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Overview

� We shall study the connections between logic and category

theory; and type theory and category theory.

� We shall assume an undergraduate knowledge of basic

logic, and an appreciation of type theory from programming

and from Mark’s lectures.

� We shall cover concisely the aspects of order theory and

category theory required for the course . . .
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High Level Topics

� Order Theory: We shall study properties of orders, and

use these properties to model logics.

� Induction: We assume familiarity with this topic, but

review some notation and basic ideas.

� Category Theory: We shall study some simple category

theory, and use this to model type theories.
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High Level Topics

� Logic: We will define a simple logic, derive an order

theoretic semantics from first principles, and show how a

theory in the logic “corresponds” to a special ordered structure.

� Type Theory: We will define a simple type system, derive a

categorical semantics from first principles, and show how a

theory in the type system “corresponds” to a special category.

� Applications: We apply the correspondences to prove a

result about logic, and a result about type theory.
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Order Theory

� An order makes precise our intuitions about the relation less

than.

� We shall review basic structure of orders, such as bounds,

greatest and least elements, meets and joins, and the (possibly

unfamiliar) Heyting implication.

� Why? We shall see later on that very similar structure can

be found in simple logics.

� We shall also define functions between orders which

preserve structure, and use such functions to define when two

structures have “the same” properties.
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Preordered Sets

� A preorder on a set X is a binary relation ≤ on X

which is reflexive and transitive.

� A preordered set (X ,≤) is a set X , equipped with a

preorder ≤ on the set X .

� If x ≤ y and y ≤ x then we shall write x ∼= y and say that

x and y are isomorphic elements. Note that we can

regard ∼= as a relation on X , which is in fact an

equivalence relation.
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Partially Ordered Sets

� A partial order on a set X is a binary relation ≤ which

is reflexive, transitive and anti-symmetric.

� A partially ordered set (poset) (X ,≤) is a set X

equipped with a partial order ≤ on the set X .
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Examples of Ordered Sets

� The set P (X) = {A | A ⊆ X} is called the powerset of

X . The powerset is a poset with order given by inclusion

of subsets, A ⊆ B.

� Given preorders X and Y , their cartesian product has

underlying set

X ×Y
def
= {(x,y) | x ∈ X ,y ∈ Y}

with order given pointwise, that is (x,y) ≤ (x′,y′) iff

x ≤ x′ and y ≤ y′.
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Properties in Ordered Sets

� Suppose that X is a preorder and A is a subset of X . An

element x ∈ X is an upper bound for A if for every a ∈ A

we have a ≤ x (written A ≤ x).

� An element x ∈ X is a greatest element of A if it is an

upper bound of A which belongs to A;

� Lower bounds and least elements are defined

analogously.
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Meets and Joins

� Let X be a preordered set and A ⊆ X . A join of A, if

such exists, is a least element in the set of upper bounds

for A.

� A meet of A, if it exists, is a greatest element in the set

of lower bounds for A.

� If A has at least one join, we write
W

A for a choice of

one of the joins of A. Write also x∨ x′ for
W

{x,x′}.

�
V

A is a choice of one of the meets of A.
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Functions between Ordered Sets

� Let f : X → Y be a function, with X and Y equipped

with orders. f is monotone if for x,x′ ∈ X we have x ≤ x′

implies f (x) ≤ f (x′); f is also called a homomorphism

of preorders.

� The posets X and Y are isomorphic if there are

monotone functions f : X → Y and g : Y → X for which

g f = idX and f g = idY .

� The monotone function g is an inverse for f .
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Prelattices

� A prelattice is a preordered set which has finite meets

and joins, that is, meets and joins of finite subsets.

� A homomorphism of prelattices is a function

f : X → Y (with X and Y prelattices) which preserves

finite meets and joins, that is

f (
^

{x1, . . . ,xn }) ∼=
^

{ f (x1), . . . , f (xn)}

(similarly for joins) and also f (>) ∼= > and f (⊥) ∼= ⊥.
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Heyting Prelattices

� A Heyting prelattice X is a prelattice in which for each pair

of elements y,z ∈ X there is an element y ⇒ z ∈ X such that

x ≤ y ⇒ z iff x∧ y ≤ z.

We call y ⇒ z the Heyting implication of y and z.

� In a Heyting prelattice X , the Heyting implication of y and z

is unique.

Suppose that a and a′ are two candidates for the element

y ⇒ z ∈ X . Then a ≤ a implies a∧ y ≤ z implies a ≤ a′; the

converse is similar.
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Distributive Prelattices and Examples

Let X be a prelattice. Then X is distributive if it satisfies

x∧ (y∨ z) ∼= (x∧ y)∨ (x∧ z) for all x,y,z in X .

� P (X) is a Heyting (pre)lattice where

A ⇒ A′ def
= (X \A)∪A′.

� In fact every Boolean (pre)lattice is a Heyting lattice.

� Any finite distributive lattice X is a Heyting lattice.
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Induction and Recursion

� Induction is a method for constructing sets.

� One begins with certain (base) elements which must be in

the set, and then defines rules which explain how new

elements are constructed from old elements.

� Recursion is a method for defining functions over

inductively defined sets.

� Define the function on the base elements, and then define

the function on a new element e in terms of how the function

acts on the “old elements” from which e is constructed.
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Rules

Given a set U , a base rule is a pair (∅,b) in P (U)×U

(R)
b

and an inductive rule is a pair (H,c) = ({h1, . . . ,hk },c) in

P (U)×U
h1 h2 . . . hk

(R)
c
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Inductively Defined Sets

Given a set U and a set R , a derivation is a finite tree with

nodes labelled by elements of U such that

� each leaf node label b arises as a base rule (∅,b) ∈ R

� for any non-leaf node label c, if H is the set of children

of c then (H,c) ∈ R is an inductive rule.

Then the set inductively defined by R consists of those

elements u ∈U which have a derivation with root node

labelled by u.



Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 18'

&

$

%

Examples

� Let U be the set {u1,u2,u3,u4,u5,u6 } and let R be the set of

rules

{R1 = (∅,u1),R2 = (∅,u3),R3 = ({u1,u3 },u4),R4 = ({u1,u3,u4 },u5)}

Then a derivation for u5 is given by the tree

u5

u1

�

u3
?

u4

-

u1

�

u3

-
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The tree is usually written up-side down and in the

following style

R1
u1

R2
u3

R1
u1

R2
u3

R3
u4

R4
u5
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Rule Induction

Let I be inductively defined by R . Suppose we wish to show

∀i ∈ I. φ(i) .

Then all we need to do is

� for every base rule b ∈ R prove that φ(b) holds; and

� for every inductive rule h1...hk
c ∈ R prove that whenever

hi ∈ I,

(φ(h1) and φ(h2) and . . . and φ(hk)) implies φ(c)

We call the φ(h j) inductive hypotheses. We refer to

proving the • tasks as “verifying property closure”.
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Recursively Defined Functions

Let I be inductively defined by a set of rules R , and A any

set. A function f : I → A can be defined by

− specifying an element f (b) ∈ A for every base rule

b ∈ R ; and

− specifying f (c) ∈ A in terms of f (h1) ∈ A and f (h2) ∈ A

.... and f (hk) ∈ A for every inductive rule h1...,hk
c ∈ R ,
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Example

� The factorial function F : N → N is usually defined

recursively. We set

− F(0)
def
= 1 and

− ∀n ∈ N.F(n+1)
def
= (n+1)∗F(n).
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Category Theory

� Category Theory can be thought of as a “theory of

functions”. A category embodies the basic ideas of a source,

target, identity functions, composition, and properties of

composition.

� Sets and functions is an example of a category.

� Structures found in a category are usually defined by stating

what properties they have, rather than giving a description of

how the structure can be built up. The properties define the

structure “uniquely”, and are often called universal properties.
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� Given sets A and B, we can form A×B (cartesian

product), A+B (disjoint union) and A ⇒ B (function

space). These sets have universal properties which define

them uniquely up to bijection. We shall show that these

properties can be described in any category; they will be

used to model the types in a type theory.
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Definition of a Category

A category C is specified by the following data:

� A collection obC of entities called objects, written A,

B, C . . .

� A collection mor C of entities called morphisms

written f , g, h . . .

� For each morphism f a source src( f ) which is an

object of C and a target tar( f ) also an object of C . We

shall write f : src( f ) −→ tar( f ) or perhaps f : A → B.
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� Morphisms f and g are composable if tar( f ) = src(g). If

f : A → B and g : B →C, then there is a morphism g f : A →C.

� For each object A of C there is an identity morphism

idA : A → A, where

idtar( f ) ◦ f = f

f ◦ idsrc( f ) = f

� Composition is associative, that is given morphisms

f : A → B, g : B →C and h : C → D then

(hg) f = h(g f ).
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Examples of Categories

� Sets and total functions, Set. The objects are sets and

morphisms are (A, f ,B) where f ⊆ A×B is a function.

Composition is given by

(B,g,C)◦ (A, f ,B) = (A,g f ,C)

Finally, if A is any set, the identity is (A, idA,A).

� Any preordered set (X ,≤) is a category. The objects

are elements of X . The collection of morphisms is the set

of pairs (x,y) where x ≤ y. Composition is

(y,z)◦ (x,y)
def
= (x,z) (because ≤ is transitive).
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Definition of a Functor

A functor F : C → D is specified by

� an operation taking objects A in C to objects FA in D,

and

� an operation sending morphisms f : A → B in C to

morphisms F f : FA → FB in D,

for which F(idA) = idFA, and whenever the composition of

morphisms g f is defined in C we have F(g f ) = Fg◦F f .
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Examples of Functors

� The set [A] of finite lists over a set A gives a monoid via

list concatenation.

Hence we may define F : Set → Mon by FA
def
= [A] and

F f
def
= map( f ), where map( f ) : [A] → [B] is defined by

map( f )([a1, . . . ,an]) = [ f (a1), . . . , f (an)],

with [a1, . . . ,an] any element of [A].
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To see that F(g f ) = Fg◦F f where A
f

−→ B
g

−→C note that

F(g f )([a1, . . . ,an])
def
= map(g f )([a1, . . . ,an])

= [g f (a1), . . . ,g f (an)]

= map(g)([ f (a1), . . . , f (an)])

= map(g)(map( f )([a1, . . . ,an]))

= Fg◦F f ([a1, . . . ,an]).

� The functors between two preorders A and B are precisely

the monotone functions from A to B.
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Definition of a Natural Transformation

Let F,G : C → D be functors. Then a natural

transformation α from F to G, written α : F → G, is

specified by giving a morphism αA : FA → GA in D for each

object A in C , such that for any f : A → B in C , we have

FA
αA

- GA

FB

F f

?

αB

- GB

G f
?
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Examples of Natural Transformations

� Recall F : Set → Mon where FA
def
= [A] and F f

def
= map( f )

and map( f ) : [A] → [B]. We can define a natural

transformation rev : F → F by

revA([a1, . . . ,an])
def
= [an, . . . ,a1]

We check

F f ◦ revA([a1, . . . ,an]) = [ f (an), . . . , f (a1)] = revB ◦F f ([a1, . . . ,an]).

� The functor category [C ,D] has objects functors and

morphisms natural transformations.
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Isomorphisms and Equivalences

� A morphism f : A → B is an isomorphism if there is

some g : B → A for which f g = idB and g f = idA.

� We shall say g is an inverse for f and vise versa.

� We say that A is isomorphic to B, A ∼= B, if such a

mutually inverse pair of morphisms exists.

� An isomorphism in a functor category is referred to as

a natural isomorphism.
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Examples

� Bijections in Set are isomorphisms.

� In the category determined by a partially ordered set,

the only isomorphisms are the identities, and in a

preorder X with x,y ∈ X we have x ∼= y iff x ≤ y and y ≤ x.

Note that in this case there can be only one pair of

mutually inverse morphisms witnessing the fact that

x ∼= y.
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Definition of Binary Products

A binary product of objects A and B in a category C is

specified by

� an object A×B of C , together with

� two projection morphisms πA : A×B → A and

πB : A×B → B,

for which given any object C and morphisms f : C → A,

g : C → B, there is a unique morphism 〈 f ,g〉 : C → A×B for

which πA〈 f ,g〉 = f and πB〈 f ,g〉 = g.



Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 36'

&

$

%

� The data for a binary product is more readily

understood as a commutative diagram,

C

A �

πA

�

f

A×B

∃! 〈 f ,g〉
?

πB

- B

g

-

The unique morphism 〈 f ,g〉 : C → A×B is called the

mediating morphism for f and g.

� The definition can be extended to families of objects

(Ai | i ∈ I).
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Functors Preserving Products

� The functor F : C → D preserves finite products if for

any finite family of objects (A1, . . . ,An) in C the morphism

m
def
= 〈Fπi | i ∈ I〉 : F(A1 × . . .×An) → FA1 × . . .×FAn

is an isomorphism.

� We refer to m as the canonical isomorphism.

� F is strict if the above isomorphisms are identities.
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Examples

� A binary product of x and y in a preordered set X is

given by x∧ y with projections x∧ y ≤ x and x∧ y ≤ y.

� A (non-empty) finite product of (Ai | i ∈ I) in Set is

given by the cartesian product ΠAi∈I. The product of the

empty family is a terminal object 1, with the property

that there is a unique morphism !A : A → 1 for every A.

� The functor C (C,−) preserves finite products.
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Definition of Binary Coproducts

A binary coproduct of A and B is specified by

� an object A+B, together with

� two insertion morphisms ιA : A → A+B and ιB : B → A+B,

such that there is a unique [ f ,g] for which

A
ιA
- A+B �

ιB
B

C

[ f ,g]

?�

gf

-
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Definition of Cartesian Closed Categories

� C is cartesian closed if it has finite products, and for any B

and C there is B ⇒C and morphism

ev : (B ⇒C)×B →C

such that for any f : A×B →C there is a unique morphism

λ( f ) : A → (B ⇒C) such that f = ev◦ (λ( f )× idB).

� B ⇒C is called the exponential of B and C

� λ( f ) is the exponential mate of f .
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Examples

� The category Set.

− The terminal object is {∅} and binary products are given

by cartesian product.

− B ⇒C is the set of functions from B to C.

− The function ev : (B ⇒C)×B →C is given by

ev(h,b) = h(b), where b ∈ B and h : B →C is a function.

− Given f : A×B →C we define λ( f ) : A → (B ⇒C) by

λ( f )(a)(b) = f (a,b).

� A Heyting prelattice viewed as a category is indeed

cartesian closed, with Heyting implications as exponentials. In

fact such a prelattice also has finite coproducts.
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Definition of Bicartesian Closed Categories

� A category C is a bicartesian closed category if it is a

cartesian closed category which has finite coproducts.

� A functor F : C → D is said to be bicartesian closed if

it preserves finite (co)products and exponentials.

� We shall also call such a functor a morphism of

bicartesian closed categories.
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Distributive Categories

A category with finite products and coproducts is said to be

distributive if the mediating morphisms

[idA × i, idA × j] : (A×B)+(A×C)
∼=

−→ A× (B+C)

and !A×0 : 0
∼=

−→ A×0 are isomorphisms.

� The category Set, and any category [C ,Set]; categorical

structure is defined pointwise.

� Any Heyting prelattice which is regarded as a category.

� In fact any bicartesian closed category is automatically

distributive.
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Categorical Logic

� We shall define intuitionistic propositional logic, and theories

in the logic.

� Working from first principles, we shall derive a semantics

for the logic—we examine each of the rules for deriving

theorems, and extract constraints on our semantic model

which guarantee soundness.

� We show how structure preserving functions can transform

one model into another . . .

� and use this to show how theories correspond to order

theoretic structures with a universal property.
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Logical Propositions

The set of (first order) propositions Prop is inductively

defined by the rules below

[p ∈ Gnd]
p true false

φ ψ

φ∧ψ

φ ψ

φ∨ψ

φ ψ

φ → ψ
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Signatures and Theories

� An IpL sequent takes the form ∆ ` φ, where ∆ is a

finite list of propositions.

� An IpL-signature Sg is specified by a set of ground

propositions Gnd.

� An IpL-theory Th is a pair (Sg,Ax) where Ax is a set of

sequents. Each such sequent is called an axiom of Th.

� Given Th, the theorems are inductively generated by

the rules on the next slide. If ∆ ` φ is a theorem we shall

sometimes write Th B ∆ ` φ.
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[∆ ` φ ∈ Ax]
∆ ` φ

∆,φ,φ′,∆′ ` ψ
EXCH

∆,φ′,φ,∆′ ` ψ

∆,φ,φ,∆′ ` ψ
CTRN

∆,φ,∆′ ` ψ

ID

∆′,φ,∆ ` φ

∆ ` φ φ,∆′ ` ψ
CUT

∆′,∆ ` ψ

∆ ` φ
OR-Il

∆ ` φ∨ψ

∆ ` ψ
OR-Il

∆ ` φ∨ψ

∆,φ ` θ ∆,ψ ` θ ∆ ` φ∨ψ
OR-E

∆ ` θ
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Deriving a Semantics – Preliminaries

� ∆ ` φ means that if all of the propositions in ∆ are

valid, then φ is valid. Recall [[φ]] ∈ B = {⊥,>}.

� We look for a mathematical “space” H in which we can

model the IpL propositions.

� We shall assume that H has some notion of “element”.

� We model φ as an element [[φ]] ∈ H. We call [[φ]] the

denotation of φ.
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� A sequent φ ` ψ is a “relationship”. So we capture this

with binary relations ≤ over H.

� The minimal requirement is that [[φ]] ≤ [[ψ]] whenever

Th B φ ` ψ. We say that the theorem is satisfied by the

semantics.

� What about Th B ∆ ` φ? We define [[∆]]
def
= 2(∆) where

∆ is the finite list of denotations of the propositions in ∆,

and there is a function [H] → H written L 7→ 2(L).

� If ∆ = φ we expect [[∆]] = [[φ]]. Thus we set 2(h)
def
= h.
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We return to the denotation of propositions. We define

− 7→ [[−]] by recursion. Write # : H ×H → H for a function

which gives the semantics of a logical operator #, so that

� [[true]]
def
= > ∈ H, an element to be determined;

� [[φ∧ψ]]
def
= [[ψ]] ∧ [[ψ]];

� [[φ → ψ]]
def
= [[ψ]] → [[ψ]],

where the denotation [[p]] may be chosen to be any element

of H.
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Deriving a Semantics of Theories

� A structure M in H for a signature is given by

specifying an element [[p]]M ∈ H for each p ∈ Gnd.

� One can then define [[φ]]M by recursion, and a model

of Th is a structure M which satisfies each of the axioms

of Th.

� We shall now look for conditions on

(H,≤,2(−), # ,⊥,>) which ensure that for any theory Th

and for any model M, the theorems are all satisfied.
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We shall attempt to discover necessary and sufficient

conditions. A typical rule for deducing theorems looks like

∆1 ` φ1 . . . ∆n ` φn
R

∆ ` φ

In order to ensure that all theorems are satisfied, we want

to find necessary and sufficient conditions on all such rules

R to ensure that for all ∆i, φi, ∆ and φ

(2(∆1)≤ [[φ1]]) and . . . and (2(∆n)≤ [[φn]]) implies 2(∆)≤ [[φ]]

If this holds, we shall say that the semantics is sound for the

rule.
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It is clearly sufficient to require

(2(L1)≤ h1) and . . . and (2(Ln)≤ hn) implies 2(L)≤ h (∗)

However, (∗) is also necessary. Each sequent ∆ j ` φ j can

take the form

Ax B p1, . . . , pm ` p

The images ([[p1]], . . . , [[pm]], [[p]]) must be onto [H]×H. Thus

in fact it is necessary that (∗) holds.
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� Note that from ID we have φ ` φ. As φ could be any

ground proposition, it is necessary that for any h ∈ H we

have h ≤ h, that is ≤ must be reflexive.

� From CUT we have

δ ` φ φ ` ψ

δ ` ψ

Axioms could take the form p ` q. Thus it is necessary

that ≤ be transitive.

� Thus (H,≤) is a preordered set.
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ID The NSC for soundness are that 2(L,h,L′) ≤ h for all

L,L′ ∈ [H] and h ∈ H. Equivalently, the NSC are that 2(L) is

a lower bound of the set Set(L) for any L ∈ [H].

EXCH

2(L,h,h′,L′) ∼= 2(L,h′,h,L′)

CTRN

2(L,h,h,L′) ∼= 2(L,h,L′)
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CUT

� The NSC are that for any L,L′ ∈ [H] and k,k′ ∈ H, if

2(L) ≤ k and 2(k,L′) ≤ k′ then 2(L,L′) ≤ k′.

� Taking L
def
= h for any h ∈ H and k′

def
= 2(k,L′), we can

deduce that if h ≤ k then 2(h,L′) ≤ 2(k,L′).

� Let L
def
= k1, . . . ,kn and for each i, h ≤ ki. Then

h = 2(h) ∼= 2(h, . . . ,h,h)

≤ 2(k1, . . . ,kn−1,kn)

Hence we see that 2(L) is a greatest lower bound (meet)

of the finite set Set(L).
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OR-Il and OR-Ir and OR-E NSC are

2(L) ≤ h implies 2(L) ≤ h ∨ k (1)

2(L) ≤ k implies 2(L) ≤ h ∨ k (2)

(2(L,h) ≤ l and 2(L,k) ≤ l and 2(L) ≤ h ∨ k)

implies 2(L) ≤ l (3)

� By taking L to be h and k in (1) and (2) we see

h∨ k ≤ h ∨ k.

� Now take L to be h ∨ k and l to be h∨ k in (3). Note

that 2(h ∨ k,h) ≤ h ≤ h∨ k, similarly

2(h ∨ k,k) ≤ k ≤ h∨ k, and hence h ∨ k ≤ h∨ k.
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This is not sufficient to ensure (3) holds. In fact the joins in

H must be distributive for meets,

2(L′,h′ ∨ k′) ≤ 2(L′,h′) ∨ 2(L′,k′) (∗)

To see sufficiency for (3), note that 2(L) ≤ 2(L,h ∨ k) if

2(L) ≤ h ∨ k, and thus using (∗) we have 2(L) ≤ l ∨ l ≤ l.
...

We conclude that (H,≤) is a Heyting prelattice.
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Semantics of Propositions

Let Gnd be a set of ground propositions, and M a structure

for Gnd in a Heyting prelattice H. Then the semantics is

given by recursion:

[[p]] is specified

(where ⊥ ∈ H is the bottom element)
[[false]]

def
= ⊥

[[φ]] = h [[ψ]] = k

[[φ∧ψ]] = h∧ k

[[φ]] = h [[ψ]] = k

[[φ∨ψ]] = h∨ k

[[φ]] = h [[ψ]] = k

[[φ → ψ]] = h ⇒ k
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Soundness

The structure M satisfies a sequent ∆ ` φ if

[[∆]]
def
=

^

Set(∆) =
^

{ [[δ]] | δ ∈ ∆ } ≤ [[φ]]

Let Th = (Sg,Ax) be an IpL-theory and M a model of Th in a

Heyting prelattice. Then M satisfies each of the theorems of

Th.
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Transporting Models

� Suppose f : H → K is a homomorphism of Heyting

prelattices, M a model of Th = (Sg,Ax) in H. We define a

new model f∗M, of Th in K.

� We can define a structure f∗M for Sg in K by

[[p]] f∗ M
def
= f ([[p]]M) ∈ K.

� In fact this is a model. First, we can prove by rule

induction

∀φ ∈ Prop. [[φ]] f∗ M
∼= f ([[φ]]M)
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Now suppose that Ax B ∆ ` φ. Then

[[∆]] f∗ M
def
=

V

{ [[δ]] f∗ M | δ ∈ ∆ } ∼=

V

{ f ([[δ]]M) | δ ∈ ∆ } ∼=′

f (
V

{ [[δ]]M | δ ∈ ∆ }) ≤ f ([[φ]]M) ∼= [[φ]] f∗ M

Thus f∗ M satisfies the axioms of Th too, and is thus a model

of Th in K.
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Classifying Prelattices

A Heyting prelattice Cl(Th) is called the classifying

prelattice of Th if there is a model G of Th in Cl(Th) for

which given any Heyting prelattice K, and a model M of Th

in K, then there is a homomorphism of Heyting prelattices

m : Cl(Th) → K such that

T h
M

- K

Cl(Th)

G
?

m

-

m∗ G = M.
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Adjoint Rules

The class of IpL theorems previously defined is exactly the

same as that defined by

[∆ ` φ ∈ Ax]
∆ ` φ

a FALSE-E

∆, false ` φ
a TRUE-I

∆ ` true

∆ ` φ ∆ ` ψ
========== a AND-I

∆ ` φ∧ψ

∆,φ ` θ ∆,ψ ` θ
============= a OR-E

∆,φ∨ψ ` θ
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Constructing Classifiers

Each IpL-theory Th has a classifying Heyting prelattice

Cl(Th). In fact we can construct a canonical classifier using

the syntax of Th, where m∗G = M.

Proof: Given Th = (Sg,Ax), define a relation ≤ on

propositions by

φ ≤ ψ if and only if Th B φ ` ψ.

Then (Prop,≤) is a Heyting prelattice.
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Categorical Type Theory

� We shall define an equational type theory with products,

sums, and functions.

� Working from first principles, we shall derive a semantics.

− First we examine the rules for deriving type assignments,

and show that basic properties lead naturally to categorical

models.

− Second, we examine each of the rules for deriving

equations, and extract constraints on our models which

guarantee soundness.
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Categorical Type Theory

� We show how structure preserving functors can

transform one model into another . . .

� and use this to show how theories correspond to

categories with a universal property.
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Signatures

A λ×+-signature, Sg, is given by :

� A collection of ground types. The collection of types

is inductively defined:

γ unit null

σ τ

σ× τ

σ τ

σ+ τ

σ τ

σ ⇒ τ

� A collection of function symbols f : σ1 . . .σa → σ
which may be constants k : σ.
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Raw Terms

We define the raw terms generated by a λ×+-signature:

x k

M1 . . . Ma

f (M1, . . . ,Ma) 〈〉

M N

〈M,N〉

P

Fst(P)

M

Inlτ(M)

S E F

Case(S, x.E | y.F)

M

λx : σ.M

F A

F A

� We shall soon make use of simultaneous substitution of raw

terms for free variables, T [~U/~v]. For example,

〈x,y〉[Inl(y),x/x,y] = 〈Inl(y),x〉.
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Proved Terms

� A context is a finite list of (variable, type) pairs,

usually written as Γ = [x1 : σ1, . . . ,xn : σn], where the

variables are required to be distinct.

� A term-in-context is a judgement of the form

Γ ` M : σ

� Given a signature Sg, the proved terms are those

terms-in-context which are inductively generated by the

following rules.
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Γ,x : σ,Γ′ ` x : σ Γ ` k : σ

Γ ` M1 : σ1 . . . Γ ` Ma : σa

Γ ` f (M1, . . . ,Ma) : τ

Γ ` S : σ+ τ Γ,x : σ ` E : δ Γ,y : τ ` F : δ

Γ ` Case(S, x.E | y.F) : δ

Γ,x : σ ` M : τ

Γ ` λx : σ.M : σ ⇒ τ

Γ ` F : σ ⇒ τ Γ ` A : σ

Γ ` F A : τ
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Admissible Properties

Whenever Sg B Γ ` M : σ, we have Sg B πΓ ` M : σ.

We use rule induction. More precisely we prove

∀ Sg B Γ ` M : σ. Sg B πΓ ` M : σ

We give some examples of property closure.
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Γ ` M1 : σ1 . . . Γ ` Ma : σa
( f : σ1, . . . ,σa → σ)

Γ ` f (M1, . . . ,Ma) : σ

(Property Closure for the inductive rule for function

symbols): The inductive hypotheses are Sg B πΓ ` Mi : σi

for each i, that is, there is a derivation for each

term-in-context. But now we can just apply an instance of

the rule to these derivations to deduce that

Sg B πΓ ` f (M1, . . . ,Ma) : σ, as required.
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Theories

� A λ×+-theory, Th, is a pair (Sg,Ax) where Ax is a

collection of equations-in-context for Sg.

� An equation-in-context is a judgement

Γ ` M = M′ : σ where Γ ` M : σ and Γ ` M′ : σ are proved

terms.

� The theorems of Th consist of the judgements of the

form Γ ` M = M′ : σ inductively generated by the rules on

the following slides—it is a consequence of the rules that

Sg B Γ ` M : σ and Sg B Γ ` M′ : σ.
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Ax B Γ ` M = M′ : σ

Γ ` M = M′ : σ

Γ ` M = M′ : σ
(where π is a permutation)

πΓ ` M = M′ : σ

Γ ` M = M′ : σ
(where Γ ⊆ Γ′)

Γ′ ` M = M′ : σ

Γ,x : σ ` N = N ′ : τ Γ ` M = M′ : σ

Γ ` N[M/x] = N ′[M′/x] : τ
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Sg B Γ ` M : unit

Γ ` M = 〈〉 : unit

Sg B Γ ` M : σ Sg B Γ ` N : τ

Γ ` Fst(〈M,N〉) = M : σ

Sg B Γ ` P : σ× τ

Γ ` 〈Fst(P),Snd(P)〉 = P : σ× τ

Sg B Γ ` S : null Sg B Γ,x : null ` M : σ

Γ ` Empσ(S) = M[S/x] : σ
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Sg B Γ ` M : σ Sg B Γ,x : σ ` E : δ Sg B Γ,y : τ ` F : δ

Γ ` Case(Inlτ(M), x.E | y.F) = E[M/x] : δ

Sg B Γ,x : σ ` M : τ Sg B Γ ` A : σ

Γ ` (λx : σ.M)A = M[A/x] : τ

Sg B Γ ` F : σ ⇒ τ
(provided x 6∈ fv(F))

Γ ` λx : σ.(Fx) = F : σ ⇒ τ

Γ,x : σ ` M = M′ : τ

Γ ` λx : σ.M = λx : σ.M′ : σ ⇒ τ
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Deriving a Semantics For Proved Terms

� Suppose we model (or interpret) σ and τ by “objects” A and

B. Let us model x : σ ` M : τ as a “relationship” A
m

−→ B.

� We first think about the process of substitution. Let

[[x : σ ` M : τ]] = A
m

−→ B [[y : τ ` N : γ]] = B
n

−→C

Then

[[x : σ ` N[M/y] : γ]] = A
2(n,m)
−→ C
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� Let z : γ ` L : δ be a further proved term. Note that we

shall identify the semantics of the proved terms

x : σ ` (L[N/z])[M/y] : δ and x : σ ` L[N[M/y]/z] : δ

Thus

2(2(l,n),m) = 2(l,2(n,m))

� We will have to model x : σ ` x : σ as a relationship

A
?A−→ A. We can deduce that if E

e
−→ A, then 2(?A,e) = e

because x[E/x] = E.
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We summarise our deductions, writing n◦m for 2(n,m) and idA

for ?A, which amount to the definition of a category:

− Types are interpreted by “objects,” say A, B . . . and proved

terms are interpreted by “relationships,” say A
m

−→ B . . .

− For each object A there is a relationship idA.

− Given relationships A
m

−→ B and B
n

−→C, there is a

relationship A
n◦m
−→C.

− Given relationships E
e

−→ A and A
m

−→ B, then we have

idA ◦ e = e and m◦ idA = m.

− For any A
m

−→ B, B
n

−→C and C
l

−→ D, we have

l ◦ (n◦m) = (l ◦n)◦m.
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Summary

� We will model a proved term x1 : σ1, . . . ,xn : σn ` M : τ
in a category with finite products as a morphism of the

form

[[Γ ` M : τ]] : [[Γ]] → [[τ]]

where Γ def
= x1 : σ1, . . . ,xn : σn and [[Γ]] stands for

[[σ1]]× . . .× [[σn]].

� Substitution of terms will be modelled by categorical

composition . . .
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Deriving a Semantics for Theories

� First we consider the types of Sg. We have to give an object

[[γ]] of C to interpret each of the ground types γ, [[unit]] to

interpret unit, and [[null]] to interpret null.

� We define [[σ× τ]] def
= [[σ]]2[[τ]], etc

� We choose a morphism [[ f ]] : [[σ1]]× . . .× [[σn]] → [[σ]] in C for

each function symbol.

� Recall that the interpretation of Γ ` M : σ is given by

[[Γ ` M : σ]] : [[Γ]] → [[σ]]. By looking at how to soundly interpret

the theorems of Th we will deduce what the interpretation must

be.
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A typical rule looks like

Γ ` M : σ
(R)

Γ ` R(M) : τ

Now suppose that m
def
= [[Γ ` M : σ]] which is an element of

C ([[Γ]], [[σ]]). How do we model [[Γ ` R(M) : τ]] ∈ C ([[Γ]], [[τ]])? All we

can say at the moment is that this will depend on m, and we can

model this idea by having a function

Φ : C ([[Γ]], [[σ]]) −→ C ([[Γ]], [[τ]])

and setting [[Γ ` R(M) : τ]] def
= Φ(m).
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Suppose that x : γ ` M : σ and y : γ′ ` N : γ are any two given

proved terms. If m
def
= [[x : γ ` M : σ]] and n

def
= [[y : γ′ ` N : γ]] then

[[y : γ′ ` M[N/x] : σ]] = m◦n. Note that there are “equal” proved

terms

y : γ′ ` R(M)[N/x] : τ and y : γ′ ` R(M[N/x]) : τ.

and so

Φ(m)◦n = Φ(m◦n). (∗)

(∗) will hold if there are natural transformations

Φ : C (−,A) −→ C (−,B) : C op −→ Set.
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Recall that the rule for introducing product terms is

Γ ` M : σ Γ ` N : σ

Γ ` 〈M,N〉 : σ× τ

In order to soundly interpret this rule we shall need a

natural transformation

Φ : C (−,A)×C (−,B) −→ C (−,A2B)

for all objects A and B of C .
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Now let m : C → A and n : C → B be morphisms of C . Applying

naturality in C at the morphism 〈m,n〉 : C → A×B we deduce

Then we can make the definition

[[Γ ` 〈M,N〉 : A×B]]
def
=

[[Γ]]
〈[[Γ ` M : σ]], [[Γ ` N : σ]]〉

- [[σ]]× [[τ]]
q[[σ]],[[τ]]

- [[σ]]2[[τ]].
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Γ ` H : σ× τ

Γ ` Fst(H) : σ

To model this rule we shall need a natural transformation

Φ : C (−,A2B) −→ C (−,A). Using the Yoneda lemma (see notes),

the components of Φ are given by θ 7→ p◦θ for some p : A2B → A.

So now we can define

[[Γ ` Fst(H) : σ]]
def
= [[Γ]]

[[Γ ` H : σ× τ]]
- [[σ]]2[[τ]]

p[[σ]],[[τ]]
- [[σ]].
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Now we think about the equations

Γ ` M : σ Γ ` N : τ
(1)

Γ ` Fst(〈M,N〉) = M : σ

Γ ` H : σ× τ
(3)

Γ ` 〈Fst(H),Snd(H)〉 = H : σ× τ
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If we put h
def
= [[Γ ` H : σ× τ]] : C → A2B,

m
def
= [[Γ ` M : σ]] : C → A and n

def
= [[Γ ` N : τ]] : C → B, and our

categorical interpretation satisfies the equations-in-context,

this forces

pA,B ◦qA,B ◦ 〈m,n〉 = m (1)

p′A,B ◦qA,B ◦ 〈m,n〉 = n (2)

qA,B ◦ 〈pA,B ◦h, p′A,B ◦h〉 = h (3)

These equations imply that, up to isomorphism, A2B and

A×B are the same. Thus we may soundly interpret binary

product types by binary categorical product.
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To soundly interpret the rule

Γ ` S : null

Γ ` Empσ(S) : σ

we shall need a natural transformation

Φ : C (−,N) −→ C (−,A), where N = [[null]]. The Yoneda

Lemma tells us that the components of Φ are given by

θ 7→ nA ◦θ where nA : N → A is a morphism, one for each A.

So now we can define

[[Γ ` Empσ(S) : σ]]
def
= [[Γ]]

[[Γ ` S : null]]
- N

n[[σ]]
- [[σ]].
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If we write s
def
= [[Γ ` S : null]] : C → N, and

m
def
= [[Γ,x : null ` M : σ]] : C×N → A then

Γ ` Empσ(S) = M[S/x] : σ

will be soundly modelled providing that

nA ◦ s = m◦ 〈idC,s〉 (†)

holds for any such morphisms. Suppose that t : N → A. Taking s

to be idN and m to be t ◦πN , then

nA = t ◦πN ◦ 〈idN , idN〉 = t

Thus N is an initial object in the category C . (In fact (†) forces N

to be distributive, that is πN : C×N → N is an isomorphism for

every C.)
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Formal Semantics of Proved Terms

Let C be a BCC. Then a structure, M, for some Sg in C is

specified by:

� For every ground type γ an object [[γ]] of C ,

� for every function symbol f : σ1 . . .σn → τ a morphism

[[ f ]] : [[σ1]]× . . .× [[σn]] → [[τ]], where we define [[σ]] by recursion,

setting [[unit]]
def
= 1, [[σ× τ]] def

= [[σ]]× [[τ]] etc.

Then for every proved term Γ ` M : σ we specify a morphism

[[Γ ` M : σ]] : [[Γ]] → [[σ]]

by recursion.
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[[Γ,x : σ,Γ′ ` x : σ]]
def
= π : [[Γ]]× [[σ]]× [[Γ′]] → [[σ]]

(k : σ)
[[Γ ` k : σ]]

def
= [[k]]◦! : [[Γ]] → 1 → [[σ]]

[[Γ ` M1 : σ1]] = m1 : [[Γ]] → [[σ1]] . . .

[[Γ ` f (~M) : τ]] = [[ f ]]◦ 〈m1, . . . ,mn〉 : [[Γ]] → ([[σ1]]× . . .× [[σn]]) → [[τ]]

[[Γ ` P : σ× τ]] = p : [[Γ]] → ([[σ]]× [[τ]])

[[Γ ` Fst(P) : σ]] = π1 ◦ p : [[Γ]] → ([[σ]]× [[τ]]) → [[σ]]



Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 94'

&

$

%



















[[Γ ` S : σ+ τ]] = s : [[Γ]] → [[σ]]+ [[τ]]

[[Γ,x : σ ` E : δ]] = e : [[Γ]]× [[σ]] → [[δ]]

[[Γ,y : σ ` F : δ]] = f : [[Γ]]× [[τ]] → [[δ]]

[[Γ ` Case(S, x.E | y.F) : δ]] =

[e, f ]◦ ∼= ◦〈id[[Γ]],s〉 : [[Γ]] → [[Γ]]× ([[σ]]+ [[τ]])
∼= ([[Γ]]× [[σ]])+([[Γ]]× [[τ]]) → [[δ]]
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[[Γ,x : σ ` M : τ]] = m : [[Γ]]× [[σ]] → [[τ]]

[[Γ ` λx : σ.M : σ ⇒ τ]] = λ(m) : [[Γ]] → [[σ]] ⇒ [[τ]]

[[Γ ` F : σ ⇒ τ]] = f : [[Γ]] → ([[σ]] ⇒ [[τ]]) [[Γ ` A : σ]] = a : [[Γ]] → [[σ]]

[[Γ ` F A : τ]] def
= ev◦ 〈 f ,a〉 : [[Γ]] → ([[σ]] ⇒ [[τ]])× [[σ]] → [[τ]]
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Soundness

Let M be a structure for a λ×+-signature in a bicartesian

closed category C . M satisfies the equation-in-context

Γ ` M = M′ : σ if [[Γ ` M : σ]] and [[Γ ` M′ : σ]] are equal. We

say that M is a model of a λ×+-theory Th = (Sg,Ax) if M
satisfies the axioms.

Then M satisfies any equation-in-context which is a

theorem of Th.

Proof: This can be shown by rule induction using the rules

for deriving theorems.
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Let

m
def
= [[Γ,x : σ ` M : τ]] : [[Γ]]× [[σ]] → [[τ]]

and a
def
= [[Γ ` A : σ]] : [[Γ]] → [[σ]]. Then we have

(Property Closure for the (base) rule):

Sg B Γ,x : σ ` M : τ Sg B Γ ` A : σ

Γ ` (λx : σ.M)A = M[A/x] : τ

[[Γ ` (λx : σ.M)A : τ]] = ev〈[[Γ ` λx : σ.M : τ]], [[Γ ` A : σ]]〉

= ev〈λ(m),a〉

= ev(λ(m)× id)〈id,a〉

= m〈id,a〉

= [[Γ ` M[A/x] : τ]]
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Transporting Models

Suppose that we are given a morphism of bicartesian closed

categories F : C → D. Let M be a model of Th in C . We shall

show how to define a new model, of Th in D, denoted by

F∗M. We shall need a lemma:

If we set [[γ]]F∗M
def
= F [[γ]]M where γ is a ground type of Th,

then it follows from this that there is a canonical

isomorphism [[σ]]F∗M
∼= F[[σ]]M where σ is any type of Th.
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A structure F∗M is given by [[γ]]F∗M
def
= F [[γ]]M on ground types and

[[ f ]]F∗M is given by the composition

[[σ1]]F∗M × . . .× [[σn]]F∗M
∼= F [[σ1]]M × . . .×F [[σn]]M

∼=′

F([[σ1]]M × . . .× [[σn]]M)
F [[ f ]]M−→ F [[τ]]M ∼= [[τ]]F∗M

where f : σ1, . . . ,σn → τ is a function symbol of Th, the

isomorphims ∼= exist because of the lemma, and ∼=′ arises from F

preserving finite products.
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In fact F∗M is a model of Th.

Given a proved term Γ ` M : σ one can show by induction

that the morphism [[Γ ` M : σ]]F∗M is given by the

composition

[[σ1]]F∗M × . . .× [[σn]]F∗M
∼= F([[σ1]]M × . . .× [[σn]]M)

F [[Γ`M:σ]]M−→ F [[σ]]M.

If we are given proved terms Γ ` M : σ and Γ ` N : σ for

which [[Γ ` M : σ]]M = [[Γ ` N : σ]]M then certainly

[[Γ ` M : σ]]F∗M = [[Γ ` N : σ]]F∗M. Thus if M is a model of Th

in C then F∗M is a model of Th in D.
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Classifying Categories

Let Th be a λ×+-theory. A bicartesian closed category

Cl(Th) is called the classifying category of Th if there is a

model G of Th in Cl(Th) for which given any category D
with finite products, and a model M of Th in D, then there

is a functor M : Cl(Th) → D such that

T h
M

- D

Cl(Th)

G
?

M

-

where M∗G = M.
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Constructing Classifiers

Every λ×+-theory Th has a classifying category Cl(Th). We can

construct a canonical classifying category using the syntax of Th.

Proof:

� The objects of Cl(Th) are the types of Th.

� A morphism σ → τ is an equivalence class (x : σ | M) of pairs

(x : σ,M) where Sg B x : σ ` M : τ, with equivalence relation

(x : σ,M) ∼ (x′ : σ,M′) iff Th B x : σ ` M = M′[x/x′] : τ.
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� Given σ and τ, the binary product is σ× τ with

projection πσ : σ× τ → σ given by (z : σ× τ | Fst(z)). If

(x : γ | M) : γ → σ and (y : γ | N) : γ → τ, then the mediating

morphism is

(z : γ | 〈M[z/x],N[z/y]〉) : γ → σ× τ.

� (x : σ | 〈〉) is the unique morphism σ → unit so that unit

is a terminal object for Cl(Th).
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� We define a structure G for Sg in Cl(Th). [[γ]]G
def
= γ (and

hence it follows that [[σ]]G = σ for any type σ).

� Also define for f : σ1,σ2 → τ

[[ f ]]G
def
= (z : σ1 ×σ2 | f (Fst(z),Snd(z)))

Certainly we have

Sg B z : σ1 ×σ2 ` f (Fst(z),Snd(z)) : τ

� If k : σ then [[k]]G
def
= (x : unit | k).
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� It is easy to check that G is indeed a model of

Th = (Sg,Ax).

� Now let M be a model of Th in D. We define

M : Cl(Th) → D by

(x : σ | M) : σ −→ τ - [[x : σ ` M : τ]]M : [[σ]]M −→ [[τ]]M

The soundness theorem says that the definition makes

sense. It is easy to see that M is a bicartesian closed

functor.
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Some Applications

� We show that given a proof of φ∨ψ, there is a proof of

either φ or of ψ. This reinforces the fact that the logic IpL is

constructive. We prove the result by setting up a direct

connection between a classifying Heyting prelattice, and the

Booleans. The property is trivial in a Boolean model, and can

be reflected onto the classifier.

� We show that by starting with a very simple type theory, the

expressive power (in a sense to be made precise) is not

increased by adding products, sums and functions. This is

proved by establishing an equivalent categorical problem, and

solving it using categorical methods.
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The Disjunction Property

� Suppose that Th = (Sg,∅) is an IpL theory. If

Th B ` φ∨ψ, then Th B ` φ or Th B ` ψ. This is known

as the disjunction property, DP.

� The categorical disjunction property, CDP, for a

Heyting prelattice, states that if we have > ∼= h∨ k then

either >∼= h or >∼= k.

� We shall prove DP by showing that Cl(Th) satisfies CDP.
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The Gluing Lemma For Heyting Prelattices

Let Γ : H → K be a function which preserves finite meets. Define

GL(Γ)
def
= { (k,h) ∈ K ×H | k ≤ Γ(h) }

with pointwise order. Then GL(Γ) is a Heyting prelattice:

• the top element is (>K ,>H)

• (k,h)∧ (k′,h′)
def
= (k∧ k′,h∧h′)

• . . .

• (k,h) ⇒ (k′,h′)
def
= ((k ⇒ k′)∧Γ(h ⇒ h′),h ⇒ h′)

and π2 : GL(Γ) → H is a homomorphism of Heyting prelattices.
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Gluing Classifiers to the Booleans

Set B
def
= {⊥,>} where ⊥≤>. Let ΓB : Cl(Th) → B be

defined by

φ 7→







> if φ ∼= true

⊥ otherwise

Then ΓB is a finite meet preserving function, and hence

GL(ΓB) is a Heyting prelattice. Further, GL(ΓB) satisfies

CDP.
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Proof: Note that Th B true ` φ∧ψ if and only if

Th B true ` φ and Th B true ` ψ. Hence ΓB preserves

binary meets, and further ΓB(true) = >. Then apply the

gluing lemma. Now suppose that

(b,φ)∨ (b′,φ′) = (b∨b′,φ∨φ′) ∼= (>, true) ∈ GL(ΓB).

Hence b∨b′ ∼= > ∈ B and hence either b = > or b′ = >. In

the former case we must have >≤ ΓB(φ) hence > = ΓB(φ)

implying φ ∼= true. Thus CDP holds for GL(ΓB).
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Proving the CDP by Gluing

The logic IpL satisfies DP.

Proof: We show CDP for Cl(Th). Let us define a structure M
for Th in GL(ΓB). We set

[[p]]M
def
= (ΓB(p), [[p]]G) ∈ GL(ΓB)

(because [[p]]G = p). This is trivially a model of Th because

Ax = ∅.
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Hence there is a homomorphism m such that the upper left

triangle commutes up to equality (of structures)

Cl(Th) === Cl(Th)

Th
M
-

G

-

G l(Γ)

m

?

Cl(Th)

π2

?

===

G

-

Cl(Th)

idCl(Th)

?

as does the lower one given the definition of M. Hence from the

universal property of Cl(Th) we have π2 ◦m ∼= idCl(Th).
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Now let φ∨ψ ∼= true in Cl(Th). We must have

m(φ∨ψ) ∼= m(φ)∨m(ψ) ∼= (>, true)

in GL(ΓB). By CDP for GL(ΓB) we have either

(i) m(φ) ∼= (>, true) in which case

π2(m(φ)) = true ∼= id(φ) = φ, or

(ii) m(ψ) ∼= (>, true) so that ψ ∼= true similarly.
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Algebraic Theories

An algebraic theory is a λ×+-theory in which there are no

product, sum, and function types. More precisely, an

algebraic theory Th = (Sg,Ax) consists of

• a collection of types and function symbols;

• raw terms generated from these data, using only the rules

x k

M1 . . . Ma

f (M1, . . . ,Ma)

• proved terms, generated as expected; and

• theorems, generated by the rules of equality.
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A Conservative Extension

Let Th = (Sg,Ax) be an algebraic theory. Let Th′ = (Sg′,Ax′) be the

λ×+-theory with ground types and function symbols those of Sg,

and Ax′
def
= Ax. Let Γ def

= [x1 : γ1, . . . ,xn : γn]. Suppose that

Sg′ B [x1 : γ1, . . . ,xn : γn] ` E : γ

Then there exists M for which

Sg B Γ ` M : γ and Th′ B Γ ` E = M : γ.

Moreover, if there is M′ for which Sg B Γ ` M′ : γ and also

Th′ B Γ ` E = M′ : γ then we have Th B Γ ` M = M′ : γ.



Roy L. Crole, Categorical Logic and Type Theory, BRICS EEF Summer School 2001 116'

&

$

%

Free Bicartesian Closed Cateories

Let C be a category with finite products. Then F C is the

relatively free BCCC generated by C if there is a finite product

preserving functor I : C → F C such that if F : C → D is finite

product preserving and D is a BCCC then there is a BCCC functor

F : F C → D for which φ : FI ∼= F and F is unique up to

isomorphism.

C
I

- F C

D

F

?

F

-
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Relating Th and Th′ Categorically

We define a functor I : Cl(Th) → Cl(Th′). Very roughly, if

(x : γ | M)Th : γ → γ′

then we set

I(x : γ | M)Th
def
= (x : γ | M)Th′

Warning: the objects of Cl(Th) are in fact lists of types (in

the example above the source γ and target γ′ are lists of

length one) and you should consult my notes for the precise

definition of I.
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Full and Faithful Functors

� F : C → D is faithful if given a parallel pair of morphisms

f ,g : A → B in C for which F f = Fg, then f = g. Thus

C (A,B) −→ D(FA,FB)

is 1-1.

� F is full if given objects A and B in C and a morphism

g : FA → FB in D, then there is some f : A → B in C for which

F f = g. Thus

C (A,B) −→ D(FA,FB)

is onto.
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Outlining a Proof of the Con. Extension

1. Show that I : Cl(Th) → Cl(Th′) yields a free BCCC.

2. Prove a purely categorical result called the “logical

relations” gluing lemma.

3. Apply the gluing lemma and the free BCCC property, to

show that I is full and faithful . . .

Cl(Th)(γ,γ′)
∼=

- Cl(Th′)(Iγ, Iγ′)
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Existence: Suppose that Sg′ B x : γ ` E : γ′. Then we

certainly have

e
def
= (x : γ | E)Th′ : Iγ → Iγ′

in Cl(Th′). Using the fullness of I, there is a morphism

(x : γ | M)Th : γ → γ′ which is taken to e by I. But this implies

Th′ B x : γ ` M = E : γ′

as required.
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A Free BCCC

The functor I : Cl(Th) → Cl(Th′) presents Cl(Th′) as the relatively

free BCC generated by Cl(Th).

Proof: Let F : Cl(Th) → C preserve finite products where C is a

BCCC. We shall define a functor F : Cl(Th′) → C by recursion over

the syntactic structure of Cl(Th′). For example

• Fγ def
= F [γ] where γ is a ground type of Sg′,

• F(σ× τ) def
= Fσ×Fτ,

• F(z : δ | 〈〉)
def
=! : Fδ → 1C ,

• F(z : δ | Fst(P))
def
= π1F(z : δ | P) where π1 : Fσ×Fτ → Fσ,
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Gluing Lemma by Logical Relations

Let D be a BCC and let I : C → D preserve finite products. We

define a category G l(Γ) as follows:

• Objects of G l(Γ) are (F,C,D) where F : C op → Set is a

functor, D is an object of D, and for each object C of C ,

CC ⊆ FC×D(IC,D).

• A morphism (α,d) : (F,C,D) → (F ′,C′,D′) is given by a

natural transformation α : F → F ′ and a morphism d : D → D′

in D for which if x CC u then αC(x) C′
C d ◦u, where of course

x ∈ FC and u ∈ D(IC,D).

Then G l(Γ) is a bicartesian closed category and the obvious

functor π2 : G l(Γ) → D is a morphism of BCCCs.
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Freeness Implies Full and Faithful

Let C be a locally small category, and F C the freely generated

bicartesian closed category. Then the canonical functor

I : C → F C is full and faithful.

Proof We apply the gluing lemma to I. We define a functor

J : C → G l(Γ): on objects C of C define JC by (C (−,C),CC, IC)

where the subset

C
C
C′ ⊆ C (C′,C)×D(IC′, IC)

is defined by just requiring c C
C
C′ Ic for each morphism c : C′ →C

in C . On morphisms c of C we set Jc
def
= (C (−,c), Ic).
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Consider the following diagram

Cl(Th′) === Cl(Th′)

Cl(Th)
J
-

I
-

G l(Γ)

J
?

Cl(Th′)

P2

?

===

I
-

Cl(Th′)

idCl(Th′)

?


