
Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 1'

&

$

%

Categorical Logic

and

Type Theory

Roy L. Crole

University of Leicester, UK, 2001

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 2'

&

$

%

Overview

� We shall study the connections between logic and category

theory; and type theory and category theory.

� We shall assume an undergraduate knowledge of basic

logic, and an appreciation of type theory from programming

and from Mark’s lectures.

� We shall cover concisely the aspects of order theory and

category theory required for the course . . .

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 3'

&

$

%

High Level Topics

� Order Theory: We shall study properties of orders, and

use these properties to model logics.

� Induction: We assume familiarity with this topic, but

review some notation and basic ideas.

� Category Theory: We shall study some simple category

theory, and use this to model type theories.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 4'

&

$

%

High Level Topics

� Logic: We will define a simple logic, derive an order

theoretic semantics from first principles, and show how a

theory in the logic “corresponds” to a special ordered structure.

� Type Theory: We will define a simple type system, derive a

categorical semantics from first principles, and show how a

theory in the type system “corresponds” to a special category.

� Applications: We apply the correspondences to prove a

result about logic, and a result about type theory.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 5'

&

$

%

Order Theory

� An order makes precise our intuitions about the relation less

than.

� We shall review basic structure of orders, such as bounds,

greatest and least elements, meets and joins, and the (possibly

unfamiliar) Heyting implication.

� Why? We shall see later on that very similar structure can

be found in simple logics.

� We shall also define functions between orders which

preserve structure, and use such functions to define when two

structures have “the same” properties.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 6'

&

$

%

Preordered Sets

� A preorder on a set X is a binary relation ≤ on X

which is reflexive and transitive.

� A preordered set (X ,≤) is a set X , equipped with a

preorder ≤ on the set X .

� If x ≤ y and y ≤ x then we shall write x ∼= y and say that

x and y are isomorphic elements. Note that we can

regard ∼= as a relation on X , which is in fact an

equivalence relation.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 7'

&

$

%

Partially Ordered Sets

� A partial order on a set X is a binary relation ≤ which

is reflexive, transitive and anti-symmetric.

� A partially ordered set (poset) (X ,≤) is a set X

equipped with a partial order ≤ on the set X .

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 8'

&

$

%

Examples of Ordered Sets

� The set P (X) = {A | A ⊆ X} is called the powerset of

X . The powerset is a poset with order given by inclusion

of subsets, A ⊆ B.

� Given preorders X and Y , their cartesian product has

underlying set

X ×Y
def
= {(x,y) | x ∈ X ,y ∈ Y}

with order given pointwise, that is (x,y) ≤ (x′,y′) iff

x ≤ x′ and y ≤ y′.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 9'

&

$

%

Properties in Ordered Sets

� Suppose that X is a preorder and A is a subset of X . An

element x ∈ X is an upper bound for A if for every a ∈ A

we have a ≤ x (written A ≤ x).

� An element x ∈ X is a greatest element of A if it is an

upper bound of A which belongs to A;

� Lower bounds and least elements are defined

analogously.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 10'

&

$

%

Meets and Joins

� Let X be a preordered set and A ⊆ X . A join of A, if

such exists, is a least element in the set of upper bounds

for A.

� A meet of A, if it exists, is a greatest element in the set

of lower bounds for A.

� If A has at least one join, we write
W

A for a choice of

one of the joins of A. Write also x∨ x′ for
W

{x,x′}.

�
V

A is a choice of one of the meets of A.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 11'

&

$

%

Functions between Ordered Sets

� Let f : X → Y be a function, with X and Y equipped

with orders. f is monotone if for x,x′ ∈ X we have x ≤ x′

implies f (x) ≤ f (x′); f is also called a homomorphism

of preorders.

� The posets X and Y are isomorphic if there are

monotone functions f : X → Y and g : Y → X for which

g f = idX and f g = idY .

� The monotone function g is an inverse for f .

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 12'

&

$

%

Prelattices

� A prelattice is a preordered set which has finite meets

and joins, that is, meets and joins of finite subsets.

� A homomorphism of prelattices is a function

f : X → Y (with X and Y prelattices) which preserves

finite meets and joins, that is

f (
^

{x1, . . . ,xn }) ∼=
^

{ f (x1), . . . , f (xn)}

(similarly for joins) and also f (>) ∼= > and f (⊥) ∼= ⊥.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 13'

&

$

%

Heyting Prelattices

� A Heyting prelattice X is a prelattice in which for each pair

of elements y,z ∈ X there is an element y ⇒ z ∈ X such that

x ≤ y ⇒ z iff x∧ y ≤ z.

We call y ⇒ z the Heyting implication of y and z.

� In a Heyting prelattice X , the Heyting implication of y and z

is unique.

Suppose that a and a′ are two candidates for the element

y ⇒ z ∈ X . Then a ≤ a implies a∧ y ≤ z implies a ≤ a′; the

converse is similar.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 14'

&

$

%

Distributive Prelattices and Examples

Let X be a prelattice. Then X is distributive if it satisfies

x∧ (y∨ z) ∼= (x∧ y)∨ (x∧ z) for all x,y,z in X .

� P (X) is a Heyting (pre)lattice where

A ⇒ A′ def
= (X \A)∪A′.

� In fact every Boolean (pre)lattice is a Heyting lattice.

� Any finite distributive lattice X is a Heyting lattice.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 15'

&

$

%

Induction and Recursion

� Induction is a method for constructing sets.

� One begins with certain (base) elements which must be in

the set, and then defines rules which explain how new

elements are constructed from old elements.

� Recursion is a method for defining functions over

inductively defined sets.

� Define the function on the base elements, and then define

the function on a new element e in terms of how the function

acts on the “old elements” from which e is constructed.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 16'

&

$

%

Rules

Given a set U , a base rule is a pair (∅,b) in P (U)×U

(R)
b

and an inductive rule is a pair (H,c) = ({h1, . . . ,hk },c) in

P (U)×U
h1 h2 . . . hk

(R)
c

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 17'

&

$

%

Inductively Defined Sets

Given a set U and a set R , a derivation is a finite tree with

nodes labelled by elements of U such that

� each leaf node label b arises as a base rule (∅,b) ∈ R

� for any non-leaf node label c, if H is the set of children

of c then (H,c) ∈ R is an inductive rule.

Then the set inductively defined by R consists of those

elements u ∈U which have a derivation with root node

labelled by u.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 18'

&

$

%

Examples

� Let U be the set {u1,u2,u3,u4,u5,u6 } and let R be the set of

rules

{R1 = (∅,u1),R2 = (∅,u3),R3 = ({u1,u3 },u4),R4 = ({u1,u3,u4 },u5)}

Then a derivation for u5 is given by the tree

u5

u1

�

u3
?

u4

-

u1

�

u3

-

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 19'

&

$

%

The tree is usually written up-side down and in the

following style

R1
u1

R2
u3

R1
u1

R2
u3

R3
u4

R4
u5

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 20'

&

$

%

Rule Induction

Let I be inductively defined by R . Suppose we wish to show

∀i ∈ I. φ(i) .

Then all we need to do is

� for every base rule b ∈ R prove that φ(b) holds; and

� for every inductive rule h1...hk
c ∈ R prove that whenever

hi ∈ I,

(φ(h1) and φ(h2) and . . . and φ(hk)) implies φ(c)

We call the φ(h j) inductive hypotheses. We refer to

proving the • tasks as “verifying property closure”.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 21'

&

$

%

Recursively Defined Functions

Let I be inductively defined by a set of rules R , and A any

set. A function f : I → A can be defined by

− specifying an element f (b) ∈ A for every base rule

b ∈ R ; and

− specifying f (c) ∈ A in terms of f (h1) ∈ A and f (h2) ∈ A

.... and f (hk) ∈ A for every inductive rule h1...,hk
c ∈ R ,

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 22'

&

$

%

Example

� The factorial function F : N → N is usually defined

recursively. We set

− F(0)
def
= 1 and

− ∀n ∈ N.F(n+1)
def
= (n+1)∗F(n).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 23'

&

$

%

Category Theory

� Category Theory can be thought of as a “theory of

functions”. A category embodies the basic ideas of a source,

target, identity functions, composition, and properties of

composition.

� Sets and functions is an example of a category.

� Structures found in a category are usually defined by stating

what properties they have, rather than giving a description of

how the structure can be built up. The properties define the

structure “uniquely”, and are often called universal properties.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 24'

&

$

%

� Given sets A and B, we can form A×B (cartesian

product), A+B (disjoint union) and A ⇒ B (function

space). These sets have universal properties which define

them uniquely up to bijection. We shall show that these

properties can be described in any category; they will be

used to model the types in a type theory.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 25'

&

$

%

Definition of a Category

A category C is specified by the following data:

� A collection obC of entities called objects, written A,

B, C . . .

� A collection mor C of entities called morphisms

written f , g, h . . .

� For each morphism f a source src(f) which is an

object of C and a target tar(f) also an object of C . We

shall write f : src(f) −→ tar(f) or perhaps f : A → B.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 26'

&

$

%

� Morphisms f and g are composable if tar(f) = src(g). If

f : A → B and g : B →C, then there is a morphism g f : A →C.

� For each object A of C there is an identity morphism

idA : A → A, where

idtar(f) ◦ f = f

f ◦ idsrc(f) = f

� Composition is associative, that is given morphisms

f : A → B, g : B →C and h : C → D then

(hg) f = h(g f).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 27'

&

$

%

Examples of Categories

� Sets and total functions, Set. The objects are sets and

morphisms are (A, f ,B) where f ⊆ A×B is a function.

Composition is given by

(B,g,C)◦ (A, f ,B) = (A,g f ,C)

Finally, if A is any set, the identity is (A, idA,A).

� Any preordered set (X ,≤) is a category. The objects

are elements of X . The collection of morphisms is the set

of pairs (x,y) where x ≤ y. Composition is

(y,z)◦ (x,y)
def
= (x,z) (because ≤ is transitive).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 28'

&

$

%

Definition of a Functor

A functor F : C → D is specified by

� an operation taking objects A in C to objects FA in D,

and

� an operation sending morphisms f : A → B in C to

morphisms F f : FA → FB in D,

for which F(idA) = idFA, and whenever the composition of

morphisms g f is defined in C we have F(g f) = Fg◦F f .

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 29'

&

$

%

Examples of Functors

� The set [A] of finite lists over a set A gives a monoid via

list concatenation.

Hence we may define F : Set → Mon by FA
def
= [A] and

F f
def
= map(f), where map(f) : [A] → [B] is defined by

map(f)([a1, . . . ,an]) = [f (a1), . . . , f (an)],

with [a1, . . . ,an] any element of [A].

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 30'

&

$

%

To see that F(g f) = Fg◦F f where A
f

−→ B
g

−→C note that

F(g f)([a1, . . . ,an])
def
= map(g f)([a1, . . . ,an])

= [g f (a1), . . . ,g f (an)]

= map(g)([f (a1), . . . , f (an)])

= map(g)(map(f)([a1, . . . ,an]))

= Fg◦F f ([a1, . . . ,an]).

� The functors between two preorders A and B are precisely

the monotone functions from A to B.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 31'

&

$

%

Definition of a Natural Transformation

Let F,G : C → D be functors. Then a natural

transformation α from F to G, written α : F → G, is

specified by giving a morphism αA : FA → GA in D for each

object A in C , such that for any f : A → B in C , we have

FA
αA

- GA

FB

F f

?

αB

- GB

G f
?

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 32'

&

$

%

Examples of Natural Transformations

� Recall F : Set → Mon where FA
def
= [A] and F f

def
= map(f)

and map(f) : [A] → [B]. We can define a natural

transformation rev : F → F by

revA([a1, . . . ,an])
def
= [an, . . . ,a1]

We check

F f ◦ revA([a1, . . . ,an]) = [f (an), . . . , f (a1)] = revB ◦F f ([a1, . . . ,an]).

� The functor category [C ,D] has objects functors and

morphisms natural transformations.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 33'

&

$

%

Isomorphisms and Equivalences

� A morphism f : A → B is an isomorphism if there is

some g : B → A for which f g = idB and g f = idA.

� We shall say g is an inverse for f and vise versa.

� We say that A is isomorphic to B, A ∼= B, if such a

mutually inverse pair of morphisms exists.

� An isomorphism in a functor category is referred to as

a natural isomorphism.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 34'

&

$

%

Examples

� Bijections in Set are isomorphisms.

� In the category determined by a partially ordered set,

the only isomorphisms are the identities, and in a

preorder X with x,y ∈ X we have x ∼= y iff x ≤ y and y ≤ x.

Note that in this case there can be only one pair of

mutually inverse morphisms witnessing the fact that

x ∼= y.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 35'

&

$

%

Definition of Binary Products

A binary product of objects A and B in a category C is

specified by

� an object A×B of C , together with

� two projection morphisms πA : A×B → A and

πB : A×B → B,

for which given any object C and morphisms f : C → A,

g : C → B, there is a unique morphism 〈 f ,g〉 : C → A×B for

which πA〈 f ,g〉 = f and πB〈 f ,g〉 = g.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 36'

&

$

%

� The data for a binary product is more readily

understood as a commutative diagram,

C

A �

πA

�

f

A×B

∃! 〈 f ,g〉
?

πB

- B

g

-

The unique morphism 〈 f ,g〉 : C → A×B is called the

mediating morphism for f and g.

� The definition can be extended to families of objects

(Ai | i ∈ I).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 37'

&

$

%

Functors Preserving Products

� The functor F : C → D preserves finite products if for

any finite family of objects (A1, . . . ,An) in C the morphism

m
def
= 〈Fπi | i ∈ I〉 : F(A1 × . . .×An) → FA1 × . . .×FAn

is an isomorphism.

� We refer to m as the canonical isomorphism.

� F is strict if the above isomorphisms are identities.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 38'

&

$

%

Examples

� A binary product of x and y in a preordered set X is

given by x∧ y with projections x∧ y ≤ x and x∧ y ≤ y.

� A (non-empty) finite product of (Ai | i ∈ I) in Set is

given by the cartesian product ΠAi∈I. The product of the

empty family is a terminal object 1, with the property

that there is a unique morphism !A : A → 1 for every A.

� The functor C (C,−) preserves finite products.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 39'

&

$

%

Definition of Binary Coproducts

A binary coproduct of A and B is specified by

� an object A+B, together with

� two insertion morphisms ιA : A → A+B and ιB : B → A+B,

such that there is a unique [f ,g] for which

A
ιA
- A+B �

ιB
B

C

[f ,g]

?�

gf

-

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 40'

&

$

%

Definition of Cartesian Closed Categories

� C is cartesian closed if it has finite products, and for any B

and C there is B ⇒C and morphism

ev : (B ⇒C)×B →C

such that for any f : A×B →C there is a unique morphism

λ(f) : A → (B ⇒C) such that f = ev◦ (λ(f)× idB).

� B ⇒C is called the exponential of B and C

� λ(f) is the exponential mate of f .

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 41'

&

$

%

Examples

� The category Set.

− The terminal object is {∅} and binary products are given

by cartesian product.

− B ⇒C is the set of functions from B to C.

− The function ev : (B ⇒C)×B →C is given by

ev(h,b) = h(b), where b ∈ B and h : B →C is a function.

− Given f : A×B →C we define λ(f) : A → (B ⇒C) by

λ(f)(a)(b) = f (a,b).

� A Heyting prelattice viewed as a category is indeed

cartesian closed, with Heyting implications as exponentials. In

fact such a prelattice also has finite coproducts.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 42'

&

$

%

Definition of Bicartesian Closed Categories

� A category C is a bicartesian closed category if it is a

cartesian closed category which has finite coproducts.

� A functor F : C → D is said to be bicartesian closed if

it preserves finite (co)products and exponentials.

� We shall also call such a functor a morphism of

bicartesian closed categories.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 43'

&

$

%

Distributive Categories

A category with finite products and coproducts is said to be

distributive if the mediating morphisms

[idA × i, idA × j] : (A×B)+(A×C)
∼=

−→ A× (B+C)

and !A×0 : 0
∼=

−→ A×0 are isomorphisms.

� The category Set, and any category [C ,Set]; categorical

structure is defined pointwise.

� Any Heyting prelattice which is regarded as a category.

� In fact any bicartesian closed category is automatically

distributive.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 44'

&

$

%

Categorical Logic

� We shall define intuitionistic propositional logic, and theories

in the logic.

� Working from first principles, we shall derive a semantics

for the logic—we examine each of the rules for deriving

theorems, and extract constraints on our semantic model

which guarantee soundness.

� We show how structure preserving functions can transform

one model into another . . .

� and use this to show how theories correspond to order

theoretic structures with a universal property.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 45'

&

$

%

Logical Propositions

The set of (first order) propositions Prop is inductively

defined by the rules below

[p ∈ Gnd]
p true false

φ ψ

φ∧ψ

φ ψ

φ∨ψ

φ ψ

φ → ψ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 46'

&

$

%

Signatures and Theories

� An IpL sequent takes the form ∆ ` φ, where ∆ is a

finite list of propositions.

� An IpL-signature Sg is specified by a set of ground

propositions Gnd.

� An IpL-theory Th is a pair (Sg,Ax) where Ax is a set of

sequents. Each such sequent is called an axiom of Th.

� Given Th, the theorems are inductively generated by

the rules on the next slide. If ∆ ` φ is a theorem we shall

sometimes write Th B ∆ ` φ.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 47'

&

$

%

[∆ ` φ ∈ Ax]
∆ ` φ

∆,φ,φ′,∆′ ` ψ
EXCH

∆,φ′,φ,∆′ ` ψ

∆,φ,φ,∆′ ` ψ
CTRN

∆,φ,∆′ ` ψ

ID

∆′,φ,∆ ` φ

∆ ` φ φ,∆′ ` ψ
CUT

∆′,∆ ` ψ

∆ ` φ
OR-Il

∆ ` φ∨ψ

∆ ` ψ
OR-Il

∆ ` φ∨ψ

∆,φ ` θ ∆,ψ ` θ ∆ ` φ∨ψ
OR-E

∆ ` θ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 48'

&

$

%

Deriving a Semantics – Preliminaries

� ∆ ` φ means that if all of the propositions in ∆ are

valid, then φ is valid. Recall [[φ]] ∈ B = {⊥,>}.

� We look for a mathematical “space” H in which we can

model the IpL propositions.

� We shall assume that H has some notion of “element”.

� We model φ as an element [[φ]] ∈ H. We call [[φ]] the

denotation of φ.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 49'

&

$

%

� A sequent φ ` ψ is a “relationship”. So we capture this

with binary relations ≤ over H.

� The minimal requirement is that [[φ]] ≤ [[ψ]] whenever

Th B φ ` ψ. We say that the theorem is satisfied by the

semantics.

� What about Th B ∆ ` φ? We define [[∆]]
def
= 2(∆) where

∆ is the finite list of denotations of the propositions in ∆,

and there is a function [H] → H written L 7→ 2(L).

� If ∆ = φ we expect [[∆]] = [[φ]]. Thus we set 2(h)
def
= h.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 50'

&

$

%

We return to the denotation of propositions. We define

− 7→ [[−]] by recursion. Write # : H ×H → H for a function

which gives the semantics of a logical operator #, so that

� [[true]]
def
= > ∈ H, an element to be determined;

� [[φ∧ψ]]
def
= [[ψ]] ∧ [[ψ]];

� [[φ → ψ]]
def
= [[ψ]] → [[ψ]],

where the denotation [[p]] may be chosen to be any element

of H.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 51'

&

$

%

Deriving a Semantics of Theories

� A structure M in H for a signature is given by

specifying an element [[p]]M ∈ H for each p ∈ Gnd.

� One can then define [[φ]]M by recursion, and a model

of Th is a structure M which satisfies each of the axioms

of Th.

� We shall now look for conditions on

(H,≤,2(−), # ,⊥,>) which ensure that for any theory Th

and for any model M, the theorems are all satisfied.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 52'

&

$

%

We shall attempt to discover necessary and sufficient

conditions. A typical rule for deducing theorems looks like

∆1 ` φ1 . . . ∆n ` φn
R

∆ ` φ

In order to ensure that all theorems are satisfied, we want

to find necessary and sufficient conditions on all such rules

R to ensure that for all ∆i, φi, ∆ and φ

(2(∆1)≤ [[φ1]]) and . . . and (2(∆n)≤ [[φn]]) implies 2(∆)≤ [[φ]]

If this holds, we shall say that the semantics is sound for the

rule.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 53'

&

$

%

It is clearly sufficient to require

(2(L1)≤ h1) and . . . and (2(Ln)≤ hn) implies 2(L)≤ h (∗)

However, (∗) is also necessary. Each sequent ∆ j ` φ j can

take the form

Ax B p1, . . . , pm ` p

The images ([[p1]], . . . , [[pm]], [[p]]) must be onto [H]×H. Thus

in fact it is necessary that (∗) holds.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 54'

&

$

%

� Note that from ID we have φ ` φ. As φ could be any

ground proposition, it is necessary that for any h ∈ H we

have h ≤ h, that is ≤ must be reflexive.

� From CUT we have

δ ` φ φ ` ψ

δ ` ψ

Axioms could take the form p ` q. Thus it is necessary

that ≤ be transitive.

� Thus (H,≤) is a preordered set.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 55'

&

$

%

ID The NSC for soundness are that 2(L,h,L′) ≤ h for all

L,L′ ∈ [H] and h ∈ H. Equivalently, the NSC are that 2(L) is

a lower bound of the set Set(L) for any L ∈ [H].

EXCH

2(L,h,h′,L′) ∼= 2(L,h′,h,L′)

CTRN

2(L,h,h,L′) ∼= 2(L,h,L′)

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 56'

&

$

%

CUT

� The NSC are that for any L,L′ ∈ [H] and k,k′ ∈ H, if

2(L) ≤ k and 2(k,L′) ≤ k′ then 2(L,L′) ≤ k′.

� Taking L
def
= h for any h ∈ H and k′

def
= 2(k,L′), we can

deduce that if h ≤ k then 2(h,L′) ≤ 2(k,L′).

� Let L
def
= k1, . . . ,kn and for each i, h ≤ ki. Then

h = 2(h) ∼= 2(h, . . . ,h,h)

≤ 2(k1, . . . ,kn−1,kn)

Hence we see that 2(L) is a greatest lower bound (meet)

of the finite set Set(L).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 57'

&

$

%

OR-Il and OR-Ir and OR-E NSC are

2(L) ≤ h implies 2(L) ≤ h ∨ k (1)

2(L) ≤ k implies 2(L) ≤ h ∨ k (2)

(2(L,h) ≤ l and 2(L,k) ≤ l and 2(L) ≤ h ∨ k)

implies 2(L) ≤ l (3)

� By taking L to be h and k in (1) and (2) we see

h∨ k ≤ h ∨ k.

� Now take L to be h ∨ k and l to be h∨ k in (3). Note

that 2(h ∨ k,h) ≤ h ≤ h∨ k, similarly

2(h ∨ k,k) ≤ k ≤ h∨ k, and hence h ∨ k ≤ h∨ k.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 58'

&

$

%

This is not sufficient to ensure (3) holds. In fact the joins in

H must be distributive for meets,

2(L′,h′ ∨ k′) ≤ 2(L′,h′) ∨ 2(L′,k′) (∗)

To see sufficiency for (3), note that 2(L) ≤ 2(L,h ∨ k) if

2(L) ≤ h ∨ k, and thus using (∗) we have 2(L) ≤ l ∨ l ≤ l.
...

We conclude that (H,≤) is a Heyting prelattice.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 59'

&

$

%

Semantics of Propositions

Let Gnd be a set of ground propositions, and M a structure

for Gnd in a Heyting prelattice H. Then the semantics is

given by recursion:

[[p]] is specified

(where ⊥ ∈ H is the bottom element)
[[false]]

def
= ⊥

[[φ]] = h [[ψ]] = k

[[φ∧ψ]] = h∧ k

[[φ]] = h [[ψ]] = k

[[φ∨ψ]] = h∨ k

[[φ]] = h [[ψ]] = k

[[φ → ψ]] = h ⇒ k

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 60'

&

$

%

Soundness

The structure M satisfies a sequent ∆ ` φ if

[[∆]]
def
=

^

Set(∆) =
^

{ [[δ]] | δ ∈ ∆ } ≤ [[φ]]

Let Th = (Sg,Ax) be an IpL-theory and M a model of Th in a

Heyting prelattice. Then M satisfies each of the theorems of

Th.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 61'

&

$

%

Transporting Models

� Suppose f : H → K is a homomorphism of Heyting

prelattices, M a model of Th = (Sg,Ax) in H. We define a

new model f∗M, of Th in K.

� We can define a structure f∗M for Sg in K by

[[p]] f∗ M
def
= f ([[p]]M) ∈ K.

� In fact this is a model. First, we can prove by rule

induction

∀φ ∈ Prop. [[φ]] f∗ M
∼= f ([[φ]]M)

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 62'

&

$

%

Now suppose that Ax B ∆ ` φ. Then

[[∆]] f∗ M
def
=

V

{ [[δ]] f∗ M | δ ∈ ∆ } ∼=

V

{ f ([[δ]]M) | δ ∈ ∆ } ∼=′

f (
V

{ [[δ]]M | δ ∈ ∆ }) ≤ f ([[φ]]M) ∼= [[φ]] f∗ M

Thus f∗ M satisfies the axioms of Th too, and is thus a model

of Th in K.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 63'

&

$

%

Classifying Prelattices

A Heyting prelattice Cl(Th) is called the classifying

prelattice of Th if there is a model G of Th in Cl(Th) for

which given any Heyting prelattice K, and a model M of Th

in K, then there is a homomorphism of Heyting prelattices

m : Cl(Th) → K such that

T h
M

- K

Cl(Th)

G
?

m

-

m∗ G = M.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 64'

&

$

%

Adjoint Rules

The class of IpL theorems previously defined is exactly the

same as that defined by

[∆ ` φ ∈ Ax]
∆ ` φ

a FALSE-E

∆, false ` φ
a TRUE-I

∆ ` true

∆ ` φ ∆ ` ψ
========== a AND-I

∆ ` φ∧ψ

∆,φ ` θ ∆,ψ ` θ
============= a OR-E

∆,φ∨ψ ` θ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 65'

&

$

%

Constructing Classifiers

Each IpL-theory Th has a classifying Heyting prelattice

Cl(Th). In fact we can construct a canonical classifier using

the syntax of Th, where m∗G = M.

Proof: Given Th = (Sg,Ax), define a relation ≤ on

propositions by

φ ≤ ψ if and only if Th B φ ` ψ.

Then (Prop,≤) is a Heyting prelattice.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 66'

&

$

%

Categorical Type Theory

� We shall define an equational type theory with products,

sums, and functions.

� Working from first principles, we shall derive a semantics.

− First we examine the rules for deriving type assignments,

and show that basic properties lead naturally to categorical

models.

− Second, we examine each of the rules for deriving

equations, and extract constraints on our models which

guarantee soundness.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 67'

&

$

%

Categorical Type Theory

� We show how structure preserving functors can

transform one model into another . . .

� and use this to show how theories correspond to

categories with a universal property.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 68'

&

$

%

Signatures

A λ×+-signature, Sg, is given by :

� A collection of ground types. The collection of types

is inductively defined:

γ unit null

σ τ

σ× τ

σ τ

σ+ τ

σ τ

σ ⇒ τ

� A collection of function symbols f : σ1 . . .σa → σ
which may be constants k : σ.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 69'

&

$

%

Raw Terms

We define the raw terms generated by a λ×+-signature:

x k

M1 . . . Ma

f (M1, . . . ,Ma) 〈〉

M N

〈M,N〉

P

Fst(P)

M

Inlτ(M)

S E F

Case(S, x.E | y.F)

M

λx : σ.M

F A

F A

� We shall soon make use of simultaneous substitution of raw

terms for free variables, T [~U/~v]. For example,

〈x,y〉[Inl(y),x/x,y] = 〈Inl(y),x〉.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 70'

&

$

%

Proved Terms

� A context is a finite list of (variable, type) pairs,

usually written as Γ = [x1 : σ1, . . . ,xn : σn], where the

variables are required to be distinct.

� A term-in-context is a judgement of the form

Γ ` M : σ

� Given a signature Sg, the proved terms are those

terms-in-context which are inductively generated by the

following rules.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 71'

&

$

%

Γ,x : σ,Γ′ ` x : σ Γ ` k : σ

Γ ` M1 : σ1 . . . Γ ` Ma : σa

Γ ` f (M1, . . . ,Ma) : τ

Γ ` S : σ+ τ Γ,x : σ ` E : δ Γ,y : τ ` F : δ

Γ ` Case(S, x.E | y.F) : δ

Γ,x : σ ` M : τ

Γ ` λx : σ.M : σ ⇒ τ

Γ ` F : σ ⇒ τ Γ ` A : σ

Γ ` F A : τ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 72'

&

$

%

Admissible Properties

Whenever Sg B Γ ` M : σ, we have Sg B πΓ ` M : σ.

We use rule induction. More precisely we prove

∀ Sg B Γ ` M : σ. Sg B πΓ ` M : σ

We give some examples of property closure.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 73'

&

$

%

Γ ` M1 : σ1 . . . Γ ` Ma : σa
(f : σ1, . . . ,σa → σ)

Γ ` f (M1, . . . ,Ma) : σ

(Property Closure for the inductive rule for function

symbols): The inductive hypotheses are Sg B πΓ ` Mi : σi

for each i, that is, there is a derivation for each

term-in-context. But now we can just apply an instance of

the rule to these derivations to deduce that

Sg B πΓ ` f (M1, . . . ,Ma) : σ, as required.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 74'

&

$

%

Theories

� A λ×+-theory, Th, is a pair (Sg,Ax) where Ax is a

collection of equations-in-context for Sg.

� An equation-in-context is a judgement

Γ ` M = M′ : σ where Γ ` M : σ and Γ ` M′ : σ are proved

terms.

� The theorems of Th consist of the judgements of the

form Γ ` M = M′ : σ inductively generated by the rules on

the following slides—it is a consequence of the rules that

Sg B Γ ` M : σ and Sg B Γ ` M′ : σ.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 75'

&

$

%

Ax B Γ ` M = M′ : σ

Γ ` M = M′ : σ

Γ ` M = M′ : σ
(where π is a permutation)

πΓ ` M = M′ : σ

Γ ` M = M′ : σ
(where Γ ⊆ Γ′)

Γ′ ` M = M′ : σ

Γ,x : σ ` N = N ′ : τ Γ ` M = M′ : σ

Γ ` N[M/x] = N ′[M′/x] : τ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 76'

&

$

%

Sg B Γ ` M : unit

Γ ` M = 〈〉 : unit

Sg B Γ ` M : σ Sg B Γ ` N : τ

Γ ` Fst(〈M,N〉) = M : σ

Sg B Γ ` P : σ× τ

Γ ` 〈Fst(P),Snd(P)〉 = P : σ× τ

Sg B Γ ` S : null Sg B Γ,x : null ` M : σ

Γ ` Empσ(S) = M[S/x] : σ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 77'

&

$

%

Sg B Γ ` M : σ Sg B Γ,x : σ ` E : δ Sg B Γ,y : τ ` F : δ

Γ ` Case(Inlτ(M), x.E | y.F) = E[M/x] : δ

Sg B Γ,x : σ ` M : τ Sg B Γ ` A : σ

Γ ` (λx : σ.M)A = M[A/x] : τ

Sg B Γ ` F : σ ⇒ τ
(provided x 6∈ fv(F))

Γ ` λx : σ.(Fx) = F : σ ⇒ τ

Γ,x : σ ` M = M′ : τ

Γ ` λx : σ.M = λx : σ.M′ : σ ⇒ τ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 78'

&

$

%

Deriving a Semantics For Proved Terms

� Suppose we model (or interpret) σ and τ by “objects” A and

B. Let us model x : σ ` M : τ as a “relationship” A
m

−→ B.

� We first think about the process of substitution. Let

[[x : σ ` M : τ]] = A
m

−→ B [[y : τ ` N : γ]] = B
n

−→C

Then

[[x : σ ` N[M/y] : γ]] = A
2(n,m)
−→ C

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 79'

&

$

%

� Let z : γ ` L : δ be a further proved term. Note that we

shall identify the semantics of the proved terms

x : σ ` (L[N/z])[M/y] : δ and x : σ ` L[N[M/y]/z] : δ

Thus

2(2(l,n),m) = 2(l,2(n,m))

� We will have to model x : σ ` x : σ as a relationship

A
?A−→ A. We can deduce that if E

e
−→ A, then 2(?A,e) = e

because x[E/x] = E.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 80'

&

$

%

We summarise our deductions, writing n◦m for 2(n,m) and idA

for ?A, which amount to the definition of a category:

− Types are interpreted by “objects,” say A, B . . . and proved

terms are interpreted by “relationships,” say A
m

−→ B . . .

− For each object A there is a relationship idA.

− Given relationships A
m

−→ B and B
n

−→C, there is a

relationship A
n◦m
−→C.

− Given relationships E
e

−→ A and A
m

−→ B, then we have

idA ◦ e = e and m◦ idA = m.

− For any A
m

−→ B, B
n

−→C and C
l

−→ D, we have

l ◦ (n◦m) = (l ◦n)◦m.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 81'

&

$

%

Summary

� We will model a proved term x1 : σ1, . . . ,xn : σn ` M : τ
in a category with finite products as a morphism of the

form

[[Γ ` M : τ]] : [[Γ]] → [[τ]]

where Γ def
= x1 : σ1, . . . ,xn : σn and [[Γ]] stands for

[[σ1]]× . . .× [[σn]].

� Substitution of terms will be modelled by categorical

composition . . .

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 82'

&

$

%

Deriving a Semantics for Theories

� First we consider the types of Sg. We have to give an object

[[γ]] of C to interpret each of the ground types γ, [[unit]] to

interpret unit, and [[null]] to interpret null.

� We define [[σ× τ]] def
= [[σ]]2[[τ]], etc

� We choose a morphism [[f]] : [[σ1]]× . . .× [[σn]] → [[σ]] in C for

each function symbol.

� Recall that the interpretation of Γ ` M : σ is given by

[[Γ ` M : σ]] : [[Γ]] → [[σ]]. By looking at how to soundly interpret

the theorems of Th we will deduce what the interpretation must

be.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 83'

&

$

%

A typical rule looks like

Γ ` M : σ
(R)

Γ ` R(M) : τ

Now suppose that m
def
= [[Γ ` M : σ]] which is an element of

C ([[Γ]], [[σ]]). How do we model [[Γ ` R(M) : τ]] ∈ C ([[Γ]], [[τ]])? All we

can say at the moment is that this will depend on m, and we can

model this idea by having a function

Φ : C ([[Γ]], [[σ]]) −→ C ([[Γ]], [[τ]])

and setting [[Γ ` R(M) : τ]] def
= Φ(m).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 84'

&

$

%

Suppose that x : γ ` M : σ and y : γ′ ` N : γ are any two given

proved terms. If m
def
= [[x : γ ` M : σ]] and n

def
= [[y : γ′ ` N : γ]] then

[[y : γ′ ` M[N/x] : σ]] = m◦n. Note that there are “equal” proved

terms

y : γ′ ` R(M)[N/x] : τ and y : γ′ ` R(M[N/x]) : τ.

and so

Φ(m)◦n = Φ(m◦n). (∗)

(∗) will hold if there are natural transformations

Φ : C (−,A) −→ C (−,B) : C op −→ Set.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 85'

&

$

%

Recall that the rule for introducing product terms is

Γ ` M : σ Γ ` N : σ

Γ ` 〈M,N〉 : σ× τ

In order to soundly interpret this rule we shall need a

natural transformation

Φ : C (−,A)×C (−,B) −→ C (−,A2B)

for all objects A and B of C .

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 86'

&

$

%

Now let m : C → A and n : C → B be morphisms of C . Applying

naturality in C at the morphism 〈m,n〉 : C → A×B we deduce

Then we can make the definition

[[Γ ` 〈M,N〉 : A×B]]
def
=

[[Γ]]
〈[[Γ ` M : σ]], [[Γ ` N : σ]]〉

- [[σ]]× [[τ]]
q[[σ]],[[τ]]

- [[σ]]2[[τ]].

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 87'

&

$

%

Γ ` H : σ× τ

Γ ` Fst(H) : σ

To model this rule we shall need a natural transformation

Φ : C (−,A2B) −→ C (−,A). Using the Yoneda lemma (see notes),

the components of Φ are given by θ 7→ p◦θ for some p : A2B → A.

So now we can define

[[Γ ` Fst(H) : σ]]
def
= [[Γ]]

[[Γ ` H : σ× τ]]
- [[σ]]2[[τ]]

p[[σ]],[[τ]]
- [[σ]].

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 88'

&

$

%

Now we think about the equations

Γ ` M : σ Γ ` N : τ
(1)

Γ ` Fst(〈M,N〉) = M : σ

Γ ` H : σ× τ
(3)

Γ ` 〈Fst(H),Snd(H)〉 = H : σ× τ

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 89'

&

$

%

If we put h
def
= [[Γ ` H : σ× τ]] : C → A2B,

m
def
= [[Γ ` M : σ]] : C → A and n

def
= [[Γ ` N : τ]] : C → B, and our

categorical interpretation satisfies the equations-in-context,

this forces

pA,B ◦qA,B ◦ 〈m,n〉 = m (1)

p′A,B ◦qA,B ◦ 〈m,n〉 = n (2)

qA,B ◦ 〈pA,B ◦h, p′A,B ◦h〉 = h (3)

These equations imply that, up to isomorphism, A2B and

A×B are the same. Thus we may soundly interpret binary

product types by binary categorical product.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 90'

&

$

%

To soundly interpret the rule

Γ ` S : null

Γ ` Empσ(S) : σ

we shall need a natural transformation

Φ : C (−,N) −→ C (−,A), where N = [[null]]. The Yoneda

Lemma tells us that the components of Φ are given by

θ 7→ nA ◦θ where nA : N → A is a morphism, one for each A.

So now we can define

[[Γ ` Empσ(S) : σ]]
def
= [[Γ]]

[[Γ ` S : null]]
- N

n[[σ]]
- [[σ]].

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 91'

&

$

%

If we write s
def
= [[Γ ` S : null]] : C → N, and

m
def
= [[Γ,x : null ` M : σ]] : C×N → A then

Γ ` Empσ(S) = M[S/x] : σ

will be soundly modelled providing that

nA ◦ s = m◦ 〈idC,s〉 (†)

holds for any such morphisms. Suppose that t : N → A. Taking s

to be idN and m to be t ◦πN , then

nA = t ◦πN ◦ 〈idN , idN〉 = t

Thus N is an initial object in the category C . (In fact (†) forces N

to be distributive, that is πN : C×N → N is an isomorphism for

every C.)

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 92'

&

$

%

Formal Semantics of Proved Terms

Let C be a BCC. Then a structure, M, for some Sg in C is

specified by:

� For every ground type γ an object [[γ]] of C ,

� for every function symbol f : σ1 . . .σn → τ a morphism

[[f]] : [[σ1]]× . . .× [[σn]] → [[τ]], where we define [[σ]] by recursion,

setting [[unit]]
def
= 1, [[σ× τ]] def

= [[σ]]× [[τ]] etc.

Then for every proved term Γ ` M : σ we specify a morphism

[[Γ ` M : σ]] : [[Γ]] → [[σ]]

by recursion.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 93'

&

$

%

[[Γ,x : σ,Γ′ ` x : σ]]
def
= π : [[Γ]]× [[σ]]× [[Γ′]] → [[σ]]

(k : σ)
[[Γ ` k : σ]]

def
= [[k]]◦! : [[Γ]] → 1 → [[σ]]

[[Γ ` M1 : σ1]] = m1 : [[Γ]] → [[σ1]] . . .

[[Γ ` f (~M) : τ]] = [[f]]◦ 〈m1, . . . ,mn〉 : [[Γ]] → ([[σ1]]× . . .× [[σn]]) → [[τ]]

[[Γ ` P : σ× τ]] = p : [[Γ]] → ([[σ]]× [[τ]])

[[Γ ` Fst(P) : σ]] = π1 ◦ p : [[Γ]] → ([[σ]]× [[τ]]) → [[σ]]

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 94'

&

$

%



















[[Γ ` S : σ+ τ]] = s : [[Γ]] → [[σ]]+ [[τ]]

[[Γ,x : σ ` E : δ]] = e : [[Γ]]× [[σ]] → [[δ]]

[[Γ,y : σ ` F : δ]] = f : [[Γ]]× [[τ]] → [[δ]]

[[Γ ` Case(S, x.E | y.F) : δ]] =

[e, f]◦ ∼= ◦〈id[[Γ]],s〉 : [[Γ]] → [[Γ]]× ([[σ]]+ [[τ]])
∼= ([[Γ]]× [[σ]])+([[Γ]]× [[τ]]) → [[δ]]

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 95'

&

$

%

[[Γ,x : σ ` M : τ]] = m : [[Γ]]× [[σ]] → [[τ]]

[[Γ ` λx : σ.M : σ ⇒ τ]] = λ(m) : [[Γ]] → [[σ]] ⇒ [[τ]]

[[Γ ` F : σ ⇒ τ]] = f : [[Γ]] → ([[σ]] ⇒ [[τ]]) [[Γ ` A : σ]] = a : [[Γ]] → [[σ]]

[[Γ ` F A : τ]] def
= ev◦ 〈 f ,a〉 : [[Γ]] → ([[σ]] ⇒ [[τ]])× [[σ]] → [[τ]]

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 96'

&

$

%

Soundness

Let M be a structure for a λ×+-signature in a bicartesian

closed category C . M satisfies the equation-in-context

Γ ` M = M′ : σ if [[Γ ` M : σ]] and [[Γ ` M′ : σ]] are equal. We

say that M is a model of a λ×+-theory Th = (Sg,Ax) if M
satisfies the axioms.

Then M satisfies any equation-in-context which is a

theorem of Th.

Proof: This can be shown by rule induction using the rules

for deriving theorems.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 97'

&

$

%

Let

m
def
= [[Γ,x : σ ` M : τ]] : [[Γ]]× [[σ]] → [[τ]]

and a
def
= [[Γ ` A : σ]] : [[Γ]] → [[σ]]. Then we have

(Property Closure for the (base) rule):

Sg B Γ,x : σ ` M : τ Sg B Γ ` A : σ

Γ ` (λx : σ.M)A = M[A/x] : τ

[[Γ ` (λx : σ.M)A : τ]] = ev〈[[Γ ` λx : σ.M : τ]], [[Γ ` A : σ]]〉

= ev〈λ(m),a〉

= ev(λ(m)× id)〈id,a〉

= m〈id,a〉

= [[Γ ` M[A/x] : τ]]

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 98'

&

$

%

Transporting Models

Suppose that we are given a morphism of bicartesian closed

categories F : C → D. Let M be a model of Th in C . We shall

show how to define a new model, of Th in D, denoted by

F∗M. We shall need a lemma:

If we set [[γ]]F∗M
def
= F [[γ]]M where γ is a ground type of Th,

then it follows from this that there is a canonical

isomorphism [[σ]]F∗M
∼= F[[σ]]M where σ is any type of Th.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 99'

&

$

%

A structure F∗M is given by [[γ]]F∗M
def
= F [[γ]]M on ground types and

[[f]]F∗M is given by the composition

[[σ1]]F∗M × . . .× [[σn]]F∗M
∼= F [[σ1]]M × . . .×F [[σn]]M

∼=′

F([[σ1]]M × . . .× [[σn]]M)
F [[f]]M−→ F [[τ]]M ∼= [[τ]]F∗M

where f : σ1, . . . ,σn → τ is a function symbol of Th, the

isomorphims ∼= exist because of the lemma, and ∼=′ arises from F

preserving finite products.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 100'

&

$

%

In fact F∗M is a model of Th.

Given a proved term Γ ` M : σ one can show by induction

that the morphism [[Γ ` M : σ]]F∗M is given by the

composition

[[σ1]]F∗M × . . .× [[σn]]F∗M
∼= F([[σ1]]M × . . .× [[σn]]M)

F [[Γ`M:σ]]M−→ F [[σ]]M.

If we are given proved terms Γ ` M : σ and Γ ` N : σ for

which [[Γ ` M : σ]]M = [[Γ ` N : σ]]M then certainly

[[Γ ` M : σ]]F∗M = [[Γ ` N : σ]]F∗M. Thus if M is a model of Th

in C then F∗M is a model of Th in D.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 101'

&

$

%

Classifying Categories

Let Th be a λ×+-theory. A bicartesian closed category

Cl(Th) is called the classifying category of Th if there is a

model G of Th in Cl(Th) for which given any category D
with finite products, and a model M of Th in D, then there

is a functor M : Cl(Th) → D such that

T h
M

- D

Cl(Th)

G
?

M

-

where M∗G = M.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 102'

&

$

%

Constructing Classifiers

Every λ×+-theory Th has a classifying category Cl(Th). We can

construct a canonical classifying category using the syntax of Th.

Proof:

� The objects of Cl(Th) are the types of Th.

� A morphism σ → τ is an equivalence class (x : σ | M) of pairs

(x : σ,M) where Sg B x : σ ` M : τ, with equivalence relation

(x : σ,M) ∼ (x′ : σ,M′) iff Th B x : σ ` M = M′[x/x′] : τ.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 103'

&

$

%

� Given σ and τ, the binary product is σ× τ with

projection πσ : σ× τ → σ given by (z : σ× τ | Fst(z)). If

(x : γ | M) : γ → σ and (y : γ | N) : γ → τ, then the mediating

morphism is

(z : γ | 〈M[z/x],N[z/y]〉) : γ → σ× τ.

� (x : σ | 〈〉) is the unique morphism σ → unit so that unit

is a terminal object for Cl(Th).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 104'

&

$

%

� We define a structure G for Sg in Cl(Th). [[γ]]G
def
= γ (and

hence it follows that [[σ]]G = σ for any type σ).

� Also define for f : σ1,σ2 → τ

[[f]]G
def
= (z : σ1 ×σ2 | f (Fst(z),Snd(z)))

Certainly we have

Sg B z : σ1 ×σ2 ` f (Fst(z),Snd(z)) : τ

� If k : σ then [[k]]G
def
= (x : unit | k).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 105'

&

$

%

� It is easy to check that G is indeed a model of

Th = (Sg,Ax).

� Now let M be a model of Th in D. We define

M : Cl(Th) → D by

(x : σ | M) : σ −→ τ - [[x : σ ` M : τ]]M : [[σ]]M −→ [[τ]]M

The soundness theorem says that the definition makes

sense. It is easy to see that M is a bicartesian closed

functor.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 106'

&

$

%

Some Applications

� We show that given a proof of φ∨ψ, there is a proof of

either φ or of ψ. This reinforces the fact that the logic IpL is

constructive. We prove the result by setting up a direct

connection between a classifying Heyting prelattice, and the

Booleans. The property is trivial in a Boolean model, and can

be reflected onto the classifier.

� We show that by starting with a very simple type theory, the

expressive power (in a sense to be made precise) is not

increased by adding products, sums and functions. This is

proved by establishing an equivalent categorical problem, and

solving it using categorical methods.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 107'

&

$

%

The Disjunction Property

� Suppose that Th = (Sg,∅) is an IpL theory. If

Th B ` φ∨ψ, then Th B ` φ or Th B ` ψ. This is known

as the disjunction property, DP.

� The categorical disjunction property, CDP, for a

Heyting prelattice, states that if we have > ∼= h∨ k then

either >∼= h or >∼= k.

� We shall prove DP by showing that Cl(Th) satisfies CDP.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 108'

&

$

%

The Gluing Lemma For Heyting Prelattices

Let Γ : H → K be a function which preserves finite meets. Define

GL(Γ)
def
= { (k,h) ∈ K ×H | k ≤ Γ(h) }

with pointwise order. Then GL(Γ) is a Heyting prelattice:

• the top element is (>K ,>H)

• (k,h)∧ (k′,h′)
def
= (k∧ k′,h∧h′)

• . . .

• (k,h) ⇒ (k′,h′)
def
= ((k ⇒ k′)∧Γ(h ⇒ h′),h ⇒ h′)

and π2 : GL(Γ) → H is a homomorphism of Heyting prelattices.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 109'

&

$

%

Gluing Classifiers to the Booleans

Set B
def
= {⊥,>} where ⊥≤>. Let ΓB : Cl(Th) → B be

defined by

φ 7→







> if φ ∼= true

⊥ otherwise

Then ΓB is a finite meet preserving function, and hence

GL(ΓB) is a Heyting prelattice. Further, GL(ΓB) satisfies

CDP.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 110'

&

$

%

Proof: Note that Th B true ` φ∧ψ if and only if

Th B true ` φ and Th B true ` ψ. Hence ΓB preserves

binary meets, and further ΓB(true) = >. Then apply the

gluing lemma. Now suppose that

(b,φ)∨ (b′,φ′) = (b∨b′,φ∨φ′) ∼= (>, true) ∈ GL(ΓB).

Hence b∨b′ ∼= > ∈ B and hence either b = > or b′ = >. In

the former case we must have >≤ ΓB(φ) hence > = ΓB(φ)

implying φ ∼= true. Thus CDP holds for GL(ΓB).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 111'

&

$

%

Proving the CDP by Gluing

The logic IpL satisfies DP.

Proof: We show CDP for Cl(Th). Let us define a structure M
for Th in GL(ΓB). We set

[[p]]M
def
= (ΓB(p), [[p]]G) ∈ GL(ΓB)

(because [[p]]G = p). This is trivially a model of Th because

Ax = ∅.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 112'

&

$

%

Hence there is a homomorphism m such that the upper left

triangle commutes up to equality (of structures)

Cl(Th) === Cl(Th)

Th
M
-

G

-

G l(Γ)

m

?

Cl(Th)

π2

?

===

G

-

Cl(Th)

idCl(Th)

?

as does the lower one given the definition of M. Hence from the

universal property of Cl(Th) we have π2 ◦m ∼= idCl(Th).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 113'

&

$

%

Now let φ∨ψ ∼= true in Cl(Th). We must have

m(φ∨ψ) ∼= m(φ)∨m(ψ) ∼= (>, true)

in GL(ΓB). By CDP for GL(ΓB) we have either

(i) m(φ) ∼= (>, true) in which case

π2(m(φ)) = true ∼= id(φ) = φ, or

(ii) m(ψ) ∼= (>, true) so that ψ ∼= true similarly.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 114'

&

$

%

Algebraic Theories

An algebraic theory is a λ×+-theory in which there are no

product, sum, and function types. More precisely, an

algebraic theory Th = (Sg,Ax) consists of

• a collection of types and function symbols;

• raw terms generated from these data, using only the rules

x k

M1 . . . Ma

f (M1, . . . ,Ma)

• proved terms, generated as expected; and

• theorems, generated by the rules of equality.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 115'

&

$

%

A Conservative Extension

Let Th = (Sg,Ax) be an algebraic theory. Let Th′ = (Sg′,Ax′) be the

λ×+-theory with ground types and function symbols those of Sg,

and Ax′
def
= Ax. Let Γ def

= [x1 : γ1, . . . ,xn : γn]. Suppose that

Sg′ B [x1 : γ1, . . . ,xn : γn] ` E : γ

Then there exists M for which

Sg B Γ ` M : γ and Th′ B Γ ` E = M : γ.

Moreover, if there is M′ for which Sg B Γ ` M′ : γ and also

Th′ B Γ ` E = M′ : γ then we have Th B Γ ` M = M′ : γ.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 116'

&

$

%

Free Bicartesian Closed Cateories

Let C be a category with finite products. Then F C is the

relatively free BCCC generated by C if there is a finite product

preserving functor I : C → F C such that if F : C → D is finite

product preserving and D is a BCCC then there is a BCCC functor

F : F C → D for which φ : FI ∼= F and F is unique up to

isomorphism.

C
I

- F C

D

F

?

F

-

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 117'

&

$

%

Relating Th and Th′ Categorically

We define a functor I : Cl(Th) → Cl(Th′). Very roughly, if

(x : γ | M)Th : γ → γ′

then we set

I(x : γ | M)Th
def
= (x : γ | M)Th′

Warning: the objects of Cl(Th) are in fact lists of types (in

the example above the source γ and target γ′ are lists of

length one) and you should consult my notes for the precise

definition of I.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 118'

&

$

%

Full and Faithful Functors

� F : C → D is faithful if given a parallel pair of morphisms

f ,g : A → B in C for which F f = Fg, then f = g. Thus

C (A,B) −→ D(FA,FB)

is 1-1.

� F is full if given objects A and B in C and a morphism

g : FA → FB in D, then there is some f : A → B in C for which

F f = g. Thus

C (A,B) −→ D(FA,FB)

is onto.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 119'

&

$

%

Outlining a Proof of the Con. Extension

1. Show that I : Cl(Th) → Cl(Th′) yields a free BCCC.

2. Prove a purely categorical result called the “logical

relations” gluing lemma.

3. Apply the gluing lemma and the free BCCC property, to

show that I is full and faithful . . .

Cl(Th)(γ,γ′)
∼=

- Cl(Th′)(Iγ, Iγ′)

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 120'

&

$

%

Existence: Suppose that Sg′ B x : γ ` E : γ′. Then we

certainly have

e
def
= (x : γ | E)Th′ : Iγ → Iγ′

in Cl(Th′). Using the fullness of I, there is a morphism

(x : γ | M)Th : γ → γ′ which is taken to e by I. But this implies

Th′ B x : γ ` M = E : γ′

as required.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 121'

&

$

%

A Free BCCC

The functor I : Cl(Th) → Cl(Th′) presents Cl(Th′) as the relatively

free BCC generated by Cl(Th).

Proof: Let F : Cl(Th) → C preserve finite products where C is a

BCCC. We shall define a functor F : Cl(Th′) → C by recursion over

the syntactic structure of Cl(Th′). For example

• Fγ def
= F [γ] where γ is a ground type of Sg′,

• F(σ× τ) def
= Fσ×Fτ,

• F(z : δ | 〈〉)
def
=! : Fδ → 1C ,

• F(z : δ | Fst(P))
def
= π1F(z : δ | P) where π1 : Fσ×Fτ → Fσ,

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 122'

&

$

%

Gluing Lemma by Logical Relations

Let D be a BCC and let I : C → D preserve finite products. We

define a category G l(Γ) as follows:

• Objects of G l(Γ) are (F,C,D) where F : C op → Set is a

functor, D is an object of D, and for each object C of C ,

CC ⊆ FC×D(IC,D).

• A morphism (α,d) : (F,C,D) → (F ′,C′,D′) is given by a

natural transformation α : F → F ′ and a morphism d : D → D′

in D for which if x CC u then αC(x) C′
C d ◦u, where of course

x ∈ FC and u ∈ D(IC,D).

Then G l(Γ) is a bicartesian closed category and the obvious

functor π2 : G l(Γ) → D is a morphism of BCCCs.

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 123'

&

$

%

Freeness Implies Full and Faithful

Let C be a locally small category, and F C the freely generated

bicartesian closed category. Then the canonical functor

I : C → F C is full and faithful.

Proof We apply the gluing lemma to I. We define a functor

J : C → G l(Γ): on objects C of C define JC by (C (−,C),CC, IC)

where the subset

C
C
C′ ⊆ C (C′,C)×D(IC′, IC)

is defined by just requiring c C
C
C′ Ic for each morphism c : C′ →C

in C . On morphisms c of C we set Jc
def
= (C (−,c), Ic).

Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 124'

&

$

%

Consider the following diagram

Cl(Th′) === Cl(Th′)

Cl(Th)
J
-

I
-

G l(Γ)

J
?

Cl(Th′)

P2

?

===

I
-

Cl(Th′)

idCl(Th′)

?

