notes, when we

considered � -calculus, we either introduced � -equivalence, or we had a sys-

tem of expressions which forced a binding variable to be � 6 whenever the free

variables of the subexpression of an abstraction were in � 6 . We would like

to be able to define a datatype whose elements are the expressions of the � -

calculus, already identified up to � -equivalence. This is achieved by Pitts and

Gabbay [7], who undertake a fundamental study of � -equivalence, and for-

mulate a new set theory within which this is possible. For further work see

[16] and the references therein.

There is a wealth of literature on so called Higher Order Abstract Syntax.

This is another methodology for encoding syntax with binders. For an intro-

duction, see [15, 14], although the ideas go back to Church. The paper [10] pro-

vides links between Higher Order Abstract Syntax, and the presheaf models

described in these notes. For material on implementation, see [4, 5]. A more

recent approach, which combines de Bruijn notation and ordinary � -calculus

in a hybrid syntax, is described in [1].

If you are interested in direct implementations of � -equivalence, see [8, 9].

See [3] for the origins of de Bruijn notation.

The equation � /� � � � � % � 9 � ( is a very simple example of a do-

main equation. Such equations arise frequently in the study of the semantics

of programming languages. They do not always have solutions in 2 3
�
. How-

ever, many can be solved in other categories. See for example [17]. Readers

should note that the lemmas given in Section 3.3 can be presented in a more
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general, categorical manner, which is described in loc. cit. In fact our so called

union presheaf � 
 	 
 is better described as a colimit (itself a generalization of

coproduct) of the diagram

23232
	�
 � 9 
 " 	�
$
 " 24232 
$" 	 9 
 " 	 /
. . . but this is another story.
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Appendix

4.6 Lists

We require the notion of a finite list. For the purposes of these notes, a (finite)

list over a set 	 is an element of the set

�(	��
) *-,
�

�
6
��
 	 6

where 	 6 is the set of $ -tuples of 	 and 	 / ) *-,� , 
:; where 
 denotes the empty

list. We denote a typical non-empty element of �(	�� by ��� 9 142323241
� 6 � or some-

times just � 9 132324231�� 6 , and we write � 	 � to indicate that � occurs in the list

(tuple) � . We write
� �	� %

.
( for the length of any list

.
.

4.7 Abstract Syntax Trees

We adopt the following notation for finite trees: If � 9 , � � , � � and so on to � 6 is

a (finite) sequence of finite trees, then we write
� � 9 � � � � 23242 � 6 for the finite

tree which has the form
�

� � � �

� 9 � � � � 24232 � 6
Each � � is itself of the form

� � � �9 � �� � �� 23242 � �� . We call
�

a constructor and say

that
�

takes $ arguments. Any constructor which takes � arguments is a leaf

node. We call
�

the root node of the tree. The roots of the trees � � are called

the children of
�

. The constructors are labels for the nodes of the tree. Each

of the � � above is a subtree of the whole tree—in particular, any leaf node is a

subtree.

If we say that � is a constructor which takes two arguments, and � and
�

constructors which takes one argument, then the tree in Figure 5 is denoted by

� % � ����( % � % � � �4(���% � ��� ( ( . Note that in this (finite) tree, we regard each node

as a constructor. To do this, we can think of any � � as constructors which take

no arguments!!. These form the leaves of the tree. We call the root of the tree

the outermost constructor, and refer to trees of this kind as abstract syntax

trees. We often refer to an abstract syntax tree by its outermost constructor—

the tree above is an “ � ” expression.
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Fig. 5. An Abstract Syntax Tree

4.8 Inductively Defined Sets

In this section we introduce a method for defining sets. Any such set will be

known as an inductively defined set. Let us first introduce some notation. We

let � be any set. A rule
�

is a pair % � 1�
3( where
� 6 � is any finite set, and


 	 � is any element. Note that
�

might be � , in which case we say that
�

is a base rule. Sometimes we refer to base rules as axioms. If
�

is non-empty

we say
�

is an inductive rule. In the case that
�

is non-empty we might write
� � , 	 9 132423241�	

� ; where '$� � . We can write down a base rule
� ��% � 1�
4( using

the following notation

Base

% � (



and an inductive rule
� ��% � 1�
3( ��% , 	 9 132423241�	

� ;01�
4( as

Inductive

	 9 	 � 23242 	 � % � (
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Given a set � and a set � of rules based on � , a deduction is a finite tree

with nodes labelled by elements of � such that

� each leaf node label 
 arises as a base rule % � 1�
4(+	��
� for any non-leaf node label 
 , if

�
is the set of children of 
 then % � 1�
3( 	��

is an inductive rule.

We then say that the set inductively defined by � consists of those ele-

ments � 	 � which have a deduction with root node labelled by � .

Example 1. 1. Let � be the set ,�� 9 1�� � 1�� � 1�� � 1�� � 1���� ; and let � be the set of

rules

, � 9 � % � 1�� 9 (�1
�

� � % � 1�� � ( 1 � � � % ,�� 9 1�� � ;01�� � (�1 � � � % ,�� 9 1�� � 1�� � ;�1�� � ( ;
Then a deduction for � � is given by the tree

� �
� �

� 9 � �
�

� �
� �

� 9 � �
which is more normally written up-side down and in the following style

�

9� 9
�

�� �

�

9� 9
�

�� � � �� � �

�� �
2. A set � of rules for defining the set � 6 � of even numbers is � �

, � 9 1
�

� ; where

% � 9 (�
� % � � (� � �

Note that rule
�

� is, strictly speaking, a rule schema, that is � is acting as

a variable. There is a “rule” for each instantiation of � . A deduction of � is

given by

% � 9 (� % � � (� � � % � � (� � � % � � (��� �
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3. Let � be a set of propositional variables. The set of (first order) propo-

sitions � � � � is inductively defined by the rules below. There are two dis-

tinguished (atomic) propositions ����� � and � 
 � � � . Each proposition denotes

a finite tree. In fact ����� � and � 
 � � � are constructors with zero arguments,

as is each � . The remaining logical connectives are constructors with two

arguments, and are written in a sugared (infix) notation.

� ��	 � �� � 
 � � � ����� � ! �

!�) �
! �

!�% �
! �

! " �

4.9 Rule Induction

In this section we see how inductive techniques of proof which the reader has

met before fit into the framework of inductively defined sets. We write ! % � ( to

denote a proposition about � . For example, if !<% � ( )+*-,� � % � , then ! % , ( is true

and ! % ��( is false. If ! %5< ( is true then we often say that ! %5< ( holds.

We present in Table 6 a useful principle called Rule Induction. It will be

used throughout the remainder of these notes.

Let 	 be inductively defined by a set of rules 
 . Suppose we wish to show that a propo-
sition �
� ��� holds for all elements

� 	 	 , that is, we wish to prove

� � 	 	�� ��� ��� �
Then all we need to do is

– for every base rule � 	 
 prove that �
��� � holds; and

– for every inductive rule � ��� � � ���� 	 
 prove that whenever � � 	 	 ,

���
��� � ��� �
��� � ��� ��� � � �
���"! �#� $�% �
��& �

We call the propositions �����(' � inductive hypotheses. We refer to carrying out the bul-
leted ( ) ) tasks as “verifying property closure”.

Fig. 6. Rule Induction

The Principle of Mathematical Induction arises as a special case of Rule

Induction. We can regard the set � as inductively defined by the rules

%+*'3 � ��(�
$ %

�
� �-, ($ �<'
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Suppose we wish to show that !<% $.( holds for all $ 	-� , that is 2/$�	 � 2 ! % $.( .
According to Rule Induction, we need to verify

� property closure for *'3 � � , that is ! % �0( ; and
� property closure for

�
� �-, , that is for every natural number $ , !<% $.( implies

!<% $-�&'�( , that is 2"$ 	 �+2<%�!<% $.( ��� !<% $-�&'�( (
and this amounts to precisely what one needs to verify for Mathematical In-

duction.

1. Here is another example of abstract syntax trees defined inductively. Let a

set of constructors be � � , � 1 
�; . The integers will label leaf nodes, and� , 
 will take two arguments written with an infix notation. The set of

abstract syntax trees � inductively defined by these constructors is given

by

$
� 9 � �� 9 � � � � 9 � �� 9 
 � �

Note that the base rules correspond to leaf nodes. In the example tree�
� �


 �

� �
� � �

� � 
�� is a subtree of %�� � 
�� ( � � , as are the leaves � � , � and � .

The principle of structural induction is defined to be an instance of rule

induction when the inductive definition is of abstract syntax trees. Make

sure you understand that if � is an inductively defined set of syntax trees,

to prove 2"� 	���2 ! %�� ( we have to prove:

– ! % �+( for each leaf node � ; and

– assuming ! %�� 9 ( and . . . and ! %�� 6 ( prove !<%
� %�� 9 1324232�1(� 6 (5( for each con-

structor � and all trees � � 	�� .

These two points are precisely property closure for base and inductive

rules.

Consider the proposition !<%�� ( given by � %�� ( � � %�� ( � ' where � %�� ( is

the number of leaves in � , and
� %�� ( is the number of � 1 
 -nodes of � . We

can prove by structural induction

2"�-	��!2 � %�� (�� � %�� ( �&'
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where the functions � 1 � � � " � are defined recursively by

– � % $.( � ' and � %�� %�� 9 1�� � (5( � � %�� 9 ( ��� %�� � ( and � % 
 %�� 9 1�� � ( ( � � %�� 9 ( �
� %�� � (

–
� % $.( � � and

� % � %�� 9 1�� � ( ( � � %�� 9 ( � � %�� � ( � ' and
� % 
 %�� 9 1�� � ( ( �� %�� 9 ( � � %�� � ( �<'

This is left as an exercise.

Sometimes it is convenient to add a rule
�

to a set � , which does not alter the

resulting set
�

. We say that a rule

	 9 23242 	 � �



is a derived rule of � if there is a deduction tree whose leaves are either the

conclusions of base rules or are instances of the 	 � , and the conclusion is 
 .
The rule

�
is called admissible if one can prove

%
	 9 	
� ( )�23232�) %
	 � 	 � (���� %�
 	 � (

Proposition 1. Let
�

be inductively defined by � , and suppose that
�

is a de-

rived rule. Then the set
� � inductively defined by � � , � ; is also

�
. Any derived

rule is admissible.

Proof. It is clear that
� * � � . It is an exercise in rule induction to prove that

� � * �
. Verify property closure for each of the rules in � � , � ; , the property

!<%'� ( )+*-,� � 	 �
. It is clear that derived rules are admissible.

4.10 Recursively Defined Functions

Let
�

be inductively defined by a set of rules � , and � any set. A function � � � "
� can be defined by

� specifying an element � %
@�(+	>� for every base rule � 	�� ; and
� specifying � %�
3( 	 � in terms of � %
	 9 ( 	 � and � %
	 � ( 	 � .... and � %
	 � ( 	 �
for every inductive rule

� ������� � � �� 	�� ,

provided that each instance of a rule in � introduces a different element of
�

—why do we need this condition? When a function is defined in this way, it

is said to be recursively defined.

Example 2. 1. The factorial function
� �5� " � is usually defined recursively.

We set
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� � % ��( )+*-,� ' and
� 2/$�	��+2 � % $!�<' ( )+*-,� % $1�<' ( � � % $.( .
Thus

� % , ( � % � � ' ( � � % � ( � , � ��� � %9'�(<� , � ��� ' � � % ��(:� , � ���
' � ' ��� .

Are there are brackets missing from the previous calculation? If so, insert

them.

2. Consider the propositions defined on page 50. Suppose that
�

� and � �
are propositions and propositional variables for ' � �2� $ . Then there

is a recursively defined function � � �$� " � � � � whose action is written

!��" !., �

9 142323241
�

6 � � 9 142323241 � 6 ; which computes the simultaneous substi-

tution of the ! � for the � � where the � � are distinct. We set

� �:, �

9 1324232�1
�

6 � � 9 1324232�1 � 6 ;
) *-,
� �

� if � is � � ;
� �:, �

9 1324232�1
�

6 � � 9 1324232�1 � 6 ;
) *-,
� � if � is none of the � � ;�

%�!�) !'� ($, �

9 132423241
�

6 � � 9 132423241 � 6 ;
) *-,
�

%�!., �

9 1324232�1
�

6 � � 9 1324232�1 � 6 ;)( )�%�!'�', �

9 132423241
�

6 � � 9 1324232�1 � 6 ;)(
� The other clauses are similar.
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