
'

&

$

%

Elementary Order Theory

� A partially ordered set or poset is a pair (P,≤) where P

is a set and ≤ is a partial order on P .

� f :P → P between posets is monotone just in case it

preserves the order.

� If S ⊆ P then we write
∧
S for the meet or infimum

of S; dually we write
∨
S for the join or supremum of S.

� P is called a complete lattice if the joins of all subsets

S exist or (equivalently) the meets of all subsets exist.



'

&

$

%

Fixed Points

If f :P → P is an endofunction on a poset P , we call

� x ∈ P a fixed point for f if f(x) = x;

� a pre-fixed point of f if f(x) ≤ x; and

� a post-fixed point of f if x ≤ f(x).

If P is a complete lattice, and f is monotone, the least

pre-fixed point, µ f , and the greatest post-fixed point, ν f ,

both exist, and are given by

µ f
def
=

∧
{ x ∈ P | f(x) ≤ x }

ν f
def
=

∨
{ x ∈ P | x ≤ f(x) }



'

&

$

%

(Co)Inductively Defined Sets

� If X is any set, let P(X) be the powerset of X. Define a

set of rules on X to be any subset R of the form

R ⊆ P(X) ×X

Define the name of R to be the function

ΦR: P(X) → P(X) given by setting

ΦR(S)
def
= { x ∈ X | ∃(S ′, x) ∈ R and S ′ ⊆ S }

� Given a set X, and a set of rules R on X, the subset

of X inductively defined by R is µΦR, and the subset

of X coinductively defined by R is ν ΦR.



'

&

$

%

Closed Sets

� A subset S ⊆ X is closed under the set of rules R

if it is a pre-fixed point of ΦR. This means

{ x ∈ X | ∃(S ′, x) ∈ R and S ′ ⊆ S } ⊆ S

� Note that S is closed just in case for each rule

(H, c) ∈ R,

H ⊆ S =⇒ c ∈ S (∗)

� We sometimes say that S is closed under the rule

R = (H, c) if ∗ holds for R. For each element h ∈ H, the

assumption that h ∈ S is called an inductive

hypothesis.



'

&

$

%

Dense Sets

� A subset S ⊆ X is dense under the set of rules R if

it is a post-fixed point of ΦR. This means

S ⊆ { x ∈ X | ∃(S ′, x) ∈ R and S ′ ⊆ S }



'

&

$

%

Rule Notation

We can write finitary rules like this

� a base rule R = (∅, c)

R
c

� and a deductive rule R = (H, c) = ({h1, . . . , hk }, c)

h1 h2 . . . hk
R

c



'

&

$

%

Examples of (Co)Inductively Defined Sets

� Consider R ⊆ P(Z) × Z given by
0

and
z

z + 1
. Then

µΦR = N and ν ΦR = Z.

� Fix R ⊆ A×A. Consider R given by
{ a′ }

a
just in

case a R a′. Then µΦR = ∅ and

ν ΦR = { a | ∃α ∈ Aω. a R α(0) R α(1) R . . . }



'

&

$

%

Principles of (Co)Induction

� Principle of Induction

Suppose that I ⊆ X is inductively defined by a set of rules

R, and that S ⊆ I. Then in order to verify that S = I it

is enough to show that S is closed under the rules.

� Principle of Coinduction

Suppose that C ⊆ X is coinductively defined by a set of

rules R. Then in order to verify that x ∈ C it is enough to

find a set S which is dense under the rules and for which

x ∈ S.



'

&

$

%

Theorem

Given a finitary set of rules R, a deduction for x ∈ X is a

finitely branching tree with root x such that for each node

c ∈ X, if H is the (possibly empty) finite set of children of c,

then (H, c) must be a rule in R.

Theorem: Let I ⊆ X be inductively defined by a set of

rules R. Then

I = { x | there exists a deduction of x },

that is for any element x ∈ X, we have

x ∈ I if and only if there exists a deduction of x.



'

&

$

%

Part II: (Co)Induction in Program Semantics

� Inductively define some programs 4 + 3, λx.x ∗ 7 and

rec f.λn.if n = 1 then 1 else n ∗ (f (n− 1)).

� Inductively define evaluation of programs P ⇓ V such

as (λx.x ∗ 7) (4 + 3) ⇓ 49.

� Inductively define program transitions P  P ′ such as

(λx.x ∗ 7) (4 + 3) (4 + 3) ∗ 7 7 ∗ 7 49

� Coinductively define divergence P ⇑, such as recx.x ⇑,

where this means P  P1  P2  P3  . . .

� Coinductively define program equivalence P ∼ P ′ such

as λx.x ∗ 1 ∗ 7 ∼ λx.x ∗ 7



'

&

$

%

Rules for Inductively Generating the Set T

[x ∈ Var ] VAR

x
[c ∈ Z ∪ B] CONST

c

M N
[op ∈ Opr ] OP

M op N

M N L
COND

if M then N else L

M
ABS

λx.M

M N
AP

M N

M
REC

recx.M
NIL

nil

M
HD

hd(M)

M
TL

tl(M)

M N
CONS

M : N

M
ELIST

elist(M)



'

&

$

%

Simple Programs

� If P and P ′ are two programs, write P  P ′ to mean P

“computes in one step” to P ′

We write M [N/v] to mean “M where v is replaced by N”

� For example,

(2 + 5) + 1 7 + 1 8 and (x+ y)[4/y] = x+ 4.

� The term λx.M is code for the function which maps x

to M . If f
def
= λx.M , then f a M [a/x]. Thus λx.x+ 2 is

the function which “adds 2”, and for example

(λx.x+ 2) 4 4 + 2.



'

&

$

%

Simple Recursion

recx.M denotes a solution to the equation x = M .

Write R
def
= recx.M . The program R “computes in one step”

to M [R/x]. Thus if we take M
def
= 0 : x, then

R (0 : x)[R/x] ≡ 0 : R 0 : (0 : R) . . .

and so R is a program which recursively evaluates to an

infinite list of zeros. We call each step in the computation of

R an unfolding.



'

&

$

%

Subterms

� A subterm S of a term M is any subtree of the finite

tree denoted by M . We write S CM . A variable x

occurs in M if x CM . There may be many occurrences.

We say N lies in the scope of λy or rec y in any subterm

of the form λy.N or rec y.N respectively.

� u+ 2 is the scope of λu in λx.(λu.u+ 2) z. Note that

λu.u+ 2 C λx.(λu.u+ 2) z.

If N
def
= λx.xxyxzx then the underlined x is the fourth

occurrence of x in N .



'

&

$

%

Free and Bound Variables

� Each occurrence of x in M is either free or bound. We

say that an occurrence of x is bound in M if the

occurrence of x in M is in a subterm of the form λx.N or

recx.N

� If there is an occurrence of x in such N then we say

that occurrence of x has been captured by (the scope of)

λx or recx to mean that the occurrence of x is bound by

the respective λx or recx.

� An occurrence of x in M is free iff the occurrence of x

is not bound. fvar(M op N)
def
= fvar(M) ∪ fvar(N) etc etc



'

&

$

%

Explaining Substitution

� We substitute a term N for free occurrences of x in M

by replacing each free x with N . For example,

(if x then 4 else 5)[ 1 = 2 /x]

denotes the term if 1 = 2 then 4 else 5.

� Suppose that M
def
= λx.L. Given any term N , then in

fact M N  L[N/x]. Thus if L is y, then

M N  y[N/x] ≡ y. So if M
def
= λx.y, M is “the function

with constant value y”. M [x/y] ought to be “the function

with constant value x”. But M [x/y] ≡ λx.x, the identity!



'

&

$

%

Defining Substitution

Given M and N , and a variable x, we define M [N/x], by

recursion on the finite tree structure of M :

� y[N/x]
def
= y where x 6= y (if M ≡ y);

� (L op L′)[N/x]
def
= L[N/x] op L′[N/x] (if M ≡ L op L′);

� (λx.L)[N/x]
def
= λx.L;

� (λy.L)[N/x]
def
= λy.L[N/x] if x 6= y and x 6∈ fvar(L) or

y 6∈ fvar(N);

� (λy.L)[N/x]
def
= λz.L[z/y][N/x] if x 6= y and x ∈ fvar(L)

and y ∈ fvar(N), where z is the first variable in Var where

z 6∈ var(N) ∪ var(L).



'

&

$

%

Alpha Equivalence

� We wish to consider two terms differing only in their

bound variables as being “equal”:

λu.(u+ rec z.xz) = λw.(w + rec v.xv)

� We inductively define an equivalence relation ∼α, on

the set T of terms, by rules such as

(†)
λv.M ∼α λv′.M [v′/v]

M ∼α M ′ N ∼α N ′

M N ∼α M ′N ′



'

&

$

%

Defining Expressions

� We define the set E of expressions to be the set of

α-equivalence classes of terms:

E
def
= T / ∼α = {M | M ∈ T }.

� We have

λu.u+ x = {M | λu.u+ x ∼α M }

= {λu.u+ x, λz.z + x, .. }

= λz.z + x

Check this!! Rule (†) gives us λu.u+ x ∼α λz.z + x taking

M to be u+ x, v to be u and v′ to be z.



'

&

$

%

Terms in Context

It is convenient to keep track of the free variables in an

expression. We define Γ `M where Γ is a set of variables,

M is a term, and the free variables of M all appear in Γ. An

example is

{x, y, z } ` x+ y

We shall inductively define a relation ` between finite sets of

variables and terms by rules such as

Γ `M Γ ` N Γ ` L

Γ ` if M then N else L

Γ, x `M

Γ ` recx.M

We say M is closed if ∅ `M



'

&

$

%

Programs, Values and Evaluation

A program is a closed expression. A value is a program

that is as “fully evaluated as possible”. We give rules which

tell us to which values programs evaluate. For example,

(λx.x+ 2)3 evaluates to 5:

(λx.x+ 2)3 ⇓ 5

Note that 5 is a value!! Functions λx.M will also be

regarded as values. Lists of the form P : Q, where P and Q

are programs, are also values. The head or tail of a list will

only be evaluated if “extracted” by a hd or tl function. So

(3 + 4) : nil is a value; it does not evaluate to 7 : nil.



'

&

$

%

Defining Program Evaluation

� A value V is any program given by the grammar

V ::= c | λx.M | nil |M : M

where M ranges over expressions. The set of programs is

denoted by P , and values by V .

� We define a binary relation, with relationships denoted

by P ⇓ V , as an inductively defined set given by rules such

as

V ⇓ V

P ⇓ m Q ⇓ n

P op Q ⇓ m op n

P ⇓ λx.M M [Q/x] ⇓ V

P Q ⇓ V



'

&

$

%

Program Evaluation is Deterministic

The relation ⇓ is deterministic: For any P , V and V ′, if

P ⇓ V and P ⇓ V ′, then V = V ′.

Proof: We show that the set

S
def
= { (P, V ) ∈ ⇓ | ∀V ′ (P ⇓ V ′ =⇒ V = V ′) }

is closed under the rules generating ⇓. Then S ⊂ ⇓ is all of

⇓, and we are done.



'

&

$

%

Program Transitions

� When a program P does evaluate to a value V , how

can we calculate V ? We define a new relation P  Q.

The intuitive idea is that if P and Q are related by  ,

then P “computes in one step” to Q. For example,

(λx.x+ 2)3 3 + 2 and 3 + 2 5.

� We define a transition relation between programs. It

takes the form P  Q and is inductively defined by rules

such as

P  P ′

P op Q P ′ op Q

Q Q′

n op Q n op Q′ n op m n op m



'

&

$

%

Relating Evaluations and Reductions

We need to relate ⇓ and  . Consider

hd((λx.x+ 2) 3 : nil)  (λx.x+ 2) 3

 3 + 2

 5

and hd((λx.x+ 2) 3 : nil) ⇓ 5 This suggests that ⇓ might be

the transitive closure of  . In fact ⇓ is (more-or-less) the

reflexive transitive closure  ∗. We have

Theorem: For every program P and value V , we have

P ⇓ V ⇐⇒ P  ∗ V.



'

&

$

%

Convergence and Divergence

� P is terminal if there is no P ′ where P  P ′.

� P has a finite transition sequence if there is a

(unique) transition sequence of the form

P ≡ P0  P1  P2  . . . Pm

with Pm terminal. Such P are called convergent. If m

does not exist, P is divergent or loops. We write P  ω.

� It is easy to see from the definition of  that a value V

is terminal, and hence convergent.



'

&

$

%

Charaterizing Divergence Coinductively

We can give a coinductive definition of divergence based

solely on the evaluation relation. We coinductively define a

subset of P , denoted by ⇑, by rules such as

P ⇑

P op Q ⇑

Q ⇑
P ⇓ n

P op Q ⇑

P ⇑

P Q ⇑

M [Q/x] ⇑
P ⇓ λx.M

P Q ⇑

M [recx.M/x] ⇑

recx.M ⇑

P ⇑

hd(P ) ⇑

H ⇑
P ⇓ H : T

hd(P ) ⇑

P ⇑

elist(P ) ⇑



'

&

$

%

Proving that ⇑ is  ω

Theorem: A program P diverges just in case P ⇑.

Proof: Set D
def
= { D ∈ P | D  ω }. Then we need

D = ν Φ⇑, where Φ⇑: P(P) → P(P) is the name of the set of

rules R⇑. We verify D is a greatest R⇑ dense set, and is thus

ν Φ⇑.

We first check that it is R⇑ dense, that is, D ⊆ Φ⇑(D). We

write down a description of the set Φ⇑(D) using the

definition of Φ⇑. Let X range over Φ⇑(D); and CV is any

program for which CV ⇓ V . Then each such X takes the

form



'

&

$

%

X ≡ D op Q

| Cn op D

| DQ

| Cλx.M Q provided that M [Q/x] ∈ D

| recx.M provided that M [recx.M/x] ∈ D

We show X ∈ D implies X ∈ Φ⇑(D) by a structural case

analysis of X. First note that X can’t be either x or c.

Case X is P op Q If P ∈ D, then X ∈ Φ⇑(D). If not, P

converges to a terminal, say T , and X  ∗ T op Q. Hence as

X diverges, T must be m so P has the form Cm, and thus

X  ∗ m op Q ω. It follows that Q ω.



'

&

$

%

Case X is P Q If P ∈ D, then X ∈ Φ⇑(D). If not, P

converges to a terminal, say T , and X  ∗ T Q. Hence as X

diverges, T must be λx.M so P is of the form Cλx.M . Now

note

X  ∗ (λx.M)Q M [Q/x] ω

because X diverges. Thus M [Q/x] ∈ D.

We leave the remaining cases as an exercise. So D is R⇑

dense.

Let S ⊆ Φ⇑(S). We show that D is greatest among all such

R⇑ dense sets. To do this, we first prove that

∀S ∈ E . S ∈ S =⇒ ∃S ′ ∈ S.S  S ′ (†)

by the Principle of Induction for T .



'

&

$

%

(Closure under VAR): Of course x 6∈ S ⊆ P .

(Closure under OP): Suppose P op Q ∈ S. Note that as

S ⊆ Φ⇑(S), then either P ∈ S, or P ≡ Cm and Q ∈ S. In

the former case, by the induction hypothesis P  P ′ for

some P ′, and hence P op Q P ′ op Q. Else if P  P ′ for

some P ′ we are similarly done, and otherwise P must be m,

in which case P op Q P op Q′ by the induction

hypothesis, for some Q′.

We omit the remaining cases (exercise!).

It is quite easy to conclude from †, determinism, and the

definition of D, that S ⊆ D. Thus, as ν Φ⇑ ⊆ Φ⇑(ν Φ⇑) we

have ν Φ⇑ ⊆ D, and as D is indeed R⇑ dense, equality

follows.



'

&

$

%

Part 3: (Co)Algebras and (Co)Induction

� Define algebras and coalgebras.

� Give an example.

� Illustrate the isomorphism theorems for coalgebras.

� Illustrate categorical induction and coinduction.



'

&

$

%

Defining Algebras and Coalgebras

� Let F : C → C be an endofunctor. An algebra for the

functor F is specified by a pair (A,αA) where A is an

object of C and αA:FA→ A is a morphism.

� We define the category of F -algebras, denoted by

CF , to have objects the algebras of F , and a morphism

f : (A,αA) → (B,αB) is a morphism f :A→ B in C for

which the diagram

FA
Ff- FB

A
αA

?

f
- B

αB
?

commutes in C.



'

&

$

%

� Dually, a coalgebra for F is a pair (A,αA) where

αA:A→ FA is a morphism in C.

� The category of F -coalgebras CF is defined similarly

to the category of algebras.

� An initial F -algebra (I, αI) is an initial object in CF

� If (A,αA) is an F -algebra, we write

αA: (I, αI) → (A,αA) for the unique mediating morphism.



'

&

$

%

Further Notation

Given families of morphisms (fi:A→ Bi | i ∈ I) and

(gi:Ci → D | i ∈ I), then

〈fi | i ∈ I〉:A → Πi∈IBi and [gi | i ∈ I]: Σi∈ICi → D

denote pairing and copairing. Projections are denoted by

πj: Πi∈IBi → Bj and insertions by ins j :Cj → Σi∈ICi.



'

&

$

%

If f :A→ B is a morphism in a category with pullbacks, the

kernel is given by the pullback

Kf

π1 - A

A

π2

?

f
- B

f

?

KidA
is denoted by EqA and the subobject

〈π, π〉:EqA → A×A is called the equality relation on A.



'

&

$

%

An Example (1 + (A×−):Set → Set)

For k ≥ 1 define Ak to be the collection of k-tuples of

elements of A. If l = (a1, . . . , ak) ∈ Ak, then we shall regard l

as a partial function { 1, . . . , k }⇀A. If a ∈ A and l ∈ Ak,

then define al ∈ Ak+1 by al(1)
def
= a and al(r)

def
= l(r − 1) for

r ≥ 2.



'

&

$

%

The functor 1 + (A×−) has an initial algebra (L, αL), where

we shall set L
def
= { nil } ∪ (

⋃
1≤k<ω A

k), and

αL: 1 + (A× L) → L is defined by

αL(insL(∗))
def
= nil

αL(insR(a, nil))
def
= a

αL(insR(a, l))
def
= al



'

&

$

%

The functor 1 + (A×−) has a final coalgebra (L, αL), where

L
def
= { nil } ∪ (

⋃
1≤k≤ω A

k), and αL:L→ 1 + (A× L) is

defined by

αL(nil)
def
= insL(∗)

αL(l)
def
= case l of

l ∈ A1 7→ insR(l(1), nil)

l ∈
⋃

2≤k≤ω A
k 7→ insR(l(1), λr.l(r + 1))



'

&

$

%

Defining Bisimulations

We define P :Set → Set on objects by S 7→ PS, and on

f :S → T by defining P f : PS → PT to be the function

P f(X)
def
= { fx | x ∈ X }

for each subset X of S. We call a morphism of the form

h: (S, αS) −→ (T, αT ) in SetP a homomorphism.



'

&

$

%

� If (S, αS) is a P -coalgebra, then we shall write s
αS

 s′

to mean s′ ∈ αS(s) for any s, s′ ∈ S.

� Lemma h: (S, αS) −→ (T, αT ) is a homomorphism just

in case for any s, s′ ∈ S and t ∈ T ,

• s
αS

 s′ =⇒ hs
αT

 hs′; and

• hs
αT

 t =⇒ ∃s′.t = hs′ and s
αS

 s′.



'

&

$

%

� A bisimulation R on a coalgebra (S, αS) is an

equivalence relation on S for which there is a coalgebra

(R,αR) such that π1, π2:R → S give rise to

homomorphisms

π1, π2: (R,α
R) −→ (S, αS)

Lemma An equivalence relation R on S is a bisimulation

on (S, αS) just in case for all s, s′, t ∈ S, if s
αS

 s′ and

s R t, then there exists t′ ∈ S for which t
αS

 t′ and s′ R t′.



'

&

$

%

Quotients by Bisimulations

Given a bisimulation R on a coalgebra (S, αS), we can endow

S/R with a coalgebra structure by defining

S/R
αS/R

- P (S/R)

[s] - (P q ◦ αS)s

Note that this is well-defined precisely because R is a

bisimulation. It follows that the quotient function is indeed

a homomorphism q: (S, αS) → (S/R, αS/R).



'

&

$

%

Isomorphism Theorems

Theorem Let h: (S, αS) → (T, αT ) be a homomorphism,

and let Kh be the kernel of h. Then there is a diagram of the

form

(S, αS)
h - (T, αT )

(S/Kh, α
S/Kh)

q

? φ-
∼=�
ψ

(im(h), αim(h))

ι

∪

6

for which h = ι ◦ φ ◦ q.



'

&

$

%

Theorem Let (S, αS) be a coalgebra, (X,αX) a

subcoalgebra of (S, αS), and R a bisimulation on (S, αS).

Set Q
def
= R∩X2, X

def
= (π1 ◦ π

−1
2 )X, and Q′ def

= R∩X
2
. Then

there is a diagram of the form

(S, αS)
q - (S/R, αS/R)

(X,αX)

i
∪

6

(im(qi), αim(qi))
∪

6

(X/Q,αX/Q)

∼=

-

q -



'

&

$

%

A Principle of Induction

Let αI :FI → I be an initial algebra. If R� I × I is a

binary relation on I, then to show that Eq I is a subobject of

R, it is sufficient to prove that R admits a congruence

γR:FR → R on αI :FI → I.



'

&

$

%

A Principle of Coinduction

If ι:R� C × C is a binary relation on C, to show R is a

subobject of EqC , it is sufficient to prove that R admits a

bisimulation γR:R → FR. In order to prove that the global

elements x, x′: 1 → C are equal, it is sufficient to prove that

〈x, x′〉: 1 → C × C factors through ι:R� C × C.


