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Preface

These notes accompanied five lectures given at the EEF Foundations Summer School on

Logical Methods which took place at BRICS, Aarhus, Denmark, during June and July

2001. The notes provide an introduction to some aspects of categorical logic and type

theory which may be of interest to (theoretical) computer scientists.

Categorical logic is the study of connections between formal logic and category theory.

Categorical type theory is the study of connections between formal type systems and

category theory. Logic concerns the study of reasoning, to produce consistent sets of

propositions, often from some given assumptions. Formal logic concerns the use of

mathematical languages to define both propositions, and methods for reasoning about

propositions. In fact formal logic can be used to describe mathematical objects in terms

of their constituent parts or internal structure; for example it provides a language for

set theory, and we can describe a set by naming its elements. The notion of a type

system pervades many programming languages. A type is essentially a collection of

programs which have a similar structure or behaviour. A type system is a mathematical

formalization of types, associated programs, and rules for reasoning about program

behaviours. Category theory provides a very general language within which one can

study mathematical objects via transformations of the objects, rather than the internal

structure of the objects themselves; for example we might describe a set simply by

stating that it is in bijection with another set. Here the "transformation" is a (particular

kind of) function. Although category theory, logic, and type theory appear to be rather

different subjects at first sight, they are in fact intimately connected. These notes give an

introduction to some of the connections, very much geared towards computing science.

The notes are based around my book Categories for Types, although there is some new

material here. In Part I, we cover background material which is used in Part II. We study

order theory, category theory, and induction. Readers are assumed to be mathematically

sophisticated, and have a rudimentary knowledge of (theoretical) computer science.

Any reader familiar with these subjects may wish to go directly to Part II, referencing

Part I as need arises. It is Part II which actually concerns the (main) subject matter

of these notes, namely Categorical Logic and Categorical Type Theory. In these notes

we barely scratch the surface of these subjects. However, there is probably plenty of

material for five lectures! The logic we study is intuitionistic propositional calculus.

This is a good starting point, and the categorical models are quite simple. From here,

readers can go on to learn about the categorical treatment of predicate logics, although

this is rather more difficult than the categorical treatment of propositional logic. The

type theory we study is also quite elementary, as it does not involve any complicated

quantifiers, and types are not dependent. Thus the semantics can be given in categories

with quite simple structure (rather than requiring indexed or fibered categories). In



viii Preface

the final chapter on applications, we use categorical semantics to prove results about

both the logic and the type theory which we have studied. We conclude with some

suggestions for further reading.

c©Roy L. Crole, University of Leicester, UK, 2001.
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Preorders and Posets

1.1 Ordered Sets

Discussion 1.1.1 We begin with a summary of basic naive set theory. If A and X are sets,

we write A⊆ X to mean A is a subset of X . A total function between a set X and a set Y is

a subset f ⊆ X ×Y for which given any x ∈ X there is a unique y ∈ Y such that (x,y) ∈ f .

Given x ∈ X we write f (x) for the unique y such that (x,y) ∈ f . It will often be convenient

to write x 7→ f (x) to indicate that (x, f (x)) ∈ f ; for example, if R is the set of real numbers,

then the function f between R and R, given by r 7→ r2, is formally the subset

{(r,r2) | r ∈ R} ⊆ R×R.

Often we shall say that f is a function X → Y and write f : X → Y in place of f ⊆ X ×Y .

We shall say (informally) that X and Y are the source and target of the function f . A

function f : X → X with identical source and target is called an endofunction on X . Given

functions f : X → Y and g : Y → Z, we write g f or g ◦ f for the function X → Z defined by

x 7→ g( f (x)). A partial function between X and Y is a subset f ⊆ X×Y such that given any

elements (x,y)∈ f and (x,y′)∈ f then y = y′. If (x,y)∈ f , we write f (x) for y. If f : X→Y is

a partial function, and given x ∈ X there is no y ∈Y for which (x,y) ∈ f , then we say that f
is undefined at x, or sometimes simply say that f (x) is undefined. If f : X →Y is a function

and S ⊆ X is a subset of X , then we shall sometimes use the notation f (S) to represent the

set { f (s) | s ∈ S}. If X and Y are any two sets, then the set X \Y
def
= {x ∈ X | x 6∈Y} is the set

difference of Y from X . If X is a set, then |X | will denote the cardinality (size) of X . A

binary relation R on a set X is any subset R⊆ X×X . If x,y ∈ X , then we will write xRy for

(x,y) ∈ R. R is reflexive if for any x ∈ X we have xRx; symmetric if whenever x,y ∈ X then

xRy implies yRx; transitive if for any x,y,z ∈ X , whenever we have xRy and yRz then xRz;
and anti-symmetric if whenever x,y ∈ X , xRy and yRx imply x and y are identical. R is

an equivalence relation if it is reflexive, symmetric and transitive. Given an equivalence

relation R on X , the equivalence class of x ∈ X is the set [x]
def
= {y | y ∈ X ,xRy}. We write

X/R for the set of equivalence classes {[x] | x ∈ X}. This completes the summary, and we

now move on to the definition of ordered sets.

A preorder on a set X is a binary relation ≤ on X which is reflexive and transitive. The

relation ≤ will sometimes be referred to informally as the order relation on the set X . It

will sometimes be convenient to write x ≥ y for y ≤ x. If at least one of x ≤ y and y ≤ x
holds, then x and y are said to be comparable. If neither relation holds, then x and y
are incomparable. A preordered set (X ,≤) is a set equipped with a preorder, that is to

say we are given a set (in this case X) along with a preorder ≤ on the set X ; the set X is
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sometimes called the underlying set of the preorder (X ,≤). Where confusion cannot result,

we refer to the preordered set X , or sometimes just the preorder X . The preorder X is said to

be discrete if any two distinct elements of X are incomparable. If x≤ y and y≤ x then we

shall write x ∼= y and say that x and y are isomorphic elements. Note that we can regard
∼= as a relation on X , which is in fact an equivalence relation. If (X ,≤X) is a preorder, we

shall write S⊆ X to mean that the set S is a subset of the underlying set of X . Of course, we

can regard S as a preordered set (S,≤S) by restricting the order relation on X to S; more

precisely, if s,s′ ∈ S, then s ≤S s′ iff s ≤X s′. We shall then say that S has the restriction

order inherited from X . However, we shall limit the force of the judgement S ⊆ X to mean

that S is simply a subset of the underlying set of X . The notation x ≤ S will mean that for

each s ∈ S, x≤ s.

A partial order on a set X is a binary relation ≤ which is reflexive, transitive and anti-

symmetric. A set X equipped with a partial order is called a partially ordered set, or

sometimes a poset. If x,y ∈ X , where X is a poset, then we shall write x < y to mean that

x ≤ y and x 6= y. Given a preorder X then the set of equivalence classes X/ ∼= can be given

a partial ordering by setting [x] ≤ [y] iff x ≤ y for all x,y ∈ X . The poset X/ ∼= is called the

poset reflection of X .

Examples 1.1.2

(1) The set of natural numbers, N, with the usual increasing order is a poset. We will refer

to this poset as the vertical natural numbers.

(2) The set {A | A ⊆ X} of subsets of a set X is often written as P (X) and is called the

powerset of X . The powerset is a poset with order given by inclusion of subsets, A⊆ B. The

order is certainly anti-symmetric, for if A and A′ are subsets of X where A⊆ A′ and A′ ⊆ A,

then A = A′. Reflexivity and transitivity are clear.

(3) Given preorders X and Y , their cartesian product has underlying set

X×Y
def
= {(x,y) | x ∈ X ,y ∈ Y}

with order given pointwise, that is (x,y)≤ (x′,y′) iff x≤ x′ and y≤ y′.

(4) If X is a preorder, then X op is the preorder with underlying set X and order given by

x≤op y iff y ≤ x where x,y ∈ X . We usually call X op the opposite preorder of X . Of course

any poset is certainly also a preorder.

Discussion 1.1.3 We now give some more definitions. Suppose that X is a preorder and

A is a subset of X . An element x ∈ X is an upper bound for A if for every a ∈ A we have

a≤ x (or we can just write A ≤ x, using the informal notation given in Discussion 1.1.1).

An element x ∈ X is a lower bound for A if x≤ A. An element x ∈ X is a greatest element

of A if it is an upper bound of A which belongs to A; x is a least element of A if it is a lower

bound of A and belongs to A. We can prove a useful little result about greatest and least

elements:
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Proposition 1.1.4 Let X be a preordered set and A a subset of X . Then greatest and least

elements of A are unique up to isomorphism if they exist.

Proof Let a and a′ be greatest elements of A. By definition, a is an upper bound of

A, and also a′ ∈ A. Hence a′ ≤ a. Similarly a ≤ a′. Hence a ∼= a′. The proof for least

elements is essentially the same. 2

Discussion 1.1.5 The notions of upper bound, greatest element and so on give us mathe-

matical tools for the description of the structure of preordered sets. The reader is probably

familiar with the everyday notions of maximum and minimum, and our definitions of

greatest and least elements correspond to such notions. Unfortunately, such ideas are not

quite general enough for our purposes. We shall now define the concepts of meet and join

which refine those of greatest and least elements.

Let X be a preordered set and A⊆ X . A join of A, if such exists, is a least element in the set

of upper bounds for A. A join is sometimes called the least upper bound or a supremum.

A meet of A, if it exists, is a greatest element in the set of lower bounds for A. A meet is

sometimes called the greatest lower bound or infimum. Note that meets and joins are

defined as greatest and least elements; so from Proposition 1.1.4 we know that meets and

joins are determined up to isomorphism if they exist. If the subset A has at least one join,

then we will write
W

A for a choice of one of the joins of A. Similarly, if the subset A has at

least one meet, then we will write
V

A for a choice of one of the meets of A. If we wish to

draw attention to the ordered set with respect to which a join and meet are being taken (in

this case X) we shall write
W

X A and
V

X A respectively. Note that the join is characterised

by the property that for every x ∈ X we have
W

A ≤ x iff A ≤ x; this amounts to a formal

statement that a join is by definition a least element in a set of upper bounds. Some points

deserve special attention.

• Let X be a non-empty discrete preorder X , and A ⊆ X a non-empty subset. Then A only

has a meet or join if A is a singleton set. Clearly, for any x ∈ X , we have
V

{x} = x and
W

{x}= x.

• Consider the empty set, ∅ ⊆ X . Then
W

∅, if such exists, is written ⊥ and is called a

bottom of X . Note that a bottom element satisfies the property that for any x ∈ X we have

⊥ ≤ x. Similarly,
V

∅, if such exists, is written > and is called the top of X ; it satisfies

x ∈ X implies x≤>.

• Consider a two element subset {a,b} ⊆ X . Write a∨b for
W

{a,b} and call this a (binary)

join of a and b. Similarly a∧b is a (binary) meet of a and b. If we unravel the definitions,

it can be seen that binary joins are characterised by the property that for every x ∈ X we

have a∨ b≤ x iff a≤ x and b≤ x; and binary meets by asking that for any x ∈ X we have

x≤ a∧b iff x≤ a and x≤ b.

•More generally, we may write a1 ∧ a2 ∧ . . .∧ an for
V

{a1,a2, . . . ,an } when each ai ∈ X ,

with a similar notation for joins.
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Exercise 1.1.6 Make sure you understand the definition of meet and join in a preorder

X . Think of some simple finite preordered sets in which meets and joins do not exist. Now

suppose that X is a poset (and thus also a preorder). Show that meets and joins in a poset

are unique if they exist.

Example 1.1.7 Given a set X , the powerset poset P (X) has all meets and joins. Meets are

given by intersections and joins by unions. The top element is of course X and the bottom

element ∅.

Discussion 1.1.8 We now turn our attention to notions of relations between preordered

sets, and in particular to functional relations. If we talk of a function between the pre-

ordered sets X and Y we shall simply mean that we are given a function between the un-

derlying sets. Such a function is said to be monotone if for x,y ∈ X we have x≤ y implies

f (x)≤ f (y); and antitone if x≤ y implies f (y)≤ f (x). We often refer to such a monotone

function as a homomorphism of preorders. Roughly one thinks of a homomorphism as a

function which preserves structure; in the case of a preorder, this structure is just the order

relation. A monotone function may alternatively be called an order preserving function.

f is said to reflect order if given any x,y ∈ X , f (x) ≤ f (y) implies x ≤ y. The posets X
and Y are isomorphic if there are monotone functions f : X →Y and g : Y → X for which

g f = idX and f g = idY . The monotone function g is an inverse for f ; and likewise f is

an inverse for g. We say that f is an isomorphism if such an inverse g exists. The set

X⇒Y is defined to have elements the monotone functions with source X and target Y , that

is functions X → Y . This set can be regarded as a preorder by defining a relation f ≤ g iff

given any x ∈ X we have f (x)≤ g(x), where f ,g : X → Y . This ordering is often referred to

as the pointwise order. We have the following proposition:

Proposition 1.1.9 The identity function on any preordered set is monotone, and the com-

position of two monotone functions is another monotone function. Now let X , Y and Z be

preordered sets. The composition function

◦ : (Y ⇒ Z)× (X ⇒ Y )→ (X ⇒ Z)

sending the pair (g, f ) ∈ (Y ⇒ Z)× (X ⇒ Y ) to g f ∈ X ⇒ Z is itself a monotone function

between preordered sets. Finally, any function f : X×Y → Z is monotone iff it is monotone

in each variable separately, which is to say that given any x,x′ ∈ X and y,y′ ∈ Y , then

x≤ x′ implies f (x,y)≤ f (x′,y)

and

y≤ y′ implies f (x,y)≤ f (x,y′).

Proof Follows by a routine manipulation of the definitions. 2
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Examples 1.1.10

(1) Let f : X→Y be a set-theoretic function between sets X and Y . Then there is a monotone

function f−1 : P (Y )→ P (X) where given B⊆ Y we define

f−1(B)
def
= {x ∈ X | f (x) ∈ B}

(2) Take R to be the set of reals with their usual ordering. Then the function f : R→ R

defined by f (x) = x3 is monotone.

Exercises 1.1.11

(1) Complete the proof of Proposition 1.1.9.

(2) Let X and Y be preorders and X ×Y their cartesian product. Check that there are

monotone functions πX : X×Y → X , (x,y) 7→ x and πY : X×Y →Y , (x,y) 7→ y where (x,y) ∈
X×Y . Now verify that given monotone functions f : Z→ X and g : Z→ Y where Z is any

given preorder, there is a unique monotone function m : Z→ X×Y for which f = πX m and

g = πY m.

(3) Find a counterexample to the following statement. A monotone function f : X → Y
between posets X and Y which is a bijection is necessarily an isomorphism.

(4) Let X be a poset and define a relation on the set X by saying that x≺ y just in case x < y
and there is no z ∈ X for which x < z < y. Now let X be any set and Y be a poset. Let X ⇒Y
be the poset of functions X → Y ordered pointwise. Show that f ≺ g (where f ,g ∈ X ⇒ Y )

iff

(a) There is x̂ ∈ X for which f (x̂)≺ g(x̂) in Y , and

(b) f (x) = g(x) for each x ∈ X \{x̂}.

Now let X be a finite poset, and X⇒Y the poset of monotone functions X→Y . Show that

f ≺ g iff (a) and (b) remains true, with this new definition of X ⇒ Y .

1.2 Basic Lattice and Prelattice Theory

Remark 1.2.1 Throughout the remainder of this chapter, note that all definitions, results

and proofs are presented for structured ordered sets in which the order is a partial order.

If any occurrence of an equality sign = is replaced with an isomorphism sign ∼= then a

definition, result or proof remains valid for the same structure but now with a preorder.

Further, anything which is unique with respect to a partial order will be unique up to

isomorphism with respect to a preorder.



8

Discussion 1.2.2 In this section we shall describe some examples of posets which have

additional structure and which feature in concrete examples of models of logics and type

theories. For each kind of poset we shall give its formal definition, some examples, and

certain elementary theorems which will give further examples.

A lattice is a poset which has finite meets and joins, that is, meets and joins of finite

subsets. A complete lattice is a poset which has arbitrary meets and joins. A prelattice is

a preordered set which has finite meets and joins. A complete prelattice is a preordered

set which has arbitrary meets and joins.

From now, definitions are stated only in terms of lattices—bear in mind Remark 1.2.1.

We shall want to consider functional relations between such structures; those we consider

will usually preserve structure and are known in general as homomorphisms. Thus a

homomorphism of lattices is a function f : X→Y (with X and Y lattices) which preserves

finite meets and joins, that is

f (
^

{x1, . . . ,xn }) =
^

{ f (x1), . . . , f (xn)}

and

f (
_

{x1, . . . ,xn }) =
_

{ f (x1), . . . , f (xn)}

and also f (>) => and f (⊥) =⊥. Note that such a function is automatically monotone.

Remark 1.2.3 Note that both lattices and complete lattices have top and bottom elements

(being the meet and join of the empty subset respectively). Also, having finite meets and

joins is equivalent to having binary meets and joins and top and bottom elements—see

Lemma 1.2.5. Finally, because x∧ y = x and x∨ y = y just in case x ≤ y in a poset X , one

only needs to check the existence of binary meets and joins of non-comparable pairs of

elements of X to see that X is a lattice (as well as checking that X has top and bottom

elements).

Examples 1.2.4

(1) If we adjoin a top and bottom to the set Q of rational numbers to obtain Q∗
def
= (Q∪

{∞} ∪ {−∞},≤) where for every q ∈ Q we have −∞ ≤ q ≤ ∞, then Q∗ is a lattice, but

not a complete lattice. If we likewise add a top and bottom to the set R of reals to obtain

R∗
def
= (R∪{∞}∪{−∞},≤) where for every r ∈R we have−∞≤ r≤∞, then R∗ is a complete

lattice due to the completeness axiom for R. Similarly any closed interval [r1,r2] ⊆ R is a

complete lattice when its order is inherited from R.
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(2) The power set P (X) of a set X is a complete lattice with the inclusion order, with meets

and joins given by intersection and union. The top element is X and the bottom element is

∅.

(3) The topped vertical natural numbers N∪{∞} form a complete lattice.

(4) If X and Y are (complete) lattices, their binary cartesian product is the set X ×Y of

pairs of elements, ordered pointwise. Then X ×Y is a (complete) lattice with meets and

joins calculated pointwise. In a similar way we can consider the cartesian product of a

finite number (say n) of lattices X1× . . .×Xn.

(5) Let S be any set and X a poset. Then the set of functions S⇒ X with source S and target

(the underlying set of) X is a (complete) lattice whenever X is a (complete) lattice, with

S⇒ X ordered pointwise. It is easy to see that meets and joins are calculated pointwise.

For example, if f ,g ∈ S⇒ X then for any x ∈ X we have ( f ∧g)(x) = f (x)∧g(x).

The next lemma lists some useful elementary facts about lattices.

Lemma 1.2.5 Any lattice X satisfies the following laws, where x, y and z are taken to be

any elements of X .

(i) x∧ x = x = x∨ x (idempotency).

(ii) x∧ y = y∧ x and x∨ y = y∨ x (commutativity).

(iii) x∧ (y∧ z) = (x∧ y)∧ z and x∨ (y∨ z) = (x∨ y)∨ z (associativity).

(iv) The existence of binary meets (binary joins) is the same as the existence of (non-empty)

finite meets (finite joins). In particular,

^

{x1, . . . ,xn }= (. . .((x1∧ x2)∧ x3) . . .)∧ xn

with a similar statement for joins.

(v) x∧ (x∨ y) = x∨ (x∧ y) = x (absorption).

(vi) x≤ y iff either x∧ y = x or x∨ y = y.

(vii) If y≤ z then x∧ y≤ x∧ z and x∨ y≤ x∨ z (monotonicity).

(viii) (x∧ y)∨ (x∧ z)≤ x∧ (y∨ z) and x∨ (y∧ z)≤ (x∨ y)∧ (x∨ z).

(ix) x≤ z implies x∨ (y∧ z)≤ (x∨ y)∧ z.

(x) x ∼= x′ and y∼= y′ implies x∧ y ∼= x′∧ y′.

Proof The proof is an easy application of the properties of meets and joins. For ex-

ample, to prove (viii), note that y≤ x∨ y implies y∧ z≤ (x∨ y)∧ z; and x≤ x∨ y and the

hypothesis imply x≤ (x∨ y)∧ z. 2
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Discussion 1.2.6 We end this section by giving some simple results concerning the dis-

tributive lattices. These lattices have pleasant properties which aid the manipulation of

meets and joins. Let X be a lattice. Then X is distributive if it satisfies x∧ (y∨ z) =

(x∧ y)∨ (x∧ z) for all x,y,z in X .

Remark 1.2.7 From Lemma 1.2.5, parts (vii) and (viii), we see that in order to check

that a lattice is distributive it is only necessary to check that an inequality holds.

Lemma 1.2.8 For any lattice X the following conditions are equivalent:

(i) For every x,y,z ∈ X we have x∧ (y∨ z) = (x∧ y)∨ (x∧ z),

(ii) For every x,y,z ∈ X we have x∨ (y∧ z) = (x∨ y)∧ (x∨ z),

(iii) For every x,y,z ∈ X we have x∧ (y∨ z)≤ (x∧ y)∨ z.

Proof Throughout we use the results of Lemma 1.2.5. If (i) holds then

x∧ (y∨ z) = (x∧ y)∨ (x∧ z)≤ (x∧ y)∨ z

which is (iii). If (iii) holds, then we have

x∧ (y∨ z)≤ x∧ [(x∧ y)∨ z]≤ (x∧ z)∨ (x∧ y), (∗)

namely one half of (i). To see (∗), note that by using monotonicity of x∧ (−) on the

hypothesis (iii) we obtain the first inequality. We can also use (iii) to deduce that

For every x,y,z ∈ X we have x∧ (y∨ z)≤ (x∧ z)∨ y.

and then use this deduction to obtain the second inequality of (∗). The other half of (i)

holds via Lemma 1.2.5. That (ii) iff (iii) is a similar argument. 2

Examples 1.2.9

(1) The poset P (X) is distributive. For if A, B and C are subsets of X , it follows from simple

naive set theory that A∩ (B∪C) = (A∩B)∪ (A∩C).

(2) The complete lattice (N, |) is distributive.

(3) If X is a distributive lattice then S⇒ X , the functions from S to X with the pointwise

order, is a distributive lattice.
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1.3 Boolean and Heyting Lattices and Prelattices

Discussion 1.3.1 In this section we introduce the notions of Boolean and Heyting lattices

(and prelattices). A Boolean lattice is, roughly, a distributive lattice for which there is an

operation on elements which mimics the notion of complementation in a powerset (recall

that if A ∈ P (X) then the complement of A in P (X) is the set difference X \A of A from

X). Readers may have met the notion of Boolean lattice from undergraduate or even school

circuit theory, but this will not concern us here.

Take a lattice X and let x ∈ X . An element a ∈ X satisfying a∧ x = ⊥ and a∨ x = > is

called a complement of x. The next proposition shows that, in a distributive lattice, such

complements are unique.

Proposition 1.3.2 Let X be a distributive lattice and x,y,z ∈ X . Then there is at most one

a ∈ X for which x∧a = y and x∨a = z.

Proof Suppose that a′ ∈ X also satisfies the hypotheses. We have

a = a∧ (a∨ x)

= a∧ z

= a∧ (x∨a′)

= (a∧ x)∨ (a∧a′)

= y∨ (a∧a′).

But y≤ a and y≤ a′ and so a = a∧a′. Similarly a′ = a∧a′ and so a = a′. 2

Discussion 1.3.3 A Boolean lattice X is a distributive lattice, which also has comple-

ments of all elements. We write ¬x for the complement of x where x ∈ X . Note that it makes

sense to talk of the complement of x, because Proposition 1.3.2 implies that complements

are unique if they exist. The next lemma states some laws which are true of all Boolean

lattices, and are analogues of the well known De Morgan rules which hold for powersets.

Lemma 1.3.4 In a Boolean lattice X , we have for all x,y ∈ X ,

(i) ¬¬x = x,

(ii) ¬(x∧ y) = ¬x∨¬y, and

(iii) ¬(x∨ y) = ¬x∧¬y.

Proof Note that both ¬¬x and x are complements of the element ¬x in X . Then use

Proposition 1.3.2 to deduce that (i) holds. There is of course a well defined function

¬ : X → X (and (i) shows that it is a bijection). In fact this function is antitone. To
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prove this, one shows that if x ≤ y in X then ¬y = ¬y∧¬x, by showing that ¬y∧¬x is

a complement of y and thus equals ¬y. But ¬y = ¬y∧¬x implies ¬y ≤ ¬x, as required.

Then (ii) and (iii) follow from the fact that ¬ is an antitone bijective endofunction on

X . 2

Examples 1.3.5

(1) Let X be a set and define, for A⊆ X , ¬A
def
= X \A. Then P (X) is a Boolean lattice. (Recall

that X \A is the set difference of A from X).

(2) The collection of finite and cofinite subsets of a set X ,

{A⊆ X | A is finite or X \A is finite}

is a Boolean lattice in which ¬A
def
= X \A.

(3) The subsets of a topological space X which are both open and closed is a Boolean lattice

in which ¬A
def
= X \A, where A is a closed and open subset of X .

(4) Let us write B for the poset with a two point underlying set {⊥,>} for which ⊥ ≤ >.

We call this the Sierpinski poset. Then the cartesian product of a finite number of copies

of B, B× . . .×B, is a Boolean lattice.

Discussion 1.3.6 A Heyting lattice X is a lattice in which for each pair of elements

y,z ∈ X there is an element y⇒ z ∈ X such that

x≤ y⇒ z iff x∧ y≤ z.

We call y⇒ z the Heyting implication of y and z.

Lemma 1.3.7 In a Heyting lattice X , the Heyting implication of y and z is unique.

Proof Suppose that a and a′ are two candidates for the element y⇒ z ∈ X . Then a≤ a
implies a∧ y≤ z implies a≤ a′; the converse is similar. 2

Proposition 1.3.8 Every Boolean lattice is a Heyting lattice.

Proof Let X be a Boolean lattice, x,y ∈ X , and define x⇒ y
def
= ¬x∨ y. Then z≤ ¬x∨ y

implies

z∧ x ≤ (¬x∨ y)∧ x

= (¬x∧ x)∨ (y∧ x)

= ⊥∨ (y∧ x)

≤ y,

and z∧ x≤ y implies ¬x∨ y≥ ¬x∨ (z∧ x)≥ (¬x∨ z)∧ (¬x∨ x)≥ z. 2
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Proposition 1.3.9

(i) A Heyting lattice X is distributive.

(ii) Any finite distributive lattice X is a Heyting lattice.

(iii) A Heyting lattice X is a Boolean lattice iff for all x ∈ X , ¬¬x = x, where we define

¬x
def
= x⇒⊥.

Proof

(i) Recall Lemma 1.2.5 which tells us that (x∧ y)∨ (x∧ z)≤ x∧ (y∨ z). Then note that

x⇒ ((x∧ y)∨ (x∧ z))≥ (x⇒ (x∧ y))∨ (x⇒ (x∧ z))≥ y∨ z

which amounts to (x∧ y)∨ (x∧ z)≥ x∧ (y∨ z), and so X is distributive.

(ii) Take x and y and define x⇒ y
def
=

W

{u ∈ X | u∧x≤ y}. Then z∧x≤ y implies z≤ x⇒ y
is immediate. If z≤ x⇒ y then

z∧ x≤
_

{u∧ x | u∧ x≤ y} ≤ y

follows from distributivity (and the finiteness of X).

(iii) (⇒) This way is part (i) of Lemma 1.3.4.

(⇐) Conversely, we have just seen that X is distributive, and

x∧¬x = x∧ (x⇒⊥) =⊥

is trivial. There is a well defined function ¬ : X → X given by x 7→ ¬x and it is easy to

check that it is antitone and bijective. Thus it follows that De Morgan’s rules (ii) and

(iii) of Proposition 1.3.4 hold (but here in the Heyting lattice X). Hence>=¬(x∧¬x) =

¬x∨ x as required.

2

Examples 1.3.10

(1) Let X be a chain with top and bottom elements—by definition a chain is a poset in

which any two elements are comparable. Thus X is a lattice in which meet and join are

given by greatest and least elements. Then X is Heyting with

x⇒ y =

{
> if x≤ y
y otherwise

where x,y ∈ X . Note that X is not a Boolean lattice, for ¬¬x = > for all x ∈ X : see

Proposition 1.3.9.
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Exercises 1.3.11

(1) Let X be any poset with finite meets. Prove that X is a Boolean lattice iff for all x ∈ X ,

there is x ∈ X such that for all y ∈ X we have

x≤ y iff x∧ y = b

for some fixed b ∈ X .

(2) Let X be a Heyting lattice, and for each x ∈ X make the definition ¬x
def
= x⇒⊥. Prove

that for any x,y ∈ X , ¬(x∨ y) = ¬x∧¬y and ¬¬(x∧ y) = ¬¬x∧¬¬y.
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Category Theory

2.1 Introduction

Discussion 2.1.1 A category consists of a pair of collections, namely a collection of “struc-

tures” together with a collection of “relations between the structures.” Let us illustrate this

with some informal examples of categories.

• The collection of all sets (thus each set is an example of one of the structures referred

to above), together with the collection of all set-theoretic functions (the functions are the

relations between the structures).

• The collection of all posets (each poset is a structure), together with all monotone func-

tions (the monotone functions are the relations between the structures).

• The collection of all finite dimensional vector spaces, together with all linear maps.

• The set of real numbers R (in this case each structure is just a real number r∈R), together

with the relation of order ≤ on the set R. Thus given two structures r,r′ ∈ R, there is a

relation between them just in case r ≤ r′.

•More generally, any set X , together with a preorder.

All categories have this basic form, that is, consist of structures and relations between the

structures: the structures are usually referred to as the objects of the category and the

relations between the structures as morphisms. It is important to note that the objects

of a category do not have to be sets (in the fourth example they are real numbers) and

that the morphisms do not have to be functions (in the fourth example they are instances

of the order relation ≤). Of course, there are some precise rules which define exactly

what a category is, and we shall come to these shortly: the reader may care to look at

the definition of a category given in Discussion 2.2.1 while also reading the remainder of

this introduction. For the time being we continue with a broad discussion of the aims of

category theory, that is, the general study of categories. Category theory looks at properties

which are common to different categories. It is often the case that the specification of a

property of a category can be set out in very general terms, but that the implementation of

this property in particular categories varies greatly. Let us look at an example. We have

said that the collection of all sets and functions forms a category; consider the following

property of this “category:”

(Property CP) Given any two sets A and B, then there is a set P and functions π : P→ A,

π′ : P→ B such that the following condition holds: given any functions f : C→ A, g : C→ B
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with C any set, then there is a unique function h : C→ P making the diagram

C

A �

π
�

f

P

h
?

π′
- B

g
-

commute. End of definition of (Property CP).

Let us investigate an instance of (Property CP) in the case of two given sets A and B.

Suppose that A
def
= {a,b} and B

def
= {c,d,e}. Let us take P to be A×B

def
= {(x,y) | x ∈ A,y ∈ B}

and the functions π and π′ to be coordinate projection to A and B respectively, and see if

(P,π,π′) makes the instance of (Property CP) for the given A and B hold. Let C be any other

set and f : C→ A and g : C→ B be any two functions. Define the function h : C→ P by

z 7→ ( f (z),g(z)). We leave the reader to verify that indeed f = πh and g = π′h, and that

h is the only function for which these equations hold with the given f and g. Now define

P′
def
= {1,2,3,4,5,6} along with functions p : P′→ A and q : P′→ B where

p(1), p(2), p(3) = a q(1), q(4) = c
p(4), p(5), p(6) = b q(2), q(5) = d

q(3), q(6) = e

In fact (P′, p,q) also makes the instance of (Property CP) for the given A and B hold true. To

see this, one can check by enumerating six cases that there is a unique function h : C→ P′

for which f = ph and g = qh (for example, if x ∈C and f (x) = a and g(x) = d then we must

have h(x) = 2, and this is one case).

Now notice that there is a bijection between P (the cartesian product

{(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)}

of A and B) and P′. In fact any choices for the set P can be shown to be bijective. It is very

often useful to determine sets up to bijection rather than worry about their elements or

“internal make up,” so we might consider taking (Property CP) as a definition of cartesian

product of two sets and think of the P and P′ in the example above as two implementations

of the notion of cartesian product of the sets A and B. Of course (Property CP) only makes

sense when talking about the collection of sets and functions; we can give a definition of

cartesian product for an arbitrary category which becomes (Property CP) for the “category”

of sets and functions.

Category theory looks at properties enjoyed by categories which may be described using

an abstract definition of a category rather than particular examples of categories. Such

a property is called a categorical property. Very roughly, such properties depend on the

external behaviour of objects in categories, and not the internal make up of the objects. For

example, if we take an instance of (Property CP) for sets A and B as the new definition of the
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cartesian product of A and B, then we have shifted our viewpoint away from the structures

of our category (sets) and towards the relations between the structures (functions). The

traditional definition of cartesian product is given in terms of the elements of the sets A
and B, and the new definition is given solely in terms of functions involving A and B. It is

the emphasis of relations between objects in categories, rather than the objects themselves,

which allows us to make definitions which do not (explicitly) depend on the internal make

up of the objects.

Now that we have painted an informal picture of a category, and described the idea of a

categorical property, we can move on to an account of the contents of Chapter 2. We begin

with a formal definition of a category and give a number of examples of the concept. Next,

the notion of functor is given, which is a mapping between categories. We give examples of

functors and introduce a little more notation. This is followed by the definition of natural

transformation; such a gadget can be thought of as a mapping between functors. The

concepts of category, functor and natural transformation are the three most basic notions

of category theory. Using these three ideas, we give an account of ways of regarding two

categories as being “essentially the same,” namely isomorphism and equivalence. These

notions of similarity are based on the idea that two bijective sets are similar, as are two

isomorphic groups. We follow this with the Yoneda lemma, which will turn out to be a very

useful tool indeed when discussing the semantics of type theories. We give an account of

cartesian closed categories, which have some structure similar to that found in the category

of sets and functions, and which will give us categorical models of type theory.

2.2 Categories and Examples

Discussion 2.2.1 We begin with a definition of a category. A category C is specified by

the following data:

• A collection obC of entities called objects. An object will often be denoted by a capital

letter such as A, B, C . . .

• A collection mor C of entities called morphisms. A morphism will often be denoted by a

small letter such as f , g, h . . .

• Two operations assigning to each morphism f its source src( f ) which is an object of C
and its target tar( f ) also an object of C . We shall write f : src( f ) −→ tar( f ) to indicate

this, or perhaps f : A→ B where A = src( f ) and B = tar( f ). Sometimes we shall just say

“let f : A→ B be a morphism of C ” to mean f is a morphism of C with source A and target

B.

•Morphisms f and g are composable if tar( f ) = src(g). There is an operation assigning

to each pair of composable morphisms f and g their composition which is a morphism

denoted by g ◦ f or just g f and such that src(g f ) = src( f ) and tar(g f ) = tar(g). So for

example, if f : A→ B and g : B→ C, then there is a morphism g f : A→ C. There is also
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an operation assigning to each object A of C an identity morphism idA : A→ A. These

operations are required to be unitary

idtar( f ) ◦ f = f
f ◦ idsrc( f ) = f

and associative, that is given morphisms f : A→ B, g : B→C and h : C→ D then

(hg) f = h(g f ).

It is time to give some examples of categories. We adopt the convention of using calligraphic

letters to denote categories, using an abbreviation of the names of the objects of the cat-

egory, or occasionally the morphisms of a category. This convention should become clear

with the following examples.

Examples 2.2.2

(1) The category of sets and total functions, Set. The objects of the category are sets and

the morphisms are triples (A, f ,B) where A and B are sets and f ⊆ A×B is a subset of

the cartesian product of A and B giving rise to a total function. The source and target

operations are defined by src(A, f ,B)
def
= A and tar(A, f ,B)

def
= B. Suppose that we have

another morphism (B,g,C). Then tar(A, f ,B) = src(B,g,C), and the composition is given

by

(B,g,C)◦ (A, f ,B) = (A,g f ,C)

where g f is the usual composition of the functions f and g. Finally, if A is any set, the

identity morphism assigned to A is given by (A, idA,A) where idA ⊆ A×A is the identity

function. We leave the reader to check that composition is an associative operation and

that composition by identities is unitary. Informally, the morphisms of Set are functions in

the usual set theoretic sense together with a specified source and target. From now on we

shall not give such a formal account of our examples of categories.

(2) The category of sets and partial functions, Part. The objects are sets and the morphisms

are partial functions equipped with a specified source and target. The definition of compo-

sition is the expected one, namely given f : A→ B, g : B→C, then for each element a of A,

g f (a) is defined with value g( f (a)) if both f (a) and g( f (a)) are defined, and is otherwise

not defined.

(3) Any preordered set (X ,≤) may be viewed as a category. Recall from Section 1.1 that a

preorder ≤ on a set X is a reflexive, transitive relation on X . The objects are the elements

of the set X and the morphisms instances of the order relation; formally the collection of

morphisms is the set of pairs of the form (x,y) where x,y ∈ X and x ≤ y. (X ,≤) forms

a category with identity morphisms (x,x) for each object x (because ≤ is reflexive) and

composition (y,z)◦ (x,y)
def
= (x,z) (because ≤ is transitive). Note for x and y elements of X ,

there is at most one morphism from x to y according to whether x≤ y or not.
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(4) A discrete category is one for which the only morphisms are identities. So a very

simple example of a discrete category is given by regarding any set as a category in which

the objects are the elements of the set, there is an identity morphism for each element, and

there are no other morphisms.

(5) Given a category C , we may define the opposite category C op. The collection of objects

of C op is the same as the collection of objects of C . The collection of morphisms of C op is the

same as the collection of morphisms of C . If f is a morphism of C op (and thus by definition

a morphism of C), then the source src( f ) of f in C op is defined to be the target tar( f ) of f
in C . Also, the target of f in C op is the source of f in C . (Thus f : A→ B is a morphism in

C op just in case f : B→ A is a morphism in C). The identity on an object A in C op is defined

to be idA in C . Finally we need to define composition in C op. If f : A→ B and g : B→C are

morphisms in C op, then f : B→ A and g : C→ B are morphisms in C . Hence f and g are

composable in C , with composition f ◦ g : C→ A. We define the composition of f and g in

C op to be the morphism f ◦g.

(6) If we are given a preorder X which we regard as a category, then the opposite category

Xop is precisely the opposite preorder of X .

(7) The category PreSet has objects preorders and morphisms the monotone functions; the

category POSet has objects posets and morphisms the monotone functions.

(8) The category of lattices Lat has objects lattices and morphisms the lattice homomor-

phisms.

(9) The category HLat has objects the Heyting lattices and morphisms Heyting lattice ho-

momorphisms. A Heyting lattice homomorphism f : X → Y between Heyting lattices is

a function preserving finite meets and joins and preserving Heyting implications. So if

x,x′ ∈ X , then

f (x⇒ x′) = f (x)⇒ f (x′).

(10) Let C be a category and B an object of C . The slice of C by B, denoted by C/B, is the

category whose objects are morphisms f : A→ B in C , and whose morphisms g : f → f ′ are

those morphisms g : src( f )→ src( f ′) in C for which f = f ′g. It is often helpful to view such

objects and morphisms as a commutative diagram:

A
g

- A′

B
�

f
′f -

Similarly we can define the coslice, B/C . This has objects which are morphisms f : B→ A
in C and morphisms g : f → f ′ are morphisms g : tar( f )→ tar( f ′) in C for which f ′ = g f .

(11) Suppose that C and D are categories. Then the product of C and D, C ×D, has

objects pairs (C,D) where C is an object of C and D an object of D. The morphisms
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(C,D)→ (C′,D′) are pairs of morphisms ( f ,g) where f : C → C′ and g : D → D′ with

composition given (as expected) coordinatewise.

(12) Any monoid (M,b,e) yields a category where there is one object M, the morphisms are

elements of the monoid, and composition and identity arise from the monoid operations. So

if m and m′ are elements of M and hence morphisms m,m′ : M→M, then their composition

is b(m,m′) : M→M.

(13) The category Mon has objects consisting of all monoids, and morphisms which are

functions preserving the monoid multiplication. Thus a monoid morphism f between

monoids M and M′ is a function f : M→M′ between the underlying sets, for which f (e) = e
and f (mn) = f (m) f (n) where m and n are elements of M.

Exercise 2.2.3 Understand how each of the informal descriptions of categories given

in Examples 2.2.2 can be formalised to fit the definition of a category given in Discus-

sion 2.2.1.

2.3 Functors and Examples

Discussion 2.3.1 A function f : X → Y can be thought of as a relation between two sets.

We can also think of the function f as specifying an element of Y for each element of X ;

from this point of view, f is rather like a program which outputs a value f (x) ∈ Y for each

x ∈ X . We could say that a functor is to a pair of categories as a function is to a pair of

sets. Roughly, a functor from a category C to a category D is an assignment which sends

each object of C to an object of D, and each morphism of C to a morphism of D. This

assignment has to satisfy some rules. For example, the identity on an object A of C is sent

to the identity in D on the object FA, where the functor sends the object A in C to FA in D.

Further, if two morphisms in C compose, then their images under the functor must compose

in D. Very informally, we might think of the functor as “preserving the structure” of C . Let

us move to the formal definition of a functor.

A functor F between categories C and D, written as F : C →D, is specified by

• an operation taking objects A in C to objects FA in D, and

• an operation sending morphisms f : A→ B in C to morphisms F f : FA→ FB in D,

for which F(idA) = idFA, and whenever the composition of morphisms g f is defined in C we

have F(g f ) = Fg◦F f . Note that Fg◦F f is defined in D whenever g f is defined in C , that

is, F f and Fg are composable in D whenever f and g are composable in C .

Remark 2.3.2 Sometimes we shall give the specification of a functor F by writing the

operation on an object A as A 7→ FA and the operation on a morphism f , where f : A→ B,
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as f : A→ B 7→ F f : FA→ FB. Provided that everything is clear, we shall sometimes even

say “the functor f : C →D is defined by an assignment

f : A−→ B 7→ F f : FA−→ FB

where f : A→ B is any morphism of C .” We shall refer informally to C as the source of the

functor F, and to D as the target of F .

Examples 2.3.3

(1) Let C be a category. The identity functor idC is defined by idC (A)
def
= A where A is an

object of C and idC ( f )
def
= f where f is a morphism of C .

(2) The Kleene closure A∗ of a set A gives rise to a monoid via list concatenation. Hence we

may define a functor F : Set→Mon by taking the operation on objects to be FA
def
= A∗ and

an operation on morphisms F f
def
= map( f ), where map( f ) : A∗→ B∗ is defined by

map( f )([a1, . . . ,an]) = [ f (a1), . . . , f (an)],

with [a1, . . . ,an] any element of A∗. Being our first example of a functor, we give explicit

details of the verification that F is indeed a functor. To see that F(idA) = idA∗ note that

F(idA)([a1, . . . ,an])
def
= map(idA)([a1, . . . ,an])

= idA∗([a1, . . . ,an])

def
= idFA([a1, . . . ,an]),

and to see that F(g f ) = Fg◦F f where A
f
−→ B

g
−→C note that

F(g f )([a1, . . . ,an])
def
= map(g f )([a1, . . . ,an])

= [g f (a1), . . . ,g f (an)]

= map(g)([ f (a1), . . . , f (an)])

= map(g)(map( f )([a1, . . . ,an]))

= Fg◦F f ([a1, . . . ,an]).

(3) Given a set A, recall that the powerset P (A) is the set of subsets of A. We can define a

functor P : Set→ Set which is given by

f : A→ B 7→ f∗ : P (A)→ P (B),

where f : A→B is a function and f∗ is defined by f∗(A′)
def
= { f (a′) | a′ ∈ A′} where A′ ∈ P (A).

We call P : Set→ Set the covariant powerset functor.
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(4) We can define a functor P : Setop→ Set by setting

f : B→ A 7→ f−1 : P (B)→ P (A),

where f : A→ B is a function in Set, and the function f−1 is defined by f−1(B′)
def
= {a ∈ A |

f (a) ∈ B′} where B′ ∈ P (B). Note that the source of the functor P is the opposite of the

category of sets and functions; we refer to P as the contravariant powerset functor.

(5) Given functors F : C → C ′ and G : D →D ′, the product functor

F×G : C ×D → C ′×D ′

is defined in the expected coordinatewise manner.

(6) The functors between two preorders A and B regarded as categories are precisely the

monotone functions from A to B.

(7) A functor between monoids is a monoid homomorphism, where we are regarding a

monoid as a category with one object.

(8) Given a slice category C/B, we may define a functor U : C/B→ C as follows. Suppose

that f : A→ B is an object of the slice category, and that h : f → f ′ is a morphism of the

slice. We set U f
def
= A and Uh

def
= h:

A
h

- A′

B
�

f
′f -

- h : A - A′.

(9) Let F : C → D be any functor. Then we can define a functor Fop : C op → Dop which

sends an object A of C op to FA in Dop, and a morphism f : A′→ A in C op to F f : FA′→ FA
in Dop.

(10) Given categories C and D and an object D of D, the constant functor D̃ : C → D
sends any object A of C to D and any morphism f : A→ B of C to idD : D→ D.

(11) Let F : C → D be a functor and D an object of D. Then the under-cone category

(D ↓ F) has objects ( f ,A) where A is an object of C and f : D→ FA is a morphism of D.

A morphism g : ( f ,A)→ ( f ′,B) is a morphism g : A→ B for which the following diagram

commutes:
D

FA
Fg

-

�

f

FB

f ′
-

The over-cone category (F ↓ D) is defined similarly.
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(12) Suppose that F : C → D and G : C ′ → D are functors. Then we define the comma

category (F ↓ G) to have objects which are triples (A, f ,A′) where A and A′ are objects of C
and C ′ respectively and f : FA→GA′ is a morphism of D. A morphism (A, f ,A′)→ (B, f ′,B′)
is a pair (g,h) where g : A→ B in C and h : A′→ B′ in C ′ for which the following diagram

commutes:

FA
Fg

- FB

GA′

f
?

Gh
- GB′

f ′
?

(13) Let Grp be the category of groups and group homomorphisms. The forgetful func-

tor U : Grp→ Set sends a group to its underlying set and a group homomorphism to its

underlying function.

Exercises 2.3.4

(1) Check that the definitions given in Examples 2.3.3 make sense and do indeed define

functors between categories.

(2) Let us say that a category C is tiny if the collection of objects forms a set and C is

discrete; prove that a category C is tiny iff given any category D with a set of objects obD
and any set function f : obC → obD, then f extends uniquely to a functor F : C → D.

(Extends means that if A is an object of C , then FA = f (A) ∈ obD.)

Discussion 2.3.5 We shall end this section with a few definitions. A morphism f : A→ A
with equal source and target is called an endomorphism. A pair of morphisms f and

g for which src( f ) = src(g) and tar( f ) = tar(g) are said to be parallel and this will be

written f ,g : A→ B. A functor with common source and target categories is called an

endofunctor. Now let F : C → D be any functor. We say that F is faithful if given a

parallel pair of morphisms f ,g : A→ B in C for which F f = Fg, then f = g. We say that F
is full if given objects A and B in C and a morphism g : FA→ FB in D, then there is some

f : A→ B in C for which F f = g.

As an example, consider the functor U : Mon→ Set which takes monoids and monoid

homomorphisms to their underlying sets and set functions respectively. Then U is faithful

but not full. The functor U : Grp→Mon which takes groups and group homomorphisms

to their underlying monoids is both full and faithful.

2.4 Natural Transformations and Examples

Not content with just the notion of a relation between categories, we now consider the

notion of a relation between functors.



24

Let C and D be categories and F,G : C →D be functors. Then a natural transformation

α from F to G, written α : F → G, is specified by an operation which assigns to each

object A in C a morphism αA : FA→ GA in D, such that for any morphism f : A→ B in

C , we have G f ◦αA = αB ◦F f , that is, the following diagram commutes:

FA
αA

- GA

FB

F f

?

αB

- GB

G f

?

The morphism αA is called the component of the natural transformation α at A. We

shall also write α : F→G : C →D to indicate that α is a natural transformation between

the functors F,G : C →D. If we are given such a natural transformation, we shall refer

to the above commutative square by saying “consider naturality of α in A at f : A→ B.”

Examples 2.4.1

(1) Recall the functor F : Set→Mon (see page 21) which takes a set to its Kleene closure.

We can define a natural transformation rev : F → F which has components revA : A∗→ A∗

defined by

revA([a1, . . . ,an])
def
= [an, . . . ,a1]

where A is a set and [a1, . . . ,an] ∈ A∗. It is trivial to see that this does define a natural

transformation:

F f ◦ revA([a1, . . . ,an]) = [ f (an), . . . , f (a1)] = revB ◦F f ([a1, . . . ,an]).

(2) Take a fixed set X and define a functor FX : Set→ Set by the operation FX(A)
def
= (X ⇒

A)×X on objects and the operation FX( f )
def
= ( f ◦−)× idX on morphisms where A is any

set and f is any function. Here, X ⇒ A is the set of functions from X to A, (X ⇒ A)×X
is a cartesian product of sets, and ( f ◦−)× idX denotes a cartesian product of functions.

Then we can define a natural transformation ev : FX → idSet by setting evA(g,x)
def
= g(x)

where (g,x) ∈ (X ⇒ A)×X . To see that we have defined a natural transformation ev with

components evA : (X ⇒ A)×X → A let f : A→ B be a set function, (g,x) ∈ (X⇒ A)×X and

note that

(idSet( f )◦ evA)(g,x) = f (evA(g,x))

= f (g(x))

= evB( f g,x)

= evB(FX( f )(g,x))

= (evB ◦FX( f ))(g,x).
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(3) Let Vec be the category of vector spaces over a (fixed) field K. Write V ∗ for the set of

linear maps from V into K. Then there is a functor (−)∗ : Vecop→ Vec, which is defined

by

f : U −→V - f ∗ : U∗
θ 7→ θ f

- V ∗

where f : U →V is any morphism of Vecop and θ ∈U∗ is any linear map. Thus there is a

functor (−)∗∗ : Vec→Vec which is defined by

f : V −→U - f ∗∗ : V ∗∗
(χ 7→ (θ 7→ χ( f ∗(θ))))

- U∗∗

where χ∈V ∗∗ is any linear map. For each vector space V there is a linear map αV : V →V ∗∗

given by αV (v)(θ)
def
= θ(v) where v ∈V and θ ∈V ∗. It is easy to check that the diagram

V
αV

- V ∗∗

U

f
?

αU

- U∗∗

f ∗∗
?

commutes, where v ∈V :

v - (θ 7→ θ(v))

f (v)
?

- (θ 7→ θ( f (v))) = (θ 7→ f ∗(θ)(v))
?

and hence that the αV define a natural transformation α : idVec→ (−)∗∗.

Discussion 2.4.2 It will be convenient to introduce some notation for dealing with meth-

ods of “composing” functors and natural transformations. Let C and D be categories and

let F, G, H be functors from C to D. Also let α : F → G and β : G→ H be natural trans-

formations. We can define a natural transformation βα : F→H by setting the components

to be (βα)A
def
= βAαA. For clarity we will sometimes write β ◦α instead of βα. This yields a

category [C ,D] with objects functors from C to D, morphisms natural transformations be-

tween such functors, and composition as given above. [C ,D] is called the functor category

of C and D.

We end this discussion with a little more notation. Suppose that α : F → G : D → E is a

natural transformation, and that I : C →D and J : E→F are functors. Then we can define

a natural transformation αI : FI → GI : C → E by setting components to be (αI)C
def
= αIC

where C is an object of C , and a natural transformation Jα : JF → JG : D → F by setting

components (Jα)D
def
= J(αD) where D is an object of D.
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Example 2.4.3 Note that we may define a functor

Ev : C × [C ,Set]−→ Set

where Ev(A,F)
def
= FA and Ev(g,µ)

def
= µA′ ◦Fg = F ′g ◦ µA with g : A→ A′ and µ : F → F ′.

Such a functor Ev is usually referred to as an evaluation functor.

Exercises 2.4.4

(1) Given categories C and D, verify that the functor category [C ,D] as defined in Discus-

sion 2.4.2 is indeed a category.

(2) Verify that the definitions given in Discussion 2.4.2 do indeed yield natural transfor-

mations. Further, given a diagram of categories and functors

C
I

- D
F,G,H

- E
J

- F

and natural transformations α : F → G and β : G→ H, show that J(β ◦α) = Jβ ◦ Jα and

(β ◦α)I = βI ◦αI. Note: make sure you understand in which categories the compositions

are defined.

2.5 Isomorphisms and Equivalences

Discussion 2.5.1 Of course, the basic idea of isomorphism is that isomorphic objects are

“essentially the same.” In the case of Set, two sets X and Y are isomorphic just in case there

is a bijection between them. This means that either there is a function f : X → Y which is

injective and surjective, or, equivalently, there are functions f : X →Y and g : Y → X which

are mutually inverse. We can use the idea that a pair of mutually inverse functions in the

category Set gives rise to bijective sets to define the notion of isomorphism in an arbitrary

category.

A morphism f : A→ B in a category C is said to be an isomorphism if there is some

g : B→ A for which f g = idB and g f = idA. We shall say that g is an inverse for f and that

f is an inverse for g. Given objects A and B in C , we say that A is isomorphic to B and

write A∼= B if such a mutually inverse pair of morphisms exists, and we say that the pair of

morphisms witnesses the fact that A ∼= B. Note that there may be many such pairs. In the

category determined by a partially ordered set, the only isomorphisms are the identities,

and in a preorder X with x,y ∈ X we have x ∼= y iff x ≤ y and y≤ x. Note that in this case

there can be only one pair of mutually inverse morphisms witnessing the fact that x ∼= y.

An isomorphism in a functor category is referred to as a natural isomorphism. If there is

a natural isomorphism between the functors F and G, then we shall say that F and G are

naturally isomorphic.
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Exercises 2.5.2

(1) Let C be a category and let f : A→ B and g,h : B→ A be morphisms. If f h = idB and

g f = idA show that g = h. Deduce that any morphism f has a unique inverse if such exists.

(2) Let C be a category and f : A→ B and g : B→C be morphisms. If f and g are isomor-

phisms, show that g f is too. What is its inverse?

Lemma 2.5.3 Let α : F → G : C → D be a natural transformation. Then α is a natural

isomorphism just in case each component αC is an isomorphism in D. More precisely, if we

are given a natural isomorphism α in [C ,D] with inverse β, then each βC is an inverse for

αC in D; and if given a natural transformation α in [C ,D] for which each component αC

has an inverse (say βC) in D, then the βC are the components of a natural transformation

β which is the inverse of α in [C ,D].

Proof Direct calculations from the definitions. 2

Exercise 2.5.4 Do the proof of Lemma 2.5.3. Be careful to note precisely what the lemma

is saying.

Discussion 2.5.5 We emphasised at the start of this chapter that we were interested in

the way structures behaved and not so much in their internal make-up. To this end we

might expect that the judgement “A and B are isomorphic in C ” is more important than the

judgement “A and B are equal in C .” Indeed, the development of category theory has shown

this to be the case. This leads us to the notion of equivalence of categories. If two categories

are equivalent, then the rough idea is that we can write down a one to one correspondence

between isomorphism classes of objects obtained from the categories. Let us give the precise

definition.

Two categories C and D are equivalent if there are functors F : C → D and G : D → C
together with natural isomorphisms ε : FG ∼= idD and η : idC ∼= GF. We say that F is an

equivalence with an inverse equivalence G and denote the equivalence by F : C 'D : G.

Example 2.5.6 Let us look at an example of equivalent categories. Recall Part, the cate-

gory of sets and partial functions, and write 1 for a singleton set. Recall also the definition

of a coslice category. Then it is the case that Part' 1/Set. Note that an object of 1/Set is a

function f : 1→ A where A is a set (and hence in particular A is non-empty); this amounts

to giving a pair (A,a) where a ∈ A, and a is sometimes referred to as the distinguished

element of A. A morphism g : (A,a)→ (B,b) amounts to a function g : A→ B for which

b = g(a), that is g preserves the distinguished element of A.

We pause to consider the intuition behind the equivalence. Any partial function f : A→ B
can be regarded as a total function f : A∪{∗} → B∪{∗} (choose ∗ such that ∗ 6∈ A and
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∗ 6∈ B) where

f (ξ) =

{
f (ξ) if ξ ∈ A and f (ξ) is defined

∗ otherwise

for any ξ ∈ A∪{∗}; and of course A∪{∗} (B∪{∗}) can be viewed as a set with a distin-

guished element. Conversely, any total function whose source is a set with a distinguished

element can be seen to give rise to a partial function.

Now we look more formally at the equivalence of Part and 1/Set. Let (X ,x0) and (Y,y0) be

objects of 1/Set, and f : (X ,x0)→ (Y,y0) a morphism. Define a functor F : 1/Set→ Part by

setting F(X ,x0)
def
= X \{x0} and

F f (x)
def
=

{
f (x) provided f (x) 6= y0

undefined otherwise

where of course x ∈ X \{x0} and F f : X \{x0}→ Y \{y0}.

Let g : X → Y be a partial function. Define a functor G : Part→ 1/Set by setting GX
def
=

(X ∪{X},X) and

Gg(ξ)
def
=

{
g(ξ) if ξ 6= X and g(ξ) ∈ Y is defined

Y otherwise

where of course Gg : X ∪{X}→Y ∪{Y} and ξ ∈ X ∪{X}. Then one can check that this does

give rise to an equivalence of categories.

Exercises 2.5.7

(1) Investigate the notion of equivalence of preorders regarded as categories. Draw some

pictures of equivalent preorders.

(2) Complete a detailed verification of the equivalence given in Example 2.5.6.

(3) The slice category Set/B is often referred to as the category of B-indexed families of sets

with functions preserving the indexing. To see this, note that a function f : X → B gives

rise to the family of sets ( f−1(b) | b ∈ B), and the family of sets (Xb | b ∈ B) gives rise to the

function

f : {(x,b) | x ∈ Xb,b ∈ B}→ B

where f (x,b)
def
= b. Note that we can regard the set B as a discrete category; then there

is an equivalence between the functor category [B,Set] and the slice Set/B. Formulate this

equivalence carefully and prove that your definitions really do give an equivalence.

2.6 Products and Coproducts

Discussion 2.6.1 The notion of “product of two objects in a category” can be viewed as an

abstraction of the idea of a cartesian product of two sets. As we mentioned in Section 2.1,
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the definition of a cartesian product of sets is an “internal” one; we specify the elements of

the product in terms of the elements of the sets from which the product is composed. How-

ever, as we have seen, there is a property of the cartesian product which characterises it up

to set-theoretic bijection. The internal make up of two bijective sets may be very different,

but their properties may well be very similar. We can now give the formal definition of a

binary product of two objects of a category.

A binary product of objects A and B in a category C is specified by

• an object A×B of C , together with

• two projection morphisms πA : A×B→ A and πB : A×B→ B,

for which given any object C and morphisms f : C→ A, g : C→ B, there is a unique mor-

phism 〈 f ,g〉 : C→ A×B for which πA〈 f ,g〉= f and πB〈 f ,g〉= g.

We shall refer simply to a binary product A×B instead of the triple (A×B,πA,πB), without

explicit mention of the projection morphisms, much as it is common practice to speak of a

group G rather than (G,◦,e). The data for a binary product is more readily understood as

a commutative diagram, where we have written ∃! to mean “there exists a unique”:

C

A �

πA

�

f

A×B

∃! 〈 f ,g〉

?

πB

- B

g

-

Given a binary product A×B and morphisms f :C→A and g : C→B, the unique morphism

〈 f ,g〉 : C→ A×B (making the above diagram commute) is called the mediating morphism

for f and g. We shall say that the category C has binary products if there is a product

in C of any two objects A and B, and that C has specified binary products if there is

a given canonical choice of binary product for each pair of objects. For example, Set has

specified binary products by setting A×B
def
= { (a,b) | a ∈ A,b ∈ B } with projections given

by the usual set-theoretic projection functions. Talking of specified binary products is a

reasonable thing to do, by virtue of the next result.

Lemma 2.6.2 A binary product of A and B in a category C is unique up to isomorphism

if it exists.

Proof Suppose that (P, pA, pB) and (P′, p′A, p′B) are two candidates for the binary prod-

uct. Then we have 〈pA, pB〉 : P→ P′ by applying the defining property of (P′, p′A, p′B)

to the morphisms pA : P→ A, pB : P→ B, and 〈p′A, p′B〉 : P′ → P exists from a similar
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argument. So we have diagrams of the form

P

A �

p′A

�

p A

P′

〈pA, pB〉

?

p′B
- B

p
B

-

P′

A �

pA

�

p
′

A

P

〈p′A, p′B〉

?

pB

- B

p ′
B

-

But then f
def
= 〈p′A, p′B〉〈pA, pB〉 : P→P and one can check that pA f = pA and that pB f = pB,

that is f is a mediating morphism for the binary product (P, pA, pB); we can picture this

as the following commutative diagram:

P

A �

pA

�

p A

P

f

?

pB

- B

p
B

-

But it is trivial that idP is also such a mediating morphism, and so uniqueness implies

f = idP. Similarly one proves that 〈pA, pB〉〈p′A, p′B〉= idP′, to deduce P∼= P′ witnessed by

the morphisms 〈pA, pB〉 and 〈p′A, p′B〉. 2

Remark 2.6.3 We sometimes refer to a property which involves the “existence of a unique

morphism (functor)” leading to a structure which is determined up to isomorphism (equiv-

alence) as a universal property.

Discussion 2.6.4 The notion of binary product has an extension to set-indexed families

of objects.

Given a family of objects (Ai | i ∈ I) in a category C where I is a set, a product of the family

of objects is specified by

• an object Πi∈IAi in C , and

• for every j ∈ I, a morphism π j : Πi∈IAi→ A j in C called the jth product projection,

such that for any object C and family of morphisms ( fi : C→ Ai | i ∈ I) there is a unique

morphism

〈 fi | i ∈ I〉 : C→Πi∈IAi

for which given any j ∈ I, we have π j〈 fi | i ∈ I〉 = f j. We shall say that 〈 fi | i ∈ I〉 is the

mediating morphism for the family ( fi | i ∈ I).
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Remark 2.6.5 In the definition of product, for any family (Ai | i ∈ I) we speak of a product

and not the product. This is because a product is unique only up to isomorphism, and the

proof that this is the case is similar to that for binary products (Lemma 2.6.2). We shall

sometimes speak of a product Πi∈IAi without explicit mention of the product projections.

Examples 2.6.6

(1) A terminal object 1 of a category C has the property that for any object C of the

ambient category, there is a unique morphism !C : C → 1. Note that such an object is

unique up to isomorphism. For suppose that both 1 and 1′ are terminal objects of C .

Then there is a unique morphism !1′ : 1′ → 1, and a unique morphism !1 : 1→ 1′. Thus

by composition there is a morphism !1′◦!1 : 1→ 1. But 1 is a terminal object, and so we

must have !1′◦!1 = id1, because there has to be a unique morphism !1 : 1→ 1 and this must

therefore be the identity. Similarly !1◦!1′ = id1′ and thus 1 ∼= 1′ as required. Note that this

kind of argument using uniqueness properties is prevalent in category theory.

(2) A product of an empty family of objects (that is a family indexed by the empty set) in

a category C is given by a terminal object. The first clause of the definition of product says

we are given an object of C , say 1, and the remainder of the definition reduces to saying

that for each object C there is a unique morphism C→ 1. A singleton set is an example of

a terminal object in the category Set.

(3) A global element of an object A in a category C is any morphism 1→ A. What are

global elements in the category Set?

(4) Now let I = {1,2}. A product of a family (A1,A2) of two objects is just a binary product

of A1 and A2 as defined on page 29. We usually denote the product Πi∈{1,2}Ai by A1×A2

and write 〈 f1, f2〉 for any mediating morphism 〈 fi | i ∈ {1,2}〉.

(5) When I is a finite set we shall speak of a finite product. If I = {1, . . . ,n} we shall

sometimes write A1× . . .×An or Πn
1Ai for the product of (Ai | i ∈ I). We shall sometimes

abuse notation and allow n to be 0 in the notation Πn
1Ai. Thus Π0

1Ai will indicate a product

of no objects, that is, a terminal object.

Discussion 2.6.7 A category C has products of set-indexed families of objects if there is

always a product for any such family. C has specified products of set-indexed families of

objects if it has products and there is always a specified canonical choice. We shall say that

C has finite products if it has products of finite families of objects. We shall see that such

categories with finite products arise naturally in the semantics of algebraic type theory. It

will be useful to have a little additional notation for dealing with such categories. Let C be

a category with finite products and take morphisms f : A→ B and f ′ : A′→ B′. We write

f × f ′ : A×A′→B×B′ for the morphism 〈 f π, f ′π′〉 where π : A×A′→A and π′ : A×A′→A′.
The uniqueness condition of mediating morphisms means that in general one has

idA× idA′ = idA×A′ and (g×g′)( f × f ′) = g f ×g′ f ′,
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where g : B→C and g′ : B′→C′.

Exercises 2.6.8

(1) Show that a category C has finite products just in case it has binary products and a

terminal object.

(2) Let C be a category with finite products and let

l : X → A f : A→ B g : A→C
h : B→ D k : C→ E

be morphisms of C . Show that (h× k)◦ 〈 f ,g〉= 〈h f ,kg〉 and 〈 f ,g〉 ◦ l = 〈 f l,gl〉.

(3) Investigate the notion of a binary product in a category C op.

Discussion 2.6.9 A coproduct is a dual notion of product. For example, a binary coprod-

uct of a pair of objects in a category C is given by the binary product of the objects in the

opposite category C op. With this definition, readers should provide a definition of binary

coproduct for themselves, and check their conclusion with the following definition.

A binary coproduct of objects A and B in a category C is specified by

• an object A+B of C , together with

• two insertion morphisms ιA : A→ A+B and ιB : B→ A+B,

such that for each pair of morphisms f : A→C, g : B→C there exists a unique morphism

[ f ,g] : A + B→ C for which [ f ,g]ιA = f and [ f ,g]ιB = g. We can picture this definition

through the following commutative diagram:

A
ιA

- A+B �
ιB

B

C

[ f ,g]

?�

gf
-

We can extend this definition to the notion of a coproduct of a set-indexed family of objects.

Given a family of objects (Ai | i ∈ I) in a category C , where I is a set, a coproduct is specified

by the following data:

• An object Σi∈IAi in C , and

• for every j ∈ I, a morphism ι j : A j→ Σi∈IAi called the jth coproduct insertion,

such that for any object C and any family of morphisms ( fi : Ai→C | i ∈ I) there is a unique

morphism [ fi | i ∈ I] : Σi∈IAi→C for which given any j ∈ I, we have

[ fi | i ∈ I]ι j = f j.



33

Let C be a category with finite coproducts and take morphisms f : A→ B and f ′ : A′→ B′.
We write f + f ′ : A+A′→ B+B′ for the morphism [ιB ◦ f , ιB′ ◦ f ′] where ιB : B→ B+B′ and

ιB′ : B′→ B+B′. The uniqueness condition of mediating morphisms means that one has

idA + idA′ = idA+A′ and (g+g′)( f + f ′) = g f +g′ f ′,

where g : B→C and g′ : B′→C′.

Exercise 2.6.10 Prove the coproduct of any set-indexed family of objects is unique up to

isomorphism if it exists.

Examples 2.6.11

(1) An object 0 of a category C is called initial if there is a unique morphism !A : 0→ A for

each object A of C . Note that such an object is unique up to isomorphism. Then a coproduct

of an empty family of objects of C (that is a family indexed by the empty set) is an initial

object for C , and the reader should verify this.

(2) In the category Set, the binary coproduct of sets A and B is given by their disjoint union

together with the obvious insertion functions. We can define the disjoint union A]B of A
and B as the union (A×{t})

S

(B×{t ′}) (where t, t ′ are not elements of A or B) with the

insertion functions

ιA : A→ A]B← B : ιB

where ιA is defined by a 7→ (a, t) for all a ∈ A, and ιB is defined analogously.

(3) Suppose that X is a lattice viewed as a category. Then the top of X is a terminal

object, the bottom of X an initial object, and finite meets and joins are finite products and

coproducts respectively.

(4) The category POSet has binary products through the pointwise order on the cartesian

product of (the underlying sets of) posets X and Y , together with the monotone set-theoretic

projection functions. Also, any one point poset is a terminal object.

Discussion 2.6.12 In a category with finite products we can show that for any objects A,

B and C that there is an isomorphism A× (B×C) ∼= (A×B)×C. Moreover, we can show

that both the left hand side and the right hand side of this isomorphism are products of

the triple (A,B,C). One might loosely say that A× (B×C), (A×B)×C and A×B×C each

satisfy the same specification, but are implemented differently. In concrete examples, the

internal make up of these objects will be different, but they will each have similar external

properties.

If C and D are categories with finite products, then the functor F : C →D preserves finite

products if for any finite family of objects (A1, . . . ,An) in C the morphism

m
def
= 〈Fπi | i ∈ I〉 : F(A1× . . .×An)→ FA1× . . .×FAn
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is an isomorphism, where of course Fπ j : F(A1× . . .×An)→ FA j is F applied to the pro-

jection π j for each j ∈ I. Note that there may be witnesses other than m to the above

isomorphism; we refer to m as the canonical isomorphism. In the case that n = 0 we say

that F preserves terminal objects, that is the unique morphism F(1C )→ 1D is an isomor-

phism where 1C and 1D are the terminal objects of C and D respectively. A finite product

preserving functor F is strict if the above isomorphisms are identities.

If C and D are categories with finite coproducts, then the functor F : C → D preserves

finite coproducts if for any finite family of objects (A1, . . . ,An) in C the morphism

m
def
= [Fιi | i ∈ I] : FA1 + . . .+FAn→ F(A1 + . . .+An)

is an isomorphism, where of course Fι j : FA j→F(A1 + . . .+An) is F applied to the insertion

ι j for each j ∈ I. In the case that n = 0 we say that F preserves initial objects, that is the

unique morphism 0D → F(0C ) is an isomorphism where 0C and 0D are the initial objects

of C and D respectively. A finite coproduct preserving functor F is strict if the above

isomorphisms are identities.

Exercise 2.6.13 Find an example of a functor F : C →D for which

F(A×B)∼= FA×FB

in D for all pairs of objects A and B in C , but such that F does not preserve binary products.

Hint: think about countably infinite sets.

2.7 The Yoneda Lemma

Discussion 2.7.1 We learn in a first course in set theory that the collection of all sets

cannot be a set but is in fact a proper class. In category theory we have to deal with

collections which are large in a very real sense. Questions of size are important, but we do

not delve into formal details here. We shall, however, make the following definition.

A category C is small if its morphisms can be indexed by a set; note that this implies the

collection of objects of C is a set. C is locally small if for any pair of objects A and B the

collection of morphisms from A to B can be indexed by a set. This set is usually written

HomC (A,B) or C (A,B). For example, if X is a preorder viewed as a category, then

X(x,y) =

{
{∗} if x≤ y
∅ otherwise

where x,y ∈ X and {∗} is a one point set. Most categories that one meets in everyday use

are indeed locally small. However, functor categories are not always so. If C is small and D
is locally small, then [C ,D] is locally small. This is because the components of the natural

transformations in [C ,D] are indexed by the objects of C and this collection is a set by
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hypothesis. More precisely, to give a natural transformation α : F → G, we have to give a

morphism αC : FC→ GC in D for each object C of C . Thus there is a candidate for such a

natural transformation α for every function

obC −→
[

{D(FC,GC) | C ∈ obC }

and there is certainly a set of such functions. If C and D are locally small then [C ,D] need

not be locally small.

Now it is time to introduce some more notation. Let A and B be objects of a locally small

category C . We can define a functor

C (−,+) : C op×C → Set

by taking any morphism ( f ,g) : (A,B)→ (A′,B′) in C op×C to the set-theoretic function

C ( f ,g) : C (A,B)→ C (A′,B′)

where C ( f ,g)(h) = gh f for each morphism h : A→ B. (Note that f is a morphism A′→ A
in C). We can also define a functor

C (A,+) : C → Set.

As expected, this functor takes objects B of C to the set C (A,B), and if g : B→ B′ is a

morphism of C then the functor C (A,+) takes g : B→ B′ to the function C (A,g) : C (A,B)→

C (A,B′) defined by setting C (A,g)(h)
def
= gh, where h : A→ B. Similarly, we can define a

functor C (−,B) : C op → Set. We shall also write HA for the functor C (A,+) and HB for

the functor C (−,B), when the category to which we are referring is clear. If h : C→C′ is a

morphism of C then HAh : HAC→ HAC′ will be written as HA
h : HA

C → HA
C′, with a similar

notation adopted for HB. Finally, we shall write

H : C op→ [C ,Set]

for the functor which sends f : A′ → A to H f : HA → HA′. The functor H is often called

the Yoneda embedding of C op into the functor category [C ,Set]. There is also a functor

H : C → [C op,Set] defined in a similar fashion, that is by the assignment

f : A−→ A′ 7→ H f : HA −→ HA′

where f : A→ A′ is a morphism of C .

Now suppose that we are given functors F : C → D and G : D → C between locally small

categories C and D. Then there are functors

Dop×C
id×F

- Dop×D
D(−,+)

- Set

Dop×C
Gop× id

- C op×C
C (−,+)

- Set
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and the compositions will usually be written as D(−,F+), C (G−,+) respectively. See

page 22 for the definition of Gop: the omission of the “op” in the notation C (G−,+) arises

from the fact that the action of the functor Gop is essentially to “apply G.” If A is an

object of D and B an object of C , then there are obvious functors D(A,F+) : C → Set and

C (G−,B) : Dop→ Set.

Let us finish this discussion with the definition of a representable functor. Given a functor

F : C → Set where C is locally small, we say that F is representable if there is an object A
of C for which we can find a natural isomorphism HA ∼= F. We say that a pair (a,A) where

a ∈ FA is a representation of F if the natural transformation Ψ : HA → F which has

components ΨB : C (A,B)→ FB given by ΨB( f )
def
= F f (a) is a natural isomorphism, where

f : A→ B is any morphism of C .

Example 2.7.2 To give some feel for the definition we look at a concrete example. Recall

that the set of subsets of a given set X , P (X), is in bijection with the set of functions from

X to a two point set {0,1}. For if we think of 1 as meaning true and 0 as meaning false,

then given a subset X ′ of X and an element x ∈ X , we can ask whether it is true or not that

x ∈ X ′. Thus we can see that a two point set can represent (or code) information about

subset membership. We can use the idea of a representable functor to formalise these ideas.

In fact it is the case that the contravariant powerset functor P : Setop→ Set is represented

by ({1},{0,1}). The natural transformation Ψ : H{0,1}→ P has components

ΨX : Set(X ,{0,1})
χ 7→ P (χ)({1})

def
= χ−1({1})

- P (X)

where X is any set and χ : X → {0,1} is a function. It is easy to check that Ψ is a natural

isomorphism.

Discussion 2.7.3 We are now in a position to state and prove the Yoneda lemma. On

first reading, this material may feel rather heavy. However, the Yoneda lemma is an indis-

pensable tool which every category theorist should carry in his kit and be able to use. We

shall make use of the Yoneda lemma when discussing the semantics of datatypes in later

chapters. Roughly, the Yoneda lemma says that for a locally small category C and a functor

F : C → Set, if we choose any object A of C , there is a bijection between the elements of FA
and natural transformations from HA to F .

Lemma 2.7.4 Let C be a locally small category, F : C → Set a functor and A an object of

C . Then the collection Nat(HA,F) of natural transformations HA→ F is a set and so we

can define a functor

Nat(H−,+) : C × [C ,Set]−→ Set

as follows. The morphism (g,µ) : (A,F)→ (A′,F ′) in C × [C ,Set] is taken to the function

Nat(Hg,µ) : Nat(HA,F)→ Nat(HA′,F ′)
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which is defined by Nat(Hg,µ)(α)
def
= µ◦α◦Hg where α : HA→ F is a natural transforma-

tion. Recall also (page 26) the evaluation functor

Ev : C × [C ,Set]−→ Set.

Then there is a natural isomorphism Φ : Nat(H−,+) ∼= Ev : Ψ. If A is an object of C , this

amounts to saying that there is an isomorphism (set-theoretic bijection)

Φ(A,F) : Nat(HA,F)∼= FA : Ψ(A,F)

and this isomorphism is natural in (A,F).

Proof In the first part of the proof, we show that for each A and F there is a bijective

assignment between Nat(HA,F) and FA, establishing that Nat(HA,F) is indeed a set and

thus Nat(H−,+) is well defined. We can define an assignment

Φ(A,F) : Nat(HA,F)−→ FA

by setting Φ(A,F)(α)
def
= αA(idA) for α : HA → F a natural transformation, and define an

assignment

Ψ(A,F) : FA−→ Nat(HA,F)

by setting Ψ(A,F)(a)B( f )
def
= F f (a) where a ∈ FA, B is an object of C , Ψ(A,F)(a)B is the

component of the natural transformation Ψ(A,F)(a) at B, and f : A→ B is a morphism in

C , where of course Ψ(A,F)(a)B : C (A,B)→ FB. Note that one has to check that Ψ(A,F)(a) is

a natural transformation. We urge the reader to do this.

Now we check that assignments Φ(A,F) are isomorphisms (bijections) with inverses given by

the Ψ(A,F). One way round, we check that Ψ(A,F)Φ(A,F) = idNat(HA,F). To see this, first note

that Ψ(A,F)Φ(A,F)(α) = Ψ(A,F)(αA(idA)). Then we have

Ψ(A,F)(αA(idA))B( f ) = F f (αA(idA))

because α is natural = αB(HA
f (idA))

= αB( f ◦ idA)

= αB( f ).

Thus the components of Ψ(A,F)(αA(idA)) are the same as those of α which is to say that the

natural transformations Ψ(A,F)Φ(A,F)(α) and α are identical, as required.

For the other way we check that Φ(A,F)Ψ(A,F) = idFA. Let a ∈ FA; then we have

Φ(A,F)Ψ(A,F)(a) = Φ(A,F)(Ψ(A,F)(a))

= Ψ(A,F)(a)A(idA)

= (F(idA))(a)

= a.
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Hence we have established a bijection between FA and the collection Nat(HA,F), implying

that the latter is indeed a set.

In fact the functions Φ(A,F) and Ψ(A,F) give rise to natural isomorphisms Φ and Ψ. We shall

check that Φ : Nat(H−,+)−→ Ev is a natural transformation, that is the diagram

Nat(HA,F)
Φ(A,F)

- FA

Nat(HA′,F ′)

Nat(Hg,µ)
?

Φ(A′,F ′)

- F ′A′

F ′g◦µA
?

commutes, where (g,µ) : (A,F)→ (A′,F ′) is a morphism in C × [C ,Set]. Let α be a natural

transformation from HA to F. Then we have

(Φ(A′,F ′) ◦Nat(Hg,µ))(α) = Φ(A′,F ′)(Nat(Hg,µ)(α))

= Φ(A′,F ′)(µ◦α◦Hg)

by definition of Φ(A′,F ′) = (µ◦α◦Hg)A′(idA′)

= (µA′ ◦αA′ ◦Hg
A′)(idA′)

= (µA′ ◦αA′)(H
g
A′(idA′))

= (µA′ ◦αA′)(H
A
g (idA))

= (µA′ ◦αA′ ◦HA
g )(idA)

naturality of α = (µA′ ◦Fg◦αA)(idA)

naturality of µ = (F ′g◦µA ◦Φ(A,F))(α).

But now we are done, for Lemma 2.5.3 implies that Ψ must be a natural transformation

which is an inverse for Φ. 2

Exercises 2.7.5

(1) Verify that Ψ in Example 2.7.2 is a natural isomorphism.

(2) Verify that the Yoneda embedding H : C → [C op,Set] is a full and faithful functor for

any locally small category C .

(3) Let X be a preorder and let F : X → Set be a functor where we will write x 7→ Fx for the

operation on objects and x≤ y 7→ fx,y : Fx→ Fy for the operation on morphisms.

(a) If Fx is the empty set ∅, what can we say about x ∈ X?

(b) Let a ∈ X . Show that to give a natural transformation α : Ha→ F is to give an element

ex ∈ Fx for each x ∈ X satisfying a≤ x, such that fx,y(ex) = ey whenever y ∈ X and x≤ y.

(c) Investigate the Yoneda lemma in this situation.
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2.8 (Bi)Cartesian Closed Categories

Discussion 2.8.1 We begin by giving some intuition behind the idea of cartesian closed

categories. Consider the category Set. Given sets A and B, the collection of functions A→ B
is again a set, written Set(A,B) using the notation of the previous section. Thus Set(A,B)

is actually an object of the ambient category Set. In a cartesian closed category C , for any

objects A and B, there is an object A⇒ B of C which has properties making it “resemble”

the collection of morphisms A→ B in C . Also, in the category Set, for every pair of sets A

and B, there is a function ev : (A⇒ B)×A→ B defined by ev( f ,a)
def
= f (a), for any f : A→ B

and a ∈ A, which “ evaluates a function at an argument.” Bearing this in mind, let us now

give the formal definition.

A category C is a cartesian closed category if it has finite products, and for any objects B
and C there is an object B⇒C and morphism

ev : (B⇒C)×B→C

such that for any f : A×B→C there is a unique morphism λ( f ) : A→ (B⇒C) such that

f = ev ◦ (λ( f )× idB). This is another example of a universal property. In this definition,

the object B⇒C is called the exponential of B and C and λ( f ) is the exponential mate

of f . We shall also write g? def
= ev◦ (g× idB) for any morphism g : A→ (B⇒C).

Examples 2.8.2

(1) The category Set is a cartesian closed category. A specified choice of terminal object

is {∅} and (specified) binary products are given by set-theoretic cartesian product. The

exponential of A and B is the set of functions from A to B. The function ev : (A⇒ B)×A→B
is given by ev( f ,a) = f (a), where a ∈ A and f : A→ B is a function. Then given any f :
X×A→ B we may define λ( f ) : X → (A⇒ B) by letting λ( f )(x)(a) = f (x,a) for each x ∈ X
and a ∈ A. It is easy to check that f = ev(λ( f )× id) and that λ( f ) is the unique function

which satisfies this equation. Now we can begin to see the connection with functional type

theory. In Set, λ( f ) may be regarded as a “curried” version of the function f .

(2) The category Cat of small categories is cartesian closed, with the exponential of C and

D being given by the functor category [C ,D]. Note that [C ,D] is another small category.

(3) A Heyting lattice viewed as a category is indeed cartesian closed, with Heyting implica-

tions as exponentials. In fact such a lattice also has finite coproducts.

(4) Any category [C ,Set] is cartesian closed. All constructions are defined pointwise. For

example, the product of F,F ′ in [C ,Set] is given by the functor F × F ′ where we define

(F×F ′)C
def
= FC×F ′C. The details are an exercise.

Discussion 2.8.3 In the case that C is a locally small category we can give a slightly

different definition of the notion of being cartesian closed. Let us introduce some more
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notation, and then present the equivalent definition as Proposition 2.8.4. Let C be a locally

small category with finite products, let A, A′, B and C be objects of C and g : A′ → A a

morphism. Define a functor F : C op→ Set as follows, where f : A×B→C is any morphism

in C :

g : A′ −→ A - Fg : C (A×B,C)
f 7→ f (g× idB)

- C (A′×B,C).

Note that we shall often write C (−×B,C) : C op → Set for this functor. Recall that the

functor C (−×B,C) is representable if there is an object B⇒C in C op for which there is a

natural isomorphism

C (−×B,C)∼= C op(B⇒C,−)
def
= C (−,B⇒C).

Now we have the proposition

Proposition 2.8.4 Suppose that C is a locally small category with finite products and

that B and C are objects of C . If the functor C (−×B,C) is representable by some object

B⇒C for all such B and C, then C is a cartesian closed category with exponentials given by

B⇒C. Conversely, if C is a locally small cartesian closed category, the functor C (−×B,C)

is well defined and represented by the exponential B⇒C for all such B and C.

Proof

(⇒) Suppose that C (−×B,C) is represented by B⇒C (for every pair of objects B and

C of C), where, say, we have a natural isomorphism denoted by

Φ : C (−×B,C)∼= C (−,B⇒C) : Ψ.

We write

λ(−) : C (A×B,C) -
� C (A,B⇒C) : (−)?

for the components of the natural isomorphisms at A, that is we write λ(−) for ΦA

and (−)? for ΨA. Thus given a morphism f : A× B → C in C there is a morphism

λ( f ) : A→ (B⇒C) in C . Unraveling the definition of naturality in A at λ( f ) we get the

following commutative diagram:

C (B⇒C,B⇒C)
(−)?

- C ((B⇒C)×B,C)

C (A,B⇒C)

C (λ( f ),B⇒C)

?

(−)?
- C (A×B,C)

C (λ( f )×B,C)

?

Setting ev
def
= (idB⇒C)?, and using commutativity, we get

[C (λ( f ),B⇒C)(idB⇒C)]? = C (λ( f )×B,C)(ev)
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that is λ( f )? = f = ev(λ( f )× idB). Thus C is a cartesian closed category provided λ( f ) is

the unique morphism A→ (B⇒C) satisfying f = ev(λ( f )× idB) for each f : A×B→C.

To see that this is the case, first note that for any morphism g : A→ (B⇒C) we have g? =

ev(g× idB), which follows from naturality of λ(−). Now suppose also h : A→ (B⇒C) is

another candidate for λ( f ). Then h = λ(h?) = λ(ev(h× idB)) = λ( f ) showing uniqueness

of λ( f ).

(⇐) Now suppose that C is a locally small cartesian closed category. Then we claim that

C (−×B,C) is represented by the object B⇒C. Let us define a natural isomorphism

Φ : C (−×B,C)∼= C op(B⇒C,−)
def
= C (−,B⇒C) : Φ−1

by appealing to Lemma 2.5.3, that is, we shall define isomorphisms (bijections)

λ(−) : C (A×B,C) -
� C (A,B⇒C) : (−)?

which are the components of Φ and Φ−1. In fact λ(−) is given by exponential mate in C ,

and if g : A→ (B⇒C) then g? def
= ev(g× idB). From the universal property of exponential

mates, it is easy to see that we have defined a bijection of sets, for example note that

g? = ev(g× idB) = ev(λ(g?)× idB)

implying that λ(g?) = g, and if f : A×B→C we can show λ( f )? = f similarly. We also

need to see that the bijection is natural in A, which in the case of λ(−)
def
= ΦA amounts

to the diagram

C (A×B,C)
λ(−)

- C (A,B⇒C)

C (A′×B,C)

C (g×B,C)

?

λ(−)
- C (A′,B⇒C)

C (g,B⇒C)

?

commuting, where g : A′→ A in C . To see this, take f : A×B→C and note that

C (g×B,C)( f )
def
= f (g× idB) = ev(λ( f )× idB)(g× idB) = ev(λ( f )g× idB)

implying that λ( f )g = λ( f (g× idB)) from the universal property. Thus we have shown

C (g,B⇒C)(λ( f )) = λ(C (g×B,C)( f )) as required. 2

Discussion 2.8.5 We end this section with some notation which will prove useful when

giving semantics to type theories. Let C be a cartesian closed category. We can define a

functor (−)⇒ (+) : C op×C → C by the assignment

( f ,g) : (A,B)−→ (A′,B′) 7→ f ⇒ g : (A⇒ B)−→ (A′⇒ B′)
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where ( f ,g) : (A,B)−→ (A′,B′) is of course a morphism of C op×C , A⇒ B and A′⇒ B′ are

exponentials in C , and we define f ⇒ g
def
= λ(g ◦ ev ◦ (idA⇒B× f )). Given an object A of C

we can similarly define functors A⇒ (−) : C → C and (−)⇒ A : C op→ C .

Let F : C →D be a functor between cartesian closed categories which preserves finite prod-

ucts. We say that F preserves exponentials if the exponential mate of

F(A⇒ B)×FA
∼=
−→ F((A⇒ B)×A)

F(ev)
−→ FB

is an isomorphism λ(F(ev)◦ ∼=) : F(A⇒ B)→ (FA⇒ FB) and we call this witness the

canonical isomorphism. We shall also refer to such an F as a cartesian closed func-

tor. A cartesian closed functor F is strict if (it is a finite product preserving functor) and

λ(F(ev)◦ ∼=) = idFA⇒FB.

Exercises 2.8.6

(1) Formulate precisely the definitions of the functors A⇒ (−) : C → C and (−)⇒ A :
C op→ C , where A is an object of a cartesian closed category C .

(2) Let C be a cartesian closed category and f : A→ B and g : B→ (C⇒ D) be morphisms

of C . Show that (g f )? = g?( f × idC).

(3) Let f : A×B→C and g : C→D be morphisms of a cartesian closed category. Show that

λ(g f ) = (idB⇒ g)λ( f ).

(4) Let A be an object of a cartesian closed category C . Show that A⇒ (−) preserves finite

products.

(5) Formulate the notion of a finite coproduct preserving functor and show that A× (−) :
C → C is such a functor provided that C is cartesian closed.

Discussion 2.8.7 A category C is a bicartesian closed category if it is a cartesian closed

category which has finite coproducts. A functor F : C →D is said to be bicartesian closed

if it is cartesian closed and also preserves finite coproducts. We shall also call such a

functor a morphism of bicartesian closed categories. A category with finite products and

coproducts is said to be distributive if for all objects A,B,C, the mediating morphisms

[idA× i, idA× j] : (A×B)+(A×C)
∼=
−→ A× (B+C)

and !A×0 : 0
∼=
−→ A× 0 are isomorphisms. In fact any bicartesian closed category is auto-

matically distributive.

Theorem 2.8.8 Let C be a bicartesian closed category. Then C is distributive.
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Proof We show that there is a coproduct diagram

idA× i : A×B - A× (B+C) � A×C : idA× j

that is, given any f : A× B→ D and g : A×C → D, there is a unique morphism m :
A× (B+C)→D such that m◦ (idA× i) = f and m◦ (idA× j) = g. (Draw a picture!)

We have λ( f ) : B→ A⇒ D and λ(g) : C→ A⇒D and thus a unique morphism

[λ( f ),λ(g)] : B+C→ A⇒ D

for which [λ( f ),λ(g)]◦ i = λ( f ) and [λ( f ),λ(g)]◦ j = λ(g).

Thus we have
f = ev◦ (idA×λ( f ))

= ev◦ (idA× [λ( f ),λ(g)])◦ (idA× i)
= [λ( f ),λ(g)]? ◦ (idA× i)

with a similar equation for g. Hence we can take m to be [λ( f ),λ(g)]?. It is left as an

exercise to check that if m′ also makes the relevant diagram commute, then λ(m′) ◦ i =

λ( f ) and λ(m′)◦ j = λ(g) implying that m = m′.

Having established the universal property of A× (B +C) it is also an exercise to use the

property to verify that

[idA× i, idA× j] : (A×B)+(A×C)
∼=
−→ A× (B+C)

In a similar fashion, one can show that !A×0 is an isomorphism, with inverse π0. 2

Example 2.8.9 The category Set is bicartesian closed, as is any Heyting prelattice which

is regarded as a category. Any category [C ,Set] is bicartesian closed; coproducts are defined

pointwise.
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Abstract Syntax and Rule Induction

3.1 Introduction

Discussion 3.1.1 In this chapter we introduce the notions of abstract syntax tree, and

rule induction. The two topics are not directly related. However, the applications of rule

induction which occur throughout the remainder of the notes often concern definitions

which are based on abstract syntax.

3.2 Abstract Syntax Trees

Discussion 3.2.1 Consider a conditional expression if true then 2 else 3 which

is a text string in a program file. Such a string does not directly give a computer the

information that we have a conditional which is built out of three pieces of data, namely

the Boolean and the two numbers. In a real language, it is the job of the compiler to extract

such information out of textual strings. We want to represent “program expressions” in a

way which makes this information explicit, without “compilation”. Let us look at another

example where l denotes a list

if elist(l) then 0 else hd(l)+ sum(tl(l))

and think about the structure of the expression. It has the form

if B then E1 else E2

where, for example, B is elist(l). The conditional (if-then-else) expression requires three

arguments, B, E1 and E2, and to make this clear it is helpful to write it as

cond(elist(l) , 0 , hd(l)+ sum(tl(l))) (∗)

and think of the cond itional as a constructor which acts on three arguments, to “construct”

a new program (you might like to think of a constructor as a function). Now we look at a

sub-part of the program body, hd(l)+ sum(tl(l)). We can think of + as a constructor which

acts on two arguments, and to make this visually clear, it is convenient to write the latter

expression as

+(hd(l) , sum(tl(l))).

Finally, looking at one of the sub-parts of this expression, namely hd(l), we can think of

hd(l) as a constructor hd acting on a single argument, l.
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Let us make this a little clearer. We shall adopt the following notation for finite trees:

If T1, T2, T3 and so on to Tn is a (finite) sequence of finite trees, then we shall write

C(T1,T2,T3, . . . ,Tn) for the finite tree which has the form

C

.8

�

T1 T2
�

T3

�

. . . Tn

-

Each Ti is itself of the form C′(T ′1,T
′

2,T
′

3, . . . ,T
′

m). We call C a constructor and say that C

takes n arguments. Any constructor which takes 0 arguments is a leaf node. We call C the

root node of the tree. The roots of the trees Ti are called the children of C. The constructors

are labels for the nodes of the tree. Each of the Ti above is a subtree of the whole tree—in

particular, any leaf node is a subtree.

If we say that cond is a constructor which takes three arguments, + a constructor which

takes two arguments, and so on, then (∗) denotes the tree

cond

elist
�

0
?

+

-

l
?

hd
�

sum

-

l
?

tl
?

l
?

Note that in this (finite) tree, we regard each node as a constructor. To do this, we can

think of both l and 0 as constructors which take no arguments!!. These form the leaves of

the tree. We call the root of the tree the outermost constructor, and refer to trees of this

kind as abstract syntax trees. We often refer to an abstract syntax tree by its outermost

constructor—the tree above is a “conditional”.

In Part II of this course we shall be giving definitions of syntax. These definitions will be

of logical propositions, and of type theory expressions. Throughout Part II, logical propo-

sitions and type theory expressions will all denote abstract syntax trees. However, we will

not always use the formal notation C(T1,T2,T3, . . . ,Tn), but shall employ so-called syntactic

sugar to make things more readable. This is best explained by example. Rather than write

cond(B , E1 , E2)

we shall actually write

if B then E1 else E2
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where it will be understood that the latter denotes the former. We say that the latter

expression is syntactic sugar for the former.

3.3 Inductively Defined Sets

Discussion 3.3.1 In this section we introduce a method for defining sets. Any such set

will be known as an inductively defined set. Let us first introduce some notation. We shall

let U be any set. A rule R is a pair (H,c) where H ⊆ U is any finite set, and c ∈ U is

any element. Note that H might be ∅, in which case we say that R is a base rule. If H is

non-empty we say R is an inductive rule. In the case that H is non-empty we might write

H = {h1, . . . ,hk } where 1≤ k. We can write down a base rule R = (∅,c) using the following

notation

Base

(R)
c

and an inductive rule R = (H,c) = ({h1, . . . ,hk },c) as

Inductive

h1 h2 . . . hk
(R)

c

Given a set U and a set R of rules based on U , a derivation is a finite tree with nodes

labelled by elements of U such that

• each leaf node label c arises as a base rule (∅,c) ∈ R

• for any non-leaf node label c, if H is the set of children of c then (H,c)∈R is an inductive

rule.

We then say that the set inductively defined by R consists of those elements u ∈U which

have a derivation with root node labelled by u.

Examples 3.3.2

(1) Let U be the set {u1,u2,u3,u4,u5,u6 } and let R be the set of rules

{R1 = (∅,u1),R2 = (∅,u3),R3 = ({u1,u3 },u4),R4 = ({u1,u3,u4 },u5)}
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Then a derivation for u5 is given by the tree

u5

u1
�

u3
?

u4

-

u1
�

u3

-

which is more normally written up-side down and in the following style

R1
u1

R2
u3

R1
u1

R2
u3

R3
u4

R4
u5

(2) A set R of rules for defining the set E ⊆ N of even numbers is R = {R1,R2 } where

(R1)
0

e
(R2)

e+2

Note that rule R2 is, strictly speaking, a rule schema, that is e is acting as a variable. There

is a “rule” for each instantiation of e. A derivation of 6 is given by

(R1)
0

(R2)
0+2

(R2)
2+2

(R2)
4+2

(3) The set I of integer multiples of 3 can be inductively defined by a set of rules R =

{a,b,c} where

(a)
0

i
(b)

i+3

i
(c)

i−3
and informally you should think of the symbol i as a variable, that is, (b) and (c) are rule

schemas.

(4) Suppose that Σ is any set, which we think of as an alphabet. Each element l of Σ is

called a letter. We inductively define the set Σ∗ of words over the alphabet Σ by the set of

rules R def
= {1,2} (so 1 and 2 are just labels for rules!) given by1

[l ∈ Σ] (1)
l

w w′

(2)
ww′

1In rule (1), [l ∈ Σ] is called a side condition. It means that in reading the rule, l can be any element
of Σ.
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Let I be inductively defined by a set of rules R . Suppose we wish to show that a proposition
φ(i) holds for all elements i ∈ I, that is, we wish to prove

∀i ∈ I. φ(i) .

Then all we need to do is

• for every base rule b ∈ R prove that φ(b) holds; and

• for every inductive rule h1...hk
c ∈ R prove that whenever hi ∈ I,

(φ(h1) and φ(h2) and . . . and φ(hk)) implies φ(c)

We call the propositions φ(h j) inductive hypotheses. We refer to carrying out the bulleted (•)
tasks as “verifying property closure”.

Table 3.1: Rule Induction

Suppose that Σ def
= {a,b,c}. Then a derivation tree for abac is

(1)
a

(1)
b

(2)
ab

(1)
a

(1)
c

(2)

(2)
abac

(5) Let V be a set of propositional variables. The set of (first order) propositions Prop is

inductively defined by the rules below. There are two distinguished (atomic) propositions

true and false. Each proposition denotes a finite tree. In fact true and false are constructors

with zero arguments, as is each p. The remaining logical connectives are constructors with

two arguments, and are written in a sugared (infix) notation.

[v ∈V ]
v false true

φ ψ

φ∧ψ

φ ψ

φ∨ψ

φ ψ

φ→ ψ

3.4 Rule Induction

Discussion 3.4.1 In this section we see how inductive techniques of proof which the

reader has met before fit into the framework of inductively defined sets. We shall write

φ(x) to denote a proposition about x. For example, if φ(x)
def
= x ≥ 2, then φ(3) is true and

φ(0) is false. If φ(a) is true then we often say that φ(a) holds.

Discussion 3.4.2 We present in Table 3.1 a useful principle called Rule Induction. It

will be used throughout the remainder of these notes.
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Discussion 3.4.3 The Principle of Mathematical Induction arises as a special case of Rule

Induction. We can regard the set N as inductively defined by the rules

(zero)
0

n
(add1)

n+1

Suppose we wish to show that φ(n) holds for all n ∈ N, that is ∀n ∈ N.φ(n). According to

Rule Induction, we need to verify

• property closure for zero, that is φ(0); and

• property closure for add1, that is for every natural number n, φ(n) implies φ(n+1), that

is ∀n ∈ N. (φ(n) implies φ(n+1))

and this amounts to precisely what one needs to verify for Mathematical Induction.

Examples 3.4.4

(1) Here is another example of abstract syntax trees defined inductively. Let a set of con-

structors be Z∪{+,−}. The integers will label leaf nodes, and +, − will take two argu-

ments written with an infix notation. The set of abstract syntax trees T inductively defined

by these constructors is given by

n

T1 T2

T1 +T2

T1 T2

T1−T2

Note that the base rules correspond to leaf nodes. In the example tree

+

−
�

2
-

55
�

7
-

55−7 is a subtree of (55−7)+2, as are the leaves 55, 7 and 2.

The principle of structural induction is defined to be an instance of rule induction when

the inductive definition is of abstract syntax trees. Make sure you understand that if T is

an inductively defined set of syntax trees, to prove ∀T ∈ T .φ(T ) we have to prove:

• φ(L) for each leaf node L; and

• assuming φ(T1) and . . . and φ(Tn) prove φ(C(T1, . . . ,Tn)) for each constructor C and

all trees Ti ∈ T .

These two points are precisely property closure for base and inductive rules.

Consider the proposition φ(T ) given by L(T ) = N(T )+1 where L(T ) is the number of leaves

in T , and N(T ) is the number of +,−-nodes of T . We can prove by structural induction

∀T ∈ T . L(T ) = N(T )+1
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where the functions L,N : T → N are defined recursively by

• L(n) = 1 and L(+(T1,T2)) = L(T1)+L(T2) and L(−(T1,T2)) = L(T1)+L(T2)

• N(n) = 0 and N(+(T1,T2)) = N(T1)+N(T2)+1 and N(−(T1,T2)) = N(T1)+N(T2)+1

This is left as an exercise.

(2) Let Σ = {a,b,c} and let a set2 S of words be defined inductively by the rules

(1)
b

(2)
w

(3)
aaw

w w′

(4)
ww′

Suppose that we wish to prove that every word in S has an even number of occurrences of

a. Write #(w) for the number of occurrences of a in w, and

φ(w)
def
= #(w) is even.

We prove that ∀w ∈ S.φ(w) holds, using Rule Induction; thus we need to verify property

closure for each of the rules (1) to (4):

(Rule (1)): #(b) = 0, even. So φ(b) holds.

(Rule (2)): #(c) = 0, even. So φ(c) holds.

(Rule (3)): Suppose that w ∈ S is any element and φ(w) holds, that is #(w) is even (this is

the inductive hypothesis). Then #(aaw) = 2+#(w) which is even, so φ(aaw) holds.

(Rule (4)): Suppose w,w′ ∈ S are any elements and #(w) and #(w′) are even (these are the

inductive hypotheses). Then so too is #(ww′) = #(w)+#(w′).

Thus by Rule Induction we are done: we have ∀w ∈ S.φ(w).

Discussion 3.4.5 Sometimes it is convenient to add a rule R to a set R , which does not

alter the resulting set I. We say that a rule

h1 . . . hk
R

c

is a derived rule of R if there is a derivation tree whose leaves are either the conclusions of

base rules or are instances of the hi, and the conclusion is c. We shall make use of derived

rules in Lemma 4.4.2.

The rule R is called admissible if one can prove

(h1 ∈ I) and . . . and (hk ∈ I) implies (c ∈ I)

2Note that S ⊆ Σ∗. So any element of S is a word, but there are some words based on the alphabet Σ
which are not in S.
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Proposition 3.4.6 Let I be inductively defined by R , and suppose that R is a derived rule.

Then the set I ′ inductively defined by R ∪{R} is also I. Any derived rule is admissible.

Proof It is clear that I ⊂ I ′. It is an exercise in rule induction to prove that I ′⊂ I. Verify

property closure for each of the rules in R ∪{R}, the property φ(i)
def
= i ∈ I. It is clear

that derived rules are admissible. 2

3.5 Recursively Defined Functions

Discussion 3.5.1 Let I be inductively defined by a set of rules R , and A any set. A

function f : I→ A can be defined by

• specifying an element f (b) ∈ A for every base rule b ∈ R ; and

• specifying f (c) ∈ A in terms of f (h1) ∈ A and f (h2) ∈ A .... and f (hk) ∈ A for every

inductive rule h1...,hk
c ∈ R ,

provided that each instance of a rule in R introduces a different element of I—why do we

need this condition? When a function is defined in this way, it is said to be recursively

defined.

Examples 3.5.2

(1) The factorial function F : N→N is usually defined recursively. We set

• F(0)
def
= 1 and

• ∀n ∈ N.F(n+1)
def
= (n+1)∗F(n).

Thus F(3) = (2 + 1) ∗F(2) = 3 ∗ 2 ∗F(1) = 3 ∗ 2 ∗ 1 ∗F(0) = 3 ∗ 2 ∗ 1 ∗ 1 = 6. Are there are

brackets missing from the previous calculation? If so, insert them.

(2) Consider the propositions defined on page 48. Suppose that ψi and xi are proposi-

tions and propositional variables for 1≤ i≤ n. Then there is a recursively defined function

Prop→ Prop whose action is written φ 7→ φ[ψ1, . . . ,ψn/x1, . . . ,xn] which computes the simul-

taneous substitution of the φi for the xi where the xi are distinct. We set

• x[ψ1, . . . ,ψn/x1, . . . ,xn]
def
= ψ j if x is x j;

• x[ψ1, . . . ,ψn/x1, . . . ,xn]
def
= x if x is none of the xi;

•

(φ∧φ′)[ψ1, . . . ,ψn/x1, . . . ,xn]
def
= (φ[ψ1, . . . ,ψn/x1, . . . ,xn])∧ (φ′[ψ1, . . . ,ψn/x1, . . . ,xn])

• The other clauses are similar.
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Discussion 3.5.3 More generally we shall use the notion of simultaneous substitution

on syntax trees with variable binding operations. We shall assume that the reader has

some knowledge of the concepts of free and bound variables. We illustrate the definition

of simultaneous substitution via a simple example. Let F be a constructor with one

argument, and B of two arguments. Consider the syntax trees defined by

v

T

F(T )

T

B(v,T )

where v ranges over a set of variables, and free occurrences of v in T are bound in B(v,T ).

Write [~T/~v] for [T1, . . . ,Tn/v1, . . . ,vn] with the vi all distinct. Then we define by recursion

• v[~T/~v]
def
= Ti if v = vi

• v[~T/~v]
def
= v if v is none of the vi

• F(T )[~T/~v]
def
= F(T [~T/~v])

• B(v,T )[~T/~v]
def
= B(v′,T ′[~T/~v]) where v′ is a fresh variable distinct from all variables in T ,

v, ~T and ~v, and T ′ is T with all free occurrences of v changed to v′.

Note that this definition, while quite adequate for these notes, is rather inefficient from the

point of an implementation. Also, we are cheating a little, in the sense that T ′ has not

been defined formally. All of these matters can be made rigorous—but the definitions are

surprisingly tricky to get right, and quite lengthy, so we omit them.
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Categorical Logic and Type Theory
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Categorical Propositional Logic

4.1 Intuitionistic Propositional Logic

Discussion 4.1.1 In this chapter we shall study (intuitionistic) propositional logic. Let

Gnd be a set of ground propositions. Each such proposition is thought of as a “basic” or

“atomic” proposition. The set of (first order) propositions Prop is inductively defined by the

rules in Table 4.1. There are two distinguished (atomic) propositions true and false. Each

proposition denotes an abstract syntax tree—see Chapter 3.

We shall require the notion of a finite list. For the purposes of these notes, a (finite) list

over a set S is an element of the set

[S]
def
=

[

n<ω
Sn

where Sn is the set of n-tuples of S and S0 def
= {nil} where nil denotes the empty list. We

shall denote a typical element of [S] by s1, . . . ,sn and we shall write s ∈ L to indicate that

s occurs in the list (tuple) L. We shall also write Set(L) for the set { l | l ∈ L }. For

example (taking S to be N) we have Set(2,4,3,4,4,3) = {2,3,4}.

Discussion 4.1.2 An IpL sequent, ∆ ` φ, is a pair consisting of a finite list ∆ of propo-

sitions, together with a proposition φ. We shall adopt some (standard) notation. We use ,

to denote list concatenation. Thus if ∆ ∈ Propn, then ∆,φ stands for the (expected) concate-

nated list in Propn+1. If ∆ ∈ Propn and ∆′ ∈ Propm then ∆,∆′ ∈ Propn+m.

An IpL-signature Sg is specified by giving a set of ground propositions Gnd. An IpL-theory

Th is a pair (Sg,Ax) where Sg is an IpL-signature and Ax is a set of sequents. Each such

sequent is called an axiom of Th. Given a theory Th, the theorems of Th consist of the

sequents that are inductively generated by the rules in Table 4.2. If ∆ ` φ is a theorem (that

is, it has a derivation using the rules) then we shall sometimes write Th B ∆ ` φ.

[p ∈ Gnd]
p true false

φ ψ

φ∧ψ

φ ψ

φ∨ψ

φ ψ

φ→ ψ

Table 4.1: Inductive Definition of Propositions
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[∆ ` φ ∈ Ax]
∆ ` φ

∆,φ,φ′,∆′ ` ψ
EXCH

∆,φ′,φ,∆′ ` ψ

∆,φ,φ,∆′ ` ψ
CTRN

∆,φ,∆′ ` ψ

ID

∆′,φ,∆ ` φ

∆ ` φ φ,∆′ ` ψ
CUT

∆′,∆ ` ψ

TRUE-I

∆ ` true

∆ ` false
FALSE-E

∆ ` ψ

∆ ` φ ∆ ` ψ
AND-I

∆ ` φ∧ψ

∆ ` φ∧ψ
AND-El

∆ ` φ

∆ ` φ∧ψ
AND-Er

∆ ` ψ

∆ ` φ
OR-El

∆ ` φ∨ψ

∆ ` ψ
OR-El

∆ ` φ∨ψ

∆,φ ` θ ∆,ψ ` θ ∆ ` φ∨ψ
OR-Er

∆ ` θ

∆,φ ` ψ
IMP-I

∆ ` φ→ ψ

∆ ` φ→ ψ ∆ ` φ
IMP-E

∆ ` ψ

Table 4.2: Inductive Definition of IpL Theorems

Exercise 4.1.3 Refer to Section 3.3.1. For the inductive definition in Table 4.2, work out

precisely what I and U are.

4.2 Deriving a Categorical Semantics

Discussion 4.2.1 We shall consider how to give a semantics to the logic IpL. In particular

we shall work out how to give a semantics to a theory Th = (Sg,Ax). We have an informal

understanding of a theorem ∆ ` φ, namely that if all of the propositions in ∆ are valid,

then it follows that φ is valid. Of course, there are many ways of making the meaning of

“valid” precise, and these fall under the topics of “pure” logic, and philosophy. Here we

shall assume that the reader has a very basic knowledge of (first order) logic, and we will

not pursue a general discussion of validity.

We shall look for a mathematical “space” (which we shall call H) in which we can inter-

pret, or model, the IpL propositions. For example, H might be a topological space, group,

category, or a poset. We shall assume that H has some notion of “element” (which is very

clear in the case of, for example, a poset) and will write statements like h ∈ H, but we will

not give a precise definition of this notation for the time being.

We shall model a proposition φ as an element [[φ]] ∈ H. We call [[φ]] the denotation of
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φ. We sometimes refer to [[φ]] as the meaning of φ. The reader should recall the classical

denotations of propositions, [[φ]] ∈ B, where B is the set of Booleans. Our semantics will

generalize these ideas. For the time being, we shall assume that [[φ]] is defined for every φ,

and return to the actual definition later on.

A sequent of the form φ ` ψ can be thought of as a “relationship” between φ and ψ. So

we can capture this idea in our model by considering binary relations over H. We shall

denote these relations by ≤ but for the time being we shall make no assumptions about the

properties satisfied by ≤. The minimal requirement of our semantics should be that that

[[φ]]≤ [[ψ]] whenever Th B φ ` ψ.

What about theorems of the form ∆ ` φ? The context is a list of propositions, and each

proposition has a denotation in H. It seems reasonable that the denotation of ∆ should

depend on the denotations of each of the propositions in ∆. Let us write ∆ for the finite list

of denotations of the propositions in ∆, an element of [H]. We can then look for a function

[H]→H whose effect will be written L 7→2(L), so that we can define the denotation of ∆ to

be [[∆]]
def
= 2(∆). (To be more precise, note that a function [H]→H is specified by a family of

functions (2(−)n : Hn→H | n < ω). However, we shall overload notation, writing L 7→2(L)

for any L 7→ 2(L)n.) In the case that ∆ is simply φ, we would expect that [[∆]] = [[φ]]. Thus

we will assert that 2(h)
def
= h for any h ∈ H. The minimal requirement of our semantics

should be that [[∆]]≤ [[φ]] whenever Th B ∆ ` φ. In such a case we say that the theorem is

satisfied by the semantics.

We return to the denotation of propositions. It is reasonable to require the denotational

operation − 7→ [[−]] to be defined by recursion using the inductive definition of propositions.

Thus we shall write # : H×H → H for a function which gives the semantics of a logical

operator #, so that we may define

• [[true]]
def
= > ∈ H, an element to be determined;

• [[false]]
def
= ⊥ ∈ H, an element to be determined;

• [[φ∧ψ]]
def
= [[ψ]] ∧ [[ψ]];

• [[φ∨ψ]]
def
= [[ψ]] ∨ [[ψ]]; and

• [[φ→ ψ]]
def
= [[ψ]] → [[ψ]],

where the denotation [[p]] of any ground proposition may be chosen to be any element of H.

The axioms of a theory assert that certain sequents are to be regarded as “fundamental”

facts. The rules for inductively defining theorems allow us to derive new facts based on the

fundamental facts. This leads to the definition of a structure for a signature Sg and a model

of a theory. A structure M in H for a signature is given by specifying an element [[p]]M ∈H
for each p ∈ Gnd. One can then define [[φ]]M by recursion as above, and a model of Th is

a structure M which satisfies each of the axioms of Th. We shall now look for conditions
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on (H,≤,2(−), # ,⊥,>) which ensure that for any theory Th and for any model M, the

theorems are all satisfied. We shall attempt to discover necessary and sufficient conditions.

Consider any sequent ∆ ` φ, not just a theorem, which is also said to be satisfied by M if

[[∆]] = 2(∆)≤ [[φ]]. A typical rule for deducing theorems looks like

∆1 ` φ1 . . . ∆n ` φn
R

∆ ` φ

In order to ensure that all theorems are satisfied, we want to find necessary and sufficient

conditions on all such rules R to ensure that for all ∆i, φi, ∆ and φ

(2(∆1)≤ [[φ1]]) and . . . and (2(∆n)≤ [[φn]]) implies 2(∆)≤ [[φ]]

If this holds, we shall say that the semantics is sound for the rule. It is clearly sufficient to

require that for all Li,L ∈ [H] and hi,h ∈ H

(2(L1)≤ h1) and . . . and (2(Ln)≤ hn) implies 2(L)≤ h (∗)

However, (∗) is also necessary. Each sequent ∆ j ` φ j can take the form

Ax B p1, . . . , pm ` p

As the satisfaction of such axioms must range over all possible models, the images ([[p1]], . . . , [[pm]], [[p]])

must be onto [H]×H. Thus in fact it is necessary that (∗) holds.

We shall consider each of the rules for deriving theorems in turn, and gradually establish

necessary and sufficient conditions (NSC) for soundness. Before that we shall deduce a

couple of facts by looking at restricted instances of rules. First note that there are instances

of the rule ID of the form φ ` φ. As φ could be any ground proposition, it is necessary that

for any h ∈H we have h≤ h, that is ≤ must be reflexive. There are instances of the rule CUT

of the form
δ ` φ φ ` ψ

δ ` ψ
Here, each sequent could take the form p ` q, because the two hypotheses could be axioms

of this form. Thus it is necessary that ≤ be transitive. So ≤ must satisfy the axioms of

a preorder, or, put another way, H and ≤ together form a category in which there is at

most one morphism h ≤ h′ between any two objects h,h′ in H. Although we do not have

conditions which force H to be a set, we shall keep this discussion simple by requiring this.

Thus (H,≤) is a preordered set, and we can talk about the notions of bounds, meets, joins

and so on within such a standard framework.

ID The NSC for soundness are that 2(L,h,L′)≤ h for all L,L′ ∈ [H] and h∈H. Equivalently,

the NSC are that 2(L) is a lower bound of the set Set(L) for any L ∈ [H].

EXCH The NSC are that for any L,L′,h,h′,k we have

2(L,h,h′,L′)≤ k implies 2(L,h′,h,L′)≤ k
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and thus simpler but equivalent NSC are

2(L,h,h′,L′)∼= 2(L,h′,h,L′)

CTRN In a similar fashion to the previous rule, we can deduce that NSC are for any L,L′,h,h′

we have

2(L,h,h,L′)∼= 2(L,h,L′)

CUT The NSC are that for any L,L′ ∈ [H] and k,k′ ∈ H, if 2(L) ≤ k and 2(k,L′) ≤ k′ then

2(L,L′) ≤ k′. Taking L
def
= h for any h ∈ H and k′

def
= 2(k,L′), we can deduce that if h ≤ k

then 2(h,L′) ≤ 2(k,L′). Given the NSC from EXCH, it is easy to see that 2(−) is in fact

monotone in each argument—short exercise. So suppose now that L
def
= k1, . . . ,kn and for

each i, h≤ ki. Then we can calculate, using the NCS from CTRN for the first step,

h = 2(h) ∼= 2(h, . . . ,h,h)
≤ 2(k1, . . . ,kn−1,kn)

Hence we see that 2(L) is a greatest lower bound (meet) of the finite set Set(L), which is

determined uniquely up to isomorphism because H is a preordered set. In fact in the next

section, we shall define 2(L) to be
V

Set(L) for any L ∈ [H]. For the time being we shall

stick to the formal box notation on lists, and make use of the properties we have deduced.

OR-Il and OR-Ir and OR-E NSC for the soundness of these rules are

2(L)≤ h implies 2(L)≤ h ∨ k
2(L)≤ k implies 2(L)≤ h ∨ k

(2(L,h)≤ l and 2(L,k)≤ l and 2(L)≤ h ∨ k) implies 2(L)≤ l

By taking L to be h and k in the first two implications respectively, we can see that we must

have h∨ k ≤ h ∨ k. Now take L to be h ∨ k and l to be h∨ k in the third implication. Note

that 2(h ∨ k,h)≤ h≤ h∨k, similarly 2(h ∨ k,k)≤ k≤ h∨k, and hence that h ∨ k≤ h∨k.

Thus up to isomorphism, h ∨ k is given by join. However, this is not sufficient to ensure that

the third implication always holds. In fact the joins in H must be distributive for meets,

that is

2(L′,h′ ∨ k′)≤ 2(L′,h′) ∨ 2(L′,k′) (∗)

must always hold. To see that this is sufficient for soundness of the third implication, note

that 2(L)≤ 2(L,h ∨ k) if 2(L)≤ h ∨ k, and thus using (∗) we have 2(L)≤ l ∨ l ≤ l. To

see necessity, just take L to be 2(L′,h′ ∨ k′) and l to be 2(L′,h′) ∨ 2(L′,k′), along with

h′ for h and k′ for k. It is an exercise to check that the hypotheses of the third implication

hold, and thus we can deduce

2(L′,h′ ∨ k′)≤ 2(L′,h′) ∨ 2(L′,k′)

and hence that ∗ holds.
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[[p]] is specified
(where > ∈ H is the top element)

[[true]]
def
= >

(where ⊥ ∈ H is the bottom element)
[[false]]

def
= ⊥

[[φ]] = h [[ψ]] = k

[[φ∧ψ]] = h∧ k

[[φ]] = h [[ψ]] = k

[[φ∨ψ]] = h∨ k

[[φ]] = h [[ψ]] = k

[[φ→ ψ]] = h⇒ k

Table 4.3: Recursive Definition of IpL Semantics

IMP-I and IMP-E The NSC for IMP-I are that if 2(L,h)≤ k then L≤ h → k, and that if L≤ h → k
and L≤ h then L≤ k.

From the second condition, it follows by taking L to be 2(h,h → k) that

2(h,h → k)≤ k (†)

Now suppose that L ≤ h → k. Then it follows from the monotonicity of 2(−), and (†),

that 2(L,h)≤ k. Hence (recall the first condition) 2(L,h)≤ k just in case L≤ h → k. Thus

+ → − is determined uniquely up to isomorphism as Heyting implication—see page 12.

We conclude that (H,≤) is a Heyting prelattice.

Exercises 4.2.2

(1) Work out NSC for the soundness of the three rules AND-I and AND-El and AND-Er.

(2) Work out NSC for the soundness of the rules TRUE-I and FALSE-E.

4.3 Categorical Semantics and the Soundness Theorem

Discussion 4.3.1 Let Gnd be a set of ground propositions, and M a structure for Gnd
in a Heyting prelattice H. Then the semantics of propositions is given by recursion using

the inductive rules for deriving propositions, and the definition is given in Table 4.3. The

structure M satisfies a sequent ∆ ` φ if

[[∆]]
def
=

^

Set(∆) =
^

{ [[δ]] | δ ∈ ∆ } ≤ [[φ]]

Recall that M is a model of Th = (Sg,Ax) if it satisfies each of the axioms in Ax. We now

have a soundness theorem.

Theorem 4.3.2 Let Th = (Sg,Ax) be an IpL-theory and M a model of Th in a Heyting

prelattice. Then M satisfies each of the theorems of Th.
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Proof The details of the proof appear implicitly in Section 4.2. It is an exercise to

verify the details explicitly. 2

Examples 4.3.3 For examples of Heyting prelattices (and lattices) see Section 1.3.

4.4 Classifying Preorders and the Completeness Theorem

Discussion 4.4.1 A classifying preorder for any IpL-theory is a Heyting prelattice which

is, in some sense, the “least” such preorder in which there is a model of Th. We shall

give a definition of classifying preorder which determines it uniquely up to isomorphism

of preordered sets, and characterizes it by a universal property. Moreover, we shall show

how to give an explicit construction of such a preorder. First, we need some preliminary

definitions.

Suppose that we are given a homomorphism of Heyting prelattices, say f : H → K, and

a model M of a theory Th = (Sg,Ax) in H. We shall show how to define a new model

f∗M, namely one of Th in K. We can define a structure f∗M for Sg in K by specifying

[[p]] f∗M
def
= f ([[p]]M)∈K. In fact this structure is indeed a model. Firstly one can prove by rule

induction over the definitions of the propositions that for any φ we have [[φ]] f∗M
∼= f ([[φ]]M);

more precisely we prove

∀φ ∈ Prop. [[φ]] f∗M
∼= f ([[φ]]M)

by rule induction. Property closure for the base rules is trivial in the case of ground propo-

sitions, and holds (immediately) for the rules for true and false because f is a homomor-

phism. Property closure for the inductive rules relies on f being a homomorphism, and the

easy fact (Lemma 1.2.5) that computing meets preserves isomorphisms. Now suppose that

Ax B ∆ ` φ. Then we have

[[∆]] f∗M
def
=

V

{ [[δ]] f∗M | δ ∈ ∆ } ∼=
V

{ f ([[δ]]M) | δ ∈ ∆ } ∼=′

f (
V

{ [[δ]]M | δ ∈ ∆ })≤ f ([[φ]]M)∼= [[φ]] f∗M

where the isomorphisms ∼= hold by the fact proved above, and ∼=′ holds because f is a

homomorphism. Thus f∗M satisfies the axioms of Th too, and is thus a model of Th in K.

Let Th be a IpL-theory. A Heyting prelattice Cl(Th) is called the classifying prelattice of Th
if there is a model G of Th in Cl(Th) for which given any Heyting prelattice K, and a model

M of Th in K, then there is a homomorphism of Heyting prelattices m : Cl(Th)→ K such

that m∗G = M, and moreover any two such m are naturally isomorphic.

T h
M

- K

Cl(Th)

G
?

m

-

where m∗G = M.
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Thus Cl(Th) is defined up to isomorphism by a universal property.

Before stating a theorem concerning the existence of such classifiers, we have a prelimi-

nary lemma. The lemma states that, given an IpL-theory Th, the collection of theorems

inductively defined by the set of rules in Table 4.2, can in fact be inductively defined by an

alternative set of rules in Table 4.4. These latter rules form what is known as an adjoint

calculus. This is because the definitions of meets, joins and Heyting implications are all

examples of the categorical notion of adjunction—these notes do not make use of adjunc-

tions, and we will not pursue such ideas here. However, the reader should notice that the

(adjoint) rules for conjunction, disjunction and implication are virtually mirror images of

the definitions of meet, join and Heyting implication.

Lemma 4.4.2 The class of theorems inductively defined by the set of rules in Table 4.2 is

exactly the same as that defined by the rules in Table 4.4. Note that

s1 . . . sn
=========

s

abbreviates the n+1 rules
s1 . . . sn

s

s

si

Proof Each rule found in one inductive definition is a derived rule of the other system.

The proof of this is routine manipulation of the rules, but it may require a little thought.

2

Theorem 4.4.3 Each IpL-theory Th has a classifying Heyting prelattice Cl(Th). In fact we

can construct a canonical classifier using the syntax of Th, where m∗G = M.

Proof Given Th = (Sg,Ax), define a relation ≤ on the set Prop of propositions by φ≤ ψ
if and only if Th B φ ` ψ. Then using Lemma 4.4.2 we can easily see that (Prop,≤) is

a Heyting prelattice; the rules yield the existence of binary meets and joins, which is

equivalent to (non-empty) finite meets and joins, and it is an exercise to check the dis-

tributivity requirement (hint: use ` OR-E backwards). Existence of Heyting implication,

top, and bottom elements is also immediate.

We can define a structure G for Sg in Cl(Th) by setting [[p]]G
def
= p. It follows trivially that

[[φ]]G = φ, and hence that G satisfies the axioms and so is a model.

Now let K be a Heyting prelattice and M a model of Th in K. We shall show that there

is a unique (up to isomorphism) homomorphism of Heyting prelattices m : Cl(Th)→ K
such that M = m∗G.
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[∆ ` φ ∈ Ax]
∆ ` φ

∆,φ,φ′,∆′ ` ψ
EXCH

∆,φ′,φ,∆′ ` ψ

∆,φ,φ,∆′ ` ψ
CTRN

∆,φ,∆′ ` ψ

ID

∆′,φ,∆ ` φ

∆ ` φ φ,∆′ ` ψ
CUT

∆′,∆ ` ψ

a FALSE-E

∆, false ` φ
a TRUE-I

∆ ` true

∆ ` φ ∆ ` ψ
========== a AND-I

∆ ` φ∧ψ

∆,φ ` θ ∆,ψ ` θ
============= a OR-E

∆,φ∨ψ ` θ

∆,φ ` ψ
======== a IMP-I

∆ ` φ→ ψ

Table 4.4: Inductive Definition of IpL Theorems by Adjoint Rules

We define m : Cl(Th)→ K by φ 7→ [[φ]]M. Suppose that φ ≤ ψ in Cl(Th). Then by Theo-

rem 4.3.2, and the definition of ≤, we have m(φ) = [[φ]]M ≤ [[ψ]]M = m(ψ) in K. Thus m is

monotone. Also, given the definition of [[φ]]M for arbitrary φ, m is trivially a homomor-

phism of Heyting prelattices. Finally for each ground proposition p, we have

[[p]]M = m(p) = m([[p]]G) = [[p]]m∗G

and thus M = m∗G.

Suppose that there is another homomorphism of Heyting prelattices m′ : Cl(Th)→ K for

which m′∗G = M. If φ is an element of Cl(Th) then

m(φ)
def
= [[φ]]M = [[φ]]m′∗G

∼= m′([[φ]]G) = m′(φ)

for any φ, and hence m∼= m′. 2

Discussion 4.4.4 We have seen that the semantics is sound, meaning that any theorem

of a theory is satisfied by a model. The converse notion to soundness is called completeness.

The semantics for a theory Th is said to be complete if a sequent S of Th is a theorem

whenever for all Heyting prelattices H, S is satisfied by all models M in H.

Theorem 4.4.5 The semantics of IpL-theories in Heyting prelattices is both sound and

complete.
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Proof Soundness was proved in Theorem 4.3.2. Conversely, let ∆ ` φ be a sequent for a

theory Th. If it is satisfied by all models, in particular it is satisfied by the generic model of

Th in Cl(Th). Thus we have
V

Set(∆)≤ φ in Cl(Th). Hence

Th B (. . .((δ1∧δ2)∧δ3) . . .)∧δn ` φ

where δi ∈ Set(∆), from which we may deduce (care—exercise to check the details!) that

Th B ∆ ` φ as required. 2
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Categorical Type Theory

5.1 Type Theory with Products, Sums and Functions

Discussion 5.1.1 We shall define the notion of a signature for a type theory, which con-

sists of basic data from which to build types and terms.

A λ×+-signature, Sg, is given by the following data:

• A collection of ground types. The collection of types is inductively defined by the rules in

Table 5.1, where γ is any ground type. We call σ× τ a binary product type, σ + τ a binary

sum type, and σ⇒ τ a function type.

• A collection of function symbols each of which has an arity which is a natural number

(possibly 0).

• A sorting for each function symbol f , which is a non-empty list [σ1, . . . ,σa,σ] of a + 1
types, where a is the arity of f . We shall write f : σ1 . . .σa→ σ to denote the sorting of f .

In the case that k is a function symbol of arity 0 we shall denote the sorting by k : σ and the

function symbol k will be referred to as a constant of type σ.

We can now inductively define the raw terms generated by a λ×+-signature Sg, using

the rules given in Table 5.2, where we assume that we are given a countably infinite stock

of variables, say Var = {x,y, . . .}. In the figure, x,y are any variables, k is any constant

and f is any function symbol of non-zero arity a, and σ and τ are any types.

Informally, think of the raw terms in the following ways:

• 〈〉 can be thought of as “a unique element of a one point set”.

• σ× τ is a “cartesian product” of the types σ and τ. 〈−,−〉 takes a pair of arguments M
and N and returns the pair 〈M,N〉.

• Fst takes a pair P and returns the first argument Fst(P) and similarly Snd takes a pair P
and returns the second argument Snd(P).

• σ + τ is a “disjoint union” of the types σ and τ. Further, Inlτ(M) is an insertion of M (of

γ unit null

σ τ

σ× τ

σ τ

σ+ τ

σ τ

σ⇒ τ

Table 5.1: Inductive Definition of Types
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x k

M1 . . . Ma

f (M1, . . . ,Ma)

〈〉

M N

〈M,N〉

P

Fst(P)

P

Snd(P)

M

Inlτ(M)

M

Inrσ(M)

S E F

Case(S, x.E | y.F)

M

λx : σ.M

F A

F A

Table 5.2: Inductive Definition of Raw Terms

type σ) into the disjoint union σ+ τ.

• The raw term Case(S, x.E | y.F) represents E[M/x] if it is the case that the term S (of type

σ + τ) “is” a term M of type σ, and represents F[N/y] if it is the case that S “is” a term N
of type τ. Note that any free occurrences of the variable x in E, and y in F, are bound in

Case(S, x.E | y.F).

• σ⇒ τ is a “function space” of the types σ and τ. λx : σ.M is a function whose value at an

argument A is M with free occurrences of the variable x in M replaced by A. Note that any

free occurrences of x in M are bound in λx : σ.M.

• F A is the result of the application of a function F to an argument A.

Remark 5.1.2 Each raw term denotes an abstract syntax tree. For example, 〈M,N〉 is

sugar for Pair(M,N) and λx : σ.M is sugar for lam(x,σ,M). We shall soon make use of

simultaneous substitution of raw terms for free variables, T [~U/~v]. Please see page 51. Do

not forget that there are variable binding operations, and that the terms Ni replace free

occurrences of the vi in T . All variable clashes must be renamed.

Discussion 5.1.3 A context is a finite list of (variable, type) pairs, usually written as

Γ = [x1 : σ1, . . . ,xn : σn], where the variables are required to be distinct. A term-in-context

is a judgement of the form Γ `M : σ where Γ is a context, M is a raw term and σ a type.

Given a signature Sg, the proved terms are those terms-in-context which are inductively

generated by the rules in Table 5.3. If Γ `M : σ is a proved term, we shall sometimes write

Sg B Γ ` M : σ to indicate this. This definition deserves comment. How exactly does it

map onto our definition of inductively defined sets? Recall Section 3.3.1. The set U is the

set of all terms-in-context, formally the set whose elements are all the triples of the form
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Γ,x : σ,Γ′ ` x : σ
(k : σ)

Γ ` k : σ

Γ `M1 : σ1 . . . Γ `Ma : σa
( f : σ1, . . . ,σa→ τ)

Γ ` f (M1, . . . ,Ma) : τ

Γ ` 〈〉 : unit

Γ `M : σ Γ ` N : τ

Γ ` 〈M,N〉 : σ× τ

Γ ` P : σ× τ

Γ ` Fst(P) : σ

Γ ` P : σ× τ

Γ ` Snd(P) : τ

Γ ` S : null

Γ ` Empσ(S) : σ

Γ `M : σ

Γ ` Inlτ(M) : σ+ τ

Γ ` N : τ

Γ ` Inrσ(N) : σ+ τ

Γ ` S : σ+ τ Γ,x : σ ` E : δ Γ,y : τ ` F : δ

Γ ` Case(S, x.E | y.F) : δ

Γ,x : σ `M : τ

Γ ` λx : σ.M : σ⇒ τ

Γ ` F : σ⇒ τ Γ ` A : σ

Γ ` F A : τ

Table 5.3: Inductive Definition of λ×+ Proved Terms

(Γ,M,σ). Instead of writing (Γ,M,σ) ∈U we write Γ `M : σ. The set of proved terms, that

is the inductively defined subset I of U , consists of those terms-in-context Γ `M : σ which

have a derivation tree, that is

(Γ,M,σ) ∈ I ⇐⇒ Sg B Γ `M : σ

using the notation introduced above.

Remark 5.1.4 It is assumed that both the hypothesis and conclusion of each of these rules

are well formed. For example, in the rule which introduces a function type, it is implicit

that x does not appear in Γ, because Γ is a well formed context in both the hypothesis and

conclusion of the rule.

Discussion 5.1.5 Now let us begin to think about how to manipulate proved terms.

Informally, it should not matter what the order of the (variable, type) pairs is in a context

Γ. Also, it is reasonable to be able to add more variables to a context of a proved term

to produce another proved term. We might say that “declaring more identifiers for the

program M will not affect the well formedness of M; and the order of declaration is also

unimportant.” Finally, we can give rules for the substitution of raw terms. Let us make

these ideas precise.

We can derive rules for the permutation of contexts (altering the order of (variable, type)

pairs), and weakening of contexts (adding (variable, type) pairs to contexts). Let π be a

permutation of the first n positive integers. If Γ = [x1 : σ1, . . . ,xn : σn] then write πΓ for the
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context [xπ(1) : σπ(1), . . . ,xπ(n) : σπ(n)]. Also write Γ ⊆ Γ′ if Γ is a sublist of Γ′. The next few

results formalise some of our intuitions. The proofs are easy, but we shall spell out the

proof of the first result in detail to illustrate the techniques involved. Each gives rise to an

admissible rule—why?

Lemma 5.1.6 Whenever Sg B Γ `M : σ, we have Sg B πΓ `M : σ.

Proof We use rule induction for the rules in Table 5.3. More precisely we prove

∀ Sg B Γ `M : σ. Sg B πΓ `M : σ

We give some examples of property closure.

(Property Closure for the base rule for variables): We have to show that Sg B Γ,x :
σ,Γ′ ` x : σ, where Γ,x : σ,Γ′ is any permutation of the list Γ,x : σ,Γ′. But this is the case,

being an instance of the rule for introducing variables!

(Property Closure for the inductive rule for function symbols): The inductive hypotheses

are Sg B πΓ `Mi : σi for each i, that is, there is a derivation for each term-in-context.

But now we can just apply an instance of the rule to these derivations to deduce that

Sg B πΓ ` f (M1, . . . ,Ma) : σ, as required. 2

Lemma 5.1.7 If Γ⊆ Γ′ and Sg B Γ `M : σ, then Sg B Γ′ `M : σ.

Proof Rule induction for the rules in Table 5.3. 2

With this, we can prove a simple lemma which tells us how we may substitute raw terms

in other raw terms.

Lemma 5.1.8 Suppose that Sg B Γ,x : σ,Γ′ ` N : τ and Sg B Γ ` M : σ. Then Sg B

Γ,Γ′ ` N[M/x] : τ.

Proof We use induction Rule induction for the rules in Table 5.3. The precise state-

ment to be proved is

∀Sg B ∆ ` N : τ.

∀Γ,Γ′,x,σ,M. (∆≡ Γ,x : σ,Γ′ and Sg B Γ `M : σ) implies Sg B Γ,Γ′ ` N[M/x] : τ

appealing to Lemma 5.1.7 in the case when N is x. Recall also Remark 5.1.4. 2

Proposition 5.1.9 Suppose that Γ is a context and that M is a raw term. If we are able

to derive Sg B Γ `M : σ and Sg B Γ `M : σ′ then the types σ and σ′ are identical.
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Proof Use induction on the derivation of Sg B Γ `M : σ. 2

Discussion 5.1.10 In view of Proposition 5.1.9, we might say that the rules in Table 5.3

define a monomorphic type assignment system, in the sense that for any given context Γ, if

Sg B Γ `M : σ for some raw term M, then σ is the unique type which may appear “after

the colon.” We refer informally to σ as the type of M.

Exercises 5.1.11

(1) Work through the details of the proofs of Lemmas 5.1.7 and 5.1.8, and Proposi-

tion 5.1.9. Prove that if Sg B Γ `M : σ, then the free variables of M appear in Γ.

(2) Fix a signature. Let x1 : σ1, . . . ,xn : σn ` N : τ be a proved term, and Γ `Mi : σi proved

terms for each i. Prove that Γ ` N[~M/~x] : τ is a proved term.

Discussion 5.1.12 A λ×+-theory, Th, is a pair (Sg,Ax) where Sg is a λ×+-signature

and Ax is a collection of equations-in-context for Sg. An equation-in-context is a judge-

ment of the form Γ ` M = M′ : σ where Γ ` M : σ and Γ ` M′ : σ are proved terms. The

equations-in-context in Ax are called the axioms of the theory. We indicate this by writ-

ing Ax B Γ ` M = M′ : σ. The theorems of Th consist of the judgements of the form

Γ ` M = M′ : σ inductively generated1 by the rules in Tables 5.4 and 5.5—it is a conse-

quence of the rules that Sg B Γ `M : σ and Sg B Γ `M′ : σ, and hence that each theorem

is indeed an equation-in-context.

5.2 Deriving a Categorical Semantics

Discussion 5.2.1 Suppose we model σ and τ by “objects” A and B about which we make

no assumptions. Let us model x : σ ` M : τ as a “relationship” between A and B about

which we make no assumptions; we write A
m
−→ B for this. Now let us think about how

our syntactic term language is built up. Recall that each term is a finite tree. Each such

tree has a top level constructor (R say), and a finite number of immediate subtrees. For the

purposes of this discussion, we shall restrict to the case when there is one subtree, and the

outermost constructor does not bind variables.2

We shall analyze the semantics of terms by noting that all terms are built up by substitution,

in the sense that a raw term R(M) is precisely R(x)[M/x]. We now think about the process

of substitution in general. Suppose that we have proved terms x : σ `M : τ and y : τ ` N : γ.

1Note that in the first rule, Ax B Γ ` M = M′ : σ is not an hypothesis, but a “side condition”. The
rule is a base rule. It would be better to write all of the side conditions to the right of rules (such as

“where π is a permutation”) but this would consume a lot of space. We will often write side conditions

above the rule line; with a modicum of common sense this should not cause problems.
2A proper treatment of variable binding is beyond the scope of these notes. We shall identify syntax

trees up to a re-naming of bound variables.
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Ax B Γ `M = M′ : σ

Γ `M = M′ : σ

Sg B Γ `M : σ

Γ `M = M : σ

Γ `M = M′ : σ

Γ `M′ = M : σ

Γ `M = M′ : σ Γ `M′ = M′′ : σ

Γ `M = M′′ : σ

Γ `M = M′ : σ
(where π is a permutation)

πΓ `M = M′ : σ

Γ `M = M′ : σ
(where Γ⊆ Γ′)

Γ′ `M = M′ : σ

Γ,x : σ ` N = N ′ : τ Γ `M = M′ : σ

Γ ` N[M/x] = N ′[M′/x] : τ

Table 5.4: Inductive Definition of λ×+ Theorems

We have seen that there is a proved term x : σ ` N[M/y] : γ—so how should we model this?

Let us just say for the moment that whatever models this term depends on how we model

x : σ `M : τ and y : τ ` N : γ. We can write this as

[[x : σ `M : τ]] = A
m
−→ B [[y : τ ` N : γ]] = B

n
−→C

[[x : σ ` N[M/y] : γ]] = A
2(n,m)
−→ C

where 2(n,m) is some relationship (between A and C) depending on n and m. What about

the order of substitution of terms for term variables? Let z : γ ` L : δ be a further proved

term (where we tacitly assume that x, y and z are distinct variables). Note that we shall

identify the semantics of the proved terms

x : σ ` (L[N/z])[M/y] : δ and x : σ ` L[N[M/y]/z] : δ

because (L[N/z])[M/y] and L[N[M/y]/z] are equal syntax trees up to re-naming bound vari-

ables. Thus

2(2(l,n),m) = 2(l,2(n,m))

Now we shall think about how proved terms with exactly one free variable are formed.

We will have to model x : σ ` x : σ as a relationship A
?A−→ A. If we think about how the

substitution of terms for variables is modelled, then we deduce that if E
e
−→ A and A

m
−→ B

then 2(?A,e) = e and 2(m,?A) = m. A proved term x : σ ` R(M) : τ′ is the proved term

x : σ ` R(y′)[M/y′] : τ′, and so will be modelled by the relationship A
2(r,m)
−→ B′, where B′
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Sg B Γ `M : unit

Γ `M = 〈〉 : unit

Sg B Γ `M : σ Sg B Γ ` N : τ

Γ ` Fst(〈M,N〉) = M : σ

Sg B Γ `M : σ Sg B Γ ` N : τ

Γ ` Snd(〈M,N〉) = N : τ

Sg B Γ ` P : σ× τ

Γ ` 〈Fst(P),Snd(P)〉= P : σ× τ

Sg B Γ ` S : null Sg B Γ,x : null `M : σ

Γ ` Empσ(S) = M[S/x] : σ

Sg B Γ `M : σ Sg B Γ,x : σ ` E : δ Sg B Γ,y : τ ` F : δ

Γ ` Case(Inlτ(M), x.E | y.F) = E[M/x] : δ

Sg B Γ ` N : τ Sg B Γ,x : σ ` E : δ Sg B Γ,y : τ ` F : δ

Γ ` Case(Inrσ(N), x.E | y.F) = F[N/x] : δ

Sg B Γ ` S : σ+ τ Sg B Γ,z : σ+ τ ` L : δ
(provided x,y 6∈ fv(L))

Γ ` Case(S, x.L[Inlτ(x)/z] | y.L[Inrσ(y)/z]) = L[S/z] : δ

Γ ` S = S′ : σ+ τ Γ,x : σ ` E = E ′ : δ Γ,y : τ ` F = F ′ : δ

Γ ` Case(S, x.E | y.F) = Γ ` Case(S′, x.E ′ | y.F ′) : δ

Sg B Γ,x : σ `M : τ Sg B Γ ` A : σ

Γ ` (λx : σ.M)A = M[A/x] : τ

Sg B Γ ` F : σ⇒ τ
(provided x 6∈ fv(F))

Γ ` λx : σ.(Fx) = F : σ⇒ τ

Γ,x : σ `M = M′ : τ

Γ ` λx : σ.M = λx : σ.M′ : σ⇒ τ

Table 5.5: Inductive Definition of λ×+ Theorems, Continued
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models τ′ and we specify that the proved term x : τ ` R(x) : τ′ is modelled by B
r
−→ B′. Now

we summarise our deductions, writing n◦m for 2(n,m) and idA for ?A:

• Types are interpreted by “objects,” say A, B . . .

• Proved terms are interpreted by “relationships,” say A
m
−→ B . . .

• For each object A there is a relationship idA.

• Given relationships A
m
−→ B and B

n
−→C, there is a relationship A

n◦m
−→C.

• Given relationships E
e
−→ A and A

m
−→ B, then we have idA ◦ e = e and m◦ idA = m.

• For any A
m
−→ B, B

n
−→C and C

l
−→ D, we have l ◦ (n◦m) = (l ◦n)◦m.

Note that the above summary amounts to the specification of a category. Thus we have

deduced, subject to certain primitive assumptions about how to model constructors and

substitution, that we can model type theory in which exactly one free variable appears in

a term, in an arbitrary category. In such a category, the substitution of raw terms for

variables will be interpreted by composition of morphisms.

Following our intuitions about more than one variable appearing in a term M, we will

model a proved term x1 : σ1, . . . ,xn : σn ` M : τ in a category with finite products as a

morphism of the form [[Γ `M : τ]] : [[Γ]]→ [[τ]] where Γ def
= x1 : σ1, . . . ,xn : σn and [[Γ]] stands

for [[σ1]]× . . .× [[σn]].

Discussion 5.2.2 We shall give a semantics to λ×+-theories. Some readers may know

that this syntax can be modelled in bicartesian closed categories. However, we shall present

a uniform analysis of the syntax and rules of λ×+-theories to discover what, in categorical

terms, is the most general interpretation. Types will be modelled by objects in a category.

In a λ×+-theory, the types are specified by giving a collection of ground types, and then

constructing further types from the ground types using the type constructors ×, + and ⇒.

The interpretation of a type σ× τ will depend on the interpretations of σ and τ, and sim-

ilarly for the sum and function type constructors. The proved terms will be interpreted by

morphisms in a category, and the assumption that the theorems are soundly interpreted

will then determine equations which hold between morphisms. In the cases of binary prod-

uct and sum types, and function types, we shall see that the equations between morphisms

will determine the objects which model the types up to isomorphism. Finally, recall the

basic assumption that all of our syntax is interpreted in a category with (at least) finite

products: products are used to model the list of types which appear in contexts.

Let us suppose that we are given a λ×+-theory Th = (Sg,Ax) and that C is a (locally small)

category with finite products. First we consider the types of Sg. We have to give an object

[[γ]] of C to interpret each of the ground types γ, an object [[unit]] to interpret unit, and an

object [[null]] to interpret null. We cannot say anything more specific at the moment. There

should be operations in C which give objects A2B, A⊕B and A3B for all objects A and
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B so that we can define [[σ× τ]] def
= [[σ]]2[[τ]], [[σ + τ]] def

= [[σ]]⊕ [[τ]], and [[σ⇒ τ]] def
= [[σ]]3[[τ]].

Having done this, we can now choose a morphism [[ f ]] : [[σ1]]× . . .× [[σn]]→ [[σ]] in C for each

function symbol f : σ1 . . .σn→ σ of Sg. Now recall that the interpretation of a proved term

Γ `M : σ is given by a morphism [[Γ `M : σ]] : [[Γ]]→ [[σ]] in C . At the moment we do not

know how to define such an interpretation, but by looking at how to soundly interpret the

theorems of Th we will deduce how to do this.

Let us think about the rules of formation of proved terms in general, assuming just one

hypothesis. A typical rule looks like

Γ `M : σ
(R)

Γ ` R(M) : τ

where R(M) is a new raw term depending on M. Now suppose that m
def
= [[Γ `M : σ]] which

is an element of C ([[Γ]], [[σ]]). How do we model [[Γ ` R(M) : τ]] ∈ C ([[Γ]], [[τ]])? All we can say

at the moment is that this latter morphism will depend on m, and we can model this idea

by having a function

Φ[[σ]],[[τ]],[[Γ]] : C ([[Γ]], [[σ]])−→ C ([[Γ]], [[τ]])

and setting [[Γ ` R(M) : τ]] def
= Φ[[σ]],[[τ]],[[Γ]](m). Suppose that x : γ `M : σ and y : γ′ ` N : γ are

any two given proved terms. If m
def
= [[x : γ ` M : σ]] and n

def
= [[y : γ′ ` N : γ]] then [[y : γ′ `

M[N/x] : σ]] = m◦n. Note that there are proved terms

y : γ′ ` R(M)[N/x] : τ and y : γ′ ` R(M[N/x]) : τ.

However, both of the above raw terms should be syntactically identical up to re-naming,

and therefore the categorical interpretations should be the same, that is

Φ[[σ]],[[τ]],[[γ]](m)◦n = Φ[[σ]],[[τ]],[[γ′]](m◦n). (∗)

In fact we can be certain that (∗) will hold if we demand that for every object A and B of C
there is a natural transformation

ΦA,B : C (−,A)−→ C (−,B) : C op −→ Set.

The existence of this natural transformation is not only sufficient for the soundness of R,

but if we are considering the rule as part of any theory Th it is also necessary. This is

because M could be any term of the form f (~x) or k where f and k are function symbols, and

hence the denotation of M may be any morphism. Let us now think about specific types

and terms.

First we deal with the type unit, interpreted by an object U = [[unit]]. There must always be

a morphism u[[Γ]]
def
= [[Γ ` 〈〉 : unit]] : [[Γ]]→U . Looking at the equations for the unit type, if

this is to be soundly interpreted, then whenever there is a morphism m
def
= [[Γ `M : unit]] in
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C , we must have m = u[[Γ]]. Noting that ground types could denote any objects in C , NSC for

soundness are that for any object A of C , there must exist a unique morphism uA : A→U ,

that is up to isomorphism [[unit]] is a terminal object 1 of C .

Recall that the rule for introducing product terms is

Γ `M : σ Γ ` N : σ

Γ ` 〈M,N〉 : σ×σ

In order to soundly interpret this rule we shall need a natural transformation

ΦA,B : C (−,A)×C (−,B)−→ C (−,A2B)

for all objects A and B of C . Now let m : C→ A and n : C→ B be morphisms of C . Applying

naturality in C at the morphism 〈m,n〉 : C→ A×B we deduce

(ΦA,B)C(πA〈m,n〉,πB〈m,n〉) = (ΦA,B)A×B(πA,πB)◦ 〈m,n〉,

that is (ΦA,B)C(m,n) = (ΦA,B)A×B(πA,πB) ◦ 〈m,n〉. Now let us define the morphism qA,B :
A×B→ A2B to be (ΦA,B)A×B(πA,πB). Then we can make the definition

[[Γ ` 〈M,N〉 : A×B]]
def
=

[[Γ]]
〈[[Γ `M : σ]], [[Γ ` N : σ]]〉

- [[σ]]× [[τ]]
q[[σ]],[[τ]]

- [[σ]]2[[τ]].

Recall one of the rules for eliminating product types

Γ ` P : σ×σ

Γ ` Fst(P) : σ

Arguing as above, to model this rule we shall need (for each A and B) a natural transfor-

mation ΦA,B : C (−,A2B)−→ C (−,A). Recall the Yoneda lemma. With this, we may deduce

that

[C op,Set](HA2B,HA)∼= C (A2B,A)

which is to say that each natural transformation ΦA,B corresponds to a unique morphism

pA,B : A2B→ A. Moreover, the Yoneda Lemma says that the components of ΦA,B are given

by (ΦA,B)C = C (C, pA,B). So now we can define

[[Γ ` Fst(P) : σ]]
def
= [[Γ]]

[[Γ ` P : σ×σ]]
- [[σ]]2[[τ]]

p[[σ]],[[τ]]
- [[σ]].

Of course we can deduce a semantics for proved terms of the form Γ` Snd(P) : σ in much the

same way, involving a morphism p′A,B : A2B→ B. Our last task is to see what information
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we obtain by soundly interpreting the equations-in-context for product types. These are

Γ `M : σ Γ ` N : τ
(1)

Γ ` Fst(〈M,N〉) = M : σ

Γ `M : σ Γ ` N : τ
(2)

Γ ` Snd(〈M,N〉) = N : τ

Γ ` P : σ× τ
(3)

Γ ` 〈Fst(P),Snd(P)〉= P : σ× τ

If we put h
def
= [[Γ ` P : σ×τ]] : C→ A2B, m

def
= [[Γ `M : σ]] : C→ A and n

def
= [[Γ ` N : τ]] : C→

B, and demand that our categorical interpretation satisfies the equations-in-context, this

forces

pA,B ◦qA,B ◦ 〈m,n〉 = m (1)

p′A,B ◦qA,B ◦ 〈m,n〉 = n (2)

qA,B ◦ 〈pA,B ◦h, p′A,B ◦h〉 = h (3)

At last we are done, because these equations imply that, up to isomorphism, A2B and A×B
are the same. Thus we may soundly interpret binary product types by binary categorical

product.

To soundly interpret the rule
Γ ` S : null

Γ ` Empσ(S) : σ

we shall need a natural transformation ΦA : C (−,N) −→ C (−,A), where N = [[null]]. The

Yoneda Lemma says that the components of ΦA are given by (ΦA)C = C (C,nA) where nA :
N→ A is a morphism, one for each A. So now we can define

[[Γ ` Empσ(S) : σ]]
def
= [[Γ]]

[[Γ ` S : null]]
- N

n[[σ]]
- [[σ]].

If we write s
def
= [[Γ ` S : null]] : C→ N, and m

def
= [[Γ,x : null ` M : σ]] : C×N → A then the

equations for the null type will be soundly modelled providing that

nA ◦ s = m◦ 〈id,s〉 (†)

holds for any such morphisms. Suppose that t : N → A. Taking s to be idN and m to be

t ◦πN, then

nA = t ◦πN ◦ 〈idN, idN〉= t

Thus N is an initial object in the category C . In fact (†) forces N to be distributive, that is

πN : C×N→N is an isomorphism for every C. It is clear that πN ◦nC×N = nN = idN : N→N.

For the converse, take s to be πN and let πC : C×N→C. Then

nC×N ◦πN = πC×N ◦ 〈idC×N,πC〉= idC×N
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Thus up to isomorphism [[null]] is a distributive initial object. The details for binary sums

are left as a longish exercise—see page 77.

Now we shall resume the investigation of the semantics of function types. To soundly

interpret the introduction rule
Γ,x : σ `M : τ

Γ ` λx : σ.M : σ⇒ τ
we shall need (for every object A and B) a natural transformation

ΦA,B : C (−×A,B)−→ C (−,A3B),

and we can then define

[[Γ ` λx : σ.M : σ⇒ τ]] def
= (Φ[[σ]],[[τ]])[[Γ]]([[Γ,x : σ `M : τ]]) : [[Γ]]→ ([[σ]]3[[τ]]).

To soundly interpret the elimination rule

Γ `M : σ⇒ τ Γ ` N : σ

Γ `MN : τ

we shall need a natural transformation

ΨA,B : C (−,A3B)×C (−,A)−→ C (−,B)

for all objects A and B of C . Given any two morphisms m : C→ A3B and n : C→ A and

applying naturality, we have

(ΨA,B)C(m,n) = (ΨA,B)(A3B)×A(π,π′)◦ 〈m,n〉

where π : (A3B)×A→ A3B and π′ : (A3B)×A→ A. So if we define the morphism evA,B
def
=

(ΨA,B)(A3B)×A(π,π′), we can make the definition

[[Γ `MN : τ]] def
=

[[Γ]]
〈[[Γ `M : σ⇒ τ]], [[Γ ` N : σ]]〉

- ([[σ]]3[[τ]])× [[σ]]
ev[[σ]],[[τ]]

- [[τ]].

The equations-in-context for the function type are

Γ,x : σ ` F : τ Γ `M : σ
(4)

Γ ` (λx : σ.F)M = F [M/x] : τ

Γ `M : σ⇒ τ
(5)

Γ ` λx : σ.(Mx) = M : σ⇒ τ

If our categorical interpretation is to satisfy the equation-in-context (4), then we must have

evA,B〈(ΦA,B)C( f ),m〉= f 〈id,m〉 for all morphisms f : C×A→ B and m : C→ A. Using the

naturality of ΦA,B we can show that this equation holds just in case

evA,B((ΦA,B)C( f )× id) = f . (∗)
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Satisfaction of (5) requires that

(ΦA,B)C(evA,B(m× idA)) = m (†)

for every morphism m : C→ A3B. If we define a natural transformation

Θ : C (−,A3B)−→ C (−×A,B)

by setting

ΘC(m)
def
= evA,B ◦ (m× id)

the equations (∗) and (†) imply that Θ is a natural bijection. Thus, up to isomorphism in

the category C , the object A3B is exactly the exponential A⇒B and of course the morphism

evA,B : (A3B)× A → B is the evaluation morphism, and such categorical structure will

soundly interpret function types.

Exercises 5.2.3 With reference to Section 5.2:

(1) Work through the details of the derivation of the semantics of binary product types. Be

careful to understand the crucial fact that because the procedures of deriving proved terms

and performing substitutions commute, the procedures of deriving a proved term can be

modelled in an appropriate categorical structure by operations which are natural in their

arguments.

(2) Work through the details of the derivation of the semantics of function types. In partic-

ular, prove the equations (∗) and (†) hold using naturality of ΦA,B.

(3) (a) Use the Yoneda lemma to deduce that to soundly interpret rules

Γ `M : σ

Γ ` Inlτ(M) : σ+ τ

Γ ` N : τ

Γ ` Inrσ(N) : σ+ τ

it is necessary and sufficient to give morphisms i : A→ A+B and j : B→ A+B of C for all

objects A and B, where we may define

[[Γ ` Inlτ(M) : σ+ τ]] def
= i◦ [[Γ `M : σ]]

[[Γ ` Inrσ(N) : σ+ τ]] def
= j ◦ [[Γ ` N : τ]].

(b) By writing down an appropriate family of functions on morphism sets which will give

a sound interpretation to

Γ ` S : σ+ τ Γ,x : σ ` E : δ Γ,y : τ ` F : δ

Γ ` Case(S, x.E | y.F) : δ

and considering naturality conditions, prove that your functions may be specified in terms

of a family of functions

ΦC : C (C×A,D)×C (C×B,D)−→ C (C× (A+B),D)
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which are natural in C. We can then define

[[Γ ` Case(S, x.E | y.F) : δ]]
def
=

Φ[[Γ]]([[Γ,x : σ ` E : δ]], [[Γ,y : τ ` F : δ]])◦ 〈id[[Γ]], [[Γ ` S : σ+ τ]]〉.

(c) Using the semantics assigned to proved terms, write down the equations which must

hold between morphisms of C in order that the equations-in-context which appear on

pages 70 and 71 are always satisfied. Deduce that the function

C (C× (A+B),D) - C (C×A,D)×C (C×B,D)

given by f 7→ ( f ◦ (idC× i), f ◦ (idC× j)) is a bijection. Hence show that the object A+B is

indeed the binary coproduct of A and B.

(d) By considering the bijection

C (C×A,D)×C (C×B,D) ∼= C ((C×A)+(C×B),D),

use the Yoneda lemma to prove that the binary products of C must distribute over binary

coproducts, that is for all objects A, B and C of C we have

C× (A+B)∼= (C×A)+(C×B).

Thus to interpret the case syntax soundly we require a category with finite products and

binary coproducts, for which binary products distribute over binary coproducts.

5.3 Categorical Semantics

Discussion 5.3.1 We formalise the discussion of Section 5.2. Let C be a bicartesian closed

category and let Sg be a λ×+-signature. Then a structure, M, for Sg in C is specified by

giving:

• For every ground type γ of Sg an object [[γ]] of C ,

• for every constant function symbol k : σ, a global element [[k]] of [[σ]] (where [[σ]] is defined

below), and

• for every function symbol f : σ1 . . .σn→ τ of Sg with non-zero arity, a morphism

[[ f ]] : [[σ1]]× . . .× [[σn]]→ [[τ]],

where we define [[σ]] for an arbitrary type σ via structural induction, setting [[unit]]
def
= 1,

[[σ×τ]] def
= [[σ]]× [[τ]], [[null]]

def
= 0, [[σ+τ]] def

= [[σ]]+[[τ]], and [[σ⇒ τ]] def
= [[σ]]⇒ [[τ]] (and of course

[[γ]] is given).
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[[Γ,x : σ,Γ′ ` x : σ]]
def
= π : [[Γ]]× [[σ]]× [[Γ′]]→ [[σ]]

(k : σ)
[[Γ ` k : σ]]

def
= [[k]]◦! : [[Γ]]→ 1→ [[σ]]

[[Γ `M1 : σ1]] = m1 : [[Γ]]→ [[σ1]] . . . [[Γ `Mn : σn]] = mn : [[Γ]]→ [[σn]]
( f : σ1, . . . ,σn→ τ)

[[Γ ` f (~M) : τ]] = [[ f ]]◦ 〈m1, . . . ,mn〉 : [[Γ]]→ ([[σ1]]× . . .× [[σn]])→ [[τ]]

(where 1 is the terminal object of C)
[[Γ ` 〈〉 : unit]]

def
=! : [[Γ]]→ 1

[[Γ `M : σ]] = m : [[Γ]]→ [[σ]] [[Γ ` N : τ]] = n : [[Γ]]→ [[τ]]

[[Γ ` 〈M,N〉 : σ× τ]] = 〈m,n〉 : [[Γ]]→ ([[σ]]× [[τ]])

[[Γ ` P : σ× τ]] = p : [[Γ]]→ ([[σ]]× [[τ]])

[[Γ ` Fst(P) : σ]] = π1 ◦ p : [[Γ]]→ ([[σ]]× [[τ]])→ [[σ]]

[[Γ ` P : σ× τ]] = p : [[Γ]]→ ([[σ]]× [[τ]])

[[Γ ` Snd(P) : τ]] = π2 ◦ p : [[Γ]]→ ([[σ]]× [[τ]])→ [[τ]]

Table 5.6: Recursive Definition of λ×+ Categorical Semantics

Given a context Γ = [x1 : σ1, . . . ,xn : σn] we set [[Γ]]
def
= [[σ1]]× . . .× [[σn]]. Then for every proved

term Γ `M : σ we shall use the structure M to specify a morphism

[[Γ `M : σ]] : [[Γ]]→ [[σ]]

in C . The semantics of proved terms is specified recursively using the rules for introducing

proved terms and the definition is given in Tables 5.6 and 5.7. It is easy to see that

substitution of terms is modelled by categorical composition of morphisms. We have

Lemma 5.3.2 Let Γ′ ` N : τ be a proved term where Γ′ = [x1 : σ1, . . . ,xn : σn] and let

Γ `Mi : σi be proved terms for i = 1 to n. Then one can show that Γ `N[~M/~x] : τ is a proved

term and further that

[[Γ ` N[~M/~x] : τ]] = [[Γ′ ` N : τ]]◦ 〈[[Γ `M1 : σ1]], . . . , [[Γ `Mn : σn]]〉

where N[~M/~x] denotes simultaneous substitution.

Proof By rule induction on the derivation of the judgement Γ′ ` N : τ. 2
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[[Γ ` S : null]] = s : [[Γ]]→ 0

[[Γ ` Empσ(S) : σ]] = !◦ ∼= ◦〈id[[Γ]],s〉 : [[Γ]]→ [[Γ]]×0 ∼= 0→ [[σ]]

[[Γ `M : σ]] = m : [[Γ]]→ [[σ]]

[[Γ ` Inlτ(M) : σ+ τ]] = i◦m : [[Γ]]→ [[σ]]→ [[σ]]+ [[τ]]

[[Γ ` N : τ]] = n : [[Γ]]→ [[τ]]

[[Γ ` Inrσ(N) : σ+ τ]] = j ◦n : [[Γ]]→ [[τ]]→ [[σ]]+ [[τ]]




[[Γ ` S : σ+ τ]] = s : [[Γ]]→ [[σ]]+ [[τ]]
[[Γ,x : σ ` E : δ]] = e : [[Γ]]× [[σ]]→ [[δ]]
[[Γ,y : σ ` F : δ]] = f : [[Γ]]× [[τ]]→ [[δ]]

[[Γ ` Case(S, x.E | y.F) : δ]] =
[e, f ]◦ ∼= ◦〈id[[Γ]],s〉 : [[Γ]]→ [[Γ]]× ([[σ]]+ [[τ]]) ∼= ([[Γ]]× [[σ]])+ ([[Γ]]× [[τ]])→ [[δ]]

[[Γ,x : σ `M : τ]] = m : [[Γ]]× [[σ]]→ [[τ]]

[[Γ ` λx : σ.M : σ⇒ τ]] = λ(m) : [[Γ]]→ [[σ]]⇒ [[τ]]

[[Γ ` F : σ⇒ τ]] = f : [[Γ]]→ ([[σ]]⇒ [[τ]]) [[Γ ` A : σ]] = a : [[Γ]]→ [[σ]]

[[Γ ` F A : τ]] def
= ev◦ 〈 f ,a〉 : [[Γ]]→ ([[σ]]⇒ [[τ]])× [[σ]]→ [[τ]]

Table 5.7: Recursive Definition of λ×+ Categorical Semantics, Continued
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Exercises 5.3.3

(1) Look at the details of the categorical semantics of λ×+-theories and understand the

ideas of such a model.

(2) Work through the details of the proof of Lemma 5.3.2.

5.4 Categorical Models and the Soundness Theorem

Discussion 5.4.1 Let M be a structure for a λ×+-signature in a bicartesian closed cate-

gory C . Given an equation-in-context Γ `M = M′ : σ we say that M satisfies the equation-

in-context if [[Γ ` M : σ]] and [[Γ ` M′ : σ]] are equal morphisms in C . We say that M is

a model of a λ×+-theory Th = (Sg,Ax) if M satisfies all of the equations-in-context in

Ax. We shall also speak of M satisfying axioms and theorems. We will prove a soundness

theorem for λ×+-theories; of course the details really all appear in the previous section.

Theorem 5.4.2 Let C be a bicartesian closed category, Th a λ×+-theory and M a model

of Th in C . Then M satisfies any equation-in-context which is a theorem of Th.

Proof We need to see that if Γ `M = M′ : σ is a theorem of Th, then [[Γ `M : σ]] and

[[Γ `M′ : σ]] are equal morphisms in C . This can be shown by rule induction using the

rules for deriving theorems. We give one example of this. Let

m
def
= [[Γ,x : σ `M : τ]] : [[Γ]]× [[σ]]→ [[τ]]

and a
def
= [[Γ ` A : σ]] : [[Γ]]→ [[σ]]. Then we have

(Property Closure for the (base) rule):

Sg B Γ,x : σ `M : τ Sg B Γ ` A : σ

Γ ` (λx : σ.M)A = M[A/x] : τ

[[Γ ` (λx : σ.M)A : τ]] = ev〈[[Γ ` λx : σ.M : τ]], [[Γ ` A : σ]]〉

= ev〈λ(m),a〉

= ev(λ(m)× id)〈id,a〉

= m〈id,a〉

= [[Γ `M[A/x] : τ]]

where the last step follows by an application of Lemma 5.3.2. 2

Exercise 5.4.3 Work through the remaining details of the proof of Theorem 5.4.2.
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5.5 Classifying Categories and the Completeness Theorem

Discussion 5.5.1 A classifying category for a λ×+-theory can be thought of as a bicarte-

sian closed category which is in some sense the smallest such category in which Th can be

modelled soundly. We shall see later that the classifying category arises through a formal

construction using the syntax of the theory Th.

Suppose that we are given a morphism of bicartesian closed categories F : C → D. Let M
be a model of Th in C . We shall show how to define a new model, of Th in D, denoted by

F∗M. First a lemma.

Lemma 5.5.2 If we set [[γ]]F∗M
def
= F[[γ]]M where γ is a ground type of Th, then it follows

from this that there is a canonical isomorphism [[σ]]F∗M
∼= F[[σ]]M where σ is any type of Th.

Proof This can be proved by rule induction over types, making use of the fact that F is a

morphism of bicartesian closed categories. 2

Then a structure F∗M is given by [[γ]]F∗M
def
= F[[γ]]M on ground types and [[ f ]]F∗M is given by

the composition

[[σ1]]F∗M× . . .× [[σn]]F∗M
∼= F [[σ1]]M× . . .×F[[σn]]M

∼=′

F([[σ1]]M× . . .× [[σn]]M)
F[[ f ]]M−→ F[[τ]]M ∼= [[τ]]F∗M

where f : σ1, . . . ,σn → τ is a function symbol of Th, the isomorphims ∼= exist because of

Lemma 5.5.2, and ∼=′ arises from F preserving finite products.

In fact F∗M is a model of Th. Given a proved term Γ ` M : σ one can show by induction

that the morphism [[Γ `M : σ]]F∗M is given by the composition

[[σ1]]F∗M× . . .× [[σn]]F∗M
∼= F([[σ1]]M× . . .× [[σn]]M)

F[[Γ`M:σ]]M−→ F[[σ]]M.

If we are given proved terms Γ `M : σ and Γ ` N : σ for which [[Γ `M : σ]]M = [[Γ ` N : σ]]M
then certainly [[Γ `M : σ]]F∗M = [[Γ ` N : σ]]F∗M. Thus if M is a model of Th in C then F∗M
is a model of Th in D.

Let Th be a λ×+-theory. A bicartesian closed category Cl(Th) is called the classifying

category of Th if there is a model G of Th in Cl(Th) for which given any category D with

finite products, and a model M of Th in D, then there is a functor M : Cl(Th)→ D such

that M∗G = M and moreover, any two such functors M are naturally isomorphic.

T h
M

- D

Cl(Th)

G
?

M

-

where M∗G = M.
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Theorem 5.5.3 Every λ×+-theory Th has a classifying category Cl(Th). We can construct

a canonical classifying category using the syntax of Th.

Proof The objects of Cl(Th) are exactly the types of the λ×+-signature of Th. The

morphisms of Cl(Th) are, roughly speaking, equivalence classes of raw terms with at

most one free variable where the equivalence relation is given by provable equality in

Th. More precisely, a morphism σ→ τ is an equivalence class (x : σ |M) of pairs of the

form (x : σ,M) where x is a variable and M a raw term for which Sg B x : σ `M : τ, with

equivalence relation

(x : σ,M)∼ (x′ : σ,M′) iff Th B x : σ `M = M′[x/x′] : τ.

Note that each morphism has a source object, and that the target is determined uniquely

by the monomorphic type system. Composition of morphisms is given by raw term

substitution and the identity on σ is given by (x : σ | x).

Given two objects σ and τ, the binary product consists of the object σ× τ together with

suitable projections. The projection πσ : σ× τ→ σ is given by (z : σ× τ | Fst(z)) and

the projection πτ is defined likewise from Snd. If we are given a pair of morphisms

(x : γ |M) : γ→ σ and (y : γ | N) : γ→ τ, then the mediating morphism is given by

(z : γ | 〈M[z/x],N[z/y]〉) : γ→ σ× τ.

We leave the reader to check that we have defined a binary product, and that (x : σ | 〈〉)
is the unique morphism σ→ unit so that unit is a terminal object for Cl(Th).

We omit the details which concern binary coproducts, leaving these as an exercise. Note

that (z : null | Empσ(x)) is the unique morphism σ→ null. Recall that the classifier must

be distributive. This may be verified in two ways. One either appeals to Theorem 2.8.8,

after the function space structure of Cl(Th) has been identified, or one can verify dis-

tributivity directly from the type theory equations. However, the latter may require

some ingenuity on the part of the reader! Tedious exercise!

Now we move to the cartesian closed structure. The exponential of objects τ and γ
is given by τ⇒ γ. Given a morphism (z : σ× τ | M) : σ× τ→ γ the exponential mate

λ(z : σ× τ |M) : σ→ (τ⇒ γ) is given by

(x : σ | λy : τ.M[〈x,y〉/z])

(for which we can show that Sg B x : σ ` λy : τ.M[〈x,y〉/z] : τ⇒ γ is a proved term).

We define a structure G for Sg in Cl(Th). First define [[γ]]G
def
= γ where γ is any ground

type of Sg (and hence it follows that [[σ]]G = σ for any type σ). If f : σ1, . . . ,σn→ τ is a

function symbol of Sg with non-zero arity n then also define

[[ f ]]G
def
= (z : Πn

1σi | f (Proj1(z), . . . ,Projn(z)))



84

where Πn
1σi

def
= (. . .((σ1×σ2)×σ3)× . . .)×σn and where Projn(z)

def
= Snd(z), Projn−1(z)

def
=

Snd(Fst(z)) and so on. Certainly we have

Sg B z : Πn
1σi ` f (Proj1(z), . . . ,Projn(z)) : τ.

Finally, if k : σ then [[k]]G
def
= (x : unit | k).

We check that G is indeed a model of Th = (Sg,Ax). Suppose that Sg B Γ `M : σ. Then

we can prove by induction that

[[Γ `M : σ]]G = (z : Πn
1σi |M[Proj1(z), . . . ,Projn(z)/x1, . . . ,xn])

where the xi are the variables in Γ. Now, if we have Th B Γ `M = M′ : σ, one can see

from the properties of substitution that

Th B z : Πn
1σi `M[Proj1(z), . . . ,Projn(z)/x1, . . . ,xn] = M′[Proj1(z), . . .,Projn(z)/x1, . . . ,xn] : σ

and hence that [[Γ `M : σ]]G = [[Γ `M′ : σ]]G. So G is indeed a model.

Now let M be a model of a λ×+-theory Th in D. We define M : Cl(Th)→D by

(x : σ |M) : σ−→ τ - [[x : σ `M : τ]]M : [[σ]]M −→ [[τ]]M

The soundness theorem says that the definition makes sense. It is easy to see that M is

a bicartesian closed functor.

It is routine to verify that M∗G = M. The action of M∗G is essentially to apply the

structure [[−]]M. For example, consider a function symbol f : σ1,σ2→ τ. Then

[[ f ]]M∗G = M(z : σ1×σ2 | f (Proj1(z),Proj2(z)))

= [[z : σ1×σ2 ` f (Proj1(z),Proj2(z)) : τ]]M
= [[ f ]]M ◦ 〈[[z : σ1×σ2 ` Fst(z) : σ1]]M, [[z : σ1×σ2 ` Snd(z) : σ2]]M〉

= [[ f ]]M ◦ 〈π,π′〉

= [[ f ]]M.

Suppose that there is another bicartesian closed functor M′ : Cl(Th) → D for which

M′∗G = M. If σ is an object of Cl(Th) then

Mσ def
= [[σ]]M = [[σ]]M′∗G

∼= M′[[σ]]G = M′σ

using Lemma 5.5.2, and this gives rise to a natural isomorphism M ∼= M′. 2

Exercise 5.5.4 Prove that M ∼= M′ is indeed a natural isomorphism.
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Discussion 5.5.5 We have seen that the categorical semantics is sound, meaning that any

theorem of a theory is satisfied by a categorical model. The converse notion to soundness is

called completeness. The categorical semantics for a theory Th is said to be complete if an

equation-in-context E of Th is a theorem whenever for all categories C with finite products,

E is satisfied by all models M in C .

Theorem 5.5.6 The categorical semantics of λ×+-theories in categories with finite prod-

ucts is both sound and complete.

Proof Soundness was proved in Theorem 5.4.2. Conversely, let Γ ` M = M ′ : σ be an

equation-in-context of a theory Th. If it is satisfied by all models, in particular it is satisfied

by the generic model of Th in Cl(Th) and hence Th B Γ `M = M′ : σ as required. 2
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Applications and Further Study

6.1 The Disjunction Property

Discussion 6.1.1 Suppose that Th = (Sg,∅) is an IpL theory for which there are no (non-

logical) axioms. Then if Th B ` φ∨ψ is a theorem, so too are Th B ` φ and Th B ` ψ.

This is known as the disjunction property, DP. We shall show how this can be proved using

categorical methods.

The categorical disjunction property, CDP, for a Heyting prelattice, states that if we have

> ∼= h∨ k then either > ∼= h or > ∼= k. We shall prove DP by showing that Cl(Th) satisfies

CDP—DP for IpL is then immediate, thanks to the definition of Cl(Th) (and the trivial fact

that Th B true ` θ just in case Th B ` θ).

Lemma 6.1.2 Let Γ : H → K be a function between Heyting prelattices which preserves

finite meets. Define

GL(Γ)
def
= { (k,h) ∈ K×H | k ≤ Γ(h) }

with the pointwise order. Then GL(Γ) is a Heyting prelattice where

• the top element is (>K,>H)

• the bottom element is (⊥K,⊥H)

• (k,h)∧ (k′,h′)
def
= (k∧ k′,h∧h′)

• (k,h)∨ (k′,h′)
def
= (k∨ k′,h∨h′)

• (k,h)⇒ (k′,h′)
def
= ((k⇒ k′)∧Γ(h⇒ h′),h⇒ h′)

and π2 : GL(Γ)→ H is a homomorphism of Heyting prelattices.

Proof Routine calculations, left as an exercise. 2

Proposition 6.1.3 Set B
def
= {⊥,>} where ⊥≤>, the set of Booleans. Let Γ : Cl(Th)→ B

be defined by

φ 7→

{
> if φ∼= true

⊥ otherwise

Then Γ is a finite meet preserving function, and hence GL(Γ) is a Heyting prelattice. Fur-

ther, GL(Γ) satisfies CDP.
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Proof Note that Th B true ` φ∧ψ if and only if Th B true ` φ and Th B true ` ψ.

Hence Γ preserves binary meets, and further Γ(true) = >. Then apply Lemma 6.1.2.

Now suppose that

(b,φ)∨ (b′,φ′) = (b∨b′,φ∨φ′)∼= (>, true) ∈ GL(Γ).

Hence b∨b′ ∼=>∈ B and hence either b => or b′ =>. In the former case we must have

>≤ Γ(φ) hence >= Γ(φ) implying φ ∼= true. In the latter case φ′ ∼= true follows similarly.

Thus CDP holds for GL(Γ). 2

Theorem 6.1.4 The logic IpL satisfies DP.

Proof We show CDP for Cl(Th). Let us define a structure M for Th in GL(Γ) where Γ
was defined in Proposition 6.1.3. We define [[p]]M

def
= (Γ(p), [[p]]G) which is an element of

GL(Γ) because [[p]]G = p. This is trivially a model of Th because Ax = ∅. Hence there

is a homomorphism m such that the upper left triangle below commutes up to equality

(of structures)
Cl(Th) === Cl(Th)

Th
M
-

G
-

G l(Γ)

m
?

Cl(Th)

π2

?

===

G
-

Cl(Th)

idCl(Th)

?

as does the lower one given the definition of M. It follows that (π2 ◦m)∗G = G and

hence from the universal property of Cl(Th) we have π2 ◦m∼= idCl(Th).

Now let φ∨ψ∼= true in Cl(Th). We must have

m(φ∨ψ)∼= m(φ)∨m(ψ)∼= (>, true)

in GL(Γ). By CDP for GL(Γ) (Proposition 6.1.3) we have either

(i) m(φ)∼= (>, true) in which case π2(m(φ)) = true ∼= id(φ) = φ, or

(ii) m(ψ)∼= (>, true) so that ψ ∼= true similarly.

2

6.2 A Conservative Extension of Type Theories

Discussion 6.2.1 Before we begin this section, we need some preliminary definitions.

An algebraic theory is defined to be a λ×+-theory in which there are no product, sum,
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and function types, and (of course) none of the corresponding terms. More precisely, an

algebraic theory Th = (Sg,Ax) consists of

• a collection of types;

• a collection of function symbols each with an arity and sorting, but note that the types

in the sorting are restricted to the specified types;

• raw terms generated from these data, using only the rules

x k

M1 . . . Ma

f (M1, . . . ,Ma)

• proved terms, generated by the expected subset of rules from Table 5.3;

• theorems, generated by the rules in Table 5.4.

It should be clear that many of the meta-theoretic results about λ×+-theories hold also

for algebraic theories. Further, we can give a categorical semantics to an algebraic theory

in a category with finite products, in the expected way. Most of the results from Chapter 5

concerning categorical models apply to algebraic theories. However, the construction of a

canonical classifying category requires modification. This is because the type theory no

longer has explicit binary product types!

Theorem 6.2.2 Every algebraic theory Th has a classifying theory Cl(Th). A classifying

category can be constructed from the syntax of Th and we shall refer to it as the canonical

classifying category of the theory Th.

Proof We begin with some notation. Let σ1, . . . ,σn and τ be fixed types. Then we define

(Γ |M) to be an equivalence class of pairs (Γ,M) where

• Γ = [x1 : σ1, . . . ,xn : σn] is a context where the types appearing in Γ are the given σ1, . . . ,σn,

•M is a raw term for which Sg B Γ `M : τ, and

• the equivalence relation is defined by (Γ,M)∼ (Γ′,M′) just in case Th B Γ`M = M′[~x/~x′] :
τ where ~x are the variables in Γ and ~x′ the variables in Γ′.

The objects of Cl(T h) are finite lists of types from the algebraic signature Sg of Th, for

example~σ def
= [σ1, . . . ,σn]. The morphisms with source~σ and target~τ, where τ def

= [τ1, . . . ,τm]

and both ~σ and~τ are non-empty lists, are given by finite lists of the form

[(Γ |M1), . . . ,(Γ |Mm)] :~σ→~τ

where the types ~σ appear in Γ and we have Sg B Γ ` M j : τ j for 1 ≤ j ≤ m. Such a list

will be written (Γ | ~M) (take care with this abbreviation). We leave the reader to consider

what happens if ~σ or ~τ is empty. It is clear that ([x1 : σ1, . . . ,xn : σn] | ~x) is the identity
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morphism on ~σ. Now consider the morphisms (Γ | ~M) :~σ→~τ and (Γ′ | ~N) :~τ→~γ. The

composition (Γ′ | ~N) ◦ (Γ | ~M) :~σ→~γ is given by [(Γ | N1[~M/~y]), . . . ,(Γ | Nl[~M/~y])] where ~y
are the variables in Γ′. Of course we must verify that the composition is well defined: these

details are left to the reader. The terminal object of Cl(Th) is the empty list [ ] and binary

products are given by list concatenation.

The generic model G of Th in Cl(Th) is given by putting [[σ]]G
def
= [σ] where σ is a type of

Sg and [[ f ]]G
def
= (Γ | f (x1, . . . ,xn)) where f : σ1 . . .σn → τ is a function symbol of Sg and

Γ def
= [x1 : σ1, . . . ,xn : σn].

The verification of the universal property is left as an exercise. 2

Discussion 6.2.3 We shall apply techniques of category theory and categorical semantics

to prove a result about λ×+-theories which have been generated from algebraic theories.

By the λ×+-theory generated from a given algebraic theory, we mean the λ×+-theory

which takes the types and function symbols of the algebraic signature as the ground types

and function symbols of its λ×+-signature, and the axioms of the algebraic theory as its

axioms. The result we are going to prove (stated formally in Theorem 6.2.8) says that any

raw term of the λ×+-theory which has ground type is provably equal in the λ×+-theory

to a raw term of the algebraic theory.

In order to prove this result, we shall set up a little more category-theoretic machinery. Let

C be a category with finite products. Then a category F C is the relatively free bicartesian

closed category generated by C if there is a finite product preserving functor I : C → F C
which satisfies the following two properties:

(i) Suppose that F : C → D is a finite product preserving functor and D is a bicartesian

closed category. Then there is a bicartesian closed functor F : F C → D for which the

following diagram commutes up to natural isomorphism:

C
I

- F C

D

F
?

F
-

We shall write φ : FI ∼= F for this.

(ii) If also F and φ have the same properties as F and φ, then there is a natural isomorphism

ψ : F → F.

Let Th = (Sg,Ax) be an algebraic theory. Let Th′ = (Sg′,Ax′) be the λ×+-theory for which

the ground types of Sg′ are the types of Sg, the function symbols of Sg′ are the function

symbols of Sg, and Ax′
def
= Ax. We shall now define a functor I : Cl(Th)→ Cl(Th′). On an

object~γ of Cl(Th) set

I(~γ) def
= (. . .(γ1× γ2)× . . .)× γn
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and given a morphism (Γ | ~M)Th :~γ→~γ′ (where the subscript Th denotes equivalence up to

provable equality in Th), then we set

I(Γ | ~M)Th
def
= (z : Πγi | 〈. . .〈M̂1,M̂2〉, . . . ,M̂m〉)Th′

in which we have written Πγi for (. . .(γ1× γ2)× . . .)× γn and also

M̂ j
def
= M j[Proj1(z)/x1, . . . ,Proj j(z)/x j, . . . ,Projn(z)/xn]

where Proj j(z) is defined on page 84.

Our programme for the rest of this section is as follows. First we prove Proposition 6.2.5

which shows that a certain classifying category plays the role of a relatively free bicartesian

closed category. Second, we prove a purely categorical result called the “logical relations”

gluing lemma, which is Lemma 6.2.6. Third, we apply the gluing lemma in the proof of

Corollary 6.2.7 and then prove Theorem 6.2.8.

Remark 6.2.4 Note that there is a well known “standard” gluing lemma (whose preorder

analogue is Lemma 6.1.2) for which the glued category is defined as a comma category. The

proof that exponentials exist requires a little work—cf Lemma 6.1.2. The “logical relations”

construction given here simplifies the proof, also making it more uniform.

Proposition 6.2.5 The functor I : Cl(Th)→ Cl(Th′) presents Cl(Th′) as the relatively free

bicartesian closed category generated by Cl(Th).

Proof Let F : Cl(Th)→ C be a functor which preserves finite products where C is a

bicartesian closed category. We shall define a functor F : Cl(Th′)→C (using the syntactic

structure of the category Cl(Th′)) through the following clauses. On objects we set

• Fγ def
= F[γ] where γ is a ground type of Sg′,

• F(unit)
def
= 1C , the terminal object of C ,

• F(null)
def
= 0C , the initial object of C ,

• F(σ× τ) def
= Fσ×Fτ,

• F(σ+ τ) def
= Fσ+Fτ, and

• F(σ⇒ τ) def
= Fσ⇒ Fτ.

On morphisms (z : δ |M) of Cl(Th′) we put

• F(z : δ | 〈〉) def
=! : Fδ→ 1C ,

• F(z : δ | z : δ)
def
= idFδ,
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• F(z : δ | f (~M))
def
= F([x1 : γ1, . . . ,xn : γn] | f (x1, . . . ,xn))◦ ∼= ◦

〈F(z : δ |M1), . . . ,F(z : δ |Mn)〉, where the isomor-

phism exists because F preserves finite products,

• F(z : δ | Fst(P))
def
= π1F(z : δ | P) where π1 : Fσ×Fτ→ Fσ,

• F(z : δ | Snd(P))
def
= π2F(z : δ | P) where π2 : Fσ×Fτ→ Fτ,

• F(z : δ | 〈M,M′〉)
def
= 〈F(z : δ |M),F(z : δ |M′)〉,

• the definition of F on morphisms involving finite coproducts is left as an exercise,

• F(z : δ |MN)
def
= ev〈F(z : δ |M),F(z : δ | N)〉,

• F(z : δ | λx : σ.M)
def
= λ(F(y : δ×σ |M[Fst(y)/z])).

Note that F essentially preserves all of the structure of Cl(Th′) on the nose. It follows

from this that F does indeed preserve finite products, coproducts and exponentials, and

that F is a bicartesian closed functor.

Now we shall define a natural isomorphism φ : FI ∼= F. It follows from the definitions

that given an object ~γ of Cl(Th), we have FI(~γ) = Πn
1F [γi], and as F is finite product

preserving we can set

φ~γ
def
= 〈Fπ1, . . . ,Fπn〉

−1 : Πn
1F[γi]−→ F(~γ)

where πi :~γ→ [γi] in Cl(Th). Of course we have to check that φ is a natural transforma-

tion. The details are omitted, but the reader should verify that φ : FI ∼= F is a natural

isomorphism as an exercise, using structural induction.

Suppose now that F and φ also satisfy the roles of F and φ. We shall define a natural

isomorphism ψ : F → F through the following clauses:

• ψγ
def
= φ−1

[γ] : Fγ→ Fγ, where we note that Fγ = F[γ] and Fγ = FI[γ],

• ψσ×τ
def
= ∼= ◦ψσ×ψτ : (Fσ×Fτ)→ (Fσ×Fτ)→ F(σ× τ),

• ψσ+τ
def
= ∼= ◦ψσ +ψτ : (Fσ+Fτ)→ (Fσ+Fτ)→ F(σ+ τ), and

• ψσ⇒τ
def
= ∼= ◦ψ−1

σ ⇒ ψτ : (Fσ⇒ Fτ)→ (Fσ⇒ Fτ)→ F(σ⇒ τ),

in which the isomorphisms are the canonical ones. It is clear from the definition that

the morphisms ψσ are always isomorphisms. It remains to see that ψ is a natural trans-

formation. Suppose that m : σ→ τ is a morphism in Cl(Th′). Then we need to check that

the diagram

Fσ
ψσ

- Fσ

(∗)

Fσ

Fm
?

ψτ
- Fτ

Fm
?
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commutes. Any such morphism m is of the form (x : σ |M); we prove that the diagram

(∗) commutes by structural induction on the raw term M. We shall give an example

of just one case, namely m
def
= (z : δ | λx : σ.M) : δ→ σ⇒ τ. So it remains to check the

commutativity of the diagram

Fδ
ψδ

- Fδ

Fσ⇒ Fτ

F(z : δ | λx : σ.M)
?

ψ−1
σ ⇒ ψτ

- Fσ⇒ Fτ ∼= F(σ⇒ τ)

F(z : δ | λx : σ.M)
?

Now, of course F preserves binary products, and so our task is equivalently to see that

the diagram

Fδ
ψδ

- Fδ

(∗∗)

Fσ⇒ Fτ

F(z : δ | λx : σ.M)
?

ψ−1
σ ⇒ ψτ

- Fσ⇒ Fτ

λ(F(u : δ×σ |
M[Fst(u)/z])◦ ∼=)?

commutes, where Fδ×Fσ ∼= F(δ×σ). Now, by induction, the following diagram com-

mutes:

F(δ×σ)
ψδ×σ

- F(δ×σ)

Fτ

F(u : δ×σ |
M[Fst(u)/z])

?

ψτ
- Fτ

F(u : δ×σ |
M[Fst(u)/z])

?

and so we have

f
def
= F(u : δ×σ |M[Fst(u)/z])◦ψδ×σ ◦ (idFδ×ψ−1

σ )

= ψτ ◦F(u : δ×σ |M[Fst(u)/z])◦ (idFδ×ψ−1
σ ) : Fδ×Fσ→ Fτ.

We show that of each of the paths of (∗∗) is the exponential mate of f , implying that

(∗∗) commutes via the universal property of exponentials. So,

ev◦ ([(ψ−1
σ ⇒ ψτ)◦F(z : δ | λx : σ.M)]× id

Fσ)

= ψτ ◦ ev◦ (idFσ⇒Fτ×ψ−1
σ )◦ (F(z : δ | λx : σ.M)× id

Fσ)

= ψτ ◦ ev◦ (λ(F(u : δ×σ |M[Fst(u)/z]))× idFσ)◦ (idFδ×ψ−1
σ )

= ψτ ◦F(u : δ×σ |M[Fst(u)/z])◦ (idFδ×ψ−1
σ )

= f ,
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and also

ev◦ ([λ(F(u : δ×σ |M[Fst(u)/z])◦ ∼=)◦ψδ]× id
Fσ)

= F(u : δ×σ |M[Fst(u)/z])◦ ∼= ◦(ψδ× id
Fσ)

= F(u : δ×σ |M[Fst(u)/z])◦ ∼= ◦(ψδ×ψσ)(idFδ×ψ−1
σ )

= f

as required. The other inductive cases are similar; we deduce that ψ is indeed a natural

transformation. 2

Lemma 6.2.6 Let D be a bicartesian closed category and let I : C → D preserve finite

products. Write

Γ def
= (Iop)∗ ◦H : D −→ [Dop,Set]−→ [C op,Set].

We define a category G l(Γ) as follows:

• The objects of G l(Γ) are triples (F,C,D) where F : C op → Set is a functor, D is an

object of D, and C is an operation which assigns to each object C of C a subset,

denoted by CC, of FC×ΓDC.

• A morphism (α,d) : (F,C,D)→ (F ′,C′,D′) is given by a natural transformation α :
F → F ′ and a morphism d : D→ D′ in D for which if x CC u then αC(x) C

′
C d ◦ u,

where of course x ∈ FC and u ∈ ΓDC
def
= D(IC,D).

Then G l(Γ) is a bicartesian closed category and the obvious functor π2 : G l(Γ)→ D is a

morphism of bicartesian closed categories.

Proof That G l(Γ) is indeed a category is routine. As a general principle, the structure

of G l(Γ) is specified by a “logical relations” procedure on the subset CC. We sketch most

of the constructions.

(Terminal Object): The terminal object is (1[C op,Set],C
1,1D) where for an object C of C

we set ∗C
1
C !IC. Here, ∗ ∈ 1[C op,Set](C) = {∗}, and !IC : IC→ 1D is the unique map to the

terminal object of D.

(Binary Products): We set

(F,C,D)× (F ′,C′,D′)
def
= (F×F ′,C×C

′,D×D′)

where (x,x′)(C×C
′)Cu just in case x CC πu and x′ C′C π′u where of course π : D×D′→D

and π′ : D×D′ → D′ in D. The projections in G l(Γ) are of course given by pairing of

projections in [C op,Set] and D, such as:

π(F,C,D)
def
= (πF ,πD) : (F×F ′,C×C

′,D×D′)−→ (F,C,D).
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(Initial Object): The initial object is (0[C op,Set],C
0,0D) where for an object C of C we set

C
0
C

def
= ∅ noting that 0[C op,Set](C) = ∅ and of course ∅×D(IC,0) = ∅.

(Binary Coproducts): Write i : A→ A+A′ and j : A′→ A+A′ for coproduct insertions.

We set

(F,C,D)+(F ′,C′,D′)
def
= (F +F ′,C + C

′,D+D′)

where if x ∈ FC then i(x)(C + C
′)Cu just in case u : IC → D + D′ factors through i :

D→ D + D′ in D and if x′ ∈ F ′C then j(x′)(C + C
′)Cu just in case u factors through

j : D′→ D+D′ in D. (Note that every ξ ∈ FC +F ′C is of the form i(x) or j(x′)).

(Exponentials): Set

(F,C,D)⇒ (F ′,C′,D′)
def
= (F ⇒ F ′,C⇒C

′,D⇒ D′)

where Φ(C⇒C
′)Cw just in case for all x CC u we have

evC(Φ,x) C
′
C ev◦ 〈w,u〉

Here, evC is a component of the natural transformation ev : (F ⇒ F ′)×F → F ′ in the

bicartesian closed category [C op,Set]. The evaluation morphisms in G l(Γ) are given

pointwise, as is the operation of currying. So for example if (α,d) is a morphism in

G l(Γ) then we set λ((α,d))
def
= (λ(α),λ(d)): we check that this is a good definition.

Suppose that x CC u and x′ C′C u′. Then

evC(λ(α)C(x),x′) = αC(x,x′) C
′
C d ◦ 〈u,u′〉= ev◦ 〈λ(d)◦u,u′〉

and so λ(α)C(x)(C⇒C
′)Cλ(d)◦u whenever x CC u.

2

Corollary 6.2.7 Let C be a locally small category, and F C the freely generated bicartesian

closed category. Then the canonical functor I : C → F C is full and faithful.

Proof We appeal to Lemma 6.2.6 where D is taken to be F C . We define a functor

J : C → G l(Γ): on objects C of C define JC by (HC,CC, IC) where the subset

C
C
C′ ⊆ C (C′,C)×D(IC′, IC)

is defined by just requiring c C
C
C′ Ic for each morphism c : C′→C in C . On morphisms c

of C we set Jc
def
= (Hc, Ic). Note that J is faithful for the Yoneda embedding H is faithful.

For fullness, let (α,d) : JC→ JC′. Hence α : HC→ HC′ and so α = Hc for some c : C→C′

in C . Now certainly idC C
C
C idIC and so

αC(idC) = C (C,c)(idC) = c C
C′
C d ◦ idIC = d
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implying d = Ic; therefore Jc = (α,d), that is J is full.

Consider the following diagram

Cl(Th′) === Cl(Th′)

Cl(Th)
J
-

I
-

G l(Γ)

J
?

Cl(Th′)

P2

?

===

I
-

Cl(Th′)

idCl(Th′)

?

Using Proposition 6.2.5, the functor J exists and J ◦ I ∼= J naturally. By definition, P2 ◦J =

I. It follows that P2 ◦ J ◦ I ∼= I naturally, that is (P2 ◦ J) ◦ I ∼= I, and as idCl(Th′) ◦ I ∼= I
(trivially!) it follows from the universal property of relatively free bicartesian closed

categories and Proposition 6.2.5 that idCl(Th′)
∼= P2 ◦ J naturally. This latter isomorphism

implies that J is faithful. This fact, together with J full and faithful proved above, and

J ◦ I ∼= J implies that I is full and faithful. 2

Theorem 6.2.8 Let Th = (Sg,Ax) be an algebraic theory. Let Th′ = (Sg′,Ax′) be the λ×+-

theory for which the ground types of Sg′ are the types of Sg, the function symbols of Sg′ are

the function symbols of Sg, and Ax′
def
= Ax. Suppose that

Sg′ B [x1 : γ1, . . . ,xn] : γn ` E : γ

is a proved term generated from the λ×+-signature Sg′, where the types γi appearing

in the context and the type γ are ground types of Sg′, that is, types of Sg. Let us write

Γ def
= [x1 : γ1, . . . ,xn : γn]. Then there exists a raw term M for which

Sg B Γ `M : γ and Th′ B Γ ` E = M : γ.

Moreover, if there is another raw term M′ for which Sg B Γ `M′ : γ and also Th′ B Γ `
E = M′ : γ then we have Th B Γ `M = M′ : γ, that is M is unique up to provable equality.

Proof The fact that I : Cl(Th)→ Cl(Th′) is full and faithful proves the theorem: we

give details for the existence part of the theorem. Suppose that Sg′ B Γ ` E : γ. We shall

write

Ê
def
= E[Proj1(z)/x1, . . . ,Proj j(z)/x j, . . . ,Projn(z)/xn]

and

Π~γ def
= (. . .(γ1× γ2)× . . .)× γn.

Then we certainly have

e
def
= (z : Π~γ | Ê)Th′ : I~γ→ I[γ]
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in Cl(Th′). Using the fullness of I, there is a morphism (Γ |M)Th :~γ→ [γ] which is taken

to e by I. But this implies that Th′ B z : Π~γ ` M̂ = Ê : γ, that is

Th′ B Γ `M = E : γ

The uniqueness part of the theorem follows from I ’s faithfulness in a similar fashion. 2

6.3 The Curry Howard Correspondence

In this penultimate section of the notes, we explain very briefly how the material in the

previous two chapters is connected. First, look at Table 4.1 and Table 5.1. You will

notice that if we were to write × for ∧, + for ∨, and ⇒ for→ , and then regard any

ground proposition as a ground type, then the inductive definitions are identical. This is

an example of the so-called propositions as types correspondence, also known as the

Curry Howard correspondence. The logic IpL is a constructive logic—the rule of proof

by contradiction is not present. This is the reason why the Disjunction Property holds. In

fact proved terms of λ×+-signatures can be shown to witness proofs of IpL-theorems.

A precise version of the Curry Howard correspondence appears in the theorem below.

Theorem 6.3.1 Let Th = (Sg,∅) be an IpL theory, and Th′ = (Sg′,∅) be a λ×+-theory.

Let the collection of ground propositions of Sg be the collection of ground types of Sg′, where

Sg′ has no function symbols. Then for all propositions φi,ψ, and variables xi, we have

Th B φ1, . . . ,φn ` ψ implies ∃P. (Sg′ B x1 : φ1, . . . ,xn : φn ` P : ψ)

and for all propositions φi,ψ, variables xi, and raw terms P, we have

Sg′ B x1 : φ1, . . . ,xn : φn ` P : ψ implies Th B φ1, . . . ,φn ` ψ
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Exercises 6.3.2

(1) Search the literature for information about constructive logics. In particular, note that

IpL can be turned into classical logic by adding the rule of proof by contradiction (reductio

ad absurdum)
∆,φ→ false ` false

∆ ` φ
where ψ→ false is the definition of negation. Try to discover, or read about, alternative

systems of rules for classical (and constructive) logic, and show that the same class of

theorems is generated by the rules of each system.

(2) Restricting to ground propositions, true, and binary conjunctions, along with the type

theory involving only unit and binary product expressions, try to prove each direction of

the Curry Howard correspondence by using rule induction over IpL theorems, and λ×+

proved terms. You will need to define mappings from theorems to proved terms, and back

again. Proved terms to theorems is easy:

x1 : φ1, . . . ,xn : φn ` P : ψ 7→ φ1, . . . ,φn ` ψ

The other direction is by recursion. For example, for the rule ID we set

δ1, . . . ,δn,φ,δn+2, . . . ,δm ` φ 7→ x1 : δ1, . . . ,xn : δn,x : φ,xn+2 : δn+2, . . . ,xm : δm ` x : φ

where all variables are distinct. The reader is left to consider all other rules in Table 4.2

as exercises. The rest of the proof requires great care! For example, the logic has a rule

of contraction CTRN, and exchange EXCH, but in the case of EXCH the corresponding feature of

the type theory was only proved as an admissible rule (see Lemma 5.1.6). Readers should

consider whether it makes sense to adjust the definitions of rules for defining theorems and

proved terms.

(3) Search the literature for information about the Curry Howard correspondence. Do

some reading, and think about the full proof of Theorem 6.3.1.

6.4 Where Now?

Rather than give a comprehensive survey of the literature, we will suggest a few ref-

erences, mainly books and handbook chapters, which could form the basis of further

study. Thus our references are in no way encyclopedic, and in fact exclude journal and

conference research articles—for these please see the excellent bibliographies which

can be found in many of the references cited below.

Category Theory

There are a number of books which cover basic category theory. For a short and gentle

introduction, see [Pie91]. For a longer first text see [BW90]. Both of these books are
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intended for computer scientists. The original and recommended general reference for

category theory is [Mac71], which was written for mathematicians. A very concise and

fast paced introduction can be found in [FS90] which also covers the theory of alle-

gories (which, roughly, are to relations, what categories are to functions). Again for the

more advanced reader, try [Tay99] which is an essential read for anyone interested in

categorical logic, and which has a lot of useful background information. The Handbook

of Logic in Computer Science has a wealth of material which is related to categorical

logic; there is a chapter [Poi92] on category theory. Finally we mention [Wal91] which,

apart from being a very interesting introduction to category theory due to the many and

varied computing examples, has a short chapter devoted to distributive categories.

Predicate Logic

In these notes we have only studied first order propositional logic. Both first order and

higher order predicate logic is covered explicitly, and in depth, in [Jac99]. The author

presents a semantics based upon the notion of a fibration. There is also a good deal

of material about logical (and other) quantifiers in [Tay99]. Both of these books have

superb bibliographies, and any reader wishing to trace some of the history of categorical

logic and related categorical machinery will find [Tay99] a fascinating read.

Polymorphic Type Theories

A very direct way of generalizing the type theories presented in these notes is to consider

a notion of type variable. Having done this, one can then quantify over such variables

to yield systems of polymorphism related to those of real programming languages. An

introduction can be found in [Cro93], where the approach is quite similar to the one

taken in these notes. The semantics is given in terms of indexed categories. For an

approach using fibrations, and more advanced material, see [Jac99].

Topos Theory

Topos is a category which has properties similar to those of the category Set of sets

and functions. Any topos arises as a (particular kind of) classifying category for a con-

structive set theory. Toposes have been the subject of intensive study over the last few

decades. For an introduction which covers some of the material presented in these

notes, as well as toposes, see [LS86]. One of the original texts is [Joh77]. This is in-

tended for an advanced mathematical audience, and is perhaps not for the feint hearted.

Although there are more up-to-date texts on the market, it is a mine of information for

those wanting to study this subject in depth. For a more gentle general introduction

to toposes, see [McL91]. For a text more biased towards mainstream mathematics, see
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[MM92] or [BW85]. Also, the handbook chapter [MM96] provides a concise introduc-

tory summary.
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specified

— binary products, 29

strict

— cartesian closed functor, 42

— finite coproduct preserving

functor, 34

— finite product preserving

functor, 34

structural induction, 49

structure, 57

— for λ×+-signature, 78

substitution

simultaneous —, 52

subtree, 45

sum

binary — type, 65

supremum, 5

symbol

constant function — of

λ×+-signature, 65

function — of

λ×+-signature, 65

symmetric relation, 3

target

— of function, 3

— of morphism, 17

term

proved — from

λ×+-signature, 66

raw — from λ×+-signature, 65

term-in-context

— for λ×+-signature, 66

terminal

— object, 31

theorem

— from λ×+-theory, 69

theory

λ×+- —, 69

tiny category, 23

top element, 5

total function, 3

transformation

natural —, 24

transitive relation, 3

type

— for λ×+-signature, 65

binary product —, 65

binary sum —, 65

function —, 65

ground —s, 65

undefined function, 3

under-cone category, 22

underlying, 4

unitary, 18

universal, 30

upper

— bound, 4

variables

— for λ×+-signature, 65

vertical

— natural numbers, 4

witnesses, 26

words, 47

Yoneda

— embedding, 35

— lemma, 36



108


