A Combinator and Presheaf Topos Model for
Primitive Recursion over Higher Order Abstract Syntax *

S. J. Ambler(s .Ambler@mcs.le.ac. uk)
R. L. Crole(R.Crole@mcs.le.ac.uk) &
A. Momigliano (A.Momigliano@mcs.le.ac.uk)

Department of Computer Science, University of Leicester,
Leicester, LE1 7RH, U.K.

Abstract. We describe a theory Bsyntax, which we have implemented in
Isabelle HOL, and prove the existence of a combinator for primitive re-
cursion over HOAS. The definition of the combinator is facilitated by the
use of terms with infinite contexts. An immediate payoff is that we obtain
higher order simultaneous substitution as a function for free. We have de-
fined a presheaf model of Bsyntax, providing additional semantic validation
of Bsyntax’s principles of recursion. We mention an application of our work
to mechanized reasoning about the compiler intermediate language MIL-lite.
Keywords: initial algebras; higher order abstract syntax; Isabelle HOL; A-
calculus; primitive recursion; topos theory.

1 Introduction

Higher order abstract syntax (HOAS) has been the subject of considerable research
effort over the last few years. The fundamental idea dates back to Church [3]. HOAS
is well established for encoding the syntax of object logics in a theorem prover.
However, we also want to reason about the syntax of an object logic, and this is
likely to involve the use of principles of induction and coinduction.

It is known that problems arise when combining HOAS with principles of induc-
tion and coinduction (see for example [5,10, 1]). One answer is the system of hybrid
syntaz introduced in [1]. This gives a type of Isabelle/HOL expressions which sup-
port several schemes of induction over HOAS. Another problem concerns how to
define recursive functions over the terms of HOAS. The issue is how to define re-
cursive calls over A-binders (see [10,9]). In fact a method for defining recursive
functions over the terms of HOAS forms the central topic of this paper.

Why would we want to define recursive functions over the terms of HOAS? If we
wish to reason about object logics, then we will probably want to employ definitions
by primitive recursion. In particular, to encode the operational semantics of an
object level programming language we may require capture avoiding substitution,
which can be defined by primitive recursion (with parameters). Similarly we might
want to determine the occurrence of free variables within an expression, or the size
of an expression. Each of these functions can be presented by defining its graph as

* This work was supported by EPSRC grant number GR/M98555.

a relation and proving it to be total and functional. A better approach, outlined in
this paper, is to define them uniformly via a combinator for primitive recursion.
The main contributions of our work are to code in Isabelle HOL

— a presentation of weak HOAS using a A-calculus of terms with infinite contexts
which supports a strong principle of structural induction;

— a proof of the existence of a combinator for primitive recursion over HOAS,

— a representation of a substantial object logic, namely the compiler intermediate
language MIL-lite [2], together with machine proofs of properties of the system;

and to present a mathematical account of

— a presheaf topos model, from which we obtain further semantic validation of
recursion principles by exhibiting the types over which recursion takes place as
initial algebras.

We refer to our Isabelle HOL Theories for HOAS by the name Bsyntax (binding
syntax). In Section 2 we introduce a datatype for HOAS and show how to identify
a subtype of A-calculus terms-in-context. In Section 3 we motivate and introduce a
combinator for primitive recursion. In Section 4 we show how to capture the seman-
tics of a very simple (object) programming language within Bsyntax, and remark
that the ideas scale up to the MIL-lite language of Benton and Kennedy. In Sec-
tion 5 we present a presheaf topos model of our version of HOAS, and indicate that
our combinator captures the universal property of categorical primitive recursive
definitions.

2 An Encoding of A-calculus Terms-in-Infinite-Contexts

The datatype ezp = V var | L (var = ezp) | exp A exp is used to encode (weak)
HOAS. Using this datatype, we shall produce, by recursion, terms which correspond
to those of the A-calculus, thus providing an adequate representation. To achieve
this we work with terms-in-context [4,6]. The reason for this is that a recursive
call over a functional expression of type var = exp will require a fresh call over
the body of the term, and the body will (possibly) contain a new free variable. A
context is required to track the creation of these free variables. Implementing finite
contexts, with all of the associated book-keeping operations such as weakening and
strengthening, can be awkward, so in fact we work with terms-in-infinite-contexts.
In particular, a context will be a stream of variables, realized as a term of type
var stream = nat = var. One reason for working with infinite contexts is that
some of the book-keeping tasks can be implemented neatly by making use of the
properties of functions defined on war stream. In particular, we make use of the
functions which compute the nth element of, the tail of, and head of a list I. They
are denoted by (I ! n), tll and hd I, and u consed onto [is denoted by u # [. Note
that these functions are total on streams: over finite lists, tail is not total, which
can complicate matters in a theorem prover such as Isabelle HOL where one must
constantly check to ensure that operations are not performed on empty lists.
Terms-in-infinite-contexts are elements of a type eic %< var stream = exp. A
typical term-in-context (in 7-long form) looks like A I. e I. The bound variable [

prop e1 prop ez prop (Al e (hd 1) (tl1))
prop (Al (e1 1) A (e2 1)) prop (Al Lu.eul)

prop (A 1. V (1! n))

Table 1. Definition of prop Terms-in-Infinite-Contexts (in Isabelle HOL)

provides an enumerable supply of terms (I ! ¢) of type var and these can be used
within the scope of binding to stand for the variables of the context. Note that
eic = var = eic via the standard stream isomorphism. This means that the fresh
free variable alluded to above can be “absorbed” into the infinite context. We obtain
a neat definition of the predicate prop :: eic = bool identifying proper terms of type
eic, given in Table 1. These proper terms provide an adequate representation of the
A-calculus and hence the basis for the HOAS encoding of an object logic.
We give some examples, and general comments. Consider

ALLu. (Vu) AV (I14)A(V(1!8)

Roughly speaking, this is an encoding of a A-calculus term AU.U V4 Vg. One has
to take care in understanding the meaning of (for example) A I. V (I!4). Recall
that ! :: var stream. So A I. V (1!14) is the fourth “actual” variable in a fixed
enumeration. In fact we will think of it as the fourth projection of an arbitrary
infinite sequence of variables. Note also that we claim that the binder A\l gives rise
to a notion of context, and that traditionally contexts consist of distinct variables.
This is indeed the case here, as we can prove that Al.V (I!n) =X1.V (I m) just
in case m = n. We refer to Al. V (I ! n) as the nth (variable) projection. Moving to
the definition of proper abstractions, consider for example

prop(AL (V(hdD))ANIIB))ANI!9))
prop(Al.Lu. (Vu)ANM({14)ANV(I!8))

Notice that in our system, when variables are bound by the L binder, binding is
forced to occur over the Oth projection (I ! 0) = hdl. Note also that the effect of
replacing tl [by [is to decrease all other projection indices by 1 when an abstraction
is formed. This is a key point, and will be fundamental to achieving a definition of
a recursion combinator. To help understand the formulation of the Al binder, note
that the types var = eic and eic are isomorphic, with Au. Al. eul :: var = eic
corresponding to A l. e (hd 1) (tll) :: eic. This isomorphism holds because of the
definitional property of a stream of variables. Thus, roughly speaking, properness
of Al. L u. e wul occurs just in case properness of A l. e (hd) (tl l) occurs—hence
the definition in Table 1. Many results about the Bsyntax system have been proved
in Isabelle HOL. In such cases we indicate this as follows

Theorem 1 (Isabelle HOL). The definition in Table 1 specifies a monotone op-
erator yielding a well-defined inductive definition.

3 A Combinator for Primitive Recursion

Our next contribution is the construction of a combinator synr for primitive recur-
sion over terms of type eic, and hence over HOAS. The type of our Isabelle HOL
combinator synr is

(nat == B)= (B=B)= (B=B=B)=c¢ic=>B

We give the graph of our combinator as an inductive definition in higher order logic,
and a typical instance of its use looks like synr vf If af e r. The idea is that one
examines the (inductive) structure of e, to see if it is a (proper) variable, application,
or abstraction term of type eic. Depending on which case is in play, r is the result
of recursively calling, respectively, one of the functions vf :: nat = B, af :: B= B
or If :: B = B = B. The graph is formally defined by

synrvf If af (A L.V (1! n)) (vf n)

synrvf If af (A l.e (hdl) (tIl)) x synrvflf afer y synr vf If af ey 2

synrvfIf af (A\l.Lu.eul) (If) synrvflfaf (Al (e1 1) A (exl)) (af y 2)

Theorem 2 (Isabelle HOL). The relation synr specified above can be shown to be
a Isabelle HOL function, with the required properties of a combinator for primitive
recursion.

We finish this section by giving a very simple example showing how synr works
in practice; and we discuss higher order substitution. Take the type B to be nat.
Define vf ¥ A n. 1 and If ¥ XA n. n and af < XA n. A m. n +m. Then synr vf If af
will compute the number of non-binding occurrences of all variables in a term;
informally, this is the number of occurrences of V. The function vf counts each
such variable once; If does not alter the count, as traversing a binder should simply
ignore the binding occurrence; and af adds the number of such variables from the
two sub-terms of an application. For example, the number N of such variables in
Al.Lu. (Vu)A(V(1!3))is 2, and is given by

N =synrvflfaf (AL Lu. (Vu)A(V(13))
= If (synr vf If af ((V (110)) A (V (1! 4))))
= If (af (synrvf If af (A 1.V (110))) (synrvfIf af (A 1.V (I 14))))
=If (af (vf0) (vf4)=(An.n) (An.Am.n+m)11) =2

The recursion combinator can also provide a uniform method for defining functions
such as capture-avoiding substitution by primitive recursion on meta-level syntax.
Indeed, in order to use Bsyntax to represent operational semantics, we must be able
to represent substitution. We can define “standard” substitution via the recursion
combinator, as a recursive function over eic, with the expected type

synr vf af If :: eic = var = eic = eic

for suitable values of vf, If, and af. However, in order to make proper use of HOAS,
we want to be able to define higher order substitution—the recursion operator
achieves this in a neat and systematic way. In Table 3 (see Section 4) the higher
order substitution function hosub has the expected type (var = eic) = eic = eic,
and is recursive over var = eic.

'EXlel::7
I'+-Xl Val(el):: CT 7
'EXl.esl::int I'Xl.exl::int
Xl (eal)+(e2l)::int
'tAleil::CTnn mn#FITEXLex(hdl)(tll):: CT 2
')Al Letz<erlineszl:: CTm

XLV ({!'n)::(I'!n) I'EXlIntz::int

Table 2. A Type Assignment Relation

A.(Int2)+ (Int2") YAl Int 2z + 2

Al.ex Iy XLwvil hosubes (Al.vi 1) Al vl
AL Val(el) YAl el

A.Letz<erlinesxzl YAl vl

Table 3. An Evaluation Relation

4 Applications to Object Level Languages

In order to illustrate how our ideas are applied in practice, we define a small (object
level) language, showing how we can express its static and dynamic semantics.
While the language is elementary, we later show that our methodology can indeed
be successfully applied to a much more complex language. The types are given by
integers and computation types CT 7 [7]. The terms of the language are given by

Int z % C (stringof z) Vale * (Cval) Ae
e1 +ex ™ (CAdd) Aey Aey letz < e inesx ™ (CLet)Ae; A (L. ey 1)

Note that in this section we make use of Bsyntax constants; these were not discussed
in Section 2, but can be added without additional technical complications. Each
constructor C has type string = exp, and we use strings to give “names” (such as
Add) to the constants of our object level language; this is the standard approach in
logical frameworks [8]. Note that the let terms of a computational monad contain
a binder (z above is bound) and this is captured by meta-level (Bsyntax) binding.

We define a ternary type assignment relation, with typical relationship I' e ::
T, and carrier types stream x eic * types. The idea is that object level terms are
represented by meta-level terms of type eic, and that object level contexts which
supply types to (free) object variables are represented by a stream of types. The
relation is inductively defined using the rules in Table 2. We also define an evaluation
semantics, relating terms of type eic, in Table 3—the substitution function hosub
was introduced in Section 3.

A specific goal of our work is to investigate the viability of encoding and reason-
ing about effect based compiler transformations. We have focussed on Benton and
Kennedy’s MIL-lite [2], a typed intermediate language with computation types,
which can be used to validate compiler transformations. The type system contains
integers, integer references, functions, products, sums, and effect based computa-
tions. Moreover, a subtyping relation is induced by effect inclusion. We have encoded
MIL-lite in Bsyntax, illustrating that our approach is applicable to non-trivial lan-
guages.

5 A Presheaf Topos Model

We give a presheaf model of Bsyntax. In this section we only outline the key ideas.
First, why do we want to consider such a model? We have claimed that we have
defined a combinator for defining functions over eic, that is functions of type eic =
B, by primitive recursion. We can make this statement precise by interpreting it
categorically. Suppose that eic and B can be modelled by objects in a category.
Then synr should correspond to a “fold” operator, which maps an algebra morphism
9:TB — B (for a certain functor T') to the unique mediating morphism synr g: eic —
B, where eic is an initial algebra for T'. This is exactly what is meant by a definition
of recursive functions over eic.

In slightly more detail, we can in fact define a category with objects var and
eic, possessing an endofunctor 7' £ & var + € + €2, and such that eic gives rise to
an initial algebra T eic — eic. We can also show that there is an initial algebra
T (var = eic) — (var = eic). This semantically validates the higher order func-
tions (including substitution) which are defined by primitive recursion over the type
var = eic; see the end of Section 3.

F,, is the full subcategory of Set whose objects are the Peano sets 0,1,2,... and
w. Our categorical model is in fact Set™ , a topos of presheaves, and eic is, roughly
speaking, a functor that maps n to the set of proper terms over n variables. The
calculations required to establish the existence of the initial algebras are omitted
from this short paper.

6 Summary

This paper provides a very broad outline of a new approach for combining primi-
tive recursion and HOAS in a consistent way, and a brief discussion of categorical
models. A considerable volume of examples, theory and applications will appear in
a forthcoming journal article. The authors wish to thank the referees of Computer
Science Logic 2008, Vienna, Austria for comments on the original paper.

References

1. Simon Ambler, Roy Crole, and Alberto Momigliano. Combining higher order abstract
syntax with tactical theorem proving and (co)induction. In V. A. Carrefio, editor,
Proceedings of the 15th International Conference on Theorem Proving in Higher Order
Logics, Hampton, VA, 1-8 August 2002, volume 2342 of LNCS. Springer Verlag, 2002.

*®

10.

N. Benton and A. Kennedy. Monads, effects and transformations. FElectronic Notes in
Theoretical Computer Science, 26, 1999.

A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

Joélle Despeyroux and André Hirschowitz. Higher-order abstract syntax with induc-
tion in Coq. In Frank Pfenning, editor, Proceedings of the 5th International Conference
on Logic Programming and Automated Reasoning, pages 159-173, Kiev, Ukraine, July
1994. Springer-Verlag LNAI 822.

Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Proc. of
14th Ann. IEEE Symp. on Logic in Computer Science, LICS’99, Trento, Italy, 2-5
July 1999, pages 204-213. IEEE Computer Society Press, Los Alamitos, CA, 1999.
Raymond McDowell and Dale Miller. Reasoning with higher-order abstract syntax in a
logical framework. ACM Transactions on Computational Logic, 3(1):80-136, January
2002.

E. Moggi. Notions of computation and monads. Theoretical Computer Science, 93:55—
92, 1989.

F. Pfenning. Computation and deduction. Lecture notes, 277 pp. Revised 1994, 1996.
Carsten Schiirmann. Recursion for higher-order encodings. In Proceedings of Computer
Science Logic (CSL 2001), volume 2142 of Lecture Notes in Computer Science, pages
585-599, 2001.

Carsten Schiirmann, Joélle Despeyroux, and Frank Pfenning. Primitive recursion for
higher-order abstract syntax. Theoretical Computer Science, 266(1-2):1-57, September
2001.

