
Lectures on [Co]Induction and [Co]Algebras

Roy L. Crole

April 21, 2006

Abstract

These notes give an introduction to the ideas of Induction and Coinduction at the level
of partially ordered sets, and at a categorical level. Knowledge of partial orders and basic
category theory will be assumed. We illustrate the use of Induction and Coinduction for
partially ordered sets in programming language semantics.

These notes were originally written for a short course of lectures in 1998. This version is
a reprint, but with a few minor corrections.

Contents

1 Induction and Coinduction 2

1.1 Partially Ordered Sets . 2

1.2 Inductively and Coinductively Defined Sets . 2

2 A Programming Language 4

2.1 Syntax . 4

2.2 Free and Bound Variables . 6

2.3 Substitution of Terms . 8

2.4 α-Equivalence . 10

2.5 Terms with Contexts . 12

2.6 Programs, Values and Evaluation . 13

2.7 Transitions: One Step Computations . 16

2.8 Relating Evaluation and Transition Relations . 18

2.9 Coinductively Characterizing Divergence . 19

3 Algebras and Coalgebras 22

3.1 The Functor A + (−):Set −→ Set . 22

3.2 The Functor 1 + (A ×−):Set → Set . 24

3.3 The Functor (−)⊥: ωCPO −→ ωCPO . 25

4 Isomorphism Theorems 25

4.1 For Algebras . 25

4.2 For Coalgebras . 28

5 Induction and Coinduction Principles 29

5.1 For Algebras . 29

5.2 For Coalgebras . 30

1

1 Induction and Coinduction

1.1 Partially Ordered Sets

We assume that readers know the definition of a partially ordered set or poset (P,≤) where P is a
set and ≤ is a partial order on P . We shall informally refer to the poset P . A function f :P → P
between posets is monotone just in case it preserves the order. If S ⊆ P is a subset of P , then
we write

∧
S for the meet or infimum of S, defined to be the greatest lower bound in P for the

set S. Dually, we write
∨
S for the join or supremum of S, defined to be the least upper bound

in P for the set S. A poset P is called a complete lattice if the joins of all subsets S exist or
(equivalently) the meets of all subsets exist. We note this equivalence as a proposition.

Proposition 1.1 A poset P has all meets just in case it has all joins.

Proof Suppose that S is any subset of P . Note that one has

∧

S
def
=

∨

{x | x ∈ P and ∀s ∈ S.x ≤ s} and
∨

S
def
=

∧

{x | x ∈ P and ∀s ∈ S.s ≤ x}.

and that these definitions make sense even when S is empty (exercise: check this). 2

If f :P → P is an endofunction on a poset P , we call x ∈ P a fixed point for f if f(x) = x; a
pre-fixed point of f if f(x) ≤ x; and a post-fixed point of f if x ≤ f(x). In fact, if P is a
complete lattice, and f is monotone, then we have the following theorem.

Theorem 1.2 Let f :P → P be a monotone function between complete lattices. Then the least
pre-fixed point of f , denoted by µ f , and the greatest post-fixed point, denoted by ν f , both exist,
and are given by the following formulas:

µ f
def
=

∧

{ x ∈ P | f(x) ≤ x } and ν f
def
=

∨

{ x ∈ P | x ≤ f(x) }

Proof From the definition of µ f , it follows that

∀x ∈ P. f(x) ≤ x =⇒ µ f ≤ x

Hence for any x ∈ P , if f(x) ≤ x then f(µ f) ≤ f(x) and so f(µ f) ≤ x. Thus f(µ f) ≤ µ f follows
immediately from the definition of meet. 2

1.2 Inductively and Coinductively Defined Sets

If X is any set, let P(X) be the powerset of X . The powerset of X is in fact a complete lattice when
partially ordered by subset inclusion, with meets given by set-theoretic intersection, and joins by
union (exercise: check this).

We define a set of rules on X to be any subset R of the form

R ⊆ P(X) ×X

Given such a set of rules, we define the name of R to be the function ΦR: P(X) → P(X) given by
setting

ΦR(S)
def
= { x ∈ X | ∃(S′, x) ∈ R and S′ ⊆ S }

One can check that ΦR is a monotone endofunction on the complete lattice P(X). In view of
Theorem 1.2, we can make the following definitions. Given a set X , and a set of rules R on X , the
subset of X inductively defined by R is µΦR, and the subset of X coinductively defined

by R is ν ΦR.

2

We say that a subset S ⊆ X is closed under the set of rules R if it is a pre-fixed point of ΦR.
Spelling this out, S is closed if

{ x ∈ X | ∃(S′, x) ∈ R and S′ ⊆ S } ⊆ S

Note that S is closed just in case for each rule (H, c) ∈ R,

H ⊆ S =⇒ c ∈ S (∗)

We sometimes say that S is closed under the rule R = (H, c) if ∗ holds for R. For each element
h ∈ H , the assumption that h ∈ S is called an inductive hypothesis.

We say that a subset S ⊆ X is dense under the set of rules R if it is a post-fixed point of ΦR.
Spelling this out, S is dense if

S ⊆ { x ∈ X | ∃(S′, x) ∈ R and S′ ⊆ S }

Bearing in mind Theorem 1.2, we see that the subset of X inductively defined by R always exists
and is the least subset which is closed under R; and that the subset of X coinductively defined by
R always exists and is the greatest subset which is dense under R.

It is often the case that sets of rules are finitary, meaning that for each rule (H, c) ∈ R the set H
is finite. Note that H might be ∅, in which case we say that R is a base rule. If H is non-empty
we say R is a deductive rule. In the case that H is non-empty we might write H = {h1, . . . , hk }
where 1 ≤ k. We can write down a base rule R = (∅, c) using the following notation

Base

R
c

and a deductive rule R = (H, c) = ({h1, . . . , hk }, c) as

Deductive

h1 h2 . . . hk
R

c

Note that the order of the statements h1 h2 . . . hk appearing above the line is irrelevant: the
hi are elements of the set H .

We give two principles, whose truth can be established from the definitions that we have so far
given. We leave the proofs as an exercise.

Principle of Induction

Suppose that I ⊆ X is inductively defined by a set of rules R, and that S ⊆ I . Then in
order to verify that S = I it is enough to show that S is closed under the rules.

Principle of Coinduction

Suppose that C ⊆ X is coinductively defined by a set of rules R. Then in order to verify
that x ∈ C it is enough to find a set S which is dense under the rules and for which x ∈ S.

3

Given a finitary set of rules R, a deduction for an element x ∈ X is a finitely branching tree with
root x which has the property that for each node c ∈ X , if H is the (possibly empty) finite set of
children of c, then (H, c) must be a rule in R. In fact we have the following theorem.

Theorem 1.3 Let I ⊆ X be inductively defined by a finitary set of rules R. Then

I = { x | there exists a deduction of x },

that is for any element x ∈ X , we have

x ∈ I if and only if there exists a deduction of x.

Proof Write S
def
= { x | there exists a deduction of x }. We show that S ⊆ I as follows: we

prove by Mathematical Induction on n that for all x,

for all n ≥ 0, for all deductions l of height ≤ n, if l is a deduction of x then x ∈ I .

Check this! Thus if x ∈ S there must be a deduction of x which has height n for some n ≥ 0, so
that x ∈ I . Hence S ⊆ I . One can check that S is closed under R (do it!) and conclude that
I = S from the Principle of Induction. 2

2 A Programming Language

2.1 Syntax

We shall define a simple programming language called UL . First, we define its syntax. Let Var be
a fixed, countably infinite, set of variables, for which we assume there is a specified enumeration
(list). Thus

Var
def
= { v0, v1, v2, . . . }.

We often denote variables by the letters x, y, z, u, v etc, but may on occasion use other letters.
Let Cst be a set of constants where

Cst
def
= { c | c ∈ Z ∪ B }

and Z is the set of integers and B
def
= {T ,F } is the set of Booleans. Let Opr be a set of operators

given by

Opr
def
= {=,≤,≥, <,>,+,−, ∗}.

We shall let the symbol c range over elements of Z ∪ B. Note that we write c to indicate that the
constant c is “held in memory”. We shall require that c = c′ if and only if c = c′. Given (for
example) 2 and 3 we cannot add these “numbers” until our programming language instructs that
the contents of the memory locations be added—thus 2 + 3 6= 5. However, when 2 is added to 3
by UL , the result is 5, and we shall write

2 + 3 = 5.

We now define the set T of terms. For the time being, you can think of a term informally as a

program, but we warned that they are not quite the same thing. A term is in fact a finite tree. We

4

[x ∈ Γ] VAR
x

[c ∈ Z ∪ B] CONST
c

M N
[op ∈ Opr] OP

M op N

M N L
COND

if M then N else L

M
ABS

λx.M

M N
AP

M N

M
REC

rec x.M

NIL
nil

M
HD

hd(M)

M
TL

tl(M)

M N
CONS

M : N

M
ELIST

elist(M)

Figure 1: Rules for Inductively Generating the Set T

shall adopt the following notation for finite trees: If T1, T2, T3 and so on to Tn is a (finite) sequence
of finite trees, then we shall write root(T1, T2, T3, . . . , Tn) for the finite tree which has the form

root

.8

�
T1 T2

�
T3

�

. . . Tn

-

and whose root is denoted by the symbol root. We refer to root as a constructor. The set of
program constructors is given by

{x, c, op, cond, λ, ap, rec, nil, hd, tl, cons, elist | x ∈ Var , c ∈ Z ∪ B, op ∈ Opr }

We shall adopt the following notational abbreviations, where M , N and L are finite trees, and x
is a finite tree with no branches.

• We write M op N for op(M,N);

• if M then N else L for cond(M,N,L);

• λx.M for λ(x,M);

•M N for ap(M,N);

• recx.M for rec(x,M); and

•M : N for cons(M,N).

With this, the set of terms, T , is inductively defined by the rules in Figure 1.

The intended meanings of most of the terms are just what you would expect from regular pro-
gramming, except for recx.M . In order to explain its meaning, if P and P ′ are two programs, we
shall write P P ′ to mean that P “computes in one step” to P ′ (this notation will be defined
properly on page 17). We shall also write M [N/v] to mean “M where v is replaced by N”. For
example,

(2 + 5) + 1 7 + 1 8 and (x+ y)[4/y] = x+ 4.

The term λx.M is code for the program which is a function whose effect is to map x to M . More

carefully, if F
def
= λx.M , then F a M [a/x]. Thus λx.x+2 is a program whose intended meaning

is the function which “adds 2”, and we can write (for example) (λx.x + 2) 4 4 + 2.

5

Now, recx.M is a recursive program on x, which is specified by the code in M . In fact, recx.M

denotes a solution to the equation x = M . We illustrate by example. Write R
def
= recx.M . The

program R “computes in one step” to M [R/x]. Thus if we take M
def
= 0 : x, then

R (0 : x)[R/x] ≡ 0 : R 0 : (0 : R) . . .

and so R is a program which recursively evaluates to an infinite list of zeros. We call each step in
the computation of R an unfolding.

Remark 2.1 We shall adopt a few conventions to make terms more readable:

• In general, we shall write our “formal” syntax in an informal manner, using brackets “(” and “)”
to disambiguate where appropriate. For example, the term ap(λ(x,M), N) (which is unambiguous)
will not be written λx.M N according to the abbreviation in Remark 2.1 (which is ambiguous) but
will be written (λx.M)N .

• We also drop brackets on other occasions. For example, we take the λ-term λx.M to mean
λx.(M). Thus we can write λx.λy.y + 2 instead of the more clumsy λx.(λy.(y + 2)). A similar
convention applies to recx.M . We call M the body of λx.M and recx.M .

•M1M2M3 . . .Mn is shorthand for (. . . ((M1M2)M3) . . .Mn). We say that the application con-
structor (ap) associates to the left. For example, M1M2M3 is short for (M1M2)M3 (which is in
turn a shorthand notation for the tree denoted by ap(ap(M1,M2),M3).

• We shall write M : N : L for M : (N : L) and say that the cons constructor (cons) associates to
the right.

• The op constructors associate to the left. Thus the term 3 op 10 op 5 is shorthand for
(3 op 10) op 5.

• We take if M then N else L to mean if (M) then (N) else (L).

There are many terms which do not represent “common sense” programs. By common sense, we
mean “well typed” programs. For example, hd(2 + 3), T − 3 and 4(∗T : F) are all terms.

2.2 Free and Bound Variables

We shall use the symbol ≡ to mean actual identity. Thus, for example 2 + 2 ≡ 2 + 2, but
2 + 2 6≡ 4.

We shall use the notion of a subterm of a term. A subterm S of a term M is simply any subtree
of the finite tree denoted by the term M . This will be indicated by S C M ; we omit a formal
definition. One can show that all subterms are themselves terms. We say that a variable x occurs

in a term M if x CM . There may be many occurrences. We say that a term M lies in the scope

of λy or rec y in a term of the form λy.M or rec y.M respectively.

Example 2.2 u+ 2 is the scope of λu in λx.(λu.u+ 2) z. Example subterms are

z C λx.(λu.u+ 2) z and λu.u+ 2 C λx.(λu.u+ 2) z.

If N
def
= λx.xxyxzx then the underlined x is the fourth occurrence of x in N . x occurs in N five

times.

The intended meaning of λx.x + 2 is the function which adds 2 to its argument. What about
λy.y + 2? Well, it too should be a function which adds 2. The name of the variable used to form
such a term is not relevant to the intended meaning of the term—the variables x and y are said
to be bound. However, the terms x+ 2 and y+ 2 are certainly different—the value of each term is

6

respectively 2 added to x and 2 added to y, so the values will only be the same if x = y. Here, the
variables x and y are said to be free. Let us give the full definitions:

One reason for defining the notion of a subterm is so that we can give a formal definition of free

and bound variables. Suppose that x is a variable which does occur in a term M—of course x
may occur more than once, possibly many times. Each occurrence of x (in M) is either free or
bound. We say that an occurrence of x is bound in M if the occurrence of x in M is in a subterm
of the form λx.N or recx.N—this means that whenever λx or recx appear in a term, only those
occurrences of x which appear in the scopes of λx or recx are bound (as well as the occurrence
of x immediately after the λ or rec !!). If there is an occurrence of x in such N then we say that
occurrence of x has been captured by (the scope of) λx or recx to mean that the occurrence of
x is bound by the respective λx or recx. An occurrence of x in M is free iff the occurrence of x
is not bound. Before reading on, take a look at Examples 2.3.

We shall write var(M) for the set of all variables which occur in M , that is

var (M)
def
= { x | x ∈ Var and x CM }.

We can give a recursive definition of the set var (M) which is obvious and omitted (cf the definition
of fvar (M) which follows). We write fvar (M) for the set of variables which have free occurrences
in M . We can define this recursively by the following (obvious!) clauses:

• fvar (x)
def
= {x };

• fvar (c)
def
= ∅;

• fvar (M op N)
def
= fvar (M) ∪ fvar (N);

• fvar (if M then N else L)
def
= fvar (M) ∪ fvar (N) ∪ fvar (L);

• fvar (λx.M)
def
= fvar (M)\{x }; occurrences of x in M are captured by the scope of λx, and hence

are not free;

• fvar (M N)
def
= fvar (M) ∪ fvar (N);

• fvar (rec x.M)
def
= fvar (M) \ {x }; occurrences of x in M are captured by the scope of rec x, and

hence are not free;

• fvar (nil)
def
= ∅;

• fvar (hd(M))
def
= fvar (M);

• fvar (tl(M))
def
= fvar (M);

• fvar (M : N)
def
= fvar (M) ∪ fvar (N); and

• fvar (elist(M))
def
= fvar (M)

We leave the (easy) recursive definition of the set bvar (M) of the set of variables with bound
occurrences in M to the reader.

Examples 2.3 Warning: Note that a variable may occur both free and bound in a term. Here
are two examples:

(1)

if (x = 2) then (λ y. y) else (rec z. z x y)

free

6

bound

6

bound

6

bound

6

bound

6

free

6

free

6

Here, the set of free variables is {x, y } and the set of bound variables is { y, z }. We could say that
the second occurrence of z in the conditional has been captured by rec z.

7

(2)

(rec x. x)(λ y. y x)

bound

6

bound

6

bound

6

bound

6

free

6

Here, the set of free variables is {x } and the set of bound variables is {x, y }.

2.3 Substitution of Terms

Suppose that M and N are terms. If one thinks of M as a functional program, and the free
occurrences of a variable x in M as places at which new code could be executed, we might consider
replacing the variable x by N . Such a replacement is called a substitution. We substitute a term
N for free occurrences of x in M simply by replacing each free x with N ; this will produce a new
term which will be denoted M [N/x]. For example, (if x then 4 else 5)[1 = 2 /x] denotes the term
if 1 = 2 then 4 else 5.

But things are not entirely straightforward! Suppose that f
def
= λx.L. Given any term N , the

intended meaning of f N is L[N/x]. Thus if L is y, then f N = y[N/x] = y. So if M
def
= λx.y, the

intended meaning of M is “the function with constant value y”. Now, y occurs freely in M , and
x is a term, so we can try substituting the term x for the free occurrence of y, giving a new term
denoted by M [x/y]. Now, M [x/y] ought to be “the function with constant value x”. But in fact
M [x/y] is clearly the term λx.x, which is the identity function! The problem arises because when
the variable x is substituted for the free variable y in λx.y, x becomes captured by the scope of
the abstraction λx.

Note that the terms λx.y and λz.y can be regarded as “the same” in the sense that the intended
meaning of each term is the “function with constant value” y. When we attempted to substitute x
for the free y in λx.y, we noted that x would become bound. But if the intended meaning of λz.y
is the same as λx.y, what about substituting x for y in λz.y to get λz.x? The latter term is indeed
what we were after—the function with constant value x. Informally we say that we re-name the
bound variable x in λx.y as a new variable z so that when x is substituted for y it does not become
bound.

Examples 2.4 Informal examples are

(λx.x + y)[2/y] = λx.x + 2 and (λx.x + y)[x/y] = λu.u+ x.

In the second example, the substituted x will appear in the scope of λx, so we rename (to u) the
bound x’s to avoid capture.

We have now introduced a minor problem, which we shall deal with below. In the previous example,
should (λx.x+ y)[x/y] be λu.u+ x or λz.z+ x or . . .? We can make a unique choice by appealing
to the fixed enumeration (list) of the variables in Var (recall page 4). This is made clear in the
following definition.

We now give a formal definition of substitution of terms. Given terms M and N , and a variable
x, we shall define a new term denoted by M [N/x], which is the term M with free occurrences of
x replaced by N , by recursion on the finite tree structure of M :

• x[N/x]
def
= N (if M ≡ x);

• y[N/x]
def
= y where x 6= y (if M ≡ y);

• c[N/x]
def
= c (if M ≡ c);

8

• (L op L′)[N/x]
def
= L[N/x] op L′[N/x] (if M ≡ L op L′ for some L and L′);

• (if L then L′ else L′′)[N/x]
def
= if L[N/x] then L′[N/x] else L′′[N/x] (if M ≡ . . . etc etc);

• (LL′)[N/x]
def
= L[N/x]L′[N/x];

• (λx.L)[N/x]
def
= λx.L; and

• (λy.L)[N/x]
def
= λy.L[N/x] if x 6= y and x 6∈ fvar (L) or y 6∈ fvar (N);

• (λy.L)[N/x]
def
= λz.L[z/y][N/x] if x 6= y and x ∈ fvar (L) and y ∈ fvar (N), where z is chosen as

the first variable in (the fixed enumeration of) Var for which z 6∈ var (N)∪ var(L). So occurrences
of y in λy.L will be renamed to the variable z to ensure that occurrences of y in N will not be
captured upon substitution;

• (rec x.L)[N/x]
def
= recx.L; and

• (rec y.L)[N/x]
def
= rec y.L[N/x] if x 6= y and x 6∈ fvar (L) or y 6∈ fvar (N);

• (rec y.L)[N/x]
def
= rec z.L[z/y][N/x] if x 6= y and x ∈ fvar (L) and y ∈ fvar (N), where z is

chosen as the first variable in (the fixed enumeration of) Var for which z 6∈ var (N) ∪ var(L). So
occurrences of y in rec y.L will be renamed to the variable z to ensure that occurrences of y in N
will not be captured upon substitution;

• nil[N/x]
def
= nil;

• hd(L)[N/x]
def
= hd(L[N/x]);

• tl(L)[N/x]
def
= tl(L[N/x]);

• (L : L′)[N/x]
def
= L[N/x] : L′[N/x];

• elist(L)[N/x]
def
= elist(L[N/x]).

Examples 2.5

(1)

((v1 + 2) : (v3v2))[10/v2] = (v1 + 2)[10/v2] : (v3v2)[10/v2]
= (v1[10/v2] + 2[10/v2]) : (v3[10/v2]v2[10/v2])
= (v1 + 2) : (v3 10)

Note that in the first example, we wrote down each of the recursive steps. It’s not too difficult (!)
to write the result of the substitution straight down, or at least miss out some of the steps, as in
the next example:

(2)

(rec v3.v6 v3 : nil)[v3 v1/v6] =∗ rec v2.(v6 v3 : nil)[v2/v3][v3 v1/v6]
= rec v2.(v6 v2 : nil)[v3 v1/v6]
= rec v2.((v3 v1) v2 : nil)

where at * note that v6 ∈ fvar (v6 v3 : nil) and v3 ∈ fvar (v3 v1), so we have to rename v3 to avoid
capture. We rename v3 to be the first variable in Var not appearing in

fvar (v6 v3 : nil) ∪ fvar (v3 v1) = { v1, v3, v6 }

which is v2.

We have claimed that for any two terms M and N , and variable x, there is a term M [N/x] which
is specified by the previous definition. We should, of course, prove that M [N/x] is a term. While
this can be done, the proof is a subtle induction, and we omit it.

9

2.4 α-Equivalence

We have seen that the two terms λx.y and λz.y have the same intended meaning, namely that
they both represent the function with constant value y. You will also note the the definition of
substitution is a little unwieldy due to the clauses which involve a renaming of bound variables.
Whenever a renaming takes place we have to choose “the first variable in the enumeration v0, v1, . . .
which does not appear in the terms involved in the substitution”. Now, if we were to implement
substitution, we would have to be explicit about what we renamed variables to, when avoiding
capture. But, in fact, as regards the overall meaning of UL terms, it does not really matter what
we rename variables to, provided we choose a fresh variable. Thus the computational meaning of
both λu.u+ x and λz.z + x in Remark 2.3 is the same—they are both functions which add x.

For these reasons, we shall regard terms which differ only in the names of their bound variables as

equivalent. We have to give a proper definition of what it means for two terms to be “equal” if
they “differ only in the names of their bound variables”.

To do this we shall define an equivalence relation, denoted by ∼α, on the set T of terms. So
formally ∼α is a set (of pairs), and in particular a subset of T × T . We define it inductively by
the rules in Figure 2. We comment about the notation. Instead of writing the rules R in the form

(M1,M
′
1) (M2,M

′
2) (M3,M

′
3) . . . (Mk,M

′
k)
R

(M,M ′)

(where R ⊆ P(T × T) × (T × T)) we write them in the more suggestive form

M1 ∼α M
′
1 M2 ∼α M

′
2 M3 ∼α M

′
3 . . . Mk ∼α M

′
k
R

M ∼α M
′

The formal definition of two terms differing only in their bound variables is of course that the terms
are α-equivalent. We wish to consider a term as being “equal” to all other α-equivalent terms, and
we can do this by considering α-equivalence classes.

We define the set E of expressions to be the set of α-equivalence classes of terms:

E
def
= T / ∼α = {M | M ∈ T }.

Example 2.6 We have

λu.u+ x = {M | λu.u+ x ∼α M } = {λu.u+ x, λz.z + x, . . . } = λz.z + x = . . .

Check this!! Rule (1) gives us (for example) λu.u+ x ∼α λz.z + x taking M to be u+ x, v to be
u and v′ to be z.

The formal definition of α-equivalence amounts to saying that two terms are α-equivalent if one
can be transformed to the other by a sequence of changes of bound variables. The definition
in Figure 2 makes this intuitive idea watertight. Instead of writing M for an expression, we
adopt the convention that we simply write M , that is we shall denote an α-equivalence class by
a representative. We shall “treat” expressions as though they are terms, but whenever we give
a definition involving expressions, we must not forget that expressions are in fact α-equivalence
classes and that we have to check that the definition is well-defined.

If M,N ∈ T and M ∼α N , then of course M = N . For example λx.x ∼α λz.z and so λx.x = λz.z.
Following the above convention, we can simply write λx.x = λz.z. And magically, the convention
also allows us to write

(λx.x + y)[x/y] = λu.u+ x = λz.z + x.

Finally, what about substitution of expressions? What expression is M [N/x] when M and N are
expressions, rather than terms? In practice, we can just “forget” that M and N are α-equivalence

10

REF
M ∼α M

M ∼α M ′

SYM
M ′

∼α M

M ∼α M ′ M ′
∼α M ′′

TRAN
M ∼α M ′′

M ∼α M ′ N ∼α N ′

M op N ∼α M ′
op N ′

M ∼α M ′ N ∼α N ′ L ∼α L′

if M then N else L ∼α if M ′
then N ′

else L′

(1)
λv.M ∼α λv′.M [v′/v]

M ∼α M ′

λx.M ∼α λx.M ′

M ∼α M ′ N ∼α N ′

M N ∼α M ′ N ′

(2)
rec v.M ∼α rec v′.M [v′/v]

M ∼α M ′

rec x.M ∼α rec x.M ′

M ∼α M ′

hd(M) ∼α hd(M ′)

M ∼α M ′

tl(M) ∼α tl(M ′)

M ∼α M ′ N ∼α N ′

M : N ∼α M ′ : N ′

M ∼α M ′

elist(M) ∼α elist(M ′)

In (1) and (2), v′ may be any variable different from v and which does not occur in M

Figure 2: Rules for Inductively Generating the α-Equivalence Relation M ∼α M
′

11

classes, and take the “expression” M [N/x] to be the equivalence class of the term M ′[N ′/x] where
M ′ and N ′ are any representatives (ie M ∼α M

′ and N ∼α N
′). Thus, it turns out that because

we are dealing with α-equivalence classes, when we rename variables to avoid capture, we can
choose any new name we like. And this avoids the hassle of a specific choice of variable, as we had
on page 8. It is actually quite tricky to prove that this all works out, and we omit to do this. We
look at one example:

Example 2.7 Dealing with α-equivalence classes we have

(λx.(x + y)) [rec z.xz/y] = λu.(u+ rec z.xz).

But (for example)
λx.x + y = λw.w + y and rec z.xz = rec v.xv

and so we ought to have

λu.u+ rec z.xz = λw.w + rec v.xv. (∗)

It is “easy to see” that (∗) holds via a renaming of bound variables. Here is how we could give a
formal deduction:

REF
u ∼α u

(2)
rec z.xz ∼α rec v.xv

u + rec z.xz ∼α u + rec v.xv

λu.(u + rec z.xz) ∼α λu.(u + rec v.xv)
(1)

λu.(u + rec v.xv) ∼α λw.(w + rec v.xv)
TRAN

λu.(u + rec z.xz) ∼α λw.(w + rec v.xv)

2.5 Terms with Contexts

We will shortly use the concept of expressions to give an abstract definition of a (functional)
program. Before we do this, we need one further technical device. It is very convenient, when
dealing with expressions, to keep track of the free variables appearing in an expression. We will
do this by defining judgements of the form Γ `M where Γ is a set of variables, M is a term, and
the free variables of M all appear in Γ. An example is

{x, y, z }
︸ ︷︷ ︸

` x+ y
︸ ︷︷ ︸

set of variables

6

term

6

For clarity, we usually drop the curly braces from the set of variables, writing this example as
x, y, z ` x+ y.

We shall define a relation ` between finite sets of variables and terms. More formally, ` is a relation
between Pf in(Var) and T . We often write Γ for a typical element of Pf in(Var), and it will be
convenient to write Γ, x for Γ ∪ {x } and Γ,Γ′ for Γ ∪ Γ′. We define ` inductively by the rules in
Figure 3, where instead of writing (Γ,M), we use the more readable Γ `M .

We define the set of terms whose free variables appear in a context Γ, denoted by T (Γ),
and the set of expressions whose free variables appear in Γ, denoted by E(Γ), by

T (Γ)
def
= {M | Γ `M } and E(Γ)

def
= T (Γ)/ ∼α

where you should note that the equivalence relation ∼α on T induces an equivalence relation (also
written ∼α) on T (Γ). Note that we write ` M when Γ is empty, that is, ∅ ` M . If ` M we say
that M is closed.

12

[x ∈ Γ]
Γ ` x

[c ∈ Z ∪ B]
Γ ` c

Γ ` M Γ ` N
[op ∈ Opr]

Γ ` M op N

Γ ` M Γ ` N Γ ` L

Γ ` if M then N else L

Γ, x ` M

Γ ` λx.M

Γ ` M Γ ` N

Γ ` M N

Γ, x ` M

Γ ` rec x.M

Γ ` nil

Γ ` M

Γ ` hd(M)

Γ ` M

Γ ` tl(M)

Γ ` M Γ ` N

Γ ` M : N

Γ ` M

Γ ` elist(M)

Figure 3: Rules for Inductively Generating the Relation Γ `M

Proposition 2.8 If Γ `M , then fvar (M) ⊆ Γ.

Proof We use the Principle of Induction for the inductively defined set `. We prove that the
set

S
def
= { (Γ,M) ∈ ` | fvar (M) ⊆ Γ }

is closed under each of the rules in Figure 3. It follows that S = `, and the result follows. Let us
give one example.

(Closure under the rule):
Γ, x `M

Γ ` λx.M

The inductive hypothesis amounts to fvar (M) ⊆ Γ∪{x }. We have to prove that fvar (λx.M) ⊆ Γ.
We calculate

fvar (λx.M)
def
= fvar (M) \ {x }
⊆ (Γ ∪ {x }) \ {x } using the inductive hypothesis
= Γ.

The rest of the proof is left as an exercise. 2

2.6 Programs, Values and Evaluation

A program will be a closed expression. A program is closed so that it is a “self contained” expression,
into which no further data need be input. A program is required to be an expression, so that
programs which differ only in their bound variables are equal.

We shall soon give rules which tell us how a program can be “evaluated” or “computed” to a value.
A value will be a program that is as “fully evaluated as possible” according to a particular kind
of evaluation or computation strategy. For example, (λx.x + 2)3 is a program which computes to
the value 5, and we can write this as

(λx.x + 2)3 ⇓ 5

reading ⇓ as “evaluates to”. Note that 5 is a value, but it is also a very trivial program—it is

an expression with no free variables!! Functions, that is programs of the form λx.M , will also
be regarded as values. The idea is that the body M of the function will not be evaluated until
an argument has been passed to the function. Finally, lists of the form P : Q, where P and Q
are programs, are also values. This may seem odd at first sight—think of some examples. As we

13

VAL
V ⇓ V

P ⇓ m Q ⇓ n
OP

P op Q ⇓ m op n

P ⇓ T Q ⇓ V
COND1

if P then Q else Q′
⇓ V

P ⇓ F Q′
⇓ V

COND2

if P then Q else Q′
⇓ V

P ⇓ λx.M M [Q/x] ⇓ V
AP

P Q ⇓ V

M [rec x.M/x] ⇓ V
REC

rec x.M ⇓ V

P ⇓ P ′ : Q P ′
⇓ V

HD
hd(P) ⇓ V

P ⇓ P ′ : Q Q ⇓ V
TL

tl(P) ⇓ V

P ⇓ nil

ELIST1

elist(P) ⇓ T

P ⇓ P ′ : Q
ELIST2

elist(P) ⇓ F

Figure 4: Rules for Inductively Generating the Evaluation Relation P ⇓ V of UL

shall soon see in more detail, UL is a lazy language, meaning that “program fragments are only
evaluated if they are used”. Thus the head or tail of a list will only be evaluated if “extracted”
by a hd or tl function. So (3 + 4) : nil is a value; it does not evaluate to 7 : nil.

We shall define a program P to be a closed expression. A value V is any program given by the
grammar

V ::= c | λx.M | nil |M : M

where M ranges over expressions. The set of programs is denoted by P , and values by V .

We can define a binary relation between programs and values, with relationships denoted by
P ⇓ V , as an inductively defined set given by the rules in Figure 4. We shall also use the notations
(P, V) ∈ ⇓ and P ⇓ V interchangeably when we feel that no confusion can arise.

We refer to the definition of ⇓ as a structured operational semantics for UL . The word seman-

tics refers to the fact that the rules defining ⇓ give a “meaning” to programs P . This “meaning”
arises by showing how programs compute to values, which is specified in a “computational” or
“operational” manner—hence the adjective operational. Finally, structured refers to the finite tree
structure of P : whenever we have P ⇓ V , we can see which rules might have been used to deduce
P ⇓ V by looking at the outermost constructor of P .

You should note that the rules in Figure 4 yield a lazy operational semantics for functions and lists.
In general, lazy means that “subterms of programs are only computed if absolutely necessary”.
For a general program of the form

P ≡ C(M1,M2, . . . ,Mn)

where C is a program constructor, we only evaluate those Mi to values necessary for the evaluation
of P . We illustrate by example:

Consider P Q. Let us write this as the finite tree ap(P,Q) (as originally defined) where ap is the
program constructor. In order to evaluate ap(P,Q), we must evaluate P to a function, say λx.M .
But now we are lazy!! We do not bother to evaluate Q before passing it to λx.M . Thus the
next step of the computation is to evaluate M [Q/x]. If now M [Q/x] evaluates to a value, say V ,

14

then so too does ap(P,Q). Now look at rule AP, and see how it captures our intended operational
semantics!

The same idea applies to lists. Consider H : T , that is cons(H,T) where cons is the program
constructor. We regard this as a fully evaluated program—very lazy!! We only compute the
subterms H or T if they are extracted by taking a head or tail. Thus to evaluate hd(P), we first
evaluate the list P to a value of the form cons(P ′, Q), but then we only bother (lazy) to evaluate
P ′ to a value, say V . Thus hd(P) evaluates to V , and there is no need to evaluate Q. Now look at
rules HD and TL.

We have seen that if P is a program, V is a value, and P ⇓ V , the latter means that “the program
P evaluates to the value V ”. But what would happen if there was another value V ′ for which
P ⇓ V ′? This would mean that one program could compute to two different values. In fact,
thankfully, this cannot happen! The relation ⇓ is deterministic, meaning that a program can only
compute to one value.

Theorem 2.9 The relation ⇓ is deterministic: For any program P and values V and V ′, if
P ⇓ V and P ⇓ V ′, then1 V = V ′.

Proof We shall show that the set

S
def
= { (P, V) ∈ ⇓ | ∀V ′ (P ⇓ V ′ =⇒ V = V ′) }

is closed under the rules in Figure 4.

(Closure under COND2): The inductive hypotheses are

H1 for all V ′, if P ⇓ V ′ then F = V ′, and

H2 for all V ′, if Q′ ⇓ V ′ then V = V ′.

We have to prove that

C for any V ′, if if P then Q else Q′ ⇓ V ′ then V = V ′.

Pick an arbitrary V ′ for which if P then Q else Q′ ⇓ V ′—(*). Now (*) could be deduced from an
application of either COND1 or COND2. If it were the former, then P ⇓ T . So using H1, we would
have F = T , a contradiction. Hence (*) must be a conclusion to an instance of COND2, say

P ⇓ F Q′ ⇓ V ′

if P then Q else Q′ ⇓ V ′

Hence Q′ ⇓ V ′ for some program Q′. But using H2, it follows that V = V ′ as required.

(Closure under REC): The inductive hypothesis is

H for all V ′, if M [recx.M/x] ⇓ V ′ then V = V ′.

We have to prove that

C for any V ′, recx.M ⇓ V ′ implies V = V ′.

Pick an arbitrary V ′ for which recx.M ⇓ V ′. This last relation must arise through the rule REC,
and so M [recx.M/x] ⇓ V ′. That V = V ′ then follows from H.

Exercise: finish the proof. 2

1Do not forget that = here denotes equality of the two α-equivalence classes represented by V and V
′.

15

Examples 2.10 Prove that (λz.z∗2) 3 ⇓ 6, that is ((λz.z∗2) 3, 6) ∈ ⇓. To do this, we produce a
deduction tree (see Theorem 1.3). First note that the program being evaluated is an application.
So it must arise by the rule AP, hence we need to show that λz.z∗2 ⇓ λx.M for some x and M ,
and that M [3/x] ⇓ 6. The first of these is easy, being an instance of VAL with x ≡ z and M ≡ z∗2.
The second, namely 3∗2 ⇓ 6, is also easy following from OP. Putting this altogether we get

VAL
λz.z∗2 ⇓ λz.z∗2

VAL
3 ⇓ 3

VAL
2 ⇓ 2

OP
(z∗2)[3/z] ≡ 3∗2 ⇓ 6

AP
(λz.z∗2) 3 ⇓ 6

Prove that hd((λx.x + 2) 3 : nil) ⇓ 5. To do this, we derive a deduction tree:

T

VAL
λx.x + 2 ⇓ λx.x+ 2

VAL
3 ⇓ 3

VAL
2 ⇓ 2

OP
(x+ 2)[3/x] ≡ 3 + 2 ⇓ 5

AP
(λx.x + 2) 3 ⇓ 5

HD
hd((λx.x + 2) 3 : nil) ⇓ 5

where T is the tree
VAL

(λx.x + 2) 3 : nil ⇓ (λx.x + 2) 3 : nil

2.7 Transitions: One Step Computations

Not all programs compute to values! An example is recx.x. However, when a program P does
compute to a value, how can we calculate that value? The rules for deriving the relation P ⇓ V do
not lend themselves to direct calculation. To overcome this problem, we shall define a new relation
between programs, written P Q. The intuitive idea is that if P and Q are related by , then
P “computes in one step” to Q. For example,

(λx.x + 2)3 3 + 2 and 3 + 2 5.

Now we give the full definition:

We shall define a transition relation between programs, that is a binary relation on P . It takes
the form P Q and is inductively defined by the rules in Figure 5. If P Q we say that P
computes in one step to Q.

Note again that is lazy. In order to compute P Q, we have to (deterministically!) apply rule AP1

until P reduces to a value λx.M and then apply rule AP2 which substitutes the function argument
Q straight into M without first evaluating Q to a value:

P Q AP1
P ′Q . . . AP1

(λx.M)Q AP2
M [Q/x]

Some programs cannot compute in one step to another program. An example is 2 + T for which
there is no program Q with

(2 + T) Q.

One can see this by inspecting the rules for generating . We say that such programs are terminal.
However, when a program P is not terminal, there is a unique program Q for which P Q. Thus,
the relation is, like ⇓, deterministic.

Theorem 2.11 The relation is deterministic: If P , Q and Q′ are any programs, then if
P Q and P Q′ we have Q = Q′.

16

P P ′

OP1

P op Q P ′
op Q

Q Q′

OP2

n op Q n op Q′

OP3

n op m n op m

P P ′

COND
if P then Q else Q′

 if P ′
then Q else Q′

COND1

if T then P else Q P
COND2

if F then P else Q Q

P P ′

AP1

P Q P ′ Q

AP2

(λx.M)Q M [Q/x]
REC

rec x.M M [rec x.M/x]

P P ′

HD1

hd(P) hd(P ′)

HD2

hd(P : Q) P

P P ′

TL1

tl(P) tl(P ′)

TL2

tl(P : Q) Q

P P ′

ELIST1

elist(P) elist(P ′)

ELIST2

elist(nil) T
ELIST3

elist(P : Q) F

Figure 5: Rules for Inductively Generating the Transition Relation P Q in UL

17

Proof Let
S

def
= { (P,Q) ∈ | ∀Q′(P Q′ =⇒ Q = Q′) }

So by the Principle of Induction, we show closure of S for the rules in Figure 5. This routine
exercise is left to the reader. 2

2.8 Relating Evaluation and Transition Relations

We need to find a connection between ⇓ and . Consider

hd((λx.x + 2) 3 : nil) (λx.x + 2) 3
 3 + 2
 5

and (see Examples 2.10)
hd((λx.x + 2) 3 : nil) ⇓ 5

It appears that a program will compute to a value if there is a sequence of one-step transitions
from the program to the value. This suggests that ⇓ might be the transitive closure of . In fact
⇓ is (more-or-less) the reflexive transitive closure ∗—reflexivity arises from the fact that for any
value V , we have V ⇓ V .

Theorem 2.12 For every program P and value V in UL , we have

P ⇓ V ⇐⇒ P ∗ V.

Proof

(⇒) We use the Principle of Induction for ⇓ to prove { P ⇓ V | P ∗ V } is all of ⇓. The details
are an exercise.

(⇐) We can show that

X
def
= { (P,Q) | ∀V. (Q ⇓ V =⇒ P ⇓ V) }

is closed under the rules in Figure 5 which define .

(Closure under HD1): Suppose (P, P ′) ∈ X—(*). We have to prove (hd(P), hd(P ′)) ∈ X , that is

∀V. (hd(P ′) ⇓ V =⇒ hd(P) ⇓ V) (†)

Pick an arbitrary value V and suppose that hd(P ′) ⇓ V . Then from rule HD of Figure 4 we know
that there must be programs Q and Q′ for which P ′ ⇓ Q : Q′—(**) and Q ⇓ V . Now, Q : Q′ is a
value in UL , so using supposition (∗), and (∗∗), we have P ⇓ Q : Q′. Hence

P ⇓ Q : Q′ Q ⇓ V

hd(P) ⇓ V

As V was arbitrary, (†) holds.

We can show closure under the other rules similarly, and the details are omitted. Hence by leastness
for , we have ⊆ X , that is for any P and Q,

P Q =⇒ ∀V (Q ⇓ V =⇒ P ⇓ V).

Note that X is in fact a reflexive and transitive relation between programs—exercise: check this!!
But, by definition, ∗ is the smallest such relation which contains . Hence ∗ ⊆ X , and so for
any P and Q,

P ∗ Q =⇒ ∀V (Q ⇓ V =⇒ P ⇓ V).

If we take Q
def
= V , and note that V ⇓ V , then we have

P ∗ V =⇒ P ⇓ V

as required. 2

18

Suppose that P is a program. We say that P has a finite transition sequence if there is a
transition sequence of the form

P ≡ P0 P1 P2 . . . Pm

for some natural number m ≥ 0 for which Pm is terminal. Note that appealing to Theorem 2.11,
any transition sequence must be unique, and hence that m must be unique too. We shall also call
such P convergent. In such a case we call

P0 P1 P2 . . . Pm

the full transition sequence of P . The case that m is 0 is simply saying P itself is terminal.

If such finite m does not exist, we say that P has an infinite transition sequence, which must
be of the form

P P1 P2 . . . Pn . . .

where each Pn is non-terminal. We say that P is divergent or loops, and indicate this by P ω.
Note that by Theorem 2.11, all programs are either convergent or divergent, but cannot be both.
It is easy to see from the definition of that a value V is terminal, and hence convergent.

Let M
def
= if x = 1 then 1 else x + f (x − 1), F

def
= λx.M and R

def
= rec f.F . We give the full

transition sequence of R 2 in UL .

R 2 F [R/f] 2 ≡ (λx.M [R/f]) 2

 M [R/f][2/x] ≡ if 2 = 1 then 1 else 2 +R (2 − 1)

 if F then 1 else 2 +R (2 − 1)

 2 +R (2 − 1)

 (1) 2 + (λx.M [R/f]) (2 − 1)

 2 +M [R/f][2− 1/x]

≡ 2 + (if (2 − 1) = 1 then 1 else (2 − 1) +R ((2 − 1) − 1))

 2 + (if 1 = 1 then 1 else (2 − 1) +R ((2 − 1) − 1))

 2 + (if T then 1 else (2 − 1) +R ((2 − 1) − 1))

 2 + 1

 3

It is not too difficult to verify each of the transition steps. For example, the step (1) is valid
because:

REC
R F [R/f]

AP1
R (2 − 1) (λx.M [R/f]) (2 − 1)

OP2
2 +R (2 − 1) (1) 2 + (λx.M [R/f]) (2 − 1)

where of course F [R/f] = λx.M [R/f].

2.9 Coinductively Characterizing Divergence

In fact we can give a coinductive definition of divergence based solely on the evaluation relation.
Let us coinductively define a subset of P , denoted by ⇑, by the rules in Figure 6.

Then we have the following theorem.

Theorem 2.13 A program P diverges just in case P ⇑.

19

P ⇑

P op Q ⇑

Q ⇑
P ⇓ n

P op Q ⇑

P ⇑

if P then Q else Q′
⇑

Q ⇑
P ⇓ T

if P then Q else Q′
⇑

Q′
⇑

P ⇓ F
if P then Q else Q′

⇑

P ⇑

P Q ⇑

M [Q/x] ⇑
P ⇓ λx.M

P Q ⇑

M [rec x.M/x] ⇑

rec x.M ⇑

P ⇑

hd(P) ⇑

P ⇑

tl(P) ⇑

P ⇑

elist(P) ⇑

Figure 6: Rules for Coinductively Generating the Divergence Predicate P ⇑ in UL

Proof Let us write D for the set of divergent programs, that is D
def
= { D ∈ P | D ω }. Then

we have to prove that D = ν Φ⇑, where Φ⇑: P(P) → P(P) is the name of the set of rules R⇑ in
Figure 6.

We shall verify that D is in fact a greatest R⇑ dense set, and is thus ν Φ⇑.

First we check that it is R⇑ dense, that is, D ⊆ Φ⇑(D). To do this, we first write down a description
of the set Φ⇑(D) using the definition of Φ⇑. Let X range over Φ⇑(D). Then each such X takes the
form

X ≡ D op Q
| Cn op D
| if CT then D else Q′

| if CF then Q else D
| DQ
| Cλx.M Q provided that M [Q/x] ∈ D
| recx.M provided that M [recx.M/x] ∈ D
| hd(D)
| hd(CD:Q)
| tl(D)
| tl(CP :D)
| elist(D)

where M ∈ E , P,Q,Q′ ∈ P , D ∈ D and CV denotes a convergent term whose full transition
sequence terminates at a value V .

We shall show that if X ∈ D then X ∈ Φ⇑(D) by a structural case analysis of X . First note that
X can’t be either x or c.

Case X is P op Q

If P ∈ D, then X ∈ Φ⇑(D). If this is not the case, then P converges to a terminal, say T , and of
course X ∗ T op Q. Hence as X diverges, T must be of the form m so that P is of the form Cm,
and thus X ∗ m op Q ω as transition sequences are unique. It follows that Q ω as required.

Case X is P Q

20

If P ∈ D, then X ∈ Φ⇑(D). If this is not the case, then P converges to a terminal, say T , and of
course X ∗ T Q. Hence as X diverges, T must be of the form λx.M so that P is of the form
Cλx.M . Now note that

X ∗ (λx.M)Q M [Q/x] ω

because X diverges, and the transition sequence is unique. Thus M [Q/x] ∈ D.

Case X is recx.M

This is trivial, because recx.M M [recx.M/x], and as the former diverges, so too must the
latter.

We leave the remaining cases as an exercise. So D is R⇑ dense.

Let S ⊆ Φ⇑(S). We shall now show that D is greatest among all such R⇑ dense sets. To do this,
we shall first prove that

∀S ∈ E . S ∈ S =⇒ ∃S′ ∈ S.S S′ (†)

We use the Principle of Induction for the set of rules in Figure 1 to show that

{ S ∈ T | S ∈ S =⇒ ∃S′ ∈ S.S S′ }

is all of T . Then † follows.

(Closure under VAR): Of course x 6∈ S ⊆ P .

(Closure under OP): Denote the rule by P Q
PopQ . Suppose that P op Q ∈ S. Note that because

S ⊆ Φ⇑(S), then either P ∈ S, or P ≡ Cm and Q ∈ S. In the former case, by the induction
hypothesis P P ′ for some P ′, and hence P op Q P ′ op Q. In the latter case, if P P ′ for
some P ′ we are similarly done, and otherwise P must be m, in which case P op Q P op Q′ by
the induction hypothesis for some Q′.

(Closure under AP): Denote the rule by P Q
P Q . If P ∈ S, then P Q P ′Q follows by the induction

hypothesis. If not, then P ≡ Cλx.M and Q ∈ S. If P P ′, then we are done. Otherwise,
P ≡ λx.M , whence P Q M [Q/x].

We omit the remaining cases (exercise!).

It is quite easy to conclude from †, Theorem 2.11, and the definition of D, that S ⊆ D. Thus, as
ν Φ⇑ ⊆ Φ⇑(ν Φ⇑) we have ν Φ⇑ ⊆ D, and as D is indeed R⇑ dense, equality follows.

2

Examples 2.14 It follows from the Principle of Coinduction and Theorem 2.13, that to prove
P ω, it is enough to find a set S ⊆ P which is dense under the rules in Figure 6, such that P ∈ S.

1. The program recx.x diverges. Take S
def
= { recx.x }, which is clearly dense.

2. The program R
def
= recx.x op 2 diverges. Take S

def
= {R,R op 2 }. Then S is dense if

R,R op 2 ∈ Φ⇑(S), which is true if (respectively) R op 2, R ∈ S.

3. Fix k ∈ Z. The programR
def
= (rec f.n∗f (n−1)) k diverges. Let P k

0
def
= k and P k

m+1
def
= P k

m−1

for m ≥ 0. Take S
def
= { Rk, P k

m ∗ (RP k
m+1) | m ≥ 0 }. Then

S is dense iff Rk ∈ Φ⇑(S) and P k
m ∗ (RP k

m+1) ∈ Φ⇑(S)

if P k
0 ∗ (RP k

1) ∈ S and P k
m+1 ∗ (RP k

m+2) ∈ S

21

3 Algebras and Coalgebras

We shall assume that the reader is familiar with categories, functors, natural transformations, and
simple limits and colimits.

Let F : C → C be an endofunctor. An algebra for the functor F is specified by a pair (A,αA) where
A is an object of C and αA:FA → A is a morphism. We define the category of F -algebras,
denoted by CF , to have objects the algebras of F , and a morphism f : (A,αA) → (B,αB) is a
morphism f :A→ B in C for which the diagram

FA
Ff- FB

A

αA

?

f
- B

αB

?

commutes in C. Dually we can define a coalgebra for F as a pair (A,αA) where αA:A → FA
is a morphism in C, and the category of F -coalgebras CF is defined similarly to the category
of algebras. We also define an initial F -algebra (I, αI) to be an initial object in CF ; and a
final F -coalgebra (C,αC) to be a terminal object in CF . If (A, f) is an F -algebra, we write
f : (I, αI) → (A, f) for the unique mediating morphism, and similarly f : (A, f) → (C,αC) if (A, f)
is an F -coalgebra.

Let I be an arbitrary indexing set, and suppose that C has I-indexed products and coproducts. We
shall write Πi∈I : C → C for the functor which maps an object A to the I-fold product of copies of
A; in the case that I is finite, we write Πm for Πi∈I , and Am for Πi∈IA, where m is the cardinality
of I . Similarly, Σi∈I denotes I-fold coproduct.

Given families of morphisms (fi:A→ Bi | i ∈ I) and (gi:Ci → D | i ∈ I), then

〈fi | i ∈ I〉:A → Πi∈IBi and [gi | i ∈ I]: Σi∈ICi → D

denote pairing and copairing. Projections are denoted by πj : Πi∈IBi → Bj and insertions by
insj :Cj → Σi∈ICi.

Given a morphism f :A → B in a category C with pullbacks, the kernel Kf of f is given by the
pullback square

Kf
π1 - A

A

π2

?

f
- B

f

?

In the case that f = idA, then π1 = π2 (= π, say) and KidA
is denoted by EqA. Clearly π is

monic, and the subobject 〈π, π〉:EqA → A× A is called the equality relation on A.

We now give a few examples of initial algebras and final coalgebras.

3.1 The Functor A + (−):Set −→ Set

Let A be a set, + denote coproduct. Then the functor A+(−) has an initial algebra (A×N, αA×N)
where αA×N:A+ (A× N) → A× N is defined by

αA×N(ξ)
def
= case ξ of

insL(a) 7→ (a, 0)

insR(a, n) 7→ (a, n+ 1)

22

where insL and insR are the left and right coproduct insertions, and n ≥ 0.

Then given any function f :A+ S → S, we can define f where

A+ (A× N)
αA×N

- A× N

A+ S

A+ f

?

f
- S

f

?

by setting

f(a, 0)
def
= f(insL(a))

f(a, n+ 1)
def
= f(insR(f(a, n)))

Let (A×N)∞
def
= (A×N)∪ {∞}. The functor A+ (−) has a final coalgebra ((A×N)∞, α(A×N)∞)

where
p

def
= α(A×N)∞ : (A× N)∞ → A+ (A× N)∞

is defined (for n ≥ 0) by

p(a, 0)
def
= insL(a)

p(a, n+ 1)
def
= insR(a, n)

p(∞)
def
= insR(∞)

Note that given any function f :S → A+ S, we can write for r ≥ 1,

f1(s)
def
= f(s)

fr+1(s)
def
= case f r(s) of

insR(s′) 7→ f(s′)

otherwise 7→ undefined

It is easy to see that if there exists m ∈ N and a ∈ A for which fm+1(s) = insL(a), then m and a
must be unique. Hence we can define f where

S
f - A+ S

(A× N)∞

f

?

p
- A+ (A× N)∞

A+ f

?

by setting

f(s)
def
=

(a,m) if these exist as above

∞ otherwise

23

3.2 The Functor 1 + (A ×−):Set → Set

For k ≥ 1 we shall define the set Ak to be the collection of k-tuples of elements of A. If l =
(a1, . . . , ak) ∈ Ak, then we shall regard l as a partial function { 1, . . . , k }⇀A. If a ∈ A and l ∈ Ak,

then we define al ∈ Ak+1 by al(1)
def
= a and al(r)

def
= l(r − 1) for r ≥ 2.

The functor 1+(A×−) has an initial algebra (L, αL), where we shall set L
def
= { nil }∪(

⋃

1≤k<ω A
k),

and αL: 1 + (A× L) → L is defined by

αL(insL(∗))
def
= nil

αL(insR(a, nil))
def
= a

αL(insR(a, l))
def
= al

It is an exercise to verify that this does yield an initial algebra.

The functor 1+(A×−) has a final coalgebra (L, αL), where we shall set L
def
= { nil }∪(

⋃

1≤k≤ω A
k),

and αL:L→ 1 + (A× L) is defined by

αL(nil)
def
= insL(∗)

αL(l)
def
= case l of

l ∈ A1 7→ insR(l(1), nil)

l ∈
⋃

2≤k≤ω A
k 7→ insR(l(1), λr.l(r + 1))

Then given any function f :S → 1 + (A× S) we can define f :S → L by setting

f(s)
def
= case f(s) of

insL(∗) 7→ nil

insR(a, s′) 7→ l

where for r ≥ 1 we set

l(1)
def
= a

l(r + 1)
def
= case f r+1(s) of

insR(a′, s′′) 7→ a′

otherwise 7→ undefined

where for r ≥ 1 we set

f1(s)
def
= f(s)

fr+1(s)
def
= case f r(s) of

insR(a, s′) 7→ case f(s′) of

insR(a′, s′′) 7→ f(s′)

otherwise 7→ undefined

24

3.3 The Functor (−)⊥: ωCPO −→ ωCPO

There is an initial algebra (N∞
⊥ , σ) where σ is defined (for all n ≥ 0) by

σ(⊥)
def
= 0

σ(n)
def
= n+ 1

σ(∞)
def
= ∞

Then given any continuous function f :D⊥ → D, we can define f where

N
∞
⊥

σ - N
∞

D⊥

f⊥

?

f
- D

f

?

by setting

f(n)
def
= fn+1(⊥)

f(∞)
def
=

∨

k<ω f
k+1(⊥)

Note that σ is an isomorphism. In fact (N∞
⊥ , p) where p

def
= σ−1 is a final coalgebra. Given any

f :D → D⊥, we can define f where

D
f - D⊥

N
∞

f

?

p
- N

∞
⊥

f⊥

?

by setting

f(d)
def
=

∧

N∞

{ r | fr+1(d) = ⊥ ∧ r < ω }

4 Isomorphism Theorems

We illustrate algebraic and coalgebraic notions, by stating and proving the “group isomorphism
theorems” in a general setting.

4.1 For Algebras

An (single sorted) algebraic signature Sg is specified by a family of function symbols, a typical
symbol denoted by f , each of which has an arity r = r(f) ∈ N. Recall that a structure in a
category C with finite products is specified by giving a morphism αA

f :Ar → A in C for each function

symbol f in Sg . We call αA
f the denotation of f .

Let us now work with the category Set of sets and functions. Given an algebraic signature Sg ,

we define the functor S
def
= Σf∈Sg ◦ Πr(f) as a composition of the sum and product functors. We

then have the easy lemma

25

Lemma 4.1 Let Sg be a single sorted algebraic signature. Specifying a structure

(αA
f :Ar → A | f ∈ Sg)

for Sg in Set is equivalent to specifying a S -algebra (A,αA).

Proof Given a structure (αA
f :Ar → A | f ∈ Sg), we define αA: SA→ A by setting

αA def
= [αA

f | f ∈ Sg]

that is, the structure map is the copairing of the denotations of the function symbols.

Conversely, given αA: SA→ A, define αA
f

def
= αA ◦ insf , where

Ar insf - Σf∈SgA
r

A
�

α
A

α A
f

-

2

Let (A,αA) and (B,αB) be S -algebras. We shall call a morphism h: (A,αA) → (B,αB) in SetS a
homomorphism. Note that a function h:A → B is a homomorphism of the above form just in
case for each f ∈ Sg

αB
f ◦ Πr(f)h = h ◦ αA

f

We shall define a congruence R on an algebra (A,αA), to be an equivalence relation on the set A
for which there exists an algebra structure (R,αR) such that the projection functions π1, π2:R → A
give rise to homomorphisms

π1, π2: (R,α
R) −→ (A,αA)

Note that it is not hard to see that if R is indeed a congruence, then we must have αR = 〈αA ◦
Sπ1, α

A ◦ Sπ2〉.

Given an algebra (A,αA) with a congruence R, we shall write A/R for the set of R-equivalence
classes, each such class being denoted by [a] for a ∈ A. We can endow the set A/R with an algebra
structure, by defining

(A/R)r(f)
α

A/R
f - A/R

([a1], . . . , [ar]) - [αA
f (a1, . . . , ar)]

It follows that the quotient function is indeed a homomorphism q: (A,αA) → (A/R, αA/R).

We call the algebra (S, αS) a subalgebra of (A,αA) if S is a subset of A for which the inclusion
function is a homomorphism.

Let h: (A,αA) → (B,αB) be a homomorphism. Then (im(h), αim(h)) is a subalgebra of (B,αB)

when α
im(h)
f is defined by restricting αB

f .

26

Theorem 4.2 Let h: (A,αA) → (B,αB) be a homomorphism, and let Kh be the kernel of h.
Then Kh is a congruence on A, and there is a diagram of the form

(A,αA)
h - (B,αB)

(A/Kh, α
A/Kh)

q

? φ-
∼=�
ψ

(im(h), αim(h))

ι

∪

6

for which h = ι ◦ φ ◦ q, where ι is the inclusion function.

Proof There is a diagram of the form

SKh
Sπ1 - SA

Kh
π1 -

.............ρ-

A

αA

?

SA

Sπ2

?

αA
- A

π2

?

h
- B

h

?

Exercise: verify this! The map ρ exists, being the mediating map 〈αA ◦Sπ1, α
A ◦Sπ2〉 arising from

the kernel pullback square. It is then immediate that Kh admits an algebra structure for which it
is a congruence. Now, all we need to do is verify the existence of an isomorphism, and check that

the diagram commutes. We define φ by setting φ([a])
def
= h(a) and ψ by ψ(b)

def
= [a] where b = h(a)

for some a ∈ A. It is easy to verify that φ and ψ are homomorphisms (because, respectively, h and
q are), and the functions are clearly inverse to each other.

2

Theorem 4.3 Let (A,αA) be an algebra, (S, αS) a subalgebra of (A,αA), and R a congruence

on (A,αA). Set Q
def
= R ∩ S2, S

def
= (π1 ◦ π

−1
2)S, and Q′ def

= R ∩ S
2
. Then there is a diagram of the

form

(A,αA)
q - (A/R, αA/R)

(S, αS)

i

∪

6

(im(qi), αim(qi))

∪

6

(S/Q, αS/Q)

∼=

-

q
-

and moreover im(qi) = S/Q′. Thus

S

R ∩ S2
∼=

S

R ∩ S
2

27

Proof In Theorem 4.2, take the homomorphism h to be qi. This immediately yields the above
diagram, on noting that Q is exactly Kqi. It remains to prove that im(qi) = S/Q′. To see this,
note that

S ⊆ S = { a ∈ A | ∃s ∈ S.a R s }

Hence if [s]R ∈ im(qi) then [s]R = [s]Q′ ∈ S/Q′ (check!); and if [a]Q′ ∈ S/Q′, then there exists
s ∈ S for which [a]Q′ = [s]R ∈ im(qi) (check!). 2

4.2 For Coalgebras

We define the functor P :Set → Set on objects by mapping a set S to its powerset PS, and on
morphisms f :S → T by defining P f : PS → PT to be the function defined by

P f(X)
def
= { fx | x ∈ X }

for each subset X of S. We shall also call a morphism of the form h: (S, αS) −→ (T, αT) in SetP

a homomorphism. Note that h:S → T is a homomorphism iff Ph ◦ αS = αT ◦ h.

If (S, αS) is a P -coalgebra, then we shall write s
αS

 s′ to mean s′ ∈ αS(s) for any s, s′ ∈ S.

Lemma 4.4 h: (S, αS) −→ (T, αT) is a homomorphism just in case for any s, s′ ∈ S and t ∈ T ,

• s
αS

 s′ =⇒ hs
αT

 hs′; and

• hs
αT

 t =⇒ ∃s′.t = hs′ and s
αS

 s′.

Proof An easy exercise. 2

We shall define a bisimulation R on a coalgebra (S, αS) to be an equivalence relation on S for
which there is a coalgebra (R,αR) such that the projection functions π1, π2:R → S give rise to
homomorphisms of the form

π1, π2: (R,α
R) −→ (S, αS)

Lemma 4.5 An equivalence relation R on S is a bisimulation on (S, αS) just in case for all

s, s′, t ∈ S, if s
αS

 s′ and s R t, then there exists t′ ∈ S for which t
αS

 t′ and s′ R t′.

Proof Easy. 2

Given a bisimulation R on a coalgebra (S, αS), we can endow S/R with a coalgebra structure by
defining

S/R
αS/R

- P (S/R)

[s] - (P q ◦ αS)s

Note that this is well-defined precisely because R is a bisimulation. It follows that the quotient
function is indeed a homomorphism q: (S, αS) → (S/R, αS/R).

Theorem 4.6 Let h: (S, αS) → (T, αT) be a homomorphism, and let Kh be the kernel of h.
Then there is a diagram of the form

(S, αS)
h - (T, αT)

(S/Kh, α
S/Kh)

q

? φ-
∼=�
ψ

(im(h), αim(h))

ι

∪

6

28

for which h = ι ◦ φ ◦ q.

Proof It is an exercise to verify that Kh admits a bisimulation structure for S. All that remains
is to verify the existence of an isomorphism, and check that the diagram commutes. We define φ

by setting i([s])
def
= hs and ψ by ψ(t)

def
= [s] where t = hs for some s ∈ S. 2

Theorem 4.7 Let (S, αS) be a coalgebra, (X,αX) a subcoalgebra of (S, αS), and R a bisim-

ulation on (S, αS). Set Q
def
= R ∩ X2, X

def
= (π1 ◦ π−1

2)X , and Q′ def
= R ∩ X

2
. Then there is a

diagram of the form

(S, αS)
q - (S/R, αS/R)

(X,αX)

i

∪

6

(im(qi), αim(qi))

∪

6

(X/Q,αX/Q)

∼=

-

q
-

Proof This is left as an exercise. 2

5 Induction and Coinduction Principles

In this section, let C be a category, and F an endofunctor on C. The definitions of congruence and
bisimulation already given can be seen to apply to a categorical binary relation ι:R � A × A,

where the projection morphisms are given by pi
def
= πi ◦ ι:R → A where πi are the binary product

projections on A×A.

5.1 For Algebras

Principle of Unary Induction

Let αI :FI → I be an initial algebra. If S � I is a subobject in C, then to show that S ∼= I ,
it is sufficient to prove that S is a subalgebra of I .

Principle of Binary Induction

Let αI :FI → I be an initial algebra. If R � I × I is a binary relation on I , then to
show that EqI is a subobject of R, it is sufficient to prove that R admits a congruence
γR:FR→ R on αI :FI → I .

29

Proof We leave the proof of the first principle as an exercise. For the second, recall that such
a congruence amounts to a diagram of the form

FI
αI

- I

FR

Fpi

6

γR
- R

pi

6

γR

?

.................

and by uniqueness of mediating morphisms, πi ◦γR = id I , implying that γR is monic. Hence, from
the definition of EqI , we have

EqI
- π - I-

γR
- R

I

π

?

?

id
- I

id

?
-

id
- I

πi

?

which completes the proof. 2

5.2 For Coalgebras

Principle of Unary Coinduction

Let αC :C → FC be a final coalgebra. In order to prove that x is a global element of C, it is
sufficient to prove that there exists a subcoalgebra γS :S → FS on αC :C → FC for which
there is a global element x′: 1 → S for which x = γS ◦ x′.

Principle of Binary Coinduction

Let αC :C → FC be a final coalgebra. If ι:R � C × C is a binary relation on C, then to
show that R is a subobject of EqC , it is sufficient to prove that R admits a bisimulation
γR:R → FR on αC :C → FC. In particular, in order to prove that the global elements
x, x′: 1 → C are equal, it is sufficient to prove that that the global element 〈x, x′〉: 1 → C×C
factors through ι:R� C × C.

Proof If R admits such a bisimulation, we have the following diagram with p1 = p2 by
uniqueness—they must both be γR.

R
γR

- FR

C

p1 = p2

?

αC
- FC

Fpi

?

Suppose that 〈x, x′〉 factors through ι by ψ. Then we have the following diagram

30

R
φ

- EqC
- π - C

1
〈x, x′〉

-

ψ

-

C × C

ι

?

?

π1 -

π2

-
�

〈π
, π
〉

�

C

π

?

?

id
- C

id

?

By definition, p1
def
= π1 ◦ ι and p2

def
= π2 ◦ ι. Hence π1 ◦ ι = π2 ◦ ι, and as 〈x, x′〉 = ι ◦ ψ we have

x = x′.

If we define φ
def
= 〈π1 ◦ ι, π2 ◦ ι〉, the unique mediating morphism arising from the kernel pullback

square, then
〈π, π〉 ◦ φ = 〈π1 ◦ ι, π2 ◦ ι〉 = 〈π1, π2〉 ◦ ι = idC ◦ ι = ι

and as ι is monic, φ:R� EqC is a subobject.

2

The final exercises are to check that when X is a set, R is a set of rules on X , P(X) is regarded as
a category, and the name of R is regarded as a functor, the unary [co]induction principles reduce
to the corresponding principles on page 3; and to think about the Binary Principles in this setting.

31

Index

actual identity, 6
algebra, 22
algebraic signature, 25
α-equivalence, 10
arity, 25
associates, 6

base, 3
bisimulation, 28
body, 6
bound, 7

captured, 7
category of algebras, 22
category of coalgebras, 22
closed, 3, 12
closed under the rule, 3
coalgebra, 22
Coinduction

— Principle of, 3
— Principle of Binary, 30
— Principle of Unary, 30

coinductively defined, 2
complete lattice, 2
computes in one step, 16
congruence, 26
constants, 4
constructors, 5

deduction, 4
deductive, 3
denotation, 25
dense, 3
deterministic, 15, 16
divergent, 19

equality relation, 22
expressions, 10
expressions with contexts, 12

final, 22
finitary, 3
finite

— transition sequence, 19
fixed point, 2
free, 7
full transition sequence, 19
function symbols, 25

homomorphism, 26, 28

Induction
— Principle of, 3

— Principle of Binary, 29
— Principle of Unary, 29

inductive hypothesis, 3
inductively defined, 2
infinite

— transition sequence, 19
initial, 22

join, 2

kernel, 22

lazy, 14, 16
loops, 19

meet, 2

name, 2

occurs, 6
operational, 14
operators, 4

post-fixed point, 2
pre-fixed point, 2
Principle of Binary Coinduction, 30
Principle of Binary Induction, 29
Principle of Coinduction, 3
Principle of Induction, 3
Principle of Unary Coinduction, 30
Principle of Unary Induction, 29
program, 14

rules, 2

scope, 6
semantics, 14
sets and functions, 25
structure, 25
structured, 14
structured operational semantics, 14
subalgebra, 26, 27
subcoalgebra, 29
substitution, 8
subterm, 6

terminal, 16
terms, 4, 5
terms with contexts, 12
transition relation, 16
transition sequence

— finite, 19
— infinite, 19

32

unfolding, 6

value, 14
variables, 4

33

