### **Elementary Order Theory**

- A partially ordered set or poset is a pair  $(P, \leq)$  where P is a set and  $\leq$  is a partial order on P.
- $f: P \to P$  between posets is **monotone** just in case it preserves the order.
- If  $S \subseteq P$  then we write  $\bigwedge S$  for the **meet** or **infimum** of S; dually we write  $\bigvee S$  for the **join** or **supremum** of S.
- P is called a **complete lattice** if the joins of all subsets S exist or (equivalently) the meets of all subsets exist.

### **Fixed Points**

If  $f: P \to P$  is an endofunction on a poset P, we call

•  $x \in P$  a **fixed point** for f if f(x) = x;

a **pre-fixed point** of f if  $f(x) \le x$ ; and

**a post-fixed point** of f if  $x \leq f(x)$ .

If P is a complete lattice, and f is monotone, the least pre-fixed point,  $\mu f$ , and the greatest post-fixed point,  $\nu f$ , both exist, and are given by

$$\mu f \stackrel{\text{def}}{=} \bigwedge \{ x \in P \mid f(x) \le x \}$$
$$\nu f \stackrel{\text{def}}{=} \bigvee \{ x \in P \mid x \le f(x) \}$$

# (Co)Inductively Defined Sets

If X is any set, let  $\mathbb{P}(X)$  be the *powerset* of X. Define a set of **rules** on X to be any subset  $\mathcal{R}$  of the form

 $\mathcal{R} \subseteq \mathbb{P}(X) \times X$ 

Define the **name** of  $\mathcal{R}$  to be the function  $\Phi_{\mathcal{R}}: \mathbb{P}(X) \to \mathbb{P}(X)$  given by setting

 $\Phi_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \{ x \in X \mid \exists (S', x) \in \mathcal{R} \text{ and } S' \subseteq S \}$ 

Given a set X, and a set of rules  $\mathcal{R}$  on X, the **subset** of X inductively defined by  $\mathcal{R}$  is  $\mu \Phi_{\mathcal{R}}$ , and the **subset** of X coinductively defined by  $\mathcal{R}$  is  $\nu \Phi_{\mathcal{R}}$ .

# **Closed Sets**

A subset  $S \subseteq X$  is closed under the set of rules  $\mathcal{R}$ if it is a pre-fixed point of  $\Phi_{\mathcal{R}}$ . This means

 $\{x \in X \mid \exists (S', x) \in \mathcal{R} \text{ and } S' \subseteq S\} \subseteq S$ 

• Note that S is closed just in case for each rule  $(H, c) \in \mathcal{R}$ ,

$$H \subseteq S \Longrightarrow c \in S \tag{(*)}$$

We sometimes say that S is closed under the rule R = (H, c) if \* holds for R. For each element  $h \in H$ , the assumption that  $h \in S$  is called an **inductive** hypothesis.

#### **Dense Sets**

A subset  $S \subseteq X$  is **dense under the set of rules**  $\mathcal{R}$  if it is a post-fixed point of  $\Phi_{\mathcal{R}}$ . This means

 $S \subseteq \{ x \in X \mid \exists (S', x) \in \mathcal{R} \text{ and } S' \subseteq S \}$ 

### **Rule Notation**

We can write **finitary** rules like this

a base rule  $R = (\emptyset, c)$ 

$$-R$$

and a deductive rule  $R = (H, c) = (\{h_1, \ldots, h_k\}, c)$ 

$$\frac{h_1 \quad h_2 \quad \dots \quad h_k}{c} R$$

Examples of (Co)Inductively Defined Sets Consider  $\mathcal{R} \subseteq \mathbb{P}(\mathbb{Z}) \times \mathbb{Z}$  given by  $\frac{-}{0}$  and  $\frac{z}{z+1}$ . Then  $\mu \Phi_{\mathcal{R}} = \mathbb{N} \text{ and } \nu \Phi_{\mathcal{R}} = \mathbb{Z}.$ Fix  $R \subseteq A \times A$ . Consider  $\mathcal{R}$  given by  $\frac{\{a'\}}{}$  just in  $\boldsymbol{a}$ case a R a'. Then  $\mu \Phi_{\mathcal{R}} = \emptyset$  and  $\nu \Phi_{\mathcal{R}} = \{ a \mid \exists \alpha \in A^{\omega}. \quad a \mathrel{R} \alpha(0) \mathrel{R} \alpha(1) \mathrel{R} \dots \}$ 

# Principles of (Co)Induction

#### Principle of Induction

Suppose that  $I \subseteq X$  is inductively defined by a set of rules  $\mathcal{R}$ , and that  $S \subseteq I$ . Then in order to verify that S = I it is enough to show that S is closed under the rules.

#### Principle of Coinduction

Suppose that  $C \subseteq X$  is coinductively defined by a set of rules  $\mathcal{R}$ . Then in order to verify that  $x \in C$  it is enough to find a set S which is dense under the rules and for which  $x \in S$ .

# Theorem

Given a finitary set of rules  $\mathcal{R}$ , a **deduction** for  $x \in X$  is a finitely branching tree with root x such that for each node  $c \in X$ , if H is the (possibly empty) finite set of children of c, then (H, c) must be a rule in  $\mathcal{R}$ .

**Theorem:** Let  $I \subseteq X$  be inductively defined by a set of rules  $\mathcal{R}$ . Then

 $I = \{ x \mid \text{ there exists a deduction of } x \},\$ 

that is for any element  $x \in X$ , we have

 $x \in I$  if and only if there exists a deduction of x.

## Part II: (Co)Induction in Program Semantics

Inductively define some programs  $\underline{4} + \underline{3}$ ,  $\lambda x.x * \underline{7}$  and rec  $f.\lambda n.$  if  $n = \underline{1}$  then  $\underline{1}$  else  $n * (f(n - \underline{1}))$ .

Inductively define evaluation of programs  $P \Downarrow V$  such as  $(\lambda x.x * \underline{7}) (\underline{4} + \underline{3}) \Downarrow \underline{49}.$ 

Inductively define program transitions  $P \rightsquigarrow P'$  such as  $(\lambda x.x * \underline{7}) (\underline{4} + \underline{3}) \rightsquigarrow (\underline{4} + \underline{3}) * \underline{7} \rightsquigarrow \underline{7} * \underline{7} \rightsquigarrow \underline{49}$ 

• Coinductively define divergence  $P \Uparrow$ , such as  $\operatorname{rec} x.x \Uparrow$ , where this means  $P \rightsquigarrow P_1 \rightsquigarrow P_2 \rightsquigarrow P_3 \rightsquigarrow \ldots$ 

• Coinductively define program equivalence  $P \sim P'$  such as  $\lambda x.x * \underline{1} * \underline{7} \sim \lambda x.x * \underline{7}$ 



# Simple Programs

If P and P' are two programs, write P → P' to mean P "computes in one step" to P'
We write M[N/v] to mean "M where v is replaced by N"
For example,

 $(\underline{2}+\underline{5})+\underline{1}\rightsquigarrow \underline{7}+\underline{1}\rightsquigarrow \underline{8}$  and  $(x+y)[\underline{4}/y] = x+\underline{4}.$ 

The term  $\lambda x.M$  is code for the function which maps xto M. If  $f \stackrel{\text{def}}{=} \lambda x.M$ , then  $f a \rightsquigarrow M[a/x]$ . Thus  $\lambda x.x + 2$  is the function which "adds 2", and for example  $(\lambda x.x + 2) \not 4 \rightsquigarrow \not 4 + 2$ .

# **Simple Recursion**

rec x.M denotes a solution to the equation x = M. Write  $R \stackrel{\text{def}}{=} \operatorname{rec} x.M$ . The program R "computes in one step" to M[R/x]. Thus if we take  $M \stackrel{\text{def}}{=} \underline{0} : x$ , then

$$R \rightsquigarrow (\underline{0}:x)[R/x] \equiv \underline{0}: R \rightsquigarrow \underline{0}: (\underline{0}:R) \rightsquigarrow \dots$$

and so R is a program which recursively evaluates to an infinite list of zeros. We call each step in the computation of R an **unfolding**.

### Subterms

A subterm S of a term M is any subtree of the finite tree denoted by M. We write  $S \triangleleft M$ . A variable x occurs in M if  $x \triangleleft M$ . There may be many occurrences. We say N lies in the scope of  $\lambda y$  or rec y in any subterm of the form  $\lambda y.N$  or rec y.N respectively.

 $\blacksquare$   $u + \underline{2}$  is the scope of  $\lambda u$  in  $\lambda x.(\lambda u.u + \underline{2}) z$ . Note that

$$\lambda u.u + \underline{2} \triangleleft \lambda x.(\lambda u.u + \underline{2}) z.$$

If  $N \stackrel{\text{def}}{=} \lambda x.xxy \underline{x} zx$  then the underlined x is the *fourth* occurrence of x in N.

#### **Free and Bound Variables**

Each *occurrence* of x in M is either free or bound. We say that an occurrence of x is **bound** in M if the occurrence of x in M is in a subterm of the form  $\lambda x.N$  or rec x.N

If there is an occurrence of x in such N then we say that occurrence of x has been **captured** by (the scope of)  $\lambda x$  or **rec** x to mean that the occurrence of x is bound by the respective  $\lambda x$  or **rec** x.

An occurrence of x in M is **free** iff the occurrence of x is not bound.  $fvar(M \ op \ N) \stackrel{\text{def}}{=} fvar(M) \cup fvar(N)$  etc etc

# **Explaining Substitution**

• We substitute a term N for free occurrences of x in M by replacing each free x with N. For example,

(if x then  $\underline{4}$  else  $\underline{5}$ )[ $\underline{1} = \underline{2} / x$ ]

denotes the term if  $\underline{1} = \underline{2}$  then  $\underline{4}$  else  $\underline{5}$ .

Suppose that  $M \stackrel{\text{def}}{=} \lambda x.L$ . Given any term N, then in fact  $M N \rightsquigarrow L[N/x]$ . Thus if L is y, then  $M N \rightsquigarrow y[N/x] \equiv y$ . So if  $M \stackrel{\text{def}}{=} \lambda x.y$ , M is "the function with constant value y". M[x/y] ought to be "the function with constant value x". But  $M[x/y] \equiv \lambda x.x$ , the identity!

## **Defining Substitution**

Given M and N, and a variable x, we define M[N/x], by recursion on the finite tree structure of M:

### Alpha Equivalence

■ We wish to consider two terms differing only in their bound variables as being "equal":

$$\lambda u.(u + \operatorname{rec} z.xz) = \lambda w.(w + \operatorname{rec} v.xv)$$

We inductively define an equivalence relation  $\sim_{\alpha}$ , on the set  $\mathcal{T}$  of terms, by rules such as

$$\frac{1}{\lambda v.M} \sim_{\alpha} \lambda v'.M[v'/v] \stackrel{(\dagger)}{=} \frac{M \sim_{\alpha} M' N \sim_{\alpha} N'}{MN \sim_{\alpha} M'N'}$$

# **Defining Expressions**

• We define the set  $\mathcal{E}$  of **expressions** to be the set of  $\alpha$ -equivalence classes of terms:

$$\mathcal{E} \stackrel{\text{def}}{=} \mathcal{T} / \sim_{\alpha} = \{ \overline{M} \mid M \in \mathcal{T} \}.$$

We have

$$\overline{\lambda u.u + x} = \{ M \mid \lambda u.u + x \sim_{\alpha} M \}$$
$$= \{ \lambda u.u + x, \lambda z.z + x, .. \}$$
$$= \overline{\lambda z.z + x}$$

Check this!! Rule (†) gives us  $\lambda u.u + x \sim_{\alpha} \lambda z.z + x$  taking *M* to be u + x, *v* to be *u* and *v'* to be *z*.

## **Terms in Context**

It is convenient to keep track of the free variables in an expression. We define  $\Gamma \vdash M$  where  $\Gamma$  is a set of variables, M is a term, and the free variables of M all appear in  $\Gamma$ . An example is

 $\{x, y, z\} \vdash x + y$ 

We shall inductively define a relation  $\vdash$  between finite sets of variables and terms by rules such as

 $\frac{\Gamma \vdash M \quad \Gamma \vdash N \quad \Gamma \vdash L}{\Gamma \vdash \text{if } M \text{ then } N \text{ else } L} \qquad \frac{\Gamma, x \vdash M}{\Gamma \vdash \text{rec } x.M}$ 

We say M is **closed** if  $\emptyset \vdash M$ 

### **Programs, Values and Evaluation**

A **program** is a closed expression. A value is a program that is as "fully evaluated as possible". We give rules which tell us to which values programs evaluate. For example,  $(\lambda x.x + 2)3$  evaluates to <u>5</u>:

$$(\lambda x.x + \underline{2})\underline{3} \quad \Downarrow \quad \underline{5}$$

Note that  $\underline{5}$  is a value!! Functions  $\lambda x.M$  will also be regarded as values. Lists of the form P:Q, where P and Qare programs, are also values. The head or tail of a list will only be evaluated *if* "extracted" by a hd or tl function. So  $(\underline{3} + \underline{4})$ : nil is a value; it does not evaluate to  $\underline{7}$ : nil.

## **Defining Program Evaluation**

A value V is any program given by the grammar

 $V ::= \underline{c} \mid \lambda x.M \mid \mathsf{nil} \mid M : M$ 

where M ranges over expressions. The set of programs is denoted by  $\mathcal{P}$ , and values by  $\mathcal{V}$ .

We define a binary relation, with relationships denoted by  $P \Downarrow V$ , as an inductively defined set given by rules such as

$$\frac{P \Downarrow \underline{m} \quad Q \Downarrow \underline{n}}{P \ op \ Q \Downarrow \underline{m} \ op \ n} \quad \frac{P \Downarrow \lambda x.M \quad M[Q/x] \Downarrow V}{P \ Q \Downarrow V}$$

## **Program Evaluation is Deterministic**

The relation  $\Downarrow$  is **deterministic**: For any P, V and V', if  $P \Downarrow V$  and  $P \Downarrow V'$ , then V = V'.

**Proof:** We show that the set

$$S \stackrel{\text{def}}{=} \{ (P, V) \in \Downarrow \mid \forall V' (P \Downarrow V' \Longrightarrow V = V') \}$$

is closed under the rules generating  $\Downarrow$ . Then  $S \subset \Downarrow$  is all of  $\Downarrow$ , and we are done.

## **Program Transitions**

When a program P does evaluate to a value V, how can we calculate V? We define a new relation  $P \rightsquigarrow Q$ . The intuitive idea is that if P and Q are related by  $\rightsquigarrow$ , then P "computes in one step" to Q. For example,

 $(\lambda x.x + \underline{2})\underline{3} \rightsquigarrow \underline{3} + \underline{2}$  and  $\underline{3} + \underline{2} \rightsquigarrow \underline{5}$ .

We define a **transition relation** between programs. It takes the form  $P \rightsquigarrow Q$  and is inductively defined by rules such as

$$P \rightsquigarrow P' \qquad \qquad Q \rightsquigarrow Q'$$

 $P \ op \ Q \rightsquigarrow P' \ op \ Q \quad \underline{n} \ op \ Q \rightsquigarrow \underline{n} \ op \ Q' \quad \underline{n} \ op \ \underline{m} \rightsquigarrow \underline{n} \ op \ \underline{m}$ 

#### **Relating Evaluations and Reductions**

We need to relate  $\Downarrow$  and  $\rightsquigarrow$ . Consider

$$hd((\lambda x.x + \underline{2}) \underline{3}: nil) \quad \rightsquigarrow \quad (\lambda x.x + \underline{2}) \underline{3}$$
$$\rightsquigarrow \quad \underline{3} + \underline{2}$$
$$\rightsquigarrow \quad 5$$

and  $hd((\lambda x.x + 2)3:nil) \Downarrow 5$  This suggests that  $\Downarrow$  might be the transitive closure of  $\rightsquigarrow$ . In fact  $\Downarrow$  is (more-or-less) the reflexive transitive closure  $\rightsquigarrow^*$ . We have

**Theorem:** For every program P and value V, we have

 $P \Downarrow V \Longleftrightarrow P \rightsquigarrow^* V.$ 

#### **Convergence and Divergence**

P is **terminal** if there is no P' where  $P \rightsquigarrow P'$ .

P has a finite transition sequence if there is a (unique) transition sequence of the form

$$P \equiv P_0 \rightsquigarrow P_1 \rightsquigarrow P_2 \rightsquigarrow \ldots \rightsquigarrow P_m$$

with  $P_m$  terminal. Such P are called **convergent**. If m does not exist, P is **divergent** or **loops**. We write  $P \rightsquigarrow^{\omega}$ .

It is easy to see from the definition of  $\rightsquigarrow$  that a value V is terminal, and hence convergent.

# **Charaterizing Divergence Coinductively**

We can give a coinductive definition of divergence based solely on the evaluation relation. We coinductively define a subset of  $\mathcal{P}$ , denoted by  $\Uparrow$ , by rules such as

$$\frac{P \Uparrow}{P \ op \ Q \Uparrow} \qquad \frac{Q \Uparrow}{P \ op \ Q \Uparrow} P \Downarrow \underline{n}$$

$$\frac{P \Uparrow}{P \ op \ Q \Uparrow} \qquad \frac{M[Q/x] \Uparrow}{PQ \Uparrow} P \Downarrow \lambda x.M \qquad \frac{M[\operatorname{rec} x.M/x] \Uparrow}{\operatorname{rec} x.M/x] \Uparrow}$$

$$\frac{P \Uparrow}{\operatorname{hd}(P) \Uparrow} \qquad \frac{H \Uparrow}{\operatorname{hd}(P) \Uparrow} P \Downarrow H : T \qquad \frac{P \Uparrow}{\operatorname{elist}(P) \Uparrow}$$

#### **Proving that** $\Uparrow$ is $\leadsto^{\omega}$

**Theorem:** A program P diverges just in case  $P \uparrow$ .

**Proof:** Set  $\mathcal{D} \stackrel{\text{def}}{=} \{ D \in \mathcal{P} \mid D \rightsquigarrow^{\omega} \}$ . Then we need  $\mathcal{D} = \nu \Phi_{\uparrow}$ , where  $\Phi_{\uparrow} \colon \mathbb{P}(\mathcal{P}) \to \mathbb{P}(\mathcal{P})$  is the name of the set of rules  $\mathcal{R}_{\uparrow}$ . We verify  $\mathcal{D}$  is a greatest  $\mathcal{R}_{\uparrow}$  dense set, and is thus  $\nu \Phi_{\uparrow}$ .

We first check that it is  $\mathcal{R}_{\uparrow}$  dense, that is,  $\mathcal{D} \subseteq \Phi_{\uparrow}(\mathcal{D})$ . We write down a description of the set  $\Phi_{\uparrow}(\mathcal{D})$  using the definition of  $\Phi_{\uparrow}$ . Let X range over  $\Phi_{\uparrow}(\mathcal{D})$ ; and  $C_V$  is any program for which  $C_V \Downarrow V$ . Then each such X takes the form

 $X \equiv D \ op \ Q$  $C_n op D$ DQ $C_{\lambda x,M}Q$ provided that  $M[Q/x] \in \mathcal{D}$ provided that  $M[\operatorname{rec} x.M/x] \in \mathcal{D}$  $\operatorname{rec} x.M$ We show  $X \in \mathcal{D}$  implies  $X \in \Phi_{\uparrow}(\mathcal{D})$  by a structural case analysis of X. First note that X can't be either x or  $\underline{c}$ . Case X is P op Q | If  $P \in \mathcal{D}$ , then  $X \in \Phi_{\uparrow}(\mathcal{D})$ . If not, P converges to a terminal, say T, and  $X \rightsquigarrow^* T$  op Q. Hence as X diverges, T must be  $\underline{m}$  so P has the form  $C_{\underline{m}}$ , and thus  $X \rightsquigarrow^* \underline{m} \text{ op } Q \rightsquigarrow^{\omega}$ . It follows that  $Q \rightsquigarrow^{\omega}$ .

Case X is PQ If  $P \in \mathcal{D}$ , then  $X \in \Phi_{\uparrow}(\mathcal{D})$ . If not, P converges to a terminal, say T, and  $X \rightsquigarrow^* TQ$ . Hence as X diverges, T must be  $\lambda x.M$  so P is of the form  $C_{\lambda x.M}$ . Now note

$$X \rightsquigarrow^* (\lambda x.M) Q \rightsquigarrow M[Q/x] \rightsquigarrow^{\omega}$$

because X diverges. Thus  $M[Q/x] \in \mathcal{D}$ .

We leave the remaining cases as an <u>exercise</u>. So  $\mathcal{D}$  is  $\mathcal{R}_{\uparrow}$  dense.

Let  $S \subseteq \Phi_{\uparrow}(S)$ . We show that  $\mathcal{D}$  is greatest among all such  $\mathcal{R}_{\uparrow}$  dense sets. To do this, we first prove that

$$\forall S \in \mathcal{E}. \quad S \in \mathcal{S} \Longrightarrow \exists S' \in \mathcal{S}.S \rightsquigarrow S' \tag{\dagger}$$

by the Principle of Induction for  $\mathcal{T}$ .

(Closure under VAR): Of course  $x \notin S \subseteq \mathcal{P}$ .

(Closure under OP): Suppose P op  $Q \in S$ . Note that as  $S \subseteq \Phi_{\uparrow}(S)$ , then either  $P \in S$ , or  $P \equiv C_{\underline{m}}$  and  $Q \in S$ . In the former case, by the induction hypothesis  $P \rightsquigarrow P'$  for some P', and hence P op  $Q \rightsquigarrow P'$  op Q. Else if  $P \rightsquigarrow P'$  for some P' we are similarly done, and otherwise P must be  $\underline{m}$ , in which case P op  $Q \rightsquigarrow P$  op Q' by the induction hypothesis, for some Q'.

We omit the remaining cases ( $\underline{\text{exercise}}$ !).

It is quite easy to conclude from  $\dagger$ , determinism, and the definition of  $\mathcal{D}$ , that  $\mathcal{S} \subseteq \mathcal{D}$ . Thus, as  $\nu \Phi_{\uparrow} \subseteq \Phi_{\uparrow}(\nu \Phi_{\uparrow})$  we have  $\nu \Phi_{\uparrow} \subseteq \mathcal{D}$ , and as  $\mathcal{D}$  is indeed  $\mathcal{R}_{\uparrow}$  dense, equality follows.

# Part 3: (Co)Algebras and (Co)Induction

Define algebras and coalgebras.

Give an example.

Illustrate the isomorphism theorems for coalgebras.

Illustrate categorical induction and coinduction.

## **Defining Algebras and Coalgebras**

Let  $F: \mathcal{C} \to \mathcal{C}$  be an endofunctor. An **algebra** for the functor F is specified by a pair  $(A, \alpha^A)$  where A is an object of  $\mathcal{C}$  and  $\alpha^A: FA \to A$  is a morphism.

We define the **category of** F-algebras, denoted by  $\mathcal{C}^F$ , to have objects the algebras of F, and a morphism  $f: (A, \alpha^A) \to (B, \alpha^B)$  is a morphism  $f: A \to B$  in  $\mathcal{C}$  for which the diagram

$$\begin{array}{cccc}
FA & \xrightarrow{Ff} & FB \\
\alpha^{A} & & \downarrow \alpha^{B} \\
A & \xrightarrow{f} & B
\end{array}$$

commutes in  $\mathcal{C}$ .

Dually, a **coalgebra** for F is a pair  $(A, \alpha^A)$  where  $\alpha^A: A \to FA$  is a morphism in  $\mathcal{C}$ .

The category of F-coalgebras  $C_F$  is defined similarly to the category of algebras.

An initial *F*-algebra  $(I, \alpha^I)$  is an initial object in  $\mathcal{C}^F$ 

If  $(A, \alpha^A)$  is an *F*-algebra, we write  $\overline{\alpha^A}: (I, \alpha^I) \to (A, \alpha^A)$  for the unique mediating morphism.

#### **Further Notation**

Given families of morphisms  $(f_i: A \to B_i \mid i \in I)$  and  $(g_i: C_i \to D \mid i \in I)$ , then

 $\langle f_i \mid i \in I \rangle : A \to \prod_{i \in I} B_i \quad \text{and} \quad [g_i \mid i \in I] : \Sigma_{i \in I} C_i \to D$ 

denote pairing and copairing. Projections are denoted by  $\pi_j: \prod_{i \in I} B_i \to B_j$  and insertions by  $ins_j: C_j \to \Sigma_{i \in I} C_i$ .

If  $f: A \to B$  is a morphism in a category with pullbacks, the **kernel** is given by the pullback



 $K_{id_A}$  is denoted by  $Eq_A$  and the subobject  $\langle \pi, \pi \rangle : Eq_A \to A \times A$  is called the **equality relation** on A.

### An Example $(1 + (A \times -): Set \rightarrow Set)$

For  $k \ge 1$  define  $A^k$  to be the collection of k-tuples of elements of A. If  $l = (a_1, \ldots, a_k) \in A^k$ , then we shall regard las a partial function  $\{1, \ldots, k\} \rightarrow A$ . If  $a \in A$  and  $l \in A^k$ , then define  $al \in A^{k+1}$  by  $al(1) \stackrel{\text{def}}{=} a$  and  $al(r) \stackrel{\text{def}}{=} l(r-1)$  for  $r \ge 2$ . The functor  $1 + (A \times -)$  has an initial algebra  $(L, \alpha^L)$ , where we shall set  $L \stackrel{\text{def}}{=} \{ \mathsf{nil} \} \cup (\bigcup_{1 \le k < \omega} A^k)$ , and  $\alpha^L : 1 + (A \times L) \to L$  is defined by

$$\alpha^{L}(ins_{L}(*)) \stackrel{\text{def}}{=} \operatorname{nil}$$
$$\alpha^{L}(ins_{R}(a, nil)) \stackrel{\text{def}}{=} a$$
$$\alpha^{L}(ins_{R}(a, l)) \stackrel{\text{def}}{=} al$$

The functor  $1 + (A \times -)$  has a final coalgebra  $(L, \alpha^L)$ , where  $L \stackrel{\text{def}}{=} \{ \mathsf{nil} \} \cup (\bigcup_{1 \le k \le \omega} A^k)$ , and  $\alpha^L \colon L \to 1 + (A \times L)$  is defined by

$$\begin{aligned} \alpha^{L}(\mathsf{nil}) &\stackrel{\text{def}}{=} ins_{L}(*) \\ \alpha^{L}(l) &\stackrel{\text{def}}{=} case \ l \ \text{of} \\ & l \in A^{1} \mapsto ins_{R}(l(1),\mathsf{nil}) \\ & l \in \bigcup_{2 \le k \le \omega} A^{k} \mapsto ins_{R}(l(1),\lambda r.l(r+1)) \end{aligned}$$

#### **Defining Bisimulations**

We define  $\mathbb{P}: Set \to Set$  on objects by  $S \mapsto \mathbb{P}S$ , and on  $f: S \to T$  by defining  $\mathbb{P}f: \mathbb{P}S \to \mathbb{P}T$  to be the function

$$\mathbb{P}f(X) \stackrel{\text{def}}{=} \{ fx \mid x \in X \}$$

for each subset X of S. We call a morphism of the form  $h: (S, \alpha^S) \longrightarrow (T, \alpha^T)$  in  $\mathcal{S}et_{\mathbb{P}}$  a homomorphism.

If  $(S, \alpha^S)$  is a  $\mathbb{P}$ -coalgebra, then we shall write  $s \stackrel{\alpha^S}{\leadsto} s'$  to mean  $s' \in \alpha^S(s)$  for any  $s, s' \in S$ .

• Lemma  $h: (S, \alpha^S) \longrightarrow (T, \alpha^T)$  is a homomorphism just in case for any  $s, s' \in S$  and  $t \in T$ ,

• 
$$s \stackrel{\alpha^S}{\leadsto} s' \Longrightarrow hs \stackrel{\alpha^T}{\leadsto} hs'$$
; and  
•  $hs \stackrel{\alpha^T}{\leadsto} t \Longrightarrow \exists s'.t = hs' \text{ and } s \stackrel{\alpha^S}{\leadsto} s'$ 

A bisimulation R on a coalgebra  $(S, \alpha^S)$  is an equivalence relation on S for which there is a coalgebra  $(R, \alpha^R)$  such that  $\pi_1, \pi_2: R \to S$  give rise to homomorphisms

$$\pi_1, \pi_2: (R, \alpha^R) \longrightarrow (S, \alpha^S)$$

**Lemma** An equivalence relation R on S is a bisimulation on  $(S, \alpha^S)$  just in case for all  $s, s', t \in S$ , if  $s \stackrel{\alpha^S}{\leadsto} s'$  and s R t, then there exists  $t' \in S$  for which  $t \stackrel{\alpha^S}{\leadsto} t'$  and s' R t'.

## **Quotients by Bisimulations**

Given a bisimulation R on a coalgebra  $(S, \alpha^S)$ , we can endow S/R with a coalgebra structure by defining

$$S/R \xrightarrow{\alpha^{S/R}} \mathbb{P}(S/R)$$

 $[s] \longmapsto (\mathbb{P} q \circ \alpha^S) s$ 

Note that this is well-defined precisely because R is a bisimulation. It follows that the quotient function is indeed a homomorphism  $q: (S, \alpha^S) \to (S/R, \alpha^{S/R})$ .

#### **Isomorphism Theorems**

**Theorem** Let  $h: (S, \alpha^S) \to (T, \alpha^T)$  be a homomorphism, and let  $K_h$  be the kernel of h. Then there is a diagram of the form



for which  $h = \iota \circ \phi \circ q$ .

**Theorem** Let  $(S, \alpha^S)$  be a coalgebra,  $(X, \alpha^X)$  a **subcoalgebra** of  $(S, \alpha^S)$ , and R a bisimulation on  $(S, \alpha^S)$ . Set  $Q \stackrel{\text{def}}{=} R \cap X^2$ ,  $\overline{X} \stackrel{\text{def}}{=} (\pi_1 \circ \pi_2^{-1})X$ , and  $Q' \stackrel{\text{def}}{=} R \cap \overline{X}^2$ . Then there is a diagram of the form



### **A** Principle of Induction

Let  $\alpha^I : FI \to I$  be an initial algebra. If  $R \to I \times I$  is a binary relation on I, then to show that  $Eq_I$  is a subobject of R, it is sufficient to prove that R admits a congruence  $\gamma^R : FR \to R$  on  $\alpha^I : FI \to I$ .

#### **A Principle of Coinduction**

If  $\iota: R \to C \times C$  is a binary relation on C, to show R is a subobject of  $Eq_C$ , it is sufficient to prove that R admits a bisimulation  $\gamma^R: R \to FR$ . In order to prove that the global elements  $x, x': 1 \to C$  are equal, it is sufficient to prove that  $\langle x, x' \rangle: 1 \to C \times C$  factors through  $\iota: R \to C \times C$ .