
A Comparison of Formalizations of the Meta-Theory
of a Language with Variable Bindings in Isabelle

A. Momigliano (A.Momigliano@mcs.le.ac.uk),
S. J. Ambler (S.Ambler@mcs.le.ac.uk) &

R. L. Crole (R.Crole@mcs.le.ac.uk)

Department of Mathematics and Computer Science, University of Leicester,
Leicester, LE1 7RH, U.K.

Abstract. Theorem provers can be used to reason formally about programming
languages and there are various general methods for the formalization of variable
binding operators. Hence there are choices for the style of formalization of such
languages, even within a single theorem prover. The choice of formalization can
affect how easy or difficult it is to do automated reasoning. The aim of this paper
is to compare and contrast three formalizations (termed de Bruijn, weak HOAS
and full HOAS) of a typical functional programming language. Our contribu-
tion is a detailed report on our formalizations, a survey of related work, and a
final comparative summary, in which we mention a novel approach to a hybrid
de Bruijn/HOAS syntax.

1 Introduction

Theorem provers can be used to reason about programming languages. For example,
Ambler and Crole have used Isabelle to prove results about a small functional language
PL [2], by formalizing it within Isabelle/HOL. A key feature of PL is that variable
binding is pervasive. Further, there are a number of methods which form the theoretical
basis for the formalization of variable binding operators, whatever setting they occur
in; in particular, there are choices for a formalization of PL. The choice of method can
have a big effect on how easy or difficult it is to do automated reasoning about PL. In
more detail we might hope that automated proofs mirror informal mathematical proofs,
that we can minimize the difficulty of proofs and the level of infrastructure (such as
“book-keeping” lemmas), and maximize genericity and scalability. The aim of this paper
is to compare and contrast three formalizations of PL, by examining such requirements
in each case. It is clearly extremely difficult to objectively compare such requirements
between different formalizations of one object level language. Our contribution is to
report our experiences as clearly as possible, and we hope our findings will be useful to
those working in related areas who wish to make informed choices about the pros and
cons of formalizing variable binding.

We proceed by giving three formalizations in Isabelle [24] of the (meta)theory of a
small core functional programming language. The types and terms are given respectively
by

A ::= Nat | A1 → A2

M ::= x | lam x . M |M @ M ′ | z | s M | (case M of z⇒M1 | s x⇒M2) | rec x . M

and the language has type assignments Γ ` M : A, big step evaluation M ⇓ V where
V is a value, and small step transitions M ; M ′. The operational semantics is call-by-
name; the rules are given in the Appendix as Figure 2. We formalize type assignment,
evaluation (natural/big-step) and transition (single step) operational semantics, and
prove some basic results, such as the determinacy of operational semantics; subject re-
duction (run-time type preservation); the progress lemma (well-typed closed non-values

do not get stuck at run-time); and the equivalence of big and small step evaluation.
These properties are standard, and quite elementary. However, they can be regarded as
a benchmark for such core languages as ours (see for example [25, 18, 16]).

We refer to our three methods as de Bruijn, weak HOAS and full HOAS. The de
Bruijn method for describing binding operators is very well known [3]. It is exemplified
in the Isabelle library by Nipkow’s Church-Rosser’s proofs [22] (see also for example [30,
2]). The method tackles some of the standard problems (such as α-renaming) associated
with name-handling over concrete syntax. However, de Bruijn systems incur costs of
additional programming infrastructure and the notation itself is unreadable. Higher
Order Abstract Syntax (HOAS) attempts to deal with some of these problems. It is
perhaps less well known, so we give some details—however, we assume readers are
broadly familiar with the ideas. Note that HOAS is not a precisely defined system; a
number of “systems” fit the title which seems to appear first in [26].

The ideas underlying HOAS go back to Church and also appear in Martin-Löf’s
theory of arities [23]. The basic idea is that the meta-language into which an object lan-
guage (such as PL) is translated will typically have a single variable binding construct
(usually given by function abstraction) and a single definition of infrastructure such
as capture-avoiding substitution, along with notions of variable-renaming and freshness
of names. This is used to represent the various binding operations found in the object
language. In particular, if the object language is altered, one does not need to substan-
tially re-code the infrastructure for binding operations. We introduce some non-standard
terminology. A meta-language for HOAS is full if

– Object-level bound variables are encoded as meta-level bound variables.
– Object level contexts are encoded as meta-level contexts.
– Object-level substitution is encoded as meta-level β-conversion.

It is called weak if the third condition does not hold. In such a case substitution is
typically defined as an inductive relation at the object level.

We have carried out our study with Isabelle and Isabelle/HOL because they are
systems which seem to offer most automation, but many of our observations may ap-
ply to other tactics-based systems such as Coq [7]. A comparison with a system such
as Twelf [27] is complicated by the fact the latter is not biased towards interactive
theorem-proving. The paper is organized as follows. In section 2 we report on de Bruijn
formalizations in Isabelle/HOL. In Section 3 we move to weak HOAS, by following De-
speyroux et al’s approach in the Calculus of Inductive Constructions. This too is in
Isabelle/HOL. In Section 4 we restrict to the primitive Isabelle language to give a full
HOAS encoding in the spirit of LF [13]. In Section 5 we review work related to ours. In
Section 6 we summarize the results of our comparisons, and mention a novel approach
to a hybrid de Bruijn/HOAS syntax.

2 The de Bruijn Method

The use of de Bruijn notation is a standard technology in the implementation of the-
orem provers and other systems which represent and manipulate syntax with variable
binding [3]. The same technology can be used within a theorem prover to represent and
reason about an object language with variable binding. This approach has been used
successfully by a number of authors (see for example [22]). In the pure form of de Bruijn
notation, all variables within an expression, whether free or bound, are represented by
natural number indices. The work reported in [2] used a pure form of de Bruijn notation
to represent the functional programming language fragment PL in Isabelle/HOL and
reason about its operational semantics. Examining the Isabelle theories produced for
PL reveals both the strengths and the weaknesses of the de Bruijn approach. A clear

2

strength is that the technology is available off-the-shelf: expressions are represented by
the elements of an inductive datatype exp, operations such as substitution are given by
primitive recursive functions, and judgements are given by (co)inductively defined sets.
These features are all well supported by packages within Isabelle/HOL. On the other
hand, it is a weakness of this approach that the de Bruijn notation differs considerably
from that used in informal mathematical exposition. It is difficult, even with experience,
to read such expressions. A greater problem is that the index assigned to a variable is
given by its position relative to the corresponding binder (in the case of bound variables)
or relative to a corresponding occurrence of that variable in an environment (in the case
of free variables). The consequence is that any operation which alters the relative po-
sition of variables, for example, swapping the position of two variables in the typing
environment or substituting one expression into another, necessitates the relabelling of
indices. The de Bruijn encoding of PL, in common with other theories of this sort, is
dominated by a large number of lemmas dealing with the relabelling of indices. These
lemmas are more a book-keeping aspect of the representation rather than anything to
do with the object language being formalized.

An alternative to the pure form of de Bruijn notation is a mixed form in which
bound variables are represented by indices but free variables have explicit names. It is
a variant of this form which is used in the implementation of Isabelle itself. For our
language we define a datatype of expressions by

datatype exp = Var var | Bnd bnd | Abs exp | App exp exp | Fix exp
Zero | Succ exp | Case exp exp exp

The type var of free variables and the type bnd of bound variable indices are both
declared to be the type of natural numbers. Taking var as the naturals is simply a way
to ensure that we have a countably infinite supply of distinct free variables—there are
no index computations.

Proofs involving the mixed form of de Bruijn notation are less dependent on lemmas
about relabelling of indices. However, the work is transfered elsewhere. As free and
bound variables are explicitly distinguished, we require functions to transform a free
variable to a bound variable, and to instantiate a bound variable as a free variable or
possibly some other expression. These functions are defined by primitive recursion on
the structure of expressions, and have types given by

bind :: var⇒bnd⇒exp⇒exp

inst :: bnd⇒exp⇒exp⇒exp

The standard presentation of the typing judgement uses an explicit type environment
coded as a list. This is not a requirement or a feature specific to the de Bruijn approach,
but a choice. This presentation has the advantage that it is easy to code using the tools
already available in Isabelle-HOL. Typing judgements env ` e ::: a are given as an
inductive definition. In particular, the introduction rule for the type of an abstraction
takes the form

newIn n env newFor n s Cons(n, a) env ` (inst 0 (Var n) s) ::: b
dbtype abs

env ` (Abs s) ::: a→ b

The predicates newIn and newFor are used to check that the nth free variable does not
occur in the typing environment or the expression s, that is, n is the name of a fresh
free variable. The task of reasoning about the typing judgement is quickly dominated
by quite routine lemmas about the freshness of names.

3

In the proof of the subject reduction lemma for ‘big-step’ evaluation we first have
to relate typing, and substitution of an expression for a free variable:

Cons(n, a) env ` s ::: b env ` t ::: a
SubLemma

env ` s[t//n] ::: b

The proof is by induction on the derivation of the typing of s and uses a second result,
which states that weakening is admissible for the typing judgement:

env ` s ::: a newIn i env newFor i s
TWeak

Cons(i, b) env ` s ::: a

A straightforward proof of this by induction on the derivation of the typing of s runs into
problems in choosing suitably fresh names for the variables introduced in the abstraction
case. A proof technique which overcomes these difficulties is given by McKinna and
Pollack [19]. The trick is to define a second version of the typing judgement in which
the introduction rule for an abstraction has a universal quantifier

∀n . newIn n env → newFor n s→ Cons(n, a) env ` inst 0 (Var n) s ::: b
dbtype abs′

env ` (Abs s) ::: a→ b

and the reader should compare this rule to the rule typeof abs in Section 3 and rule
ofLam in Section 4 which addresses a similar issue in HOAS. Thus the premise states
that s instantiated with Var n has type b for all choices of fresh variable n, rather than
some specific choice. One develops a theory of relabelling for the free variables within an
expression and uses this to show that the two versions of the typing judgement coincide.
The key idea is to show that these typing judgements are preserved by a bijective
relabelling of free variables and so, in particular, they are preserved when the names
of two free variables are swapped. The cost in terms of programming infrastructure is
quite high but the mathematics is relatively straightforward.

It is worth stressing that the approaches described in this section are entirely com-
patible with classical higher order logic and are purely definitional. It is one of the main
tenets of the philosophy amongst users of HOL and Isabelle-HOL that new concepts
should, wherever possible, be defined via some representation involving the concepts
that are already given. Properties of the new concept can then be derived from the
properties of its underlying representation, rather than postulated axiomatically. This
ensures the consistency of each extension relative to a small core of the logic. The work
needed to achieve this is all done within the theorem prover. An axiomatic approach
dispenses with the need to prove derived properties, but must rely on an external math-
ematical justification (i.e. models) for its consistency (see Section 4).

3 The Weak HOAS Method

In this section we explore Despeyroux et al.’s approach [4] to HOAS, which leads us to a
formalization of a weak form of HOAS in Isabelle/HOL. Variable binders are represented
as functions in the meta-logic. This “requires” an inductive datatype definition involving
function types, such as datatype exp = Abs (exp⇒exp) | App exp exp . . . which is
not allowed because the source exp occurs negatively (the associated operator would
not be monotone). Thus we introduce a separate type for variables, with an explicit
coercion for variables into expressions, and say that the datatype has been positivized.
This yields the following HOL data-type:

datatype exp = Var var | Abs (var⇒exp) | App exp exp | Fix (var⇒exp) |
Zero | Succ exp | Case exp exp (var⇒exp)

4

It is standard to define a translation function p−q from the object language to expres-
sions in the meta-logic, with object level binding captured by function abstraction; for
example plam x . xq = Abs(λx : var. (Var x)). Operations involving variable binding
(i.e. α-renaming etc) are delegated to the meta-level. Further, no lemmas concerning de
Bruijn index manipulation are required.

In an inductive framework, the choice of representation of the set of bound variables
is crucial. Despeyroux [4] took this to be any set isomorphic to the natural numbers,
to realize a possibly infinite number of bound variables. However, taking var to be an
inductive set will create so-called exotic terms. These are terms of type exp which do not
represent any object-level functional program and hence the translation function can not
yield an adequate representation. In fact not only are exotic terms given by case-analysis
possible, but there are terms representing “free” variables, such as Var(Succ Zero).
However, as pointed out in [9], if the set of variables is not inductive, no closed exotic
term is produced. In fact, in the Calculus of Construction it is possible to leave the set
of variables completely unspecified (“parametric” in Coq terminology).

For the formalization of the semantics of our programming language, we do not need
to have an infinite supply of names for bound variables. On the contrary we do not need
to name them at all. Our only requirement is that the set of bound variables contains
at least two distinct elements. In Isabelle/HOL, types need to be non-empty and in fact
we identify var with a set of at least two elements (we take exactly two) and we add
the axiom

V ar neq
∀y :var. λx . (Var x) 6= λx . (Var y)

which is clearly validated by our representation. This ensures that both kinds of closed
exotic terms present in Despeyroux et al.’s approach are excluded. However, the prim-
itive language of HOL contains the description operator which creates closed exotic
terms such as

Abs(λx . (if x = (εw.True) then (Var x) else (App (Var x) (Var x)))

Note however that no exotic terms can be constructively created: in an intuitionistic
version of HOL, all exotic terms would be ruled out.

Isabelle/HOL is a classical set-theory, so we do introduce in Figure 1 an object-level
predicate (traditionally called ‘valid0’) which identifies the class of meta-level terms
representing programs (we write upper and lower case characters, i.e. E and e, for second
and first order terms respectively). The identification is modulo extensionality—built-in
in Isabelle/HOL, although not in Coq. Moreover, validity can be useful in so far as it
provides an induction principle over second-order terms. We can prove that substitution
is a total relation (which otherwise would be, in general, unprovable). In [28] validity is
used to prove the theory of contexts.

Weak HOAS does not obviously extend beyond second-order binding. Consider a
third-order operator such as callcc, which in full HOAS would have the type
((exp⇒exp)⇒exp)⇒exp. It is not clear how this might be positivized. On the other
hand, we can formalize several other binding operators such as logical quantifiers or
operators in process-calculi. For instance, in the polymorphic λ-calculus, type abstrac-
tion can be given the type (tp⇒exp)⇒exp, while the polymorphic quantifier should be
positivized into (var⇒tp)⇒tp.

Substitutions In Weak HOAS, meta-level functions have source type var⇒exp; thus
substitution of expression for expression cannot be rendered by meta-level β-conversion.
Ideally we seek a primitive recursive definition which would be directly applicable to a
substitution-based evaluation semantics. It is well known that this is not possible in the

5

v1 var
valid1 (λx . (Var v))

v1 ref
valid1 (λx . (Var x))

valid1 E valid1 E
′

v1 app
valid1 (λx . (App (E x) (E′ x)))

(∀u. valid1 (λx . (E u x))) (∀u . valid1 (λx . (E x u)))
v1 abs

valid1 (λx . (Abs (E x)))

v0 var
valid0 (Var v)

valid0 e valid0 f
v0 app

valid0 (App e f)

valid1 E
v0 abs

valid0 (Abs E)

Fig. 1. Validity predicates

traditional setting of inductive definitions [6, 10]. Substitution must be implemented, in
the spirit of [21], as an inductive relation with rules such as

s var1
subst (λx . Var x) p p

s var2
subst (λx . Var u) p (Var u)

subst S1 t U1 subst S2 t U2
s app

subst (λx . App (S1 x) (S2 x)) t (App U1 U2)

(∀v . subst (λx . (M x v)) p (N v))
s abs

subst (λx . (Abs (M x))) p (Abs N)

In fact establishing the functionality of the relation in Isabelle/HOL turns out to be
quite tricky. Getting an appropriate elimination rule is far from immediate, partly be-
cause the simplifier (which refines the general elimination rule stemming from the fixed
point definition via some free equality rewriting) does not simplify at higher types.
Since simply adding extensionality to the reasoner is not practical, we have to establish
freeness of constructors manually. While injectivity of constructors is fairly immedi-
ate, distinctness needs to rely on the Var neq axiom. Once established and temporarily
added to the simplifier, the correct elimination rules are obtained.

The proof of functionality of substitution is a simple structural induction. Instead,
the proof that substitution is a total relation requires the validity condition for functions,
and also the ε-operator. We comment on this point further in Section 6.

Typing A key feature of the (Weak) HOAS approach is that an object-level context Γ ≡
x1:A1 . . . xn:An is represented as a meta-level context. This provides benefits which we
illustrate by examining typing judgements. We can represent typing without explicitly
mentioning the typing context as follows. First consider these rules

::: :: (exp ∗ tp) set
tpv :: exp ⇒tp ⇒bool

tpv x t
typeof var

(Var x) ::: t

e ::: (t′ → t) e′ ::: t′

typeof app
(App e e′) ::: t

(∀x . tpv x t→ (E x) ::: t′)
typeof abs

(Abs E) ::: (t→ t′)

6

We extend the representation function by defining pΓq to be the set of Isabelle assump-
tions tpv x1 pA1q . . . tpv xn pAnq. Clearly pΓ, x:Aq = pΓq, px:Aq. Again, note that we
have a positivized encoding, achieved by introducing an auxiliary predicate tpv. As tpv
is not an inductive predicate, we need to axiomatize its behavior so that it faithfully
encodes object-level contexts. In particular, the latter are functional. This is enforced by
the axiom tpv unique. Moreover, for meta-reasoning, we need to ensure (axiom tpv ex)
that there exists at least one variable for every type:

tpv x t tpv x t′
tpv unique

t = t′
tpv ex

∀t .∃x. tpv x t

Since the object-level context Γ is represented as a meta-level context, weakening,
contraction and exchange come for free. It is essential that the notion of provability is
constructive. This will force a proof of φ→ ψ to a be a proof of φ from the assumption
ψ, rather than, say the tautology ¬φ ∨ ψ. For example, there is a classical proof of
∃y . Abs(λx . (Var y)) ::: s → s, although the expression does not correspond to any
object-level term.

Although inversion (as usual) is provided by the elimination rule(s) of the inductive
definition, we do need to prove that substitution preserves typing. Our formalization is
directly inherited from [4]:

subst E p n ∃x . (Var x) ::: t′ ∧ p ::: t′ → E x ::: t
SubLemma

n ::: t

The mechanized proof mirrors the informal one (induction on substitution and inversion
on typing), but with appeal to the tpv unique axioms in the base case.

An issue which did not manifest itself in Despeyroux et al [4] is that sometimes the
induction principle generated by ::: is not appropriate, because it will always contain a
base case for (free) variables. (This cannot happen in full HOAS—see Section 4.) This
turns out to be a problem, for example, when formalizing the progress lemma. Indeed,
the lemma holds only for closed expressions which must have empty typing contexts.
But contexts in the encoding of ::: are implicit and therefore cannot be explicitly ma-
nipulated. Thus we need to introduce another version of typing with an additional
argument, to be read as a boolean flag which signals whether the context is empty or
not. These typing rules (given below) will update the flag from its initial default value
false, to true.1

typf :: (exp ∗ tp ∗ bool) set

tpv x t f = True
typf var

typf (Var x) t f

typf e (t′ → t) f typf e′ t′ f
typf app

typf (App e e′) t f

(∀x. tpv x t→ typf (E x) t′ (λy . True) f)
typf abs

typf (Abs E) (t→ t′) f

We have proven the two typing judgements equivalent with a straightforward derivation.

Evaluation The encoding of operational semantics as inductive relations does not
bring in any new ideas. However, note the role of substitution, for example in:

>> :: (exp ∗ exp) set
1−→ :: (exp ∗ exp) set

1 A more elegant treatment would use a linear context for the same aim.

7

e1 >> (Abs E) subst E e2 e3 e3 >> v1
eval app

(App e1 e2) >> v1

subst E e2 e3
step app

App (Abs E) e2) 1−→ e3

It is clear that properties of substitution are central in every proof involving evaluation,
and moreover no other infrastructure is required in the Weak HOAS setting:

– Determinacy of operational semantics: for evaluation there is a fully automatic proof
which uses as expected functionality of substitution plus distinctness of numerals.
Its cost is therefore the cost of the former. Similarly for SOS, which also uses the
facts that there are no steps possible from values and specialized elimination rules
for the latter.

– Subject reduction for evaluation. The proof (by induction on the evaluation judge-
ment) uses as expected introduction and elimination rules for typing and the sub-
stitution lemma, but it also requires the tpv ex axiom every time a dynamic typing
assumption is needed. The same applies to subject reduction for small step reduc-
tion.

– The Progress lemma requires the flagged type judgement, so that we can get rid of
the variable case. Further, since we need totality of substitution to fire the β rules,
we need to add the validity condition.

typf e t f (f = False) valid0 e
Progress

value e ∨ ∃e′. e 1−→e

4 Full HOAS

The final approach we consider is a way to address full HOAS in a system such as
Isabelle. In the LF style, expressions are declared by simply introducing an appropriate
signature and not a data-type: exp and tp have kind term, and lambda abstraction, for
example, receives the second-order type (exp⇒exp)⇒exp. We thus give the following
declaration.

App :: exp⇒exp⇒exp

Abs :: (exp⇒exp)⇒exp

Fix :: (exp⇒exp)⇒exp

Zero :: exp
Succ :: exp⇒exp

Case :: exp⇒exp⇒(exp⇒exp)⇒exp

This has the crucial feature that we can easily prove that every α-equivalent object-
term is uniquely represented by a canonical (that is η-long β-normal) term built out of
App, Abs, Zero, Succ, Case, Fix. In particular, there is no construct for bound variables
and no exotic term may arise. It is of course vital that its expressive power is essentially
the one of the simply-typed λ-calculus and its derivability strictly intuitionistic. We
thus step back to Isabelle’s IFOL (intuitionistic first-order logic).

Relations such as typing or evaluation are not inductively defined. The benefits of
“left-recursiveness”show themselves for example in the typing relation (given below),
where note how the variable case is left entirely implicit. To stress that we are not in
HOL anymore, we use IFOL first-order syntax:

of :: exp⇒tp⇒bool

eval :: exp⇒exp⇒bool

8

of(e1, t
′ → t) of(e2, t

′)
ofApp

of(App(e1, e2), t)

(∀x . of(x, t1)→ of(E(x), t2))
ofLam

of(Abs(λx .E(x)), t1 → t2)

of(e1,Nat) of(e2, t) (∀x . of(x,Num)→ of(E3(x), t))
ofCase

of(Case(e1, e2, E3), t)

It is the eigenvariable condition in the meta-level which replaces the tpv unique axiom
in Weak HOAS to guarantee functionality of contexts. The use of meta-level substitution
is apparent in the encoding of evaluation:

eval(e1, Abs(λx .E(x))) eval(E(e2), v)
evalApp

eval(App(e1, e2), v)

eval(E(Fix(E)), v)
evalF ix

eval(Fix(E), v)

Note how in the case for application E1 returns a function Abs(λx .E(x)) and the
object-level reduction is encoded by application in the logical framework, that is E(e2).

This is very elegant and well-known as far as object-level reasoning, such as typing
or evaluation, but it is clearly not enough for meta-reasoning, which needs at least
some form of case analysis and induction. One way to provide the former is to view
a relation such as typing as a Partial Inductive Definition [12], a generalization of
inductive definitions [1] to definiens containing parametric and hypothetical judgements.
If b ⇐ G is an introduction rule for the predicate a and D(a) is the collection of the
former, then the rule of Definitional Reflection

{σΓ, σG `D A | σ = mgu(a, b), b⇐ G ∈ D(a)}
D − L

Γ, a `D A

is a proof-theoretic device that allows theories to be considered as “closed” (in the sense
of logic programming closed worlds) and thus provides a convenient way to perform case-
analysis on judgements. Indeed, it can be seen as the ‘mother’ of every elimination rule,
since, once we endow the meta-logic (i.e. IFOL) with such a rule, the elimination rules
(as well as freeness equality of the data-type) of an inductive definition can be derived,
thus freeing the user from stating and asserting them in the theory.2

As well-known, induction in this setting can cause problems. For example, para-
doxes such as non-termination of the logical framework [11] arise when the higher-order
encoding of a relation is seen as an inductive type, with corresponding strong elimi-
nation rule. It is the rule that allows a definition of the offending terms. Other less
dramatic problems, such as the loss of the adequacy of the representation via creation
of exotic terms, can come from a naive combination of higher-order induction principles
in impredicative systems with the axiom of unique choice [15].

The main challenge is to-reintroduce some form of induction. Some recent research [27,
18] has shown that one way to make sense of this is to separate a meta-logic where we
formalize our object logic from a meta-meta-logic where we inductively reason about
the meta-logic. Miller & McDowell [18] introduce a meta-meta logic, FOλ∆IN , that is
based on intuitionistic logic augmented with definitional reflection and induction on
natural numbers. Other inductive principles are derived via the use of appropriate mea-
sures. At the meta-meta level, they reason about object-level judgements formulated in
second-order logic. They prove the consistency of the method by showing that FOλ∆IN

enjoys cut-elimination [17].
Our approach is somewhat more naive than Miller’s in that we blur the distinction

between meta-meta and meta-logic and we do not formalize an explicit logic of judge-
ments, which we represent directly in an Isabelle. This entails considering judgements
2 For the sake of this study, we have not implemented the rule of definitional reflection yet,

so we actually assert the elimination rules as axioms.

9

directly as definitions, which is not allowed in Miller’s approach due to the restriction
on the cut-elimination proof. Another difference is that we assert structural induction
as an axiom on any class of judgements. For example, we assert the structural induction
principle for typing (restricting here for the sake of space to the Abs, App fragment):

of(b, a) of(e, (t′ → t)) ∧ P (e, (t′ → t) ∧ of(e′, t′) ∧ P (e′, t′)→ P (App(e, e′), t))

(∀v . of(v, t)→ of(E(v), t′) ∧ P (E(v), t′)→ P (Abs λx .E(x), t→ t′))
of induct

P (b, a)

(Note that the size of v is not limited, so that this does not present a straightforward
induction on the size of terms, and must be justified some other way.) A consequence
of this is that the cut-elimination result does not apply directly and thus consistency
is not automatically established. Another way to establish consistency of our axioms is
via a semantics [16], as we discuss in the next Section 5.

In a robust implementation, there must be some support to automatically infer such
principles from the defined judgements. Indeed, it is possible to modify the ML code
which produces induction rules for HOL inductive definitions; in fact, the above axioms
are simple manual modifications of the principles generated in Weak HOAS. Once this
is in place, the proof-scripts tend to shrink dramatically: the structure of the top-level
theorems does not alter much, but the required infra-structure does indeed diminish.
In fact, they are comparable to Twelf ’s proofs. We find that

– Subject reduction can be proven with no preliminaries.
– Determinism of operational semantics: no need for functionality of substitution.
– Progress Lemma: the standard typing judgement is sufficient, and no need for to-

tality of substitution.

5 Related Work

In the literature, there are several large-scale machine-assisted proofs of properties of
languages with variable binding using first-order encodings, see for example [30, 14].
Here we review papers that try to overcome the problems of first-order encodings by
using some form of HOAS.

We can distinguish two main (and not unrelated) approaches to the integration of
HOAS and induction: one “functional” and the other “logical”. In the “functional” ap-
proach, the emphasis is on trying to allow (primitive) recursive definitions on functions
of higher type (cf our substitution function introduced in Subsection 3). The aim is
to preserve adequacy of representations, while still allowing “functional programming
with higher-order terms”. This was first suggested for a fragment of ML by Miller
in [20] and was realized first for the simply-typed case in [6] and more recently for the
dependently-typed case in [5]. Here the idea is to separate at the type-theoretic level,
via an S4 modal operator, the primitive recursive space (which encompasses functions
defined via case distinction and iteration) from the parametric function space (whose
members are those convertible to terms built only via the constructors). An interpre-
tation of the modal operator in terms of functor categories has been given in [15],
providing an alternative proof of adequacy. Such categorical semantics can also be used
to give a sensible interpretation to higher-order induction principles. Recently, in [10]
Gabbay and Pitts have introduced a novel approach to this issue, based on a set-theory
with an internal notion of permutation of variables. This yields a primitive notion of
freshness and of name-abstraction, so that it can adequately encode object-level syntax
modulo α-conversion. This work takes an alternative route to HOAS, with the inten-
tion of manipulating names of bound variables explicitly, something that HOAS can

10

manage only up to a certain point (but see [16] reviewed later on). Such a set-theory
yields a natural notion of structural induction and recursion over α-equivalence classes
of expressions. On the other hand, the approach shies away from the other two focal
points in logical frameworks, namely delegating to the latter object-level substitutions
and environment maintainance. An ML-like programming language, FreshML is under
construction geared towards meta-programming applications. The fertility of such an
approach is still to be tested.

On the “logical” side, the Twelf project [27] is built on the idea of devising an
explicit (meta-)meta-logic, for reasoning (inductively) about logical frameworks, in a
fully automated way. M2 is a constructive first-order logic, whose quantifiers range
over possibly open LF object over a signature. In the meta-logic is possible to express
and inductively prove meta-logical properties of an object logic. By the adequacy of
the encoding, the proof of the existence of the appropriate LF object(s) guarantees
the proof of the corresponding object-level property. Twelf is to date the only imple-
mentation of a theorem-prover which successfully marries HOAS and induction, as the
fully automated proofs of non-trivial results such as Church-Rosser or cut-elimination
testify. In particular, all the results mentioned are proven in a fully automated way
with no infrastructure. Thus, it represents a benchmark for any other system which
aims to use HOAS, although it must be remarked that Twelf is explicitly built as a
non-interactive system (i.e. not programmable by tactics). FOλ∆IN approach [18] is
interactive, and briefly over-viewed in Section 4. While all the derivations mentioned
in [18] have been proof-checked via the Pi editor [8], an automated tool, code-named
Iris, is under development.

An even more recent development is Honsell et al. ’s Ψ framework [16], which ex-
plicitly embraces an axiomatic approach to meta-reasoning with HOAS. It consists of
classical higher-order logic extended with a set of axioms, called the theory of contexts,
parametric to a HOAS signature. Those axioms include the reification of some prop-
erties of bound variables such as unsat ∀M.∃x. x 6∈ M , which asserts the existence
of fresh names. More crucially, higher-order induction and recursion schemata are also
assumed, such as the principle of induction on terms of type var⇒exp. The consistency
of such axioms w.r.t. functor categories is left to a forthcoming paper. Two main ap-
plications have been investigated so far. One is the development of the formal theory
of strong late bisimilarity in the π-calculus [9]. The other is an implementation for the
simply-typed λ-calculus which studies the same properties we have considered. In par-
ticular, the proof of totality of substitution relies essentially on the axiom of induction
on second-order expressions, while the axiom unsat is required in the proof of deter-
minacy of substitution (playing the role of our Var neq) Further, extensionality axioms
are also needed in the binding cases. After that the script follows ours, confirming the
crucial interaction of substitution and bound variables.

In [28] the authors present a Weak HOAS formalization of the π-calculus in Is-
abelle/HOL. Binding operators are represented as functions from names to processes
into processes. Because both channels and messages are names, there is no need for
object-level substitution. Variables are isomorphic to the natural numbers, hence exotic
terms are excluded via well-formedness inductive predicates analogous to our validity
predicates, the former also providing the only structural induction principle. The paper
shows how Honsell’s theory of contexts, namely the principles of monotonicity, exten-
sionality and expansion can be proven, rather than axiomatized, provided there is an
inductive characterisation of the set of variables. Nevertheless, the proof of the last
property is quite intricate and requires an embedding into a first-order encoding. Due
to the limited scope of the paper, the authors do not employ hypothetical judgements,
so none of the above mentioned problems with classical logic arise.

11

6 Conclusions

It is now generally accepted that HOAS is a promising tool in meta-reasoning over
syntax with binders. Representing bound variables in expressions as meta-level bound
variables makes the statement of theorems far closer to established mathematical prac-
tice than in de Bruijn notation, and representing object-level environments as meta-level
assumptions can lead to elegant proofs. Unfortunately, there is currently no off-the-shelf
system which supports HOAS with all of the features that one would like for the formal
verification of languages with variable bindings. Such features include structural induc-
tion and primitive recursion; co-induction and co-recursion; interactive proofs combined
with powerful automatic provers and re-writers; and various kinds of meta-logics. We
conclude by summarizing the benefits (B) and costs (C) of each of the three method-
ologies.

The de Bruijn Method

B The encodings are purely definitional.
B The logic can be classical.
B Utilises and is well supported by (co)inductive datatype packages and (co)recursion.

C Plain de Bruijn notation is unreadable.
C Proofs do not resemble informal mathematical practice.
C Any operation requiring variable transposition requires tedious index relabelling via

significant book-keeping infrastructure.
C Mixed de Bruijn is more readable, with a reduction in relabelling infrastructure, but

requires coercion functions between free and bound variables which leads to new
infrastructure to establish freshness of names.

C Weakening for the typing judgement needs to be proved explicitly, for example in the
case of mixed de Bruijn by the method of Pollack and McKinna. The same would
apply to any other judgement involving environments.

C Infrastructure must be redone on a case-by-case basis for each object level language.

Following the definitional spirit, we have developed a novel hybrid approach to
syntax which bridges the gap between the concrete de Bruijn notation and HOAS
notation. This introduces a binding operation Abs :: (exp => exp) => exp so that
λ-abstractions can be written in the form Abs(λx .E x). However, the meaning of such
expressions is reduced to an underlying de Bruijn representation. The use of HOAS is
thus a form of syntactic sugar. An expression can be translated freely back and forth
between its sugared version and its underlying representation. We have derived some
basic properties of expressions written in this HOAS form, for example, the following
induction principle over the structure of expressions is derived.

proper u
∀n. P (Var n)
∀s. ∀t. (P s ∧ P t)→ P (App s t)
∀E. (abstr E ∧ ∀n. P (E (Var n)))→ P (Abs (λx .E x))

P u

The predicates proper and abstr are used to rule out exotic terms and can be seen as
analogues of Despeyroux’s predicates valid0 and valid1 .

The state of this work is not sufficiently advanced to be able to prove all of the
results discussed in this paper. This is the focus of ongoing research. However, some
results have been proved (e.g. determinacy of evaluation and single step reduction). We
intend to give a full account of this idea in a forthcoming paper.

12

The Weak HOAS Method

B Utilises the inductive datatype package.
B Bound variables handled at the meta-level.
B Provides a limited form of implicit context.

C The logic must be intuitionistic.
C One may have to deal with exotic terms and associated validity predicates.
C The only infrastructure required concerns object-level substitution—this must be

defined as an inductive relation.
C For some applications, substitution needs to be proven to be a function (Progress

lemma), yet totality appears to require the choice operator, which is problematic
(see below), or the postulation of a induction principle on second-order expressions.

Hoffman [15] in fact has shown how the principle of unique choice (AC!) is trou-
blesome w.r.t. HOAS. While this is avoided in a system such as Coq where AC! is not
provable and hence second-order induction on expressions can be assumed, the same
cannot be said for HOL. The description axiom entails AC!; more generally, classical
typed set-theories do not match very well with the much weaker intuitionistic derivabil-
ity that HOAS requires.

This applies also to the issue of implicit management of contexts; to begin with
the forced positivization of hypothetical judgements in an inductive framework makes
them sometimes ineffective, compared to full HOAS, since the auxiliary new predicates
which are introduced in place need to be axiomatized in order to be useful in meta-
reasoning. For example, the very concise proof of subject reduction in Full HOAS, which
relies on the representation of Γ, x:A ` e : B with ∀x : exp. of (x,A) → of (E(x), B)
can only be awkwardly simulated by the Weak HOAS encoding ∀x : var. tpv x A →
(E x) ::: B ∧ tpv ex. In this sense, we agree with [18]: “These approaches also lessen
the power of the meta-level cut rule as a reasoning tool [. . .]” Moreover, adequacy of
the representation of such a judgement holds only constructively. On the other hand,
as pointed out by John Harrison (personal communication), it is certainly possible to
realize an intuitionistic version of HOL, which would erase those problems. Alas, such
a system is not immediately attainable, since the inductive package is heavily based on
classical set-theory.

The Full HOAS Method

B Substitution is captured by meta-level application and beta conversion.
B Embedded implication can be used to full effect.

C The logic must be intuitionistic.
C Induction and case analysis should be moved to an additional meta-level to ensure

consistency. A straightforward two-level approach such the one in Section 4 is meta-
theoretically uncertain.

C It is difficult to allow (primitive) recursion on higher-order syntax and especially to
combine it with induction over open terms [29].

C No support for co-induction at this time.

The simulation of Full HOAS in Isabelle’s IFOL seems successful. Indeed, the proofs
of subject reduction, determinism of operational semantics, and the progress lemma
resemble informal mathematical practice very closely. However, much of the hard work
has been moved elsewhere, namely to the justification of the inductive principles (of
course this is a one-time-only effort).

13

In summary, the practitioner who wishes to verify significant properties of a lan-
guage with variable binding using machine assistance is faced with some uncomfortable
choices: either rely on trusted but labour-intense first-order technology such as variants
of de Bruijn, or adopt an HOAS approach. In this case there is no single framework
which is endowed with all the reasoning tools we may require.

The Isabelle code described in this paper can be found at

http://www.mcs.le.ac.uk/~amomigliano/isabelle/compar.html

Acknowledgements. We wish to thank Amy Felty and Marino Miculan for having
made available to us the Coq proof scripts associated with [4] and [16], respectively.

References

1. P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics,
chapter C.7, pages 739–782. North-Holland, Amsterdam, 1977.

2. S. J. Ambler and R. L. Crole. Mechanised Operational Semantics via (Co)Induction.
In Proceedings of the 12th International Conference on Theorem Proving in Higher Order
Logics, volume 1690 of Lecture Notes in Computer Science, pages 221–238. Springer-Verlag,
1999. .

3. N. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic
formula manipulation with application to the Church-Rosser theorem. Indag. Math.,
34(5):381–392, 1972.

4. J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq. In
M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the International Conference
on Typed Lambda Calculi and Applications, pages 124–138, Edinburgh, Scotland, Apr.
1995. Springer-Verlag LNCS 902.

5. J. Despeyroux and P. Leleu. Metatheoretic results for a modal λ-calculus. Journal of
Functional and Logic Programming, 2000(1), 2000.

6. J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for higher-order
abstract syntax. In R. Hindley, editor, Proceedings of the Third International Conference
on Typed Lambda Calculus and Applications (TLCA’97), pages 147–163, Nancy, France,
Apr. 1997. Springer-Verlag LNCS.

7. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring,
and B. Werner. The Coq proof assistant user’s guide. Rapport Techniques 154, INRIA,
Rocquencourt, France, 1993. Version 5.8.

8. L.-H. Eriksson. Pi: An interactive derivation editor for the calculus of partial inductive
definitions. In A. Bundy, editor, Proceedings of the 12th International Conference on
Automated Deduction, pages 821–825, Nancy, France, June 1994. Springer Verlag LNAI
814.

9. I. S. Furio Honsell, Marino Miculan. π-calculus in (co)inductive type theories. Theoretical
Computer Science, 2(253):239–285, 2001.

10. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in Computer Science
(LICS’99), pages 214–224, Trento, Italy, July 1999. IEEE Computer Society Press.

11. E. Gimenez. A tutorial on recursive types in Coq. Technical Report RT-0221, Inria,
Institut National de Recherche en Informatique et en Automatique, 1998.

12. L. Hallnas. Partial inductive definitions. Theoretical Computer Science, 87(1):115–147,
July 1991.

13. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, Jan. 1993.

14. D. Hirschkoff. A full formalization of pi-calculus theory in the Calculus of Constructions.
In E. Gunter and A. Felty, editors, Proceedings of the 10th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs’97), pages 153–169, Murray Hill, New
Jersey, Aug. 1997.

14

15. M. Hofmann. Semantical analysis for higher-order abstract syntax. In G. Longo, editor,
Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS’99), pages
204–213, Trento, Italy, July 1999. IEEE Computer Society Press.

16. S. I. Honsell F., Miculan M. An axiomatic approach to metareasoning on systems in
higher-order abstract syntax. 2001. Submitted.

17. R. McDowell. Reasoning in a Logic with Definitions and Induction. PhD thesis, University
of Pennsylvania, 1997.

18. R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a logical
framework. ACM Transaction in Computational Logic, 2001. To appear.

19. J. McKinna and R. Pollack. Some lambda calculus and type theory formalized. JAR,
1998.

20. D. Miller. An extension to ML to handle bound variables in data structures: Preliminary
report. In Informal Proceedings of the Logical Frameworks BRA Workshop, June 1990.

21. D. Miller. Unification of simply typed lambda-terms as logic programming. In K. Furukawa,
editor, Eighth International Logic Programming Conference, pages 255–269, Paris, France,
June 1991. MIT Press.

22. T. Nipkow. More Church-Rosser proofs (in Isabelle/HOL). JAR, 2000. To appear.
23. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s Type Theory:

An Introduction. Oxford University Press, 1990.
24. L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS 828, 1994.
25. F. Pfenning. Computation and deduction. Unpublished lecture notes, 277 pp. Revised

May 1994, April 1996, May 1992.
26. F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIG-

PLAN ’88 Symposium on Language Design and Implementation, pages 199–208, Atlanta,
Georgia, June 1988.

27. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999.
Springer-Verlag LNAI 1632.

28. Rockl C. Hirschoff D. and Berghofer S. Higher-order abstract syntax with induction in
Isabelle/HOL: Formalizing the π-calculus and mechanizing the theory of contexts. In
FOSSACS’01. Forthcoming, 2001.

29. C. Schürmann. Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie-
Mellon University, 2000. CMU-CS-00-146.

30. M. VanInwegen. The Machine-Assisted Proof of Programming Language Properties. PhD
thesis, University of Pennsylvania, Aug. 1996.

15

A The Object Language

Γ, x:A `M : B
tp lam

Γ ` lam x . M : A→ B

Γ, x:A `M : A
tp fix

Γ ` rec x . M : A

Γ (x) = A
tp var

Γ ` x : A

Γ `M : B → A Γ ` N : B
tp app

Γ `M @ N : A

tp z
Γ ` z : Nat

Γ `M : Nat
tp s

Γ ` s M : Nat

Γ `M : Nat Γ `M1 : A Γ, x:Nat `M2 : A
tp case

Γ ` case M of z⇒M1 | s x⇒M2 : A

eval lam
lam x . M ⇓ lam x . M

M ⇓ lam x . E [N/x]E ⇓ V
eval app

M @ N ⇓ V

eval z
z ⇓ z

M ⇓ V
eval s

s M ⇓ s V

[rec x . M/x]M ⇓ V
eval fix

rec x . M ⇓ V

M ⇓ s V ′ [V ′/x]M2 ⇓ V
eval case s

case M of z⇒M1 | s x⇒M2 ⇓ V

M ⇓ z M1 ⇓ V
eval case z

case M of z⇒M1 | s x⇒M2 ⇓ V

step beta
(lam x . M) @ N ; [N/x]M

step fix
rec x . M ; [rec x . M/x]M

M ; M ′
step app src

M @ N ; M ′ @ N

M ; V
step s

s M ; s V

step case z
case z of z⇒M1 | s x⇒M2 ; M1

step case s
case s E of z⇒M1 | s x⇒M2 ; [E/x]M2

M ; M ′
step case src

case M of z⇒M1 | s x⇒M2 ; case M ′ of z⇒M1 | s x⇒M2

Fig. 2. Static and dynamic semantics

16

