Combining Higher Order Abstract Syntax with
Tactical Theorem Proving and (Co)Induction*

S. J. Ambler (S .Ambler@mcs.le.ac. uk)
R. L. Crole (R. Crole@mcs.le.ac. uk) &
A. Momigliano (A.Momigliano@mcs.le.ac.uk)

Department of Mathematics and Computer Science, University of Leicester,
Leicester, LE1 7TRH, U.K.

Abstract. Combining Higher Order Abstract Syntax (HOAS) and in-
duction is well known to be problematic. We have implemented a tool
called Hybrid, within Isabelle HOL, which does allow object logics to
be represented using HOAS, and reasoned about using tactical theorem
proving in general and principles of (co)induction in particular. In this
paper we describe Hybrid, and illustrate its use with case studies. We also
provide some theoretical adequacy results which underpin our practical
work.

1 Introduction

Many people are concerned with the development of computing systems which
can be used to reason about and prove properties of programming languages.
However, developing such systems is not easy. Difficulties abound in both prac-
tical implementation and underpinning theory. Our paper makes both a theoret-
ical and practical contribution to this research area. More precisely, this paper
concerns how to reason about object level logics with syntax involving variable
binding—note that a programming language can be presented as an example
of such an object logic. Our contribution is the provision of a mechanized tool,
Hybrid, which has been coded within Isabelle HOL, and

— provides a form of logical framework within which the syntax of an object
level logic can be adequately represented by higher order abstract syntax
(HOAS);

— is consistent with tactical theorem proving in general, and principles of in-
duction and coinduction in particular; and

— is definitional which guarantees consistency within a classical type theory.

We proceed as follows. In the introduction we review the idea of simple logical
frameworks and HOAS, and the problems in combining HOAS and induction.
In Section 2 we introduce our tool Hybrid. In Section 3 we provide some key
technical definitions in Hybrid. In Section 4 we explain how Hybrid is used to

* This work was supported by EPSRC grant number GR/M98555.

represent and reason about object logics, by giving some case studies. In Section 5
we give a mathematical description of Hybrid together with some underpinning
theory. In Section 6 we review the articles related to our work. In Section 7 we
comment on future plans.

Hybrid provides a form of logical framework. Here we briefly recall some
fundamental technical details of a basic logical framework, by using
the vehicle of quantified propositional logic (QPL) as an object level
logic—the notation will be used in Sections 4 and 5. While this is a
very small logic, it comes with a single binding construct which exemplifies the
problems we are tackling. We let V1, V4, ... be a countable set of (object level)
variables. The QPL formulae are given by Q :=V; | Q@ D Q | VV;. Q. Recall how
to represent QPL in a simple logical framework—the framework here provides
a form of HOAS, following [25]. A framework theory is specified by a signature
of ground types which generate function types, and constants. The objects of
the theory are given by e ::= name | v; | e e | Av;. e where name ranges over
constants, and i ranges over N giving a countable set of (meta) variables v;. From
this, a standard type assignment system can be formulated, leading to a notion
of canonical form. We refer the reader to [25] for the full definition. To represent
QPL we take a ground type oo of formulae. We also give the constants of the
theory, each of which corresponds to a QPL constructor. For QPL we specify
Imp :: 00 = 00 = 00 and All :: (00 = 00) = 0o. One can define a translation
function "—7 by the clauses

I_W'I déf V; I'Q1 D) QQ—I déf Imp ’_Ql—l I'Q2—I I'VVé_Q‘I déf A” ()\,Uz,.l'Q—l)

One can then show that this translation gives a “sensible” representation of QPL
in the framework, meaning that the function "—7 provides a bijection between
QPL and canonical objects, and further "—7 is compositional on substitution.

Although there are well known benefits in working with such higher order
abstract syntax, there are also difficulties. In general, it is not immediately clear
how to obtain a principle of induction over expressions or how to define functions
on them by primitive recursion, although such principles do exist [27]. Worse still,
apparently promising approaches can lead to inconsistencies [16]. The axiom of
choice leads to loss of consistency, and exotic terms may lead to loss of adequacy.
In our example, one would like to view the constants above as the constructors
of a datatype oo ::= wvar | Imp (00 x o0) | All (00 = 00) so that an induction
principle is “immediate”. Such datatype declarations would be perfectly legal in
functional programming languages. In a theorem prover such as Isabelle HOL the
constructors of a datatype are required to be injective [13]. However, the function
All :: (00 = 00) = oo cannot be injective for cardinality reasons (Cantor’s proof
can be formalized within HOL) as Isabelle HOL provides a classical set theory.
Moreover, the function space oo = oo yields Isabelle HOL definable functions
which do not “correspond” to terms of QPL. Such functions give rise to terms
in 0o which are unwanted, so-called ezotic terms such as

All (Az.if = u then u else All (\ 2. 2))

We show that it is possible to define a logical framework in which All is injective
on a subset of oo = oo. The subset is sufficiently large to give an adequate
representation of syntax—see Section 4.1.

2 Introducing Hybrid

Within Isabelle HOL, our goal is to define a datatype for A-calculus with
constants over which we can deploy (co)induction principles, while
representing variable binding through Isabelle’s HOAS. We do this in
a tool called Hybrid, which we introduce in this section. Our starting
point is the work [1] of Andrew Gordon, which we briefly review. It is well known
(though rarely proved—see Section 5) that A-calculus expressions are in bijection
with (a subset of) de Bruijn expressions. Gordon defines a de Bruijn notation
in which expressions have named free variables given by strings. He can write
T = dLAMBDA vt (where v is a string) which corresponds to an abstraction in
which v is bound in ¢. The function dLAMBDA has a definition which converts
T to the corresponding de Bruijn term which has an outer abstraction, and
a subterm which is ¢ in de Bruijn form, in which (free) occurrences of v are
converted to bound de Bruijn indices. For example,

dLAMBDA v (dAPP (dVAR v) (dVAR u)) = dABS (dAPP (dBND 0) (dVAR u))

Gordon demonstrates the utility of this approach. It provides a good mechanism
through which one may work with named bound variables, but it does not exploit
the built in HOAS which Isabelle HOL itself uses to represent syntax. The novelty
of our approach is that we do exploit the HOAS at the meta (machine) level.

We introduce Hybrid by example. First, some basics. Of central importance
is a Isabelle HOL datatype of de Bruijn expressions, where bnd and var are the
natural numbers, and con provides names for constants

expr ::= CON con | VAR var | BND bnd | expr $$ expr | ABS ezpr‘

Let To = AV;. AV,. Vi V3 be a genuine, honest to goodness (object level) syn-
tax! tree. Gordon would represent this by

T¢ = dLAMBDA v1 (dLAMBDA v2 (dAPP (dVAR v1) (dVAR v3)))

which equals
dABS (dABS (dAPP (dBND 1) (dVAR v3)))

Hybrid provides a binding mechanism with similarities to dLAMBDA. Gordon’s
T would be written as LAMwv.t in Hybrid. This is simply a definition for a
de Bruijn term. A crucial difference in our approach is that bound variables
in the object logic are bound variables in Isabelle HOL. Thus the v in LAMwv. ¢

! We use a capital A and capital V to avoid confusion with meta variables v and meta,
abstraction A.

is a metavariable (and not a string as in Gordon’s approach). In Hybrid we
also choose to denote object level free variables by terms of the form VAR i;
however, this has essentially no impact on the technical details—the important
thing is the countability of free variables. In Hybrid the To above is rendered
as Ty = LAMv;. (LAMws. (v; $8 VAR 3)). The LAM is an Isabelle HOL binder,
and this expression is by definition

lambda (A v;. (lambda (Avs. (v; $$ VAR 3))))

where Av; is meta abstraction and one can see that the object level term is
rendered in the usual HOAS format, where lambda :: (expr = expr) = expr is
a defined function. Then Hybrid will reduce Ty to the de Bruijn term

ABS (ABS (BND 1 $$ VAR 3))

as in Gordon’s approach. The key to this is, of course, the definition of lambda,
which relies crucially on higher order pattern matching. We return to its defini-
tion in Section 3. In summary, Hybrid provides a form of HOAS where object
level

— free variables correspond to Hybrid expressions of the form VAR 4;

— bound variables correspond to (bound) meta variables;

— abstractions A V. E correspond to expressions LAM v. e = lambda (Av.e);
— applications E; E5 correspond to expressions e; $$ es.

3 Definition of Hybrid in Isabelle HOL

Hybrid consists of a small number of Isabelle HOL theories. One of these provides
the dataype of de Bruijn expressions given in Section 2. The theories also contain
definitions of various key functions and inductive sets. In this section we
outline the definitions, and give some examples, where e ranges over
Isabelle HOL expressions. We show how Hybrid provides a form of
HOAS, and how this can be married with induction.

We are going to use a pretty-printed version of Isabelle HOL concrete syntax;
arule

H,...H,
C
will be represented as [Hy;...;H,] = C. An Isabelle HOL type declaration
has the form s :: [t1,...t,] = t. The Isabelle metauniversal quantifier is A,

while Isabelle HOL connectives are represented via the usual logical notation.
Free variables are implicitly universally quantified. Datatypes will be introduced
using BNF grammars. The sign = (Isabelle metaequality) will be used for
equality by definition.

Note that all of the infrastructure of Hybrid, which we now give, is specified
definitionally. We do mot postulate axioms, as in some approaches reviewed in
Section 6, which require validation.

‘ level ::[bnd, expr] = bool ‘ Recall that BND ¢ corresponds to a bound vari-

able in the A-calculus, and VAR i to a free variable; we refer to bound and free
indices respectively. We call a bound index i dangling if i or less Abs labels
occur between the index i and the root of the expression tree. e is said to be at
level [> 1, if enclosing e inside | Abs nodes ensures that the resulting expression
has no dangling indices. These ideas are standard, as is the implementation of
level .

‘ proper :: expr = bool ‘ One has proper e = level O e. A proper expression is
one that has no dangling indices and corresponds to a A-calculus expression.

‘insts :: bnd = (expr)list = expr = expr | We explain this function by ex-

ample. Suppose that j is a bound index occurring in e, and vy, ..., v, a list of
metavariables of type ezpr. Let BND j be enclosed by a ABS nodes. If a < j
(so that j dangles) then insts replaces BND j by v;_,. If j does not dangle, then
insts leaves BND j alone. For example, noting 5 — 2 = 3,

insts 0 vg, . .., um ABS (ABS (BND 0 $$ BND 5)) = ABS (ABS (BND 0 $$ v3))

‘abst :: [bnd, expr = expr] = bool ‘ This predicate is defined by induction as

a subset of bnd * (expr = expr). The inductive definition is

= abst i (Av.v)
= abst i (Av.VAR n)
Jj <i=>absti (Av.BND j)
[absti f;absti g] = absti (Av. fv $$ gv)
abst (Suc @) f = abst i (Av.ABS (fv))

This definition is best explained in terms of the next function.

‘ abstr :: [expr = expr] = bool ‘We set abstr e = abst 0 e. This function de-

termines when an expression e of type expr = expr is an abstraction. This
is a key idea, and the notion of an abstraction is central to the formulation of
induction principles. We illustrate the notion by example. Suppose that ABS e
is proper; for example let e = ABS (BND 0 $$ BND 1). Then e is of level 1, and
in particular there may be some bound indices which now dangle; for exam-
ple BND 1 in ABS (BND 0 $$ BND 1). An abstraction is produced by replacing
each occurrence of a dangling index with a metavariable (which can be auto-
mated with insts) and then abstracting the meta variable. Our example yields
the abstraction Av. ABS (BND 0 $$ v).

‘ Ibnd :: [bnd, expr = expr, expr] = bool ‘ This predicate is defined as an in-

ductive subset of S < bnd x (expr = expr) = expr. The inductive definition

is
= Ibnd i (Av.v) (BND %)

(
= Ibnd i (Av.VAR n) (VAR n)
— Ibnd i (Av.BND j) (BND j)
[Ibndi f s;lbndigt] = Ibnd i (Av. fv $$ gv) (s $$ ¢)
Ibnd (Suc i) f s = lbnd i (Av.ABS (fv)) (ABS s)

There is a default case (omitted above) which is called when the second argument
does not match any of the given patterns. It is a theorem that this defines a
function. The proof is by induction on the rank of the function where rank f =
=size (f (VAR 0)).

‘ Ibind :: [bnd, expr = expr] = expr ‘ Set Ibind i e = €s.lbnd i € s where €

is the description operator. Consider the abstraction Av. ABS (BND 0 $$ v). The
arguments to |bind consist of a bound index, and an abstraction. The intuitive
action of this function is that it replaces each bound occurrence of a binding
variable in the body of an abstraction, with a bound index, so that a level 1
expression results. This is the reverse of the procedure defined in the paragraph
concerning abstractions, where dangling indices were instantiated to metavari-
ables using insts. In practice, Ibind will be called on 0 at the top level. Thus one
has

Ibind 0 (Av. ABS (BND 0 $$ v)) = ... = ABS (BND 0 $$ BND 1)

‘ lambda :: (ezpr = expr) = expr‘ Set lambda e = ABS (Ibind 0 €). Its pur-

pose is to transform an abstraction into the “corresponding” proper de Bruijn
expression. OQur running example yields

lambda (Av. ABS (BND 0 $$ v)) = ABS (ABS (BND 0 $$ BND 1))

It is easy to perform induction over a datatype of de Bruijn terms. However,
we wish to be able to perform induction over the Hybrid expressions which we
have just given. In order to do this, we want to view the functions CON, VAR,
$$, and lambda as datatype constructors, that is, they should be injective, with
disjoint images. In fact, we identify subsets of expr and expr = expr for which
these properties hold. The subset of expr consists of those expressions which are
proper. The subset of expr = expr consists of all those e for which LAMwv.ev
is proper. In fact, this means e is an abstraction, which is intuitive but requires
proof—it is a Hybrid theorem. We can then prove that

[abstr e; abstr f] = (Lamz. ez = Lamy. fy) = (e = f) INJ

which says that lambda is injective on the set of abstractions. This is crucial for
the proof of an induction principle for Hybrid, which is omitted for reasons of
space, but will appear in a journal version of this paper.

4 Hybrid as a Logical Framework

Recall that in Section 2 we showed that Hybrid supports HOAS. In this section
we show how Hybrid can be used as a logical framework to represent
object logics, and further how we can perform tactical theorem prov-
ing.

The system provides:

— A number of automatic tactics: for example proper_tac (resp. abstr_tac) will
recognize whether a given term is indeed proper (resp. an abstraction).

— A suite of theorems: for example, the injectivity and distinctness properties
of Hybrid constants, and induction principles over expr and expr = expr,
as discussed in Section 3.

Note that the adequacy of our representations will be proved in a forthcoming
paper.

4.1 Quantified Propositional Logic

We begin with an encoding of the quantified propositional logic introduced in
Section 1. While the fragment presented there is functionally complete, we choose
to work with the following syntax

Qu=Vi|QQAQ|QVQ|Q>DQ|VVi.Q|I:.Q

This will allow us to demonstrate the representation of object level syntax in
detail, and show some properties of an algorithm to produce negation normal
forms.

So far we have written expr for the type of Hybrid expressions. This was
to simplify the exposition, and does not correspond directly to our code. There
one sees that Hybrid actually provides a type con expr of de Bruijn expressions,
where con is a type of names of constants. Typically, such names are for object
logic constructors. Thus we can define a different type con for each object logic
we are dealing with. In the case of QPL, we declare

con := cNOT | ¢cIMP |cAND | cOR | cALL | cEX

followed by a Isabelle HOL type whose elements represent the object level formu-
lae, namely oo = con expr. Readers should pause to recall the logical framework
(and HOAS) of Section 1.

Now we show how to represent the object level formulae, as Hybrid expres-
sions of type oo. The table below shows analogous constructs in LF and Hybrid.

| || Constants | Application | Abstraction |
LF name el e Av;.e
Hybrid CON cNAME e1 9% ey LAMu;.e

In the next table, we show the representation of the object level formulae @ D Q'
and YV;. @ in LF and Hybrid, where "—7 is a translation function

LF Imp "TQ7 Q"™ All Av.TQ7)
Hybrid CONcIMPS$$™Q7 88 Q"™ CON cALL $$ LAMv."Q"
Abbrevs Q7 Imp Q" Allv. Q™

The bottom row introduces some Isabelle HOL binders as abbreviations for the
middle row, where the Isabelle HOL definitions are

q Imp ¢ = CON cIMP $$ q $$ ¢’ where Imp::[00,00] = 00

Allv.gv = CON cALL $$ LAMv. qv where All :: (00 = 00) = 00

The code for the representation of the remainder of QPL is similar:

And :: [00,00] = o0 Or :: [00,00] = 00
g And ¢ = CON cAND $$ ¢ $$ ¢ ¢ Or ¢ = CON cOR $$ ¢ $$ ¢’
Not :: 00 = oo Ex :: (00 = 00) = o0

Not ¢ =— CON ¢NOT $$ ¢ Exv.q v =— CON ¢cEX $$ LAMuv.q v

The QPL formula VV1.VV2. V4 D Vs is represented by Allvy. Allvs. vy Imp vs,
although the “real” underlying form is

CON cALL $$ (LAMv;.CON cALL $$ LAM vy. (CON cIM P $$ v; $$ v5)

These declarations almost induce a data-type, in the sense the above defined

constants enjoy certain freeness properties, much as they would if they were
datatype constructors. We can prove that they define distinct values; for ex-
ample Allv.q v # Exw.q v. This is achieved by straightforward simplification
of their definitions to the underlying representation. Injectivity of higher-order
constructors (recall the end of Section 1) holds conditionally on their bodies be-
ing abstractions. In particular, recall from Section 3 the result INJ that the
LAM binder is injective on the set of abstractions. Simplification will yield
[abstr e;abstr f;Allv.e v = Allv. f v] = e = f. Since the type oo of le-
gal formulae is merely an abbreviation for Hybrid expressions, we need to in-
troduce a “well-formedness” predicate, such that isForm "Q™ holds iff) is a
legal object level formula.? The inductive definition of isForm in Isabelle HOL
is immediate as far as the propositional part of QPL is concerned, for exam-
ple [isForm p;isForm g | = isForm (p Imp g). For the quantified part, we first
remark that in a framework such as LF one would write

[Vy.isForm y — isForm (p y) | = isForm (Allv. p v)

This is not possible in Isabelle HOL, since the above clause, if taken as primitive,
would induce a (set-theoretic) non-monotone operator, and cannot be part of an
introduction rule in an inductive definition. Therefore, we instead descend into
the scope of the quantifier replacing it with a fresh free variable and add the
corresponding base case:

isForm (VAR 1)
[abstr p; Vi.isForm (p (VAR 4)) | = isForm (Allv.p v)

We can now proceed to an encoding of an algorithm for negation normal
form as an inductive relation, where we skip some of the propositional clauses,

% Please see remarks in Section 7 concerning internalizing such predicates as types.

and @ abbreviates abstr p; abstr g;

nnf (VAR i) (VAR 1)
nnf (Not (VAR 7)) (Not (VAR 7))
nnf b d = nnf (Not (Not b)) d
[nnf (Not p) d; nnf (Not g)e] = nnf (Not (p And q)) (d Ore)

[&; Vi.nnf (Not (p (VAR %)))(¢ (VAR %))] = nnf (Not (Exwv.p v)) (Allv.q v)
[@; Vi.nnf (Not (p (VAR %)))(q (VAR %))] = nnf (Not (Allv.p v)) (Exv.q v)
[@; Vi.nnf (Not (p (VAR %)))(g¢ (VAR %))] = nnf (Allv.p v) (Allv. q v)
[®; Vi.nnf (Not (p (VAR %)))(q (VAR %))] = nnf (Exv.p v) (Exv.q v)

Note how, in the binding cases, we explicitly state in & which second-order
terms are abstractions; this allows us to exploit the injectivity of abstractions to
derive the appropriate elimination rules.

It is possible to show in a fully automatic way that the algorithm yields
negation normal forms (whose definition is omitted), that is nnf ¢ ¢/ = isNnf ¢'.
Moreover it is a functional relation: nnf ¢ g1 = Vga2. nnf ¢ g2 = ¢1 = ¢2. The
latter proof exploits a theorem regarding extensionality of abstractions, namely:

[abstr e;abstr f;Vi.e (VAR3) = f (VARi)] = e=f

Note that the above is taken as an aziom in the Theory of Contexts [17].

4.2 Operational Semantics in the Lazy Lambda Calculus

The object logic in this section is yet another A-calculus, Abramsky’s lazy one
[2]. We describe some properties of its operational semantics. In particular, we
give HOAS encodings of some notions such as divergence and simulation which
are naturally rendered coinductively—this can only be approximated in other
approaches, as we discuss in Section 6.

To represent the lazy A-calculus, the type con will contain the names cAPP
and cABS, used to represent object level application and abstraction. We then
define the constants below from these names, where lexp =— con ezpr.

Q :: [lezp,lezp] = lexp Fun. :: (lezp = lezp) = lexp
p@q=—CONcAPP $$p$$ ¢ Funz. f x =— CON cABS $$ LAMz. f x

The definition of the well-formedness predicate isExp is analogous to the one in
Section 4 and is omitted.

The benefits of obtaining object-level substitution via metalevel S-conversion
are exemplified in the encoding of call-by-name evaluation (on closed terms) via
the inductive definition of >> ::[lexp, lexp]| = bool.

[abstr e; Vi.isExp (e (VAR %))] = Funz.e z > Funz.ex
[el > Funz.e z; abstre; isExpe2; (ee2) > v] = (el @e2) > v

Standard properties such as uniqueness of evaluation and value soundness have
direct proofs based only on structural induction and the introduction and elim-
ination rules.

Divergence can be defined co-inductively as the predicate divrg :: lezp =
bool:
[isExp el; isExp €2; divrg el | = divrg (el @ e2)
[el > Funz.e z; abstr e; isExp e2; divrg (e e2) | = divrg (el Q e2)

We can give a fully automated co-inductive proof of the divergence of combi-

nators such as 2 % (Funz.z @ z) @ (Funz.z @ z), once we have added the
abstr_tac tactic to the built-in simplifier. Moreover, there is a direct proof that
convergence and divergence are exclusive and exhaustive.

Applicative (bi)simulation < :: [lezp,lexp] = bool is another interesting
(co-inductive) predicate with the single introduction rule

[Vt.r > Funz.t x Aabstrt — (Ju. s >> Funz.u z A abstr u A
(VpisExpp = (tp) < (up)]= r< s

The HOAS style here greatly simplifies the presentation and correspondingly
the metatheory. Indeed, with the appropriate instantiation of the coinductive
relation, the proofs that simulation is a pre-order and bisimulation an equivalence
relation are immediate. Other verified properties include Kleene equivalence is
a simulation, and divergent terms are the least element in this order.

4.3 The Higher-Order w-Calculus

We present an encoding of the monadic higher-order 7m-calculus [24], with struc-
tural congruence and reaction rules; see [11] for a review of other styles of en-
codings for the first-order case. The syntax is given by the following, where a,a
ranges over names, X over agent variables:
a=x=71|a(X)|a(P)
P:=X|Yicro;.P| (P | P)| (va)P
The encoding introduces appropriate type abbreviations (namely pi and name)
and constants; we concentrate on restriction, input and output:
New :: (name = pi) = pi
(New a)p a = CON ¢NU $$ LAMa.p a
In :: [name, (pi = pi)] = pi
In a (p) = CON cIN $$ lambda p
Out :: [name,pi,pi] = pi
Out a{p)g = CON cOUT $$a $$ p $$ ¢

Replication is defined from these constants and need not be primitive:
! p = (New a)(D|Out a{p|D)) where D = In a (Az. (z|Out a(z)))

We then inductively define well-formed processes isProc p, whose introduction
rules are, omitting non-binding cases,

isProc (VAR 1)
[abstr p; Va.isName a — isProc (p a) | = isProc (New a)p a
[abstr p; isName a; Vi.isProc (p (VAR %))] = isProc In a (p)

10

Restriction, being represented as a function of type name = pi is well-formed if
its body (p a) is, under the assumption isName q; this differs from input, which

contains a function of type pi = pi.

Process abstraction is defined by procAbstr p = abstr p A (Vg.isProc ¢ —
isProc (p q)). Next, structural congruence is introduced and we proceed to encode
reaction rules as the inductive definition — :: [pi = pi] = bool. Note that the
presence of the structural rule make this unsuitable for search. Here is a sample:

[procAbstr p;isProc g;isProc p';isName a | = In a (p)|Out 3{q)p’ — (p q)|p’
[abstr p; abstr p'; (Va.isName a — (p a) — (p’ a))] = (New a)p a — (New a)p’ a

A formalization of late operational semantics following [18] is possible and will
be treated within a separate paper.

5 A Theory of Hybrid

The goal of this section is to describe a mathematical model of Hybrid
and then show that the model provides an adequate representation
of the A-calculus. The work here serves to illustrate and under-pin
Hybrid. We proceed as follows. In Section 5.1 we set up an explicit bijection
between the set of alpha equivalence classes of lambda expressions, and the set
of proper de Bruijn terms. This section also allows us to introduce notation.
In Section 5.2 we prove adequacy for an object level A-calculus by proving an
equivalent result for (proper) object level de Bruijn expressions, and appealing
to the bijection.

First, some notation for the object level. A-calculus expressions are inductively
defined by E =:=V; | E E | AV;. E. We write E[E'/V;] for capture avoiding
substitution, E ~, E' for a-equivalence, and [E], for alpha equivalence classes.
We write £E for the set of expressions, and L£LE/~, for the set of all alpha
equivalence classes. The set of de Bruijn expressions is denoted by DB, and
generated by D =:=1i|i | D $ D | A(D) where i is a free index. We write DB(l)
for the set of expressions at level [, and PDB for the set of proper expressions.
Note that PDB = DB(0) C DB(1)... C DB(l)... C DB and DB = |, DB(I).

5.1 A Bijection Between A-calculus and Proper de Bruijn

Theorem 1. There is a bijection 0: LE [~ 2 PDB: ¢ between the set LE [~
of alpha equivalence classes of A-calculus expressions, and the set PDB of proper
de Bruijn erpressions,

In order to prove the theorem, we first establish in Lemma 1 and Lemma 2
the existence of a certain family of pairs of functions [—],: L& = DB(|L|): (—) .-
Here, list L of length |L| is one whose elements are object level variables V;. We
say that L is ordered if it has an order reflected by the indices 7, and no repeated
elements. The first element has the largest index. We write € for the empty list.

Lemma 1. For any L, there exists a function [—].: LE — DB(|L|) given recur-
sively by

11

\an def if Vi € L then i else posn V; L where posn V; L is the position of V;

in L, counting from the head, which has position 0.

- [B: E2],, dgf[[El]]L $ [E=],
de

- [AVi.E], = A([E]]W,L)
Lemma 2. For any ordered L, there exists a function (—|), :DB(|L|) — LE
given recursively by

- def
- (i, =Vi

— (), elemj L the jth element of L

— (D1 8§ Da), € (D1, (D2,

— (A(D)), =& AVarir.(D)y,,,, ;, where M Maz(D; L)

Mazx(D; L) denotes the mazimum of the free indices which occur in D and the
index j, where Vj is the head of L.

The remainder of the proof involves establishing facts about these functions.
It takes great care to ensure all details are correct, and many sub-lemmas are
required! We prove that each pair of functions “almost” gives rise to an isomor-
phism, namely that [(D);]; = D and that ([E];). ~a E[L'/L]. Let ¢: LE —

LE | ~q be the quotient function. We define ([E],) def [E], and ¢ def go(-D.,
and the theorem follows by simple calculation. Although our proofs take great
care to distinguish a-equivalence classes from expressions, we now write simply
E instead of [E],, which will allow us to write [—],: £E/~q S DB(|L|): (—),,

5.2 Adequacy of Hybrid for the A-calculus

It would not be possible to provide a “complete” proof of the adequacy of the
Hybrid machine tool for A-calculus. A compromise would be to work with a
mathematical description of Hybrid, but even that would lead to extremely long
and complex proofs. Here we take a more narrow approach—we work with what
amounts to a description of a fragment of Hybrid as a simply typed lambda
calculus—presented as a theory in a logical framework as described in Section 1.
Before we can state the adequacy theorem, we need a theory in the logical
framework which we regard as a “model” of Hybrid. The theory has ground types
expr, var and bnd. The types are generated by o ::= expr | var | bnd | 0 = 0.
We declare constants

1 var BND :: bnd = expr
i::bnd $$:: expr = expr = expr
VAR :: var = expr ABS :: expr = expr

where i ranges over the natural numbers. The objects are generated as in Sec-
tion 1. Shortage of space means the definitions are omitted—here we aim to give
a flavour of our results. Our aim is to prove

12

Theorem 2 (Representational Adequacy).

— There is an injective function || — ||¢: LE/~q — CLF egpr (D) which is
— compositional on substitution, that is

||E[E'/Vi][|e = subst [E'[|c i [|]|

where subst €' i e is the function on canonical expressions in which €' replaces
occurrences of VAR i in e. The definition of meta substitution, and the set
CLF ezpr(I') of canonical objects in typing environment I is omitted.

To show adequacy we establish the existence of the following functions

cejma 122 . 300y ZE DB(L)

The function (3 is a bijection between object level variables V; and meta variables
v;. Thus B(V;) = v;. The notation 3(L) means “map” 3 along L. We write 8(L)
for a typing environment in the framework with all variables of type expression.
From now on, all lists L are ordered. The function X7, is defined by the clauses

— i ¥ VAR

510 Y elemi (L)

— X, (D1$ D) ¥ £, D, $$ X, D,

— ¥ A(D) ¥ lambda (Avars1- Zvarer,r D) = LAMunryy. Sy, 0 D where

MY Maz(D; L) (see Lemma 2).

The definition of || — ||z is ', 0[], . Note that this is a well defined function on
an a-equivalence class because [—]; is. In view of Theorem 1, and the definition
of || — ||¢, it will be enough to show the analogous result for the function X .
The proof strategy is as follows. We show that there is a function insts which
maps de Bruijn expressions to canonical objects, possesses a left inverse, and
is compositional with respect to substitution. Then we prove that the action of
Xr is simply that of the insts function. Proofs of results will appear in a journal
version of this paper.

6 Related Work

Our work could not have come about without the contributions of others. Here,
following [28] we classify some of these contributions according to the mathemati-
cal construct chosen to model abstraction. The choice has dramatic consequences
on the associated notions of recursion and proof by induction.

— De Bruijn syntax [4]: we do not review this further.

— Name-carrying syntax: here abstractions are pairs “(name, expression)” and
the mechanization works directly on parse trees, which are quotiented by a-
conversion [22, 29, 9]. While recursion/induction is well-supported, the detail

13

that needs to be taken care of on a case-by-case basis tends to be overwhelm-
ing. To partially alleviate this [1] defines name-carrying syntax in terms of
an underlying type of De Bruijn A-expressions, which is then used as a meta-
logic where equality is a-convertibility. Very recently, in [10, 28] Gabbay and
Pitts have introduced a novel approach, based on the remarkable observation
that a first-order theory of a-conversion and binding is better founded on
the notion of name swapping rather than renaming. The theory can either
be presented axiomatically as formalizing a primitive notion of swapping
and freshness of names from which binding can be derived, or as a non-
classical set-theory with an internal notion of permutation of atoms. Such
a set-theory yields a natural notion of structural induction and recursion
over a-equivalence classes of expressions, but it is incompatible with the
axiom of choice. The aim of Pitts and Gabbay’s approach is to give a sat-
isfying foundation of the informal practice of reasoning modulo renaming,
more than formulate an alternative logical framework for metareasoning (al-
though this too is possible). An ML-like programming language, FreshML,
is under construction geared towards metaprogramming applications.
Abstractions as functions from names to expressions: mentioned in [1] (and
developed in [12]) it was first proposed in [5], as a way to have binders
as functions on inductive data-types, while coping with the issue of ezotic
expressions stemming from an inductive characterization of the set of names.
The most mature development is Honsell et al.’s framework [17], which
explicitly embraces an azriomatic approach to metareasoning with HOAS.
It consists of a higher-order logic inconsistent with unique choice, but ex-
tended with a set of axioms, called the Theory of Contexts, parametric to
a HOAS signature. Those axioms include the reification of key properties
of names akin to freshness. More crucially, higher-order induction and re-
cursion schemata on expressions are also assumed. The consistency of such
axioms with respect to functor categories is left to a forthcoming paper. The
application of this approach to object logics such as the w-calculus [18] suc-
ceeds not only because the possibility to “reflect” on names is crucial for
the metatheory of operations such as mismatch, but also because here hy-
pothetical judgments, which are only partially supported in such a style [5]
are typically not needed. Moreover S-conversion can implement object-level
substitution, which is in this case simply “name” for bound variable in a
process. The latter may not be possible in other applications such as the
ambient calculus. This is also the case for another case-study [23], where
these axioms seem less successful. In particular, co-induction is available,
but the need to code substitution explicitly makes some of the encoding
fairly awkward.

Abstractions as functions from ezpressions to expressions [26,15]. We can
distinguish here two main themes to the integration of HOAS and induction:
one where they coexist in the same language and the other where inductive
reasoning is conducted at an additional metalevel. In the first one, the em-
phasis is on trying to allow (primitive) recursive definitions on functions of
higher type while preserving adequacy of representations; this has been real-

14

ized for the simply-typed case in [7] and more recently for the dependently-
typed case in [6]. The idea is to separate at the type-theoretic level, via an
S4 modal operator, the primitive recursive space (which encompasses func-
tions defined via case analysis and iteration) from the parametric function
space (whose members are those convertible to expressions built only via the
constructors).

On the other side, the Twelf project [27] is built on the idea of devising an ex-
plicit (meta)metalogic for reasoning (inductively) about logical frameworks,
in a fully automated way. Ms is a constructive first-order logic, whose quan-
tifiers range over possibly open LF object over a signature. In the metalogic
it is possible to express and inductively prove metalogical properties of an
object logic. By the adequacy of the encoding, the proof of the existence
of the appropriate LF object(s) guarantees the proof of the correspond-
ing object-level property. It must be remarked that Twelf usage model is
explicitly non-interactive (i.e. not programmable by tactics). Moreover, co-
inductive definitions have to be rewritten in an inductive fashion, exploiting
the co-continuity of the said notion, when possible.

Miller & McDowell [20] introduce a metameta logic, FOAALY| that is based
on intuitionistic logic augmented with definitional reflection [14] and induc-
tion on natural numbers. Other inductive principles are derived via the use of
appropriate measures. At the metameta level, they reason about object-level
judgments formulated in second-order logic. They prove the consistency of
the method by showing that FOAAY enjoys cut-elimination [19]. FOAAN
approach [20] is interactive; a tactic-based proof editor is under development,
but the above remark on co-induction applies.

7 Conclusions and Future Work

The induction principles of Hybrid involve universal quantifications over free
variables when instantiating abstractions. It remains future work to determine
the real utility of our principles, and how they compare to more standard treat-
ments. Informal practice utilises the some/any quantifier that has emerged for-
mally in [10]. McKinna and Pollack discuss some of these issues in [21].

Several improvements are possible:

We will internalize the well-formedness predicates as abstract types in Is-
abelle HOL, significantly simplifying judgments over object logics. For example,
the subset of lazy A-calculus expressions identified by predicate isExp will become
a type, say tEzp, so that evaluation will be typed as >> ::[tExp, tEzp] = bool.
We will specialize the abstr predicate to the defined logic so that it will have
type (tExzp = tExp) = bool.

We envisage eventually having a system, similar in spirit to Isabelle HOL’s
datatype package, where the user is only required to enter a binding signature
for a given object logic; the system will provide an abstract type characterizing
the logic, plus a series of theorems expressing freeness of the constructors of such
a type and an induction principle on the shape of expressions analogous to the
one mentioned in Section 3.

15

We are in the process of further validating our approach by applying our
methods to the compiler optimization transformations for Benton & Kennedy’s
MIL-lite language [3].

We intend to develop further the theory of Hybrid. Part of this concerns
presenting the full details of the material summarized here. There are also addi-
tional results, which serve to show how Hybrid relates to A-calculus. For exam-
ple, we can prove that if abstr e, then there exists [AV;. E], € LE/~, such that
[|AV;. E||le = LAMv;. ev;. On a deeper level, we are looking at obtaining cate-
gorical characterisations of some of the notions described in this paper, based
on the work of Fiore, Plotkin and Turi in [8].

A full journal version of this paper is currently in preparation, which in
particular will contain a greatly expanded section on the theory of Hybrid, and
provide full details of the case studies.

Acknowledgments We would like to thank Andy Gordon for useful discus-
sions and having provided the HOL script from [1]. We thank Simon Gay for
discussions and ideas concerning the m-calculus. Finally, we are very grateful for
the financial support of the UK EPSRC.

References

1. A. Gordon. A mechanisation of name-carrying syntax up to alpha-conversion. In
J.J. Joyce and C.-J.H. Seger, editors, International Workshop on Higher Order
Logic Theorem Proving and its Applications, volume 780 of Lecture Notes in Com-
puter Science, pages 414-427, Vancouver, Canada, Aug. 1993. University of British
Columbia, Springer-Verlag, published 1994.

2. S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics in
Functional Programming, pages 65-116. Addison-Wesley, 1990.

3. N. Benton and A. Kennedy. Monads, effects and transformations. In Proceedings
of the 8rd International Workshop in Higher Order Operational Technigues in Se-
mantics, volume 26 of Electronic Notes in Theoretical Computer Science. Elsevier,
1998.

4. N. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for auto-
matic formula manipulation with application to the Church-Rosser theorem. Indag.
Math., 34(5):381-392, 1972.

5. J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq.
In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, pages 124-138, Edinburgh,
Scotland, Apr. 1995. Springer-Verlag LNCS 902.

6. J. Despeyroux and P. Leleu. Metatheoretic results for a modal A-calculus. Journal
of Functional and Logic Programming, 2000(1), 2000.

7. J. Despeyroux, F. Pfenning, and C. Schiirmann. Primitive recursion for higher-
order abstract syntax. In R. Hindley, editor, Proceedings of the Third International
Conference on Typed Lambda Calculus and Applications (TLCA’97), pages 147—
163, Nancy, France, Apr. 1997. Springer-Verlag LNCS.

8. M. Fiore and G. D. Plotkin and D. Turi. Abstract Syntax and Variable Binding. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in Computer
Science (LICS’99), pages 193-202, Trento, Italy, 1999. IEEE Computer Society
Press.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Ford and I. A. Mason. Operational Techniques in PVS — A Preliminary Evalu-
ation. In Proceedings of the Australasian Theory Symposium, CATS 01, 2001.
M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in Computer
Science (LICS’99), pages 214-224, Trento, Italy, 1999. IEEE Computer Society
Press.

S. Gay. A framework for the formalisation of pi-calculus type systems in Is-
abelle/HOL. In Proceedings of the 14th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2001, LNCS. Springer-Verlag, 2001.

A. D. Gordon and T. Melham. Five axioms of alpha-conversion. In J. von Wright,
J. Grundy, and J. Harrison, editors, Proceedings of the 9th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs’96), volume 1125 of Lecture
Notes in Computer Science, pages 173-190, Turku, Finland, August 1996. Springer-
Verlag.

E. L. Gunter. Why we can’t have SML style datatype declarations in HOL. In
L. J. M. Claese and M. J. C. Gordon, editors, Higher Order Logic Theorem Proving
and Its Applications, volume A-20 of IFIP Transactions, pages 561-568. North-
Holland Press, Sept. 1992.

L. Hallnas. Partial inductive definitions. Theoretical Computer Science, 87(1):115—
147, July 1991.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143-184, Jan. 1993.

M. Hofmann. Semantical analysis for higher-order abstract syntax. In G. Longo,
editor, Proceedings of the 14th Annual Symposium on Logic in Computer Science
(LICS’99), pages 204-213, Trento, Italy, July 1999. IEEE Computer Society Press.
F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning
on systems in higher-order abstract syntax. In Proc. ICALP’01, number 2076 in
LNCS, pages 963-978. Springer-Verlag, 2001.

F. Honsell, M. Miculan, and I. Scagnetto. w-calculus in (co)inductive type theories.
Theoretical Computer Science, 2(253):239-285, 2001.

R. McDowell. Reasoning in a Logic with Definitions and Induction. PhD thesis,
University of Pennsylvania, 1997.

R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a
logical framework. ACM Transaction in Computational Logic, 2001. To appear.
J. McKinna and R. Pollack. Some Type Theory and Lambda Calculus Formalised.
To appear in Journal of Automated Reasoning, Special Issue on Formalised Math-
ematical Theories (F. Pfenning, Ed.),

T. F. Melham. A mechanized theory of the w-calculus in HOL. Nordic Journal of
Computing, 1(1):50-76, Spring 1994.

M. Miculan. Developing (meta)theory of lambda-calculus in the theory of contexts.
In S. Ambler, R. Crole, and A. Momigliano, editors, MERLIN 2001: Proceedings
of the Workshop on MEchanized Reasoning about Languages with variable bINd-
ing, volume 58 of Electronic Notes in Theoretical Computer Scienc, pages 1-22,
November 2001.

J. Parrow. An introduction to the pi-calculus. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra, pages 479-543. Elsevier Science,
2001.

F. Pfenning. Computation and deduction. Lecture notes, 277 pp. Revised 1994,
1996, to be published by Cambridge University Press, 1992.

17

26

27.

28.

29.

F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the
ACM SIGPLAN ’88 Symposium on Language Design and Implementation, pages
199-208, Atlanta, Georgia, June 1988.

F. Pfenning and C. Schiirmann. System description: Twelf — a metalogical frame-
work for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction (CADE-16), pages 202-206, Trento,
Italy, July 1999. Springer-Verlag LNAI 1632.

A. M. Pitts. Nominal logic: A first order theory of names and binding. In
N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Software,
4th International Symposium, TACS 2001, Sendai, Japan, October 29-81, 2001,
Proceedings, volume 2215 of Lecture Notes in Computer Science, pages 219-242.
Springer-Verlag, Berlin, 2001.

R. Vestergaard and J. Brotherson. A formalized first-order conflence proof for the
A-calculus using one sorted variable names. In A. Middelrop, editor, Proceedings
of RTA’12, volume 2051 of LNCS, pages 306-321. Springer-Verlag, 2001.

18

