
Computational Adequacy of the FIX-Logic

Roy L. Crole

Department of Computing, Imperial College,

LONDON, England.

July 13, 1995

Abstract

This paper presents computational adequacy results for the FIX logical
system introduced by Crole and Pitts in LICS ’90. More precisely, we take
two simple PCF style languages (whose dynamic semantics follow a call-by-
value and call-by-name regime) give translations of the languages into suitable
judgements in the FIX-logic and prove that the translations are adequate for
the static and dynamic semantics. This shows that the FIX-logic can be
regarded as a programming metalogic which will uniformly interpret both
call-by-value and call-by-name languages. The proofs of dynamic adequacy
make use of a logical relations technique which is based on the methods of
Plotkin and Tait. We also show that there is some choice in the translation
of recursion; certain translations make use of an existence property of the
FIX-logic to prove computational adequacy.

1

1 Introduction

This paper makes use of the FIX logical system (which was introduced in [3]) as
a programming metalogic (see also [8]) into which programming languages can be
translated and reasoned with. In this introduction we give a summary of the crucial
elements of the FIX logical system and then give a brief heuristic outline of two
simple programming languages which will be translated into the FIX-logic.

A Summary of the FIX Logical System

NB: A complete description of FIX can be found in [4]; we shall give only an outline
of the format of FIX, and readers are urged to consult the latter paper in detail if
they are not familiar with the FIX logical system.

FIX is an intuitionistic predicate logic which bears some similarity to standard
intuitionistic calculus; for the latter see [5]. The primary form of judgement is a
sequent-in-context of the form Γ, Λ ⊢ Φ. Here, Γ is a context of typed variables,
Λ is a finite set of propositions and Φ is a single proposition. One should think of
such a judgement as meaning that one has a derivation of the proposition Φ which
involves a certain number of undischarged hypotheses each of which must appear in
the set Λ. The variables occurring in the propositions in Λ and the proposition Φ
are listed in Γ. The FIX-logic is specified by giving rules for inductively generating
such judgements. More precisely, a FIX-theory is specified by giving a FIX-signature
Sg of ground types, function symbols and relation symbols. From such a signature
we can generate well formed types, terms and propositions, and from these we can
generate theorems which are sequents-in-context of the above form.

Let us suppose we are given a FIX-signature Sg as above. The basic judgement
forms that appear in a FIX-theory are

• Terms-in-context Γ ⊢ M : α where a context, Γ, is a finite list of (object level vari-
able, type) pairs, usually written [x1: α1, . . . , xn: αn] where the object level variables
x1, . . . , xn are distinct, M is a raw term, and α is a type,

• propositions-in-context Γ ⊢ Φ prop, where Φ is a raw proposition, and

• sequents-in-context Γ, Λ ⊢ Φ as described above.

We write ⊢ M : α, ⊢ Φ prop and ⊢ Φ respectively if both Γ and Λ are empty.

We shall sketch the ideas behind each of these judgements. First the terms-in-
context. The types consist of the ground types, natural numbers, unit, null, fixpoint
type, (co)products, functions and computation types. The raw terms M are the
usual ones associated with the latter types, and include terms formed (in the usual
way) from the function symbols of Sg . We adopt Martin-Löf’s theory of arities and
expressions in order to write down the syntax of the raw terms. 1 Given a context

1See Appendix for details.

2

Γ, a FIX-term (in context Γ) is any raw FIX-term M satisfying Γ ⊢ M : α for some
(necessarily unique) type α. We refer to α as the type of the FIX-term M . Such
FIX-terms are generated according to certain rules to be found in [4]. (We may also
refer to a FIX-term Γ ⊢ M : α when the latter is well-formed.)

The propositions-in-context are built up using the FIX-terms. There are precise
rules (omitted here) for generating well formed propositions-in-context, which we
call FIX-propositions; please see [4]. The FIX-terms act as individuals for the
propositions. For each type α there is an equality predicate =α on raw terms for
which equations such as β and η equality for λ-calculus hold. In general, the FIX-
propositions are generated by the usual rules for intuitionistic predicate calculus with
equality excluding implication and existential quantification, but including certain
other rules given in [4]. The rules directly relevant to this paper are

Universal Modality

Γ, x:α ⊢ Φ(x) prop Γ ⊢ E:Tα

Γ ⊢ 2(E,Φ) prop

Existential Modality

Γ, x:α ⊢ Φ(x) prop Γ ⊢ E:Tα

Γ ⊢ 3(E,Φ) prop

Now that we have the syntax for FIX, we can give rules for deducing sequents-in-
context. A FIX-theory, Th, is specified by a FIX-signature (say Sg) together with
a specific collection of sequents-in-context, which are called the axioms of Th. The
collection of theorems of Th consists of the least collection of sequents-in-context
which contains the axioms of Th and is closed under certain rules which appear in
[4]. We refer to the general set-up as the FIX-logic.

We shall need the following results about FIX, which are stated without proof.

Lemma 1.1 In the FIX-logic, if Γ, Λ, Φ ⊢ Ψ, then

Γ, e, Λ, 3(e, y.Φ) ⊢ 3(e, y.Ψ).

Proposition 1.2 Within the fix logical system, the following birule is derivable:

Γ, e, x, Λ ⊢ 3(e, y.Φ(x, Val(y)) ∧ Ψ(x, y))
================================ (fr)

Γ, e, x, Λ ⊢ Φ(x, e) ∧ 3(e, y.Ψ(x, y))

Theorem 1.3 [“Existence Property”] If E is a closed term of type Tα, then the
judgement ⊢ 3(E, Φ) is derivable in FIX if and only if there is a closed term M of
type α for which ⊢ E =Tα Val(M) and ⊢ Φ(M) are derivable. (In other words, a
formal proof that E evaluates to a value satisfying Φ(x) necessitates the existence
of a term denoting that value.)

3

A Categorical Semantics for FIX

We outline the essence of a categorical semantics for a FIX-theory—for a general in-
troduction to categorical semantics see [2]. Let C be a category. A FIX-hyperdoctrine
is a C-indexed poset C: Cop → POSet which has enough structure to model FIX. The
types are modelled by objects in C, and FIX-terms by morphisms. Each FIX-
proposition Γ ⊢ Φ prop is modelled by an element in a posetal fibre of C, where the
fibre is over the object of C which is modelling the context Γ. Logical entailment is
modelled in the usual way by the posetal order of the fibres. We illustrate with a
picture:

Let x: α ⊢ M : β, x: α ⊢ Φ prop, and x: α, Φ ⊢ Ψ be a FIX-term, proposition and
theorem respectively. Write [[−]]: FIX → C for the interpretation (model) of FIX

in C. Write also A
def
= [[α]], B

def
= [[β]], m

def
= [[x: α ⊢ M : β]], p

def
= [[x: α ⊢ Φ]] and

q
def
= [[x: α ⊢ Ψ]]. Then:

x: α, Φ ⊢ Ψ
[[−]]

- p ≤ q ∈ C(A)

x: α ⊢ Φ .
[[−]]

- p ∈ C(A)

x: α ⊢ M : β
[[−]]

- m: A → B ∈ C

A Domain Theoretic Semantics for FIX

We shall give a very brief summary of a domain-theoretic model of FIX, in order
to set up notation for the remainder of this paper. Let ωCPO be the category of
ω-cocomplete posets (ω-cpos) and Scott-continuous functions. There is a functor
I: ωCPOop → Poset which takes an ω-cpo to its poset of inclusive subsets and this
is an example of a FIX-hyperdoctrine.

This gives a model of FIX in which types are interpreted by ω-cpos and propositions
are interpreted as inclusive subsets. The inclusive subsets of an ω-cpo form a par-
ticular kind of poset-with-structure, and the sequents-in-context are interpreted by
inequalities (inclusions) in such posets. As regards notation in this paper, we just
note that ωCPO is an example of a cartesian closed let-category (see [1]) for which
the operation of lifting gives rise to the let-category structure. Let D, D′ and D′′

be three ω-cpos. We write D ×D′ for the binary product of D and D′, D ⇒ D′ for
the exponential of D and D′, that is

D ⇒ D′ def
= { f : D → D′ | f is a continuous function },

4

and if f : D × D′ → D′′ is a continuous function then then we write λ(f): D →
(D′ ⇒ D′′) for the mate of f across the exponential adjunction, that is, λ(f) is the
“currying” of f . We shall write ((−)⊥, η, lift) for the let-structure, where if D is an

ω-cpo we write D⊥

def
= {[d] | d ∈ D}

⋃
{⊥} for the lift of D, ηD: D → D⊥ sends d

to [d], that is, ηD is the canonical inclusion of D into D⊥, and given a continuous

function f : D × D′ → D′′
⊥ then lift(f): D × D′

⊥ → D′′
⊥ where lift(f)(d,⊥)

def
= ⊥ and

lift(f) is otherwise f . The terminal ω-cpo will be written 1 and the natural number
object N. We shall use the semantic brackets [[−]]ωCPO to denote the interpretation
of FIX in ωCPO.

Two Simple Languages

We shall make use of two little programming languages, both of which are closely
allied to Plotkin’s PCF. Recall that PCF is an acronym for Programming Com-
putable Functions. In essence, the syntax of PCF is that of simply typed lambda
calculus (with ground types just the natural numbers and booleans) which has been
enriched with explicit operations for arithmetic, a conditional at ground types and
fixpoint operators. This syntax is then equipped with a call-by-name operational
semantics, giving rise to the language PCF which was first investigated by Plotkin
in [11].

The two languages we investigate here, which we call QL and HPCF, resemble PCF
in that their syntax consists essentially of simply typed lambda calculus with extra
arithmetical, procedural and fixpoint features. They differ in having conditionals at
higher types. The syntax of QL, while similar to that of PCF, makes use of higher
order metaconstants. QL has recursive function declarations instead of fixpoint
operators and the operational semantics is call-by-value. HPCF has a call-by-name
operational semantics and apart from conditionals at higher types is identical to
PCF. A discussion of evaluation strategies can be found in [10].

2 The Language QL

We define the language QL by specifying the basic syntax of types and raw expres-
sions; this syntax will then be given a static and dynamic semantics.

5

The Types and Expressions of QL

The types of QL are given by the grammar σ ::= bool | nat | σ ⇒ σ. We write
Type for the set of all types. The (raw) expressions of QL are given by the grammar:

m ::= x variables
| tt truth
| ff falsity
| kn natural numbers
| Cσ(b, m, n) conditional
| SS(m) successor
| P(m) predecessor
| Z(m) zero test
| mn application
| λx: σ.m function definition
| Rτ,σ(f.x.m, n) recursive functions

The Static Semantics of QL

The static semantics assigns types to expressions in context. Each judgement takes
the form Γ ⊢ m: σ. The rules for deriving these judgements are standard, and omitted
except for recursive functions:

Recursive Functions

Γ, f :σ ⇒ σ′, x:σ ⊢ m:σ′ Γ ⊢ n:σ

Γ ⊢ Rσ,σ′(f.x.m, n):σ′

The context Γ consists of a list of typed variables (the variables are assumed distinct).
Variables are bound in the usual way by lambda abstractions and recursive function
declarations. Given a QL expression in context, Γ ⊢ m: σ, it is easy to see that the
free variables of m all occur in Γ, and that the type σ assigned to the raw QL term
m is unique. The types nat and bool will be referred to as ground types.

The Dynamic Semantics of QL

We call a QL expression m closed if ⊢ m: σ is derivable for some (necessarily unique)
type σ, and shall often abbreviate ⊢ m: σ to just m: σ. It will be convenient to write

Expσ
def
= { m | ⊢ m: σ }.

The canonical QL expressions comprise those closed expressions which occur in the
grammar:

c ::= tt | ff | kn | λx: σ.m,

6

and we write Canσ ⊆ Expσ for the set of canonical expressions assigned the type σ.
We now give the syntax of QL a call by value dynamic semantics via an evaluation
relation (see [7] and [12]) which will take the form m ⇓ c, where m and c are closed
QL expressions and c is canonical. The rules for generating the evaluation relation
are given below:

Canonical Forms

c canonical

c ⇓ c

Conditionals

b ⇓ tt m ⇓ c

Cσ(b, m, n) ⇓ c

b ⇓ ff n ⇓ c

Cσ(b, m, n) ⇓ c

Arithmetic

m ⇓ kn

SS(m) ⇓ kn+1

m ⇓ kn+1

P(m) ⇓ kn

m ⇓ k0

P(m) ⇓ k0

m ⇓ k0

Z(m) ⇓ tt

m ⇓ kn+1

Z(m) ⇓ ff

Functions

m ⇓ λx:σ.m′ n ⇓ c′ m′[c′/x] ⇓ c

mn ⇓ c

Recursive Functions

n ⇓ c′ m[λx:σ.Rσ,σ′(f.x.m, x)/f, c′/x] ⇓ c

Rσ,σ′(f.x.m, n) ⇓ c

It is easy to see that the dynamic semantics is deterministic and if m ⇓ c then m and c

have the same type. More precisely, the relation ⇓ defines a partial function between
QL expressions in that if m ⇓ c and m ⇓ c′ then c and c′ are indeed α-equivalent.

3 Translation of QL into the FIX Logic

We shall give a translation of QL into a theory over FIX. We aim to give an interpre-
tation of the language QL which will preserve all of its structure and properties. In
fact the pure FIX-logic will interpret QL; more formally, the FIX-theory we consider

7

consists simply of the FIX-signature with no basic function symbols or relation sym-
bols, together with no extralogical axioms. We shall not be too formal and simply
refer to the FIX-logic. The first step is to translate the static semantics of QL into
suitable judgements in the FIX logic.

Interpretation of the Static Semantics

For each expression in context, xi: σi ⊢ m: σ, we give a a term in context of FIX,
and we think of this process as a translation of QL into FIX. The static typing
judgement x1: σ1, . . . , xn: σn ⊢ m: σ is translated to

x1: [[σ1]]
v, . . . , xn: [[σn]]v ⊢ ~u.[[m]]v(~x): T [[σ]]v,

where for any term m in a context of n variables {x1, . . . , xn}, [[m]]v is an expression
of the abstract syntax generated from the pure FIX-logic with arity term and for
which fv([[m]]v) = {u1, . . . , un}.

2 Given a closed QL expression (in context) ⊢ m: σ,
this is of course translated to a judgement ⊢ [[m]]v: T [[σ]]v. Note that the superscript
v on the semantic bracket [[−]]v refers to the fact that we are specifying a transla-
tion of a call-by-value language. We shall often refer informally to a call-by-value
translation. In order to specify the translation, we shall define expressions of the
abstract syntax generated from the object level signature of FIX-which have arity
term ⇒ term and which we shall denote by Pred and Zero. The (representatives
for these) expressions are (using η equality in the meta-λ-calculus) given by

Pred(n)
def
= Snd((x.〈Suc(Fst(x)), Fst(x)〉)n(〈O, O〉))

Zero(n)
def
= (x.Inrunit(〈〉))

n(Inlunit(〈〉))

where the reader is referred to [4] for the definition of the syntax above.

Note that the judgements n: nat ⊢ Pred(n): nat and n: nat ⊢ Zero(n): unit +unit are
FIX-terms-in-context; moreover, it is not difficult to see that Pred and Zero have
the properties we would expect of them. We also make the definitions

Fixα(f)
def
= Itα(e.Let (e, x.fx), σ(ω))

and
Yα,β(f)

def
= Itα⇒Tβ(e.λα(x.Let (e, y.fyx)), σ(ω))

for which it is immediate that f : Tα ⇒ Tα ⊢ Fixα(f): Tα and

f : (α ⇒ Tβ) ⇒ α ⇒ Tβ ⊢ Yα,β(f): α ⇒ Tβ

are FIX-terms-in-context.

The translation of QL into FIX is given below:

2See Appendix.

8

• [[nat]]v
def
= nat

• [[bool]]v
def
= unit + unit

• [[σ ⇒ τ]]v
def
= [[σ]]v ⇒ T [[τ]]v

• [[x]]v
def
= Val(u) where u is a meta variable.

• [[tt]]v
def
= Val(Inlunit(〈〉))

• [[ff]]v
def
= Val(Inrunit(〈〉))

• [[kn]]v
def
= Val(Suc

n(O))

• [[Cσ(b, m, n)]]v
def
= Let ([[b]]v, x.{y.[[m]]v, y.[[n]]v}(x))

• [[SS(n)]]v
def
= Let ([[n]]v , x.Val(Suc(x)))

• [[P(n)]]v
def
= Let ([[n]]v, x.Val(Pred(x)))

• [[Z(n)]]v
def
= Let ([[n]]v, x.Val(Zero(x)))

• [[mn]]v
def
= Let ([[m]]v, f.Let ([[n]]v , x.fx))

• [[λx: σ.m]]v
def
= Val(λ[[σ]]v(x.[[m]]v))

• [[Rσ,σ′(f.x.m, n)]]v
def
= Let ([[n]]v, y.Y[[σ]]v,[[σ′]]v(λ(f.(λ(x.[[m]]v))))y)

Interpretation of the Dynamic Semantics

Clearly the minimal requirement of an interpretation of the dynamics semantics of
QL is soundness, namely that if m ⇓ c then we have ⊢ [[m]]v = [[c]]v where the latter
equality holds in FIX. Further, it would be pleasing if whenever ⊢ [[m]]v = [[c]]v,
there is a canonical c′ for which m ⇓ c′ and ⊢ [[c′]]v = [[c]]v, that is to say that
FIX is computationally adequate for interpreting QL. We shall soon see that this is
indeed the case, and in order to do this we shall need a little additional notation.
For canonical closed terms c of QL, note that the interpretation takes the form
[[c]]v ≡ Val(⌈c⌉) and we shall take this as an informal definition of ⌈c⌉. We translate
the dynamic semantics of QL into judgements in FIX simply by taking each instance
of the evaluation relation m ⇓ c to the judgement ⊢ [[m]]v = [[c]]v .

9

4 Adequacy Results for QL

Static Adequacy for QL

Proposition 4.1 [“QL Static Adequacy”] The interpretation of the static seman-
tics of QL in FIX is adequate, in the sense that xi: σi ⊢ m: σ is a well formed QL
expression in context iff

xi: [[σi]]
v ⊢ ~u.[[m]]v(~x): T [[σ]]v

is derivable in FIX.

Proof Both directions proceed by structural induction. We give one example,
for the backwards direction.

(Case m is R(f.x.m, n)): From the definition of [[R(f.x.m, n)]]v , the FIX-logic rules and
the induction hypothesis, we have

xi: σi, f : σ′ ⇒ σ, x: σ′ ⊢ m: σ and xi: σi ⊢ n: σ′,

from which xi: σi ⊢ R(f.x.m, n): σ is immediate. 2

Dynamic Adequacy of QL

We shall prove a theorem based on Plotkin’s methods given in [13]. We write D(−)
for the composition [[−]]ωCPO ◦ ~u.[[−]]v(~x): QL → FIX → ωCPO where [[−]]ωCPO is
the standard domain theoretic semantics of FIX. We define a relation ⊳σ between
elements d ∈ D(σ) and canonical forms ⊢ c: σ by induction on the structure of σ;
more precisely, we shall define a family of type-indexed relations

(⊳σ⊆ D(σ) × Canσ | σ ∈ Type).

In the definition which follows, each Eσ⊆ D(σ)⊥ × Expσ is a relation defined in
terms of ⊳σ by asking that e Eσ m iff

e = [d] implies ∃c ∈ Canσ (m ⇓ c and d ⊳σ c).

We define:

• i(∗) ⊳bool tt and j(∗) ⊳bool ff where i, j: 1 → 1 + 1 are coproduct insertions.

• n ⊳nat kn where n ∈ N.

• f ⊳σ⇒τ λx: σ.m iff

∀d ∈ D(σ). ∀c ∈ Canσ. (d ⊳σ c implies f(d) Eτ (λx: σ.m)c).

With this, we have the following lemmas:

10

Lemma 4.2 Suppose that {di | i ∈ ω} is an ω-chain in D(σ) and that di ⊳σ c for
each i ∈ ω. Then

∨
i∈ω di ⊳σ c.

Proof We induct on the structure of σ. In the case that σ is nat and bool the
result is immediate for there are only constant ω-chains in the cpo’s N and 1 + 1.

Now suppose that σ is σ ⇒ τ , {fi | i ∈ ω} is a chain in D(σ) ⇒ D(τ)⊥ and

that fi ⊳σ⇒τ c for each i and some canonical c
def
= λx: σ.m ∈ Canσ⇒τ . So for any

d ∈ D(σ) and canonical c ∈ Canσ for which d ⊳σ c we have fid Eτ (λx: σ.m)c.
We need to show that (

∨
i∈ω fi)d =

∨
i∈ω fid Eτ (λx: σ.m)c, that is if

∨
i∈ω fid is not

⊥ (say [d′] ∈ D(τ)⊥) then there is some c′ ∈ Canτ for which (λx: σ.m)c ⇓ c′ and
d′ ⊳τ c′. So suppose that

∨
i∈ω fid = [d′] ∈ D(τ)⊥ implying

K
def
= {i ∈ ω | fid = [d′

i] ∈ D(τ)⊥}

is non-empty and that
∨

k∈K fkd = [d′]. Now for any k ∈ K, we have fkd =
[d′

k] ∈ D(τ)⊥ implying that there is some (unique, for ⇓ defines a partial function)
c′ ∈ Canτ for which (λx: σ.m)c ⇓ c′ and d′

k ⊳τ c′. But from the induction hypothesis,
we have

∨
k∈K d′

k = d′ ⊳τ c′ which completes the proof. 2

Lemma 4.3 Suppose that {ei | i ∈ ω} is an ω-chain in D(σ)⊥ and that ei Eσ m

for each i. Then
∨

i∈ω ei Eσ m.

Proof Suppose that
∨

i∈ω ei = [d] ∈ D(σ)⊥. Then

K
def
= {i ∈ ω | ei = [di]}

is non-empty. Hence m ⇓ c for some unique c and dk ⊳σ c for each k ∈ K implying
that

∨
k∈K dk = d ⊳σ c by appeal to Lemma 4.2. 2

We can now prove

Theorem 4.4 Let x1: σ1, . . . , xn: σn ⊢ m: σ be a QL term in context and suppose
that for i = 1, . . . , n we have di ∈ D(σi), ⊢ ci: σi and di ⊳σi

ci. Then the continuous

function D(Γ ⊢ m): D(σ1) × . . . × D(σn) → D(σ)⊥ satisfies D(Γ ⊢ m)(~d) Eσ m[~c/~x].

Proof The proof proceeds by induction on the structure of m. We illustrate the
proof with three cases

(Case m is λx: σ.m): Suppose that the conditions of the lemma are satisfied. Then

we need to show that D(Γ ⊢ λx: σ.m)(~d) Eσ⇒τ λx: σ.m[~c/~x]. Using the definition of
D(−) we can show that D(Γ ⊢ λx: σ.m) = η ◦ λ(D(Γ, x: σ ⊢ m)) where

η: D(σ) ⇒ D(τ)⊥ → (D(σ) ⇒ D(τ)⊥)⊥.

Hence D(Γ ⊢ λx: σ.m)(~d) = [λ(D(Γ, x: σ ⊢ m))(~d)]. By definition of the E relation

we show that λ(D(Γ, x: σ ⊢ m))(~d) ⊳σ⇒τ λx: σ.m[~c/~x]; thus if d ⊳σ c it remains

11

to show λ(D(Γ ⊢ λx: σ.m))(~d)(d) Eτ (λx: σ.m[~c/~x])c. By the induction hypothesis,

D(Γ, x: σ ⊢ m)(~d, d) Eτ m[~c/~x, c/x] and so m[~c/~x, c/x] ⇓ c′ for some c′ provided that

D(Γ ⊢ λx: σ.m)(~d)(d) is not ⊥. But then (λx: σ.m[~c/~x])c ⇓ c′ and we are done.

(Case m is mn): We need to show that D(Γ ⊢ mn)(~d) Eτ m[~c/~x]n[~c/~x] where, say,

Γ ⊢ m: σ ⇒ τ and Γ ⊢ n: σ. Suppose that D(Γ ⊢ mn)(~d) is not ⊥. One can check

that neither are D(Γ ⊢ m)(~d) or D(Γ ⊢ n)(~d); let us write [f] and [d] for these.
By the induction hypothesis we have [f] Eσ⇒τ m[~c/~x] and [d] Eσ n[~c/~x]. Hence
m[~c/~x] ⇓ λx: σ.m′ and n[~c/~x] ⇓ c. This leads to f(d) Eτ (λx: σ.m′)c and from the
original supposition there is some c′ for which (λx: σ.m′)c ⇓ c′. Thus we may deduce
m′[c/x] ⇓ c′ and conclude m[~c/~x]n[~c/~x] ⇓ c′.

(Case m is Rσ,τ (f.x.m, n)): We have to show that

D(Γ ⊢ R(f.x.m, n))(~d) Eτ R(f.x.m[~c/~x], n[~c/~x])

where Γ, y: σ ⇒ τ, x: σ ⊢ m: τ and Γ ⊢ n: σ. Let us write m̃
def
= m[~c/~x] and similarly

for ñ. Suppose that D(Γ ⊢ R(f.x.m, n))(~d) = [d] ∈ D(τ)⊥; call the supposition
(∗). Then it remains to show that there is c ∈ Canτ for which R(f.x.m̃, ñ) ⇓ c and
d ⊳τ c. Unravelling the definitions, there are (using an obvious notation) continuous
functions D(Γ ⊢ n): ΠD(~σ) → D(σ)⊥ and

D(Γ, y: σ ⇒ τ, x: σ ⊢ m) : ΠD(~σ) × (D(σ) ⇒ D(τ)⊥) × D(σ) → D(τ)⊥

so that

λ(λ(D(Γ, y, x ⊢ m))) : ΠD(~σ) → (D(σ) ⇒ D(τ)⊥) ⇒ (D(σ) ⇒ D(τ)⊥)

in which given a morphism h: D×D′ → D′′ in ωCPO we have λ(h): D → (D′ ⇒ D′′)
from the cartesian closed structure. Hence we have a continuous function

D(Γ ⊢ R(f.x.m, n))
def
= ev⊥ ◦ 〈χ, D(Γ ⊢ n)〉 : ΠD(~σ) → D(τ)⊥

where χ: ΠD(~σ) → (D(σ) ⇒ D(τ)⊥) with

χ(~d)
def
=

∨

i∈ω

λ(λ(D(Γ, y, x ⊢ m)))(~d)i(⊥)

where ⊥: D(σ) → D(τ)⊥ is the bottom map, and ev⊥

def
= lift(ev) is the lift of the

evaluation morphism ev : (D(σ) ⇒ D(τ)⊥) × D(σ) → D(τ)⊥ in ωCPO.

By induction D(Γ ⊢ n)(~d) Eσ ñ. By supposition (∗) we have

ev⊥ ◦ 〈χ, D(Γ ⊢ n)〉(~d) = [d]

implying that D(Γ ⊢ n)(~d) is not bottom, say D(Γ ⊢ n)(~d) = [d′] ∈ D(σ)⊥. Hence
there is c′ ∈ Canσ for which ñ ⇓ c′ and d′ ⊳σ c′.

We claim that χ(~d) ⊳σ⇒τ λx: σ.R(f.x.m̃, x). We prove this by showing that

λ(λ(D(Γ, y, x ⊢ m)))(~d)i(⊥) ⊳σ⇒τ λx: σ.R(f.x.m̃, x)

12

and then appealing to Lemma 4.2. We induct on i. In the case that i = 0 all is
clear. Now we assume the relation holds for 0, 1, . . . , i, we choose arbitrary d ⊳σ c,
and we show that

D(Γ, y, x ⊢ m)(~d, λ(λ(D(Γ, y, x ⊢ m)))(~d)i(⊥), d) Eτ (λx: σ.R(f.x.m̃, x))c.

By the induction hypothesis on i, we have

λ(λ(D(Γ, y, x ⊢ m)))(~d)i(⊥) ⊳σ⇒τ λx: σ.R(f.x.m̃, x),

and hence from the structural induction hypothesis

D(Γ, y, x ⊢ m)(~d, λ(λ(D(Γ, y, x ⊢ m)))(~d)i(⊥), d) Eτ

m̃[λx: σ.R(f.x.m̃, x)/y, c/x].

So suppose that D(Γ, y, x ⊢ m)(~d, λ(λ(D(Γ, y, x ⊢ m)))(~d)i(⊥), d) is not bottom, say
[d̂] ∈ D(τ)⊥. Then there is ĉ for which

m̃[λx: σ.R(f.x.m̃, x)/y, c/x] ⇓ ĉ

from which we deduce (λx: σ.R(f.x.m̃, x))c ⇓ ĉ and d̂ ⊳τ ĉ. This completes the
induction on i.

Using once again the structural induction hypothesis for m and our recent deductions,
we have

D(Γ, y, x ⊢ m)(~d, χ(~d), d′) Eτ m[~c/~x, λx: σ.R(f.x.m̃, x)/y, c′/x]

and using the supposition (∗) together with the observation

D(Γ, y, x ⊢ m)(~d, χ(~d), d′) = λ(λ(D(Γ, y, x ⊢ m)))χ(~d)(d′)

= χ(~d)(d′)

= ev⊥ ◦ 〈χ(~d), [d′]〉
= [d] ∈ D(τ)⊥

we have the existence of some c for which m̃[λx: σ.R(f.x.m̃, x)/y, c′/x] ⇓ c. Using also
ñ ⇓ c′ we can deduce that R(f.x.m̃, ñ) ⇓ c, and of course d ⊳τ c, so we are done. 2

We shall also need the following lemma:

Lemma 4.5 With the call by value interpretation of QL, and x: σ ⊢ m: τ , ⊢ c: σ
QL terms in context with c canonical, we have

⊢ [[m[c/x]]]v = [[m]]v[⌈c⌉/u],

where [[x]]v
def
= Val(u) and [⌈c⌉/u] means substitution in the meta-λ-calculus.

13

Proof The proof is a trivial structural induction on m. We illustrate with one
example.

(Case m is R(f.x.m, n)):

⊢ [[R(f.x.m, n) [c/y]]]v = Let ([[n[c/y]]]v, u.Y(λ(f.(λ(x.[[m[c/y]]]v))))u)

which by induction is = Let ([[n]]v , u.Y(λ(f.(λ(x.[[m]]v))))u) [⌈c⌉/y]

= [[R(f.x.m, n)]]v [⌈c⌉/y].

2

Theorem 4.6 [“QL Dynamic Adequacy”] The interpretation of QL in the FIX
logic is computationally adequate; more precisely, given closed QL terms m and c for
which c is canonical, then m ⇓ c implies ⊢ [[m]]v = [[c]]v, and ⊢ [[m]]v = [[c]]v implies
there is some canonical c′ for which m ⇓ c′.

Proof The proof in the forwards direction proceeds by induction on the deriva-
tion of m ⇓ c; we give details for the cases of application and recursive function
terms.

(Case mn ⇓ c): Using minimality of ⇓ and the induction hypothesis, we obtain

⊢ [[m]]v = Val(λ(x.[[m′]]v))

⊢ [[n]]v = Val(⌈c′⌉)

⊢ [[m′[c′/x]]]v = Val(⌈c⌉).

Thus we have

⊢ [[mn]]v = Let ([[m]]v, f.Let ([[n]]v , x.fx))

= λ(x.[[m′]]v)⌈c′⌉

= [[m′]]v[⌈c′⌉/x]

which by Lemma 4.5 = [[c]]v,

as required.

(Case R(f.x.m, n) ⇓ c): Using minimality of ⇓ and the induction hypothesis, we
obtain

⊢ [[n]]v = Val(⌈c′⌉)

⊢ [[m[λx: σ.R(f.x.m, x)/f, c′/x]]]v = Val(⌈c⌉).

Let us put M
def
= λ(f.λ(x.[[m]]v)) and note that

⊢ [[λx: σ.R(f.x.m, x)]]v = Val(λ(x.Y(M)x))

= Val(Y(M)).

14

Thus we have

⊢ [[R(f.x.m, n)]]v = Let ([[n]]v, y.Y(λ(f.(λ(x.[[m]]v)))y))

= λ(f.(λ(x.[[m]]v))) Y(M) ⌈c′⌉

= λ(x.[[m]]v)[Y(M)/f] ⌈c′⌉

= λ(x.[[m]]v [Y(M)/f]) ⌈c′⌉

= [[m]]v [Y(M)/f][⌈c′⌉/x]

= [[m]]v [⌈λx: σ.R(f.x.m, x)⌉/f, ⌈c′⌉/x]

which by Lemma 4.5 = [[c]]v ,

and so we are done.

For the converse direction, suppose that ⊢ [[m]]v = [[c]]v. We have [[m]]v = Val(⌈c⌉)
and hence it is the case that D(⊢ m)(∗) is not ⊥, say [d]. Appeal to Theorem 4.4 to
deduce that [d] Eσ m and hence there is some canonical c′ for which m ⇓ c′ by the
definition of E. 2

5 A Further PCF style language, HPCF

We define the language HPCF by specifying the basic syntax of types and raw
expressions; this syntax will then be given a static and dynamic semantics.

The Types and Expressions of HPCF

The types of HPCF are given by the grammar σ ::= bool | nat | σ ⇒ σ. The
(raw) expressions of HPCF are given by the grammar:

m ::= x variables
| tt truth
| ff falsity
| kn natural numbers
| Cσ conditional
| SS successor
| P predecessor
| Z zero test
| Yσ fixpoints
| mn application
| λx: σ.m function definition

The Static Semantics of HPCF

The static semantics is presented using judgements of the form Γ ⊢ m: σ; the rules
for such type assignments are completely standard and are omitted.

15

The Dynamic Semantics of HPCF

The canonical HPCF expressions consist of the subset of closed expressions which
occur in the grammar

c ::= tt | ff | Cσ | kn | SS | P | Z | Yσ | λx: σ.m | Cσb | Cσbm

We now give the syntax of HPCF a call-by-name dynamic semantics. Apart from
conditionals at higher types, HPCF is in every respect identical to Plotkin’s language
PCF. The dynamic semantics will be presented using an evaluation relation just as
for QL:

Canonical Forms

c canonical

c ⇓ c

Conditionals

m ⇓ Cσ

mb ⇓ Cσb

m ⇓ Cσb

mn ⇓ Cσbn

m ⇓ Cσbm
′ b ⇓ tt m′ ⇓ c

mn ⇓ c

m ⇓ Cσbm
′ b ⇓ ff n ⇓ c

mn ⇓ c

l ⇓ Cσ b ⇓ tt m ⇓ c

lbmn ⇓ c

l ⇓ Cσ b ⇓ ff n ⇓ c

lbmn ⇓ c

Arithmetic

m ⇓ SS n ⇓ kn

mn ⇓ kn+1

m ⇓ P n ⇓ kn+1

mn ⇓ kn

m ⇓ P n ⇓ k0

mn ⇓ k0

m ⇓ Z n ⇓ k0

mn ⇓ tt

m ⇓ Z n ⇓ kn+1

mn ⇓ ff

Fixpoints

m ⇓ Yσ nYσn ⇓ c

mn ⇓ c

Functions

m ⇓ λx:σ.m′ m′[n/x] ⇓ c

mn ⇓ c

16

Remark 5.1 Plotkin originally specified the operational semantics of PCF via a
single step reduction relation of the form m n where m and n are closed terms.
Clearly HPCF could be given an operational semantics in the same way: for details
of the original specification of Plotkin’s PCF in this style of semantics see [11]. Note
that good textbook accounts of such operational semantics are [14] and [6]. We
omit the details, but remark that the reflexive, transitive closure of such a single
step reduction relation will yield the natural semantics style reduction relation:

Proposition 5.2 Let m and c be closed HPCF terms with c canonical. Then
m ⇓ c iff m ∗ c, where ∗ is the reflexive transitive closure of . 2

6 Translation of HPCF into the FIX Logic

Interpretation of the Static Semantics

For each expression in context, xi: σi ⊢ m: σ of HPCF, we give a translation into a
term-in-context of FIX. The static typing judgement

x1: σ1, . . . , xn: σn ⊢ m: σ

is translated to

x1: T [[σ1]]
n, . . . , xn: T [[σn]]n ⊢ ~u.[[m]]n(~x): T [[σ]]n.

The translation of HPCF into FIX is given below:

• [[nat]]n
def
= nat

• [[bool]]n
def
= unit + unit

• [[σ ⇒ τ]]n
def
= T [[σ]]n ⇒ T [[τ]]n

• [[x]]n
def
= u where u is a meta variable.

• [[tt]]n
def
= Val(Inlunit(〈〉))

• [[ff]]n
def
= Val(Inrunit(〈〉))

• [[kn]]n
def
= Val(Suc

n(O))

• [[Cσ]]n
def
= Val(λT [[bool]]n(b.Val(λT [[σ]]n(z.(Val(λT [[σ]]n(z′.Let (b, x.{y.z, y.z′}(x) . . .)

• [[SS]]n
def
= Val(λT [[nat]]n(y.Let (y, x.Val(Suc(x)))))

• [[P]]n
def
= Val(λT [[nat]]n(y.Let (y, x.Val(Pred(x)))))

17

• [[Z]]n
def
= Val(λT [[nat]]n(y.Let (y, x.Val(Zero(x)))))

• [[Yσ]]n
def
= Val(λT (T [[σ]]n⇒T [[σ]]n)(y.Fix[[σ]]n(λT [[σ]]n(x.Let (y, f.fx)))))

• [[mn]]n
def
= Let ([[m]]n, f.f [[n]]n))

• [[λx: σ.m]]n
def
= Val(λ[[Tσ]]n(x.[[m]]n))

Note that this interpretation is one of a number of possibilities. Of course, for most
of the syntax of HPCF there will only be one sensible translation. However, in the
case of the fixpoint constants Yσ, there are two reasonable translations and (as we
shall see) they have quite different properties. This said, the important requirement
of any translation is that it preserves the structure and properties of the original
language. In Section 8 we shall give an alternative translation of Yσ and investigate
its properties.

Interpretation of the Dynamic Semantics

This is the same as for QL: see Page 9.

7 Adequacy Results for HPCF

Static Adequacy for HPCF

We prove the following proposition, establishing that the translation of the static
semantics of HPCF is, in a sense to be made precise, information preserving.

Proposition 7.1 [“HPCF Static Adequacy”] The interpretation of the static se-
mantics of HPCF in FIX is adequate, in the sense that xi: σi ⊢ m: σ is a well formed
HPCF expression in context iff

xi: T [[σi]]
n ⊢ ~u.[[m]]n(~x): T [[σ]]n

is derivable in FIX.

Proof The forwards direction is an induction on the structure of the term m; we
illustrate one case.

(Case m is Yσm): By induction and the definition of the translation, we have

xi: T [[σi]]
n ⊢ ~u.[[m]]n(~x): T (T [[σ]]n ⇒ T [[σ]]n)

and thus (using the fact that the raw terms (represented by) ~u.[[m]]n(~x) and [[m]]n[~x/~u]
are the same)

xi: T [[σi]]
n ⊢ Let ([[m]]n, x.Fix(x)): T [[σ]]n.

From the definition of [[Yσm]]
n we are done. Clearly the reverse direction is equally

easy. 2

18

Dynamic Adequacy for HPCF

We shall write D(−) for the composition

[[−]]ωCPO ◦ ~u.[[−]]n(~x): HPCF → FIX → ωCPO,

where once again [[−]]ωCPO is the standard domain-theoretic semantics of FIX. We
shall define a type-indexed family of relations

(⊳σ⊆ D(σ) × Canσ | σ ∈ Type).

In the definition which follows, each

Eσ⊆ D(σ)⊥ × Expσ

is a relation defined in terms of ⊳σ, where we shall write e Eσ m to mean that if
e = [d] ∈ D(σ)⊥ then m ⇓ c for some canonical c and d ⊳σ c. We put:

• In the cases that c is one of tt, ff, SS, P, Z, Cσ, Yσ we set d ⊳σ c iff
d = [[⌈c⌉]]ωCPO(∗) ∈ D(σ) where of course ⊢ ⌈c⌉: [[σ]]n in FIX and [[⌈c⌉]]ωCPO : 1 →
D(σ).

• d ⊳σ⇒σ⇒σ Cσb iff

∀e ∈ D(σ)⊥. ∀m ∈ Expσ. (e Eσ m implies d(e) Eσ⇒σ Cσbm).

• d ⊳σ⇒σ Cσbm iff

∀e ∈ D(σ)⊥. ∀n ∈ Expσ. (e Eσ n implies d(e) Eσ Cσbmn).

• f ⊳σ⇒τ λx: σ.m iff

∀e ∈ D(σ)⊥. ∀m′ ∈ Expσ. (e Eσ m
′ implies f(e) Eτ (λx: σ.m)m′).

Now we prove some lemmas.

Lemma 7.2 Suppose that di ⊳σ c and that {di | i ∈ ω} is an ω-chain in D(σ).
Then

∨
i∈ω di ⊳σ c.

Proof We induct on the structure of σ.

(Case σ is nat): The only ω-chains in N are constant; result trivial.

(Case σ is bool): The only ω-chains in 1 + 1 are constant; result trivial.

(Case σ is σ ⇒ τ): There are a number of subcases according to type matchings of
σ ⇒ τ with the type of c.

(Sub-case c is SS, P, Z, Yρ, Cρ): In each case the ω-chain is constant and equal to
[[⌈c⌉]]ωCPO(∗) and the result is immediate.

19

(Sub-case c is λx: σ.m): Suppose that di ⊳σ⇒τ λx: σ.m. Take any e Eσ m′; it remains
to show that (

∨
i∈ω di)e Eτ (λx: σ.m)m′. Suppose that

∨
i∈ω di(e) = [g] ∈ D(τ)⊥. Then

the set J
def
= {i ∈ ω | di(e) = [gi] ∈ D(τ)⊥} is non-empty. By hypothesis we have

[gj] Eτ (λx: σ.m)m′ and so (λx: σ.m)m′ ⇓ c with gj ⊳τ c for each j ∈ J . But by the
main structural induction hypothesis,

∨
j∈J gj = g ⊳τ c and we are done.

(Sub-case c is Cρb): In this case, σ ⇒ τ type matches ρ ⇒ (ρ ⇒ ρ). Suppose
that di ⊳ρ⇒ρ⇒ρ Cρb, take e1 Eρ m1 and we shall show that (

∨
i∈ω di)e1 Eρ⇒ρ Cρbm1.

Suppose that
∨

i∈ω di(e1) = [g] ∈ (D(ρ)⊥ ⇒ D(ρ)⊥)⊥ and then we show that if
e2 Eρ m2 we have g(e2) Eρ Cρbm1m2. So finally suppose that g(e2) = [h] ∈ D(ρ)⊥ and
we shall show Cρbm1m2 ⇓ c for some c and that h ⊳ρ c.

Set J
def
= {i ∈ ω | di(e1) = [gi] ∈ (D(ρ)⊥ ⇒ D(ρ)⊥)⊥} which must be non-empty by

the above assumptions, and of course g =
∨

j∈J gj. By the original supposition we

have gj ⊳ρ⇒ρ Cσbm1 and by the above assumptions the set K
def
= {j ∈ J | gj(e2) =

[hj] ∈ D(ρ)⊥} is non-empty. Certainly we have [hk] Eρ Cρbm1m2 implying that
Cρbm1m2 ⇓ c for some c and hk ⊳ρ c, and from the structural induction hypothesis
h =

∨
k∈K hk ⊳ρ c.

(Sub-case c is Cρbm): Similar to the last case. 2

Lemma 7.3 Suppose that ei Eσ m and that {ei | i ∈ ω} is an ω-chain in D(σ)⊥.
Then

∨
i∈ω ei Eσ m.

Proof Immediate from Lemma 7.2. 2

Lemma 7.4 If d ⊳σ⇒τ c, where c runs over the possible cases of SS, P, Z, Yσ, Cσ,
Cσb, Cσbm, λx: σ.m, then whenever e Eσ m, we have d(e) Eτ cm.

Proof

(Case c is Cσb, Cσbm, λx: σ.m): These all follow by definition.

(Case c is SS, P, Z): These are all similar; we illustrate with SS. Let s ⊳nat⇒nat SS
and e Enat m. Unravelling the definition of ⊳nat⇒nat, s ∈ N⊥ ⇒ N⊥ sends ⊥ to
⊥ and [n] to [n + 1]. If e = ⊥ we are done. If e = [n] then m ⇓ kn and clearly
s(e) = [n + 1] Enat SSm.

(Case c is Cσ): Let k ⊳bool⇒σ⇒σ⇒σ Cσ, and so

k ∈ (1 + 1)⊥ ⇒ (D(σ)⊥ ⇒ (D(σ)⊥ ⇒ D(σ)⊥)⊥)⊥.

Let e Ebool b, note that by definition of k we must have

k(e) = [k′] ∈ D(σ)⊥ ⇒ (D(σ)⊥ ⇒ D(σ)⊥)⊥

and hence it remains to show that k′ ⊳σ⇒σ⇒σ Cσb. Using the definitions, we repeat
the procedure with e1 Eσ m1 and e2 E m2, and noting that

k′(e1) = [k′′] ∈ (D(σ)⊥ ⇒ D(σ)⊥)⊥

20

by the definition of k, it remains to see that k′′(e2) Eσ Cσbm1m2. If e = ⊥, then
k′′(e2) = ⊥ and we are done. Otherwise without loss of generality we have e =
[i(∗)] ∈ (1 + 1)⊥ and b ⇓ tt. If e1 = ⊥, then as k′′(e2) = e1 we are done. Otherwise
k′′(e2) = e1 = [d1] ∈ D(σ)⊥, so m1 ⇓ c1 for some c1, d1 ⊳σ c1, and b ⇓ tt implies
that Cσbm1m2 ⇓ c1.

(Case c is Yσ): Suppose that y ⊳(σ⇒σ)⇒σ Yσ and f Eσ⇒σ m. If f = ⊥ then
y(f) = ⊥ ∈ D(σ)⊥ by the definition of y and we are done. If not, then f = [g] ∈
(D(σ)⊥ ⇒ D(σ)⊥)⊥, so m ⇓ c for some c and g ⊳σ⇒σ c. We have to see that

y(f)
def
=

∨
i∈ω gi(⊥) Eσ Yσm. To prove this, we first claim that gi(⊥) Eσ Yσm for each

i ∈ ω. For i = 0 we are okay. Assume inductively that gi(⊥) Eσ Yσm. We already
have g ⊳σ⇒σ c and by type inference c can not be Yρ for any type ρ. Therefore, it
follows from the previous cases of this proof that gi+1(⊥) Eσ c(Yσm). If g(⊥) = ⊥ the
claim holds. If not, then from the inductive assumption Yσm ⇓ c′. But it certainly
follows that cYσm ⇓ c′ and if gi+1(⊥) = [di+1] then di+1 ⊳σ c′, from which we deduce
gi+1(⊥) Eσ Yσm. Appealing to Lemma 7.3 we are done. 2

We can use the lemmas to show the next theorem.

Theorem 7.5 Let x1: σ1, . . . , xn: σn ⊢ m: σ be a term-in-context of HPCF and let
ei Eσi

mi for each i. Then the continuous function

D(Γ ⊢ m): D(σ1)⊥ × . . .D(σn)⊥ → D(σ)⊥

satisfies D(Γ ⊢ m)(~e) Eσ m[~m/~x].

Proof The proof proceeds by a structural induction on the raw term m. We shall
write m̃ for m[~m/~x] and similarly for ñ.

(Case m is xi): D(Γ ⊢ xi)(~e) = ei Eσi
mi = xi[~m/~x] .

(Case m is tt, ff, kn, SS, P, Z, Yσ, Cσ): All of these cases are essentially identical;
we illustrate with Yσ. D(Γ ⊢ Yσ)(~e) = D(⊢ Yσ)(∗) E(σ⇒σ)⇒σ Yσ which is immediate
for D(⊢ Yσ)(∗) = [[[⌈Yσ⌉]]ωCPO(∗)] and [[⌈Yσ⌉]]ωCPO(∗) ⊳(σ⇒σ)⇒σ Yσ.

(Case m is λx: σ.m): We need to see that D(Γ ⊢ λx: σ.m)(~e) Eσ⇒τ λx: σ.m̃, where, say,
Γ, x: σ ⊢ m: τ . One can check that

D(Γ ⊢ λx: σ.m) = ηD(σ)⊥⇒D(τ)⊥ ◦ λ(D(Γ, x: σ ⊢ m))

and so it remains to prove that λ(D(Γ, x: σ ⊢ m))(~e) ⊳σ⇒τ λx: σ.m̃. Let e′ Eσ m′ and
we shall show that D(Γ, x: σ ⊢ m)(~e, e′) Eτ (λx: σ.m̃)m′. By structural induction, we
have D(Γ, x: σ ⊢ m)(~e, e) Eτ m̃[m′/x]. So suppose that D(Γ, x: σ ⊢ m)(~e, e) = [d] ∈
D(τ)⊥. Then m̃[m′/x] ⇓ c for some c and d ⊳τ c. But then (λx: σ.m̃)m′ ⇓ c also, and
we are done.

(Case m is mn): We need to see that D(Γ ⊢ mn)(~e) Eτ m̃ñ (call this (∗)) where, say, Γ ⊢
m: σ ⇒ τ and Γ ⊢ n: σ. Suppose that D(Γ ⊢ mn)(~e) is not bottom. Unravelling the

21

definitions, this implies that we must have D(Γ ⊢ m)(~e) = [f] ∈ (D(σ)⊥ ⇒ D(τ)⊥)⊥.
By structural induction we have D(Γ ⊢ m)(~e) Eσ⇒τ m̃ and D(Γ ⊢ n)(~e) Eσ ñ, and
so m̃ ⇓ c with f ⊳σ⇒τ c and (∗) now becomes f(D(Γ ⊢ n)(~e)) Eτ m̃ñ. We have to
consider the sub-cases of ⊢ c: σ ⇒ τ . Note that here c could be SS, P, Z, Yσ, Cσ,
Cσb, Cσbm or λx: σ.m. The proof is very similar for each of these sub-cases; we give
just two.

(Sub-case c is Yσ): Suppose that y ⊳(σ⇒σ)⇒σ Yσ, and of course

D(Γ ⊢ n)(~e) Eσ⇒σ ñ

and m̃ ⇓ Yσ as deduced above. By Lemma 7.4, we have

f(D(Γ ⊢ n)(~e)) Eσ Yσñ,

and it is easy to see that f(D(Γ ⊢ n)(~e)) Eσ m̃ñ follows from m̃ ⇓ Yσ.

(Sub-case c is λx: σ.m): We have m̃ ⇓ λx: σ.m′ and f ⊳σ⇒τ λx: σ.m′. Hence from
Lemma 7.4 we have f(D(Γ ⊢ n)(~e)) Eτ (λx: σ.m′)ñ. If

f(D(Γ ⊢ n)(~e)) = [d] ∈ D(τ)⊥

then (λx: σ.m′)ñ ⇓ c for some c and d ⊳τ c. But then m′[ñ/x] ⇓ c and so m̃ñ ⇓ c. 2

Lemma 7.6 With the call by name interpretation of HPCF, and x: σ ⊢ m: τ , ⊢ n: σ
HPCF terms in context, we have

⊢ [[m[n/x]]]n = [[m]]n[[[n]]n/u],

where [[x]]v
def
= u and [[[n]]n/u] is substitution in the meta-λ-calculus.

Proof Trivial induction. 2

Theorem 7.7 [“HPCF Dynamic Adequacy”] The translation of HPCF into the
FIX logic is computationally adequate; more precisely, given closed HPCF terms m

and c where c is canonical, then m ⇓ c implies ⊢ [[m]]n = [[c]]n and if ⊢ [[m]]n = [[c]]n

then there is a canonical c′ for which m ⇓ c′.

Proof The “only if” uses rule induction on the derivation of the evaluation
relation. We shall just give two cases, namely for application and fixpoint terms.

(Case Functions): Using minimality of ⇓ and the induction hypothesis, we obtain

⊢ [[m]]n = Val(λ(x.[[m′]]n))
⊢ [[m′[n/x]]]n = [[c]]n.

Hence we get

⊢ [[mn]]n
def
= Let ([[m]]n, f.f [[n]]n)

= λ(x.[[m′]]n)[[n]]n

= [[m′]]n[[[n]]n/x]

which via Lemma 7.6 = [[c]]n

22

as required.

(Case Fixpoints): Using minimality of ⇓, the induction hypothesis and the transla-
tion of application terms, we have

⊢ [[m]]n = [[Yσ]]n

⊢ Let ([[n]]n, g.g[[Yσn]]
n) = [[c]]n.

Hence we get

[[mn]]n = Let ([[Yσ]]n, f.f [[n]]n)

= Fix(λ(x.Let ([[n]]n, f.fx)))

= Let ([[n]]n, f.f [[Yσn]]
n)

= [[c]]n,

which is what we had to prove.

For the converse, suppose that we have ⊢ [[m]]n = [[c]]n. Of course ⊢ [[m]]n = Val(⌈c⌉)
and hence it is the case that D(⊢ m)(∗) is not ⊥, say [d] ∈ D(σ)⊥. Appealing to
Theorem 7.5, we can deduce that [d] Eσ m and hence there is some canonical c′ for
which m ⇓ c′. 2

8 An Alternative Translation of Fixpoints

All of the results of Sections 6 and 7 remain true for a slightly different translation
of the fixpoint constants Yσ. However, the proof of computational adequacy of the
translation is not so straightforward as before. We present a proof which uses the
existence property of the FIX logic which was stated on Page 3.

The translation of the fixpoint constants Yσ now takes the form

[[Yσ]]n
def
= Val(λT (T [[σ]]n⇒T [[σ]]n)(y.Let (y, x.Fix[[σ]]n(x)))).

In order to prove a computational adequacy result which uses this new translation,
we shall need

Lemma 8.1 Suppose that

Γ ⊢ E: Tα

Γ, x: α ⊢ F (x): Tβ

Γ, y: β ⊢ Φ(y) prop

are well formed judgements in FIX. Then we have

Γ, Λ ⊢ 3(Let (E, F), Φ)

Γ, Λ ⊢ 3(E, x.3(F (x), Φ))

23

Proof The labelling of steps in the prooftrees is informal and for guidance only.
We have

(3i)

Γ, x: α, y: β, Λ, Φ(y), F (x) = Val(y) ⊢ 3(F (x), Φ)
(∗)

Γ, y: β, Λ, 3(E, x.Φ(y)∧ F (x) = Val(y)) ⊢ 3(E, x.3(F (x), Φ))
(fr)

Γ, y: β, Λ, Φ(y)∧ 3(E, x.F (x) = Val(y)) ⊢ 3(E, x.3(F (x), Φ))

and

(mod)

Γ, y: β, Λ, Let (E, F) = Val(y), Φ(y) ⊢ Φ(y) ∧ 3(E, x.F (x) = Val(y))

where the step (∗) follows from Lemma 1.1 and rule (fr) is proved in Proposition 1.2.
Applying the cut rule to the above conclusions we have

Γ, y: β, Λ, Let (E, F) = Val(y), Φ(y) ⊢ 3(E, x.3(F (x), Φ)).

Using this together with the hypothesis Γ, Λ,⊢ 3(Let (E, F), Φ) and (3e) we are
done. 2

Now we can prove computational adequacy:

Theorem 8.2 Theorem 7.7 remains true if we replace the translation of the
constants Yσ given on Page 18 with that given on Page 23.

Proof Clearly the change to the original proof will only involve the fixpoint
constants. Indeed, for the “only if” direction:

(Case Fixpoints): Applying minimality of ⇓, the induction hypothesis, and the
translation of application terms, we have

⊢ [[m]]n = [[Yσ]]n

⊢ Let ([[n]]n, f.f [[Yσn]]
n) = [[c]]n,

and thus
⊢ 3(Let ([[n]]n, f.f [[Yσn]]

n), x.x = ⌈c⌉).

Applying Lemma 8.1 we obtain

⊢ 3([[n]]n, y.3(y[[Yσn]]
n, x.x = ⌈c⌉)).

Appealing to the existence property (Theorem 1.3), there is a closed term N for
which ⊢ [[n]]n = Val(N) and ⊢ 3(N [[Yσn]]

n, x.x = ⌈c⌉), that is ⊢ N [[Yσn]]
n = [[c]]n.

Via the definition of [[Yσ]]n we see that ⊢ [[Yσn]]
n = Fix(N), yielding

⊢ [[mn]]n = Let ([[Yσ]]n, f.f [[n]]n)

= Let ([[n]]n, x.Fix(x))

= NFix(N)

= [[c]]n.

as required. The details for the converse direction are omitted; the proof uses a
technique similar to that adopted in proving the dynamic adequacy of Section 7. 2

24

9 Prospects for Further Research and Acknowl-

edgements

• We have shown that we can use a translation of two simple languages in the FIX-
logic to reason about the original languages: this makes the induction principles of
FIX available to prove properties of programmes written in the source languages. We
understand that the programming languages studied in this paper are very much
toy languages. Work is in progress to see just how useful logics such as FIX are
for reasoning about realistic languages. Recent work of Pitts and Stark has high-
lighted the problems associated with local store in the language ML; see [9]. Work
in progress is considering “realistic” fragments of ML (not involving local state) and
developing programming logics which are based on both FIX and also Evaluation
Logic [8].

We hope to implement a theorem prover based around the FIX-logic (or a similar
monadic logic) which will mechanise the procedure of reasoning in the FIX-logic.
Practicalities of such an approach will be assessed by proving toy programmes in
HPCF and QL correct, and also considering similar computational adequacy results
for fragments of working functional languages. In particular, this includes looking
at ML.

• We have investigated the possibility of proving dynamic adequacy of QL and HPCF
using a 2-categorical version of gluing. Partial results seem to indicate that this may
not provide much of a simplification over the logical relations method presented in
this paper.

• I would like to thank Andrew Pitts for conversations about this work, part of
which was conducted at the Computer Laboratory, Cambridge University. Martin
Hyland and Eugenio Moggi made valuable comments on a primeval form of this
paper. Finally I must thank the anonymous referee for some suggestions on how to
improve the presentation of this paper.

• This research was supported by the ESPRIT CLICS Project, BRA 3003, and an
EPSRC Research Fellowship.

Appendix: Martin Löf’s Theory of Arities and Expressions

Let Gnd be a fixed collection of ground types. Then the simple types over Gnd are defined
by the grammar σ ::= γ | σ ⇒ σ where γ is a ground type. We shall write σ1 ⇒
σ2 ⇒ . . . ⇒ σn for the simple type σ1 ⇒ (σ2 ⇒ . . . (σn−1 ⇒ σn) . . .). For each σ we are
given a countably infinite set of variables which are tagged with type information, namely

Varσ def
= {xσ

1 , xσ
2 , xσ

3 , . . .}; formally an element of Varσ is given by a pair (x, σ) where x is
an atomic symbol and σ is a simple type. We are also given a (possibly empty) collection
of constants which are also type tagged, denoted by Con . The collection of raw λ-terms

is given by the grammar M ::= cσ | xσ | M(N) | xσ.M where cσ is a constant. We write
~xσ.M for xσ

1 .xσ
2xσ

n.M

25

A typing is a judgement of the form M ∈ σ where M is a raw λ-term and σ simple type.
These judgements are generated by the following rules

Simply Typed λ-Calculus with Type Tagged Terms

xσ ∈ Varσ

xσ ∈ σ

cσ ∈ Con

cσ ∈ σ

M ∈ σ ⇒ τ N ∈ σ

M(N) ∈ τ

xσ ∈ σ M ∈ τ

xσ.M ∈ σ ⇒ τ

It is assumed that the reader is familiar with the notion of free and bound variables; fv(M)
will denote the free variables of the raw λ-term M . We shall write M = N to denote that
the raw λ-terms M and N are α-equivalent. A λ-term is an α-equivalence class of raw
λ-terms M satisfying the judgement M ∈ σ for some (necessarily unique) simple type σ.
σ is called the type of the λ-term M . We shall not distinguish notationally between a raw
λ-term M and the λ-term which it (may) denote. We shall write M [N/x] for the λ-term
M with occurrences of x replaced by the λ-term N with renaming of free variables in N
to avoid capture. Note that substitution is well defined up to α equivalence.

Now we shall define a binary relation between λ-terms, denoted M ։M ′, by the following
rules:

Reduction Rules

(beta)
xσ.M(N)։M [N/xσ]

(eta) [xσ 6∈ fv(M)]
xσ.M(xσ)։M

M ։M ′

(apl)
M(N)։M ′(N)

M ։M ′

(apr)
N(M)։ N(M ′)

M ։M ′

(la)
xσ.M ։ xσ.M ′

We shall write ։∗ for the reflexive, transitive closure of ։. The λ-term M is said to
be in βη normal form if there is no λ-term N for which M ։ N , or equivalently if
for every such N we have M ։∗ N implies M = N . Of course the Church Rosser
and strong normalisation properties hold: A consequence is that every λ-term M has a
unique normal form. This will be the final λ-term in any maximal sequence of the form
M1 ։M2 ։ . . .։ N . We can define an equivalence relation on the collection of λ-terms,
which is given by the reflexive, symmetric, transitive closure of ։. We refer to this as βη
equality. If two λ-terms are βη equal, written M =βη M ′, then M and M ′ have the same
simple type, and they have the same (unique) βη-normal form. With this observation, we
shall define the canonical representative of the βη equivalence class of the λ-term M to be
the βη-normal form of M .

We are now able to set up the Martin Löf-style metalanguage which will be used to present

the FIX-logic. An abstract syntax signature Σ is specified by a pair (GAr ,Con). Here,

GAr is a collection of ground arities and if we view GAr as a collection of ground types,

then we shall refer to the simple types generated from GAr as arities. Con is a collection

of metaconstants, which are tagged with an arity: Formally a metaconstant consists of

a pair (c, a) where c is a formal symbol and a is an arity, but we shall sometimes write

this as ca or even just c if the arity is clear. An abstract syntax is the collection of βη

equivalence classes of λ-terms generated by the above data. An expression of the abstract

syntax is a βη equivalence class.

26

Associated with a FIX- signature is a collection of raw terms and raw propositions.
Each raw term (proposition) will be an expression of a certain Martin Löf-style
abstract syntax. We define an abstract syntax signature, Σ(Sg) = (GAr ,Con),
from which we construct the raw terms and propositions. GAr is the two point
set {term, prop}. Con consists of the following elements: There is a metacon-
stant (f,term

n → term) for each n-ary basic function symbol and a metaconstant
(R,term

n → prop) for each n-ary basic relation symbol. There are also meta-
constants representing the simply typed lambda calculus with finite (co)products
and so on for the remaining term syntax, and metaconstants representing equality,
truth, falsity, conjunction and so on for the remaining proposition syntax. For ex-
ample, for each type α there is a metaconstant (λα, (term ⇒ term) ⇒ term) for
functional abstraction; because the arity is well known, we normally just write λα

for this. There would also be a metaconstant (Inlβ,term ⇒ term) representing
left coproduct insertion, and so on. See [1]. Finally, Con also contains a stock of
object level variables, each of arity term.

The raw terms are exactly the closed expressions of the abstract syntax generated by
Σ(Sg) which are of arity term and the raw propositions are the closed expressions
which are of arity prop.

For example, suppose there is a FIX-term Γ, x: α ⊢ F (x): β (so F is a term of the
metalanguage for which F ∈ term ⇒ term, x ∈ term is an object level variable
(x is a constant of the metalanguage!) and F (x) is application in the metalanguage).
The functional abstraction is Γ ⊢ λα(F): α ⇒ β, where λα(F) is again application
in the metalanguage.

References

[1] R. L. Crole. Programming Metalogics with a Fixpoint Type. PhD thesis, Com-
puter Laboratory, University of Cambridge, 1991.

[2] R. L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cam-
bridge University Press, 1993.

[3] R. L. Crole and A.M. Pitts. New foundations for fixpoint computations. In
5th Annual Symposium on Logic in Computer Science, pages 489–497. I.E.E.E.
Computer Society Press, 1990.

[4] R.L. Crole and A.M. Pitts. New foundations for fixpoint computations: FIX
hyperdoctrines and the FIX logic. Information and Computation, 98:171–210,
1992.

[5] M. Dummett. Elements of Intuitionism. Oxford University Press, 1977.

[6] C. A. Gunter. Semantics of Programming Languages: Structures and Tech-
niques. Foundations of Computing. MIT Press, 1992.

27

[7] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming
of Future Generation Computers, pages 237–258. Elsevier Science Publishers
B.V. North Holland, 1988.

[8] A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher Order
Workshop, Banff 1990, Workshops in Computing, pages 162–189. Springer-
Verlag, Berlin, 1991.

[9] A. M. Pitts and I. Stark. Properties of higher order functions that dynamically
create local names, or: What’s new? In Proc. International Symp. on Math.
Foundations of Computer Science. Springer-Verlag, 1993.

[10] G.D. Plotkin. Call by name, call by value and the λ calculus. Theoretical
Computer Science, 1:125–129, 1975.

[11] G.D. Plotkin. L.C.F considered as a programming language. Theoretical Com-
puter Science, 5:223–255, 1977.

[12] G.D. Plotkin. A structural approach to operational semantics. Technical Re-
port DAIMI–FN 19, Department of Computer Science, University of Aarhus,
Denmark, 1981.

[13] G.D. Plotkin. Denotational semantics with partial functions. Unpublished
lecture notes from CSLI summer school, 1985.

[14] G. Winskel. The Formal Semantics of Programming Languages. Foundations
of Computing. The MIT Press, Cambridge, Massachusetts, 1993.

28

