4)

Elementary Order Theory

B A partially ordered set or poset is a pair (P, <) where P

1s a set and < is a partial order on P.

B /. P — P between posets is monotone just in case it

preserves the order.

B If S C P then we write /\ S for the meet or infimum

of S; dually we write \/ .S for the join or supremum of S.

B P is called a complete lattice if the joins of all subsets

S exist or (equivalently) the meets of all subsets exist.

N /

/ Fixed Points

It f: P — P is an endofunction on a poset P, we call
B : c P afixed point for f if f(z) = x;
B a pre-fixed point of f if f(x) < z; and
B 2 post-fixed point of f if z < f(x).

If P is a complete lattice, and f is monotone, the least
pre-fixed point, i f, and the greatest post-fixed point, v f,

both exist, and are given by

nfENMzeP | flx)<a)

def

vi=VizeP | < f(z)}

N

/ (Co)Inductively Defined Sets \

B If X is any set, let P(X) be the powerset of X. Define a

set of rules on X to be any subset R of the form
RCPX)x X

Define the name of R to be the function

$r:P(X) — P(X) given by setting

Pr(S) L {zeX | IS, z)eRandS CS)

B Given a set X, and a set of rules R on X, the subset
of X inductively defined by R is u© ®%, and the subset
\ of X coinductively defined by R is v $5. /

/ Closed Sets \

B A subset S C X is closed under the set of rules R

if it is a pre-fixed point of ®x. This means
{reX | I(S,z)eRandS" " CS}CS
B Note that S is closed just in case for each rule
(H,c) € R,
HCS=—ced (%)

B We sometimes say that S is closed under the rule
R = (H, c) if % holds for R. For each element h € H, the

assumption that A € S is called an inductive

hypothesis.
_ %

Dense Sets

B A subset S C X is dense under the set of rules R if

it is a post-fixed point of ®. This means

SC{zeX | IS, z)eRand 5" C S}

-~

Rule Notation

We can write finitary rules like this

B a2 base rule R = (J,¢)

- R

C

B and a deductive rule R = (H,c) = ({hy,...,h },)

hy he ... hy
R

-~

N

Examples of (Co)Ilnductively Defined Sets

Z

B Consider R C P(Z) x Z given by 5 and et Then
2
N(I)R = N and V(I)R = /.
{ /
B Fix R C A x A. Consider ‘R given by just in

case a R a’. Then p®r = @ and

vdpr={a | da€A”. aRa(0)Ra(l)R...}

9

4)

Principles of (Co)Induction

B Principle of Induction

Suppose that I C X is inductively defined by a set of rules
R, and that S C I. Then in order to verity that S = I it

is enough to show that S is closed under the rules.

B Principle of Coinduction

Suppose that C' C X is coinductively defined by a set of
rules K. Then in order to verify that x € C' it is enough to

find a set S which is dense under the rules and for which

r e Ss.

N /

4)

Theorem

Given a finitary set of rules R, a deduction for x € X is a
finitely branching tree with root x such that for each node

c € X, if H is the (possibly empty) finite set of children of c,
then (H,c¢) must be a rule in R.

Theorem: Let I C X be inductively defined by a set of
rules R. Then

I ={ x | there exists a deduction of x },

that is for any element x € X, we have

x € I it and only if there exists a deduction of .

N /

/Part I1: (Co)Induction in Program Semantics\

B /nductively define some programs 4 + 3, Ar.x * 7 and
rec fAn.if n=1thenlelsenx* (f(n—1)).

B /nductively define evaluation of programs P | V' such
as (Ax.xx7)(4+3) | 49.

B /nductively define program transitions P ~~ P’ such as
(Ar.x*T) (A43) ~> (4+3) % T~ 75T ~ 49

B Coinductively define divergence P 1), such as recz.z 1),

where this means P ~»> P ~» Py ~» Py ~» ..

B Coinductively define program equivalence P ~ P’ such

as \e.xx 1«7~ rv.x*x7
N\ /

/ Rules for Inductively Generating the Set 7 \

— [z € Var] var - |c € ZUB] const
X (&
M N M N L
[Op S Op’l“] OP COND
M op N if M then N else L
M M N M
ABS AP REC o NIL
Mz M M N rec x.M ni
M M M N M
HD TL CONS _ ELIST
hd(M) tl(M) M- N elist(M)

N /

-~

\

B If P and P’ are two programs, write P ~~ P’ to mean P

Simple Programs

“computes in one step” to P’

We write M|[N/v] to mean “M where v is replaced by N”

B For example,

(245)+1~~7+1~8 and (x+y)4/y] =z + 4

B The term Ax.M is code for the function which maps x

to M. If £ \z.M, then fa~> Mla/z]. Thus Ax.x + 2 is

the function which “adds 2”7, and for example
(Av.x+2)4 ~ 44 2.

9

4)

Simple Recursion

recx.M denotes a solution to the equation x = M.

Write R < recz.M. The program R “computes in one step”

to M|R/x|. Thus if we take M 0, then

R~ 0:2)R/x]=0: R~0:(0:R)~ ...

and so R is a program which recursively evaluates to an
infinite list of zeros. We call each step in the computation of

R an unfolding.

N /

4)

Subterms

B A subterm S of a term M is any subtree of the finite
tree denoted by M. We write S <« M. A variable x
occurs in M if x << M. There may be many occurrences.
We say N lies in the scope of Ay or recy in any subterm
of the form Ay.N or recy.N respectively.

B v+ 2is the scope of Au in Az.(Au.u + 2) z. Note that

A+ 2 <K Az (Auu + 2) 2.

If N Ar.xxyzzr then the underlined z is the fourth

occurrence of x in V.

N /

-~

N

\

B Each occurrence of x in M 1is either free or bound. We

Free and Bound Variables

say that an occurrence of x is bound in M if the
occurrence of in M 1is in a subterm of the form Axz.N or

recz. N

B If there is an occurrence of x in such N then we say
that occurrence of x has been captured by (the scope of)
Azx or recxz to mean that the occurrence of x is bound by

the respective Ax or recx.

B An occurrence of x in M is free iff the occurrence of z

is not bound. fvar(M op N) © foar(M) U fvar(N) etc etc

9

4)

Explaining Substitution

B We substitute a term N for free occurrences of x in M

by replacing each free x with N. For example,

(if z then 4 else 5)| 1 =2 /x|

denotes the term if 1 = 2 then 4 else 5.

B Suppose that M ' \2.L. Civen any term N, then in

fact M N ~» L|N/x|. Thus if L is y, then

M N ~ y|N/x| =y. So if M © Az.y, M is “the function

with constant value y”. M|x/y| ought to be “the function

with constant value x”. But M|z /y] = Ax.x, the identity!

N /

/ Defining Substitution \
Given M and N, and a variable z, we define M|N/z]|, b

recursion on the finite tree structure of M:

B yN/x| e y where x £ y (if M = y);

B (Lop L)[N/z| < L[N/z] op L'|N/z] if M = L op L');

B (\2.L)[N/z] € \a.L;

B (\y.L)N/z| © . L|N/z] if x # y and x & fvar(L) or

y & fvar(N);
def

B (\y.L)|N/z|] = A\z.L|z/y||N/x] if v # y and x € fvar(L)
and y € fvar(N), where z is the first variable in Var where

\ 2z & var(N) U var(L). /

-~

Alpha Equivalence

B We wish to consider two terms differing only in their

bound variables as being “equal”:

Au.(u + rec z.xz) = dw.(w + recv.zv)

B We inductively define an equivalence relation ~, on

the set 7 of terms, by rules such as

(1) M~, M N ~, N’
)\U.M ~)\U,.M[U//’U] MN ~y, M/N/

N

/ Defining Expressions \

B We define the set £ of expressions to be the set of

a-equivalence classes of terms:

def

e Y T/, ={M | MecT)

B We have

Mu+x = {M | uut+x~, M}
= {uu+zx, \zz4x, ..}

= M\z.z2+x

Check this!! Rule (1) gives us \u.u + x ~, Az.z + x taking
\Mtobeu+az,vtobeuandv’tobez. J

4)

Terms in Context

It is convenient to keep track of the free variables in an
expression. We define I' = M where I is a set of variables,
M is a term, and the free variables of M all appear in I'. An
example is

{z,y,2}Fa+y

We shall inductively define a relation - between finite sets of

variables and terms by rules such as

I'-mM I'HEN TI'FL e M
['=1f M then N else L ' recx.M

We say M is closed it & - M

4)

Programs, Values and Evaluation

A program is a closed expression. A value is a program
that is as “fully evaluated as possible”. We give rules which
tell us to which values programs evaluate. For example,
(Ax.x + 2)3 evaluates to 5:

(Az.x+2)3 | 5

Note that 5 is a value!! Functions Az.M will also be
regarded as values. Lists of the form P : (), where P and ()
are programs, are also values. The head or tail of a list will

only be evaluated if “extracted” by a hd or tl function. So

(34 4) : nil is a value; it does not evaluate to 7 : nil.

9

/ Defining Program Evaluation \

B A value V is any program given by the grammar
Vi=cl|Ae. M |nil | M: M

where M ranges over expressions. The set of programs is
denoted by P, and values by V.

B We define a binary relation, with relationships denoted
by P || V, as an inductively defined set given by rules such

asS

Plm Qln PlIxe.M MQ/z|IV
VIV PopQlimopn POLV

N /

4)

Program Evaluation is Deterministic

The relation |} is deterministic: For any P, V and V', if
PJVand P V' then V =V".

Proof: We show that the set
SELPV)el | W (PLV =V =V}

is closed under the rules generating |l. Then S C |} is all of

|}, and we are done.

N /

/ Program Transitions \

B When a program P does evaluate to a value V', how
can we calculate V7?7 We define a new relation P ~» ().
The intuitive idea is that if P and () are related by ~,

then P “computes in one step” to (). For example,

(Ar.x4+2)3 ~ 342 and 3+ 2~ 5.

B We define a transition relation between programs. It
takes the form P ~~ () and is inductively defined by rules

such as
P~ P’ Q~Q
PopQ~P opQ nopQ~nopQ BROPM~>NOpM

N /

/ Relating Evaluations and Reductions \

We need to relate || and ~». Consider

hd((Ax.x +2)3:nil) ~ (Arx+2)3
v 342

~r 9

and hd((Az.z 4+ 2) 3 : nil) |} 5 This suggests that || might be
the transitive closure of ~~. In fact || is (more-or-less) the

reflexive transitive closure ~~*. We have

Theorem: For every program P and value V', we have

PlV <« P~"V.

N /

4)

Convergence and Divergence
B P is terminal if there is no P’ where P ~~ P’.

B P has a finite transition sequence if there is a

(unique) transition sequence of the form
P=F~» P~ P~ ...~ P,

with P,, terminal. Such P are called convergent. If m

does not exist, P is divergent or loops. We write P ~~%.

B It is easy to see from the definition of ~» that a value V

is terminal, and hence convergent.

N /

/ Charaterizing Divergence Coinductively \

We can give a coinductive definition of divergence based
solely on the evaluation relation. We coinductively define a

subset of P, denoted by 1}, by rules such as

P A QN
PopQfT PopQT

Pl n

P :
l M[Q/szU)\x.M Mlrecx. M /x| q
PQ1M PQ1 recx. M 1)

p
I o, VH:T il
hd(P) 4 hd(P) 1) elist(P)

N /

4)

Proving that 1} is ~»“

Theorem: A program P diverges just in case P 1.

Proof: Set D < {DeP | D~} Then we need

D =v ®,, where &,:P(P) — P(P) is the name of the set of
rules Ry. We verify D is a greatest R dense set, and is thus
vV (I)ﬂ.

We first check that it is Ry dense, that is, D C ®&,(D). We
write down a description of the set ®,(D) using the
definition of ®,. Let X range over ®,(D); and Cy is any
program for which C', || V. Then each such X takes the

form

N /

-~

X = Dop(@Q
Cp, op D
D@
Chaet @ provided that M|Q/z] € D
recx.M provided that M[recz.M/x] € D

We show X € D implies X € ®4(D) by a structural case

analysis of X. First note that X can’t be either = or c.

Case X is P op Q|If P € D, then X € ®4(D). If not, P

X diverges, T' must be m so P has the form C,,, and thus
\X ~*m op Q) ~*. It follows that) ~~»*.

converges to a terminal, say 1", and X ~~* T op (). Hence as

9

/Case Xis PQ|If PeD,then X € &4(D). If not, P \

converges to a terminal, say 1', and X ~»* T'(). Hence as X

diverges, 1" must be A\x.M so P is of the form C', ;. Now

note

X ~>* (A M) Q ~ M|Q/x| ~~
because X diverges. Thus M[Q/x] € D.

We leave the remaining cases as an exercise. So D is R4

dense.

Let § C &4(S5). We show that D is greatest among all such
R4 dense sets. To do this, we first prove that

vSef& SeS=3IeS5S~9 (1)

\by the Principle of Induction for 7. /

/(Closure under var): Of course x ¢ S C P.

(Closure under op): Suppose P op (Q € S. Note that as

S C &4(S), then either Pe S;or P=C,, and Q € S. In
the former case, by the induction hypothesis P ~» P’ for
some P’ and hence P op Q) ~~ P’ op (). Else if P ~~ P’ for

in which case P op Q ~ P op Q' by the induction
hypothesis, for some ()'.

We omit the remaining cases (exercise!).

It is quite easy to conclude from f§, determinism, and the
definition of D, that S C D. Thus, as v &y C &4 (v Py) we
have v &4 € D, and as D i1s indeed R4 dense, equality

\follows.

some P’ we are similarly done, and otherwise P must be m,

\

9

Part 3: (Co)Algebras and (Co)Induction

B Define algebras and coalgebras.
B Give an example.
B Illustrate the isomorphism theorems for coalgebras.

B Illustrate categorical induction and coinduction.

/ Defining Algebras and Coalgebras \

B Let F:C — C be an endofunctor. An algebra for the
functor F is specified by a pair (A, o) where A is an
object of C and a*: FA — A is a morphism.

B We define the category of F-algebras, denoted by
C!, to have objects the algebras of F', and a morphism
f: (A, a?) — (B, aP) is a morphism f: A — B in C for

which the diagram
F
FA —f> FB
at] Y
A—— B
f

\ commutes in C. /

4)

B Dually, a coalgebra for I is a pair (A, o) where

a: A — F A is a morphism in C.

B The category of I'-coalgebras Cr is defined similarly
to the category of algebras.

B An initial F-algebra (I, «!) is an initial object in C¥

B If (A o) is an F-algebra, we write

at: (I,a) — (A, a?) for the unique mediating morphism.

N /

-~

Further Notation

Given families of morphisms (f;: A — B; | € I) and
(9;:C; — D |7 € 1), then

<fz‘Z€]>A_>HzEIBz and [gZ\ZEI]EZE[CZeD

denote pairing and copairing. Projections are denoted by

7 ;e B; — B, and insertions by ins;: C; — 2;c1C;.

N

4)

If f: A — B is a morphism in a category with pullbacks, the
kernel is given by the pullback

K4, is denoted by Fq, and the subobject
(m,m): Bq, — A x A is called the equality relation on A.

N /

r > 2.

N

An Example (1 + (A x —): Set — Set)

For k > 1 define A* to be the collection of k-tuples of
elements of A. If | = (aq, ..

def def

.,ay) € A¥ then we shall regard |
as a partial function {1,...,k}—A. Ifa € A and | € A*,

then define al € A**! by al(1) = a and al(r) = I(r — 1) for

9

4)

The functor 1+ (A x —) has an initial algebra (L, o), where

we shall set L < {nil} U (U <pen, A*), and
at:1+ (A x L) — L is defined by

ot (insp (%)) = nil
ot (insg(a, nil)) L
ot (insg(a,l)) ©al

4)

The functor 1+ (A x —) has a final coalgebra (L, o), where

LY {nil} U (U <pep, A%), and o™ L — 1+ (A x L) is

defined by
alil) € insp(x)
o’ (1) ' case [of
[€ Al — insg(1(1), nil)

[€ U2§k§w AR insp(1(1), Ar.d(r + 1))

N /

-~

Defining Bisimulations

We define P: Set — Set on objects by S — P.S, and on
f:S — T by defining P f:P.S — PT to be the function

PAX)E{fr | 2€X}

for each subset X of 5. We call a morphism of the form

h: (S, o) — (T,al) in Setp a homomorphism.

N

4)

B If (S,0”) is a P-coalgebra, then we shall write s % s

to mean s’ € a”(s) for any s,s’ € S.

B Lemma h: (S, a°) — (T,a’) is a homomorphism just
in case for any s,s' € Sandt €T,

OéS / CVT /
® s~ s = hs~ hs'; and
al / / a”
e hs ~»t=— ds'.t = hs" and s ~ s’.

-~

\

B A bisimulation R on a coalgebra (S, o) is an
equivalence relation on S for which there is a coalgebra
(R, ") such that 7, m: R — S give rise to

homomorphisms

T, ™ (R, oY) — (S, a”)

Lemma An equivalence relation R on S is a bisimulation
aS
on (S,) just in case for all s,s',t € S, if s ~ s" and

OéS
s R t, then there exists t' € S for which ¢t ~ t' and s’ R t'.

9

-~

N

Quotients by Bisimulations

Given a bisimulation R on a coalgebra (5, a”), we can endow

S/R with a coalgebra structure by defining

S/R

S/R -+ P(S/R)

[s] | - (Pgoa”)s

Note that this is well-defined precisely because R is a

bisimulation. It follows that the quotient function is indeed
a homomorphism ¢: (S, a”) — (S/R, a5/ F).

\

9

4)

Isomorphism Theorems

Theorem Let h: (S, a”) — (T,a’) be a homomorphism,
and let K} be the kernel of h. Then there is a diagram of the

form

h
(S, a”) - (T, ™)
q L
Y ¢ U
(S/ K, oK) = (im(h),a™™)
P

for which h =10 ¢ ogq.

N /

4)

Theorem Let (S, o) be a coalgebra, (X, a”) a

subcoalgebra of (S, a”), and R a bisimulation on (S, o).

Set Q¥ RN X2, X ¥ (mom)X, and Q' ¥ RNX". Then

there is a diagram of the form

(Sv &S) g (S/R7 aS/R)

L@' |

(im(gi), a™™@))

N7

(X/Q, aX/Q

A Principle of Induction

Let o!: F'I — I be an initial algebra. If R — I x [is a
binary relation on I, then to show that Eq; is a subobject of

R, it is sufficient to prove that R admits a congruence
vB:FR — Ronao': FI — 1.

N /

A Principle of Coinduction

If : R — C' x C'is a binary relation on C, to show R is a
subobject of Fq., it is suflicient to prove that R admits a
bisimulation v*: R — FR. In order to prove that the global

elements x,z':1 — C are equal, it is sufficient to prove that
(x,2'):1 — C' x C factors through t: R — C x C.

N /

