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1

Background Mathematics

1.1 Denotation and Semantics

Look up the word (a verb) denote in a dictionary, and read the definition. Roughly,

it means to “signify” or “indicate”. The idea of denotation pervades Computer Science

and Mathematics. Let {0,1,2,3, . . .} be the set of natural numbers—we shall assume

that the reader has met the idea of a set before, although sets are reviewed shortly.

We use symbols to denote things we are interested in. For example, we might say “let

N denote the set of natural numbers”. Sometimes we will just say “let N be the set

of natural numbers”—clearly N is just a symbol on paper and not the actual set, but

the meaning of the sentence is clear. However, sometimes we might want to use a

different symbol, say N, to denote the same set of natural numbers. Another example

concerns the symbols used to denote the natural numbers themselves. For example,

under appropriate circumstances, both ||||| and V denote the number five. The first

symbol consists of five strokes, and the second is a Roman numeral.

The word semantics indicates “meaning”. We sometimes say that the semantics of V
is five. We refer to V as syntax. Syntax refers to symbols, or notation, which will usually

have a meaning, or semantics. Exercise: Look up any words which are new to you in a dictionary, and

read the definitions. A more real world example concerns natural language. Both cheeze and

fromage are very different syntactically. But in the correct context, knowing that they

are words of English and French, they have the same semantics—tasty, yellow gunge.

As this course unfolds, we shall see many examples of syntax and semantics. Finally,

note that denotation is a relationship between syntax and semantics; ||||| denotes five, II

denotes two, III does not denote ten, and so on.

A language consists of a syntax and semantics. The syntax consists of a set of symbols

called an alphabet and some rules which state how we use the alphabet to form words.

In a natural language the rules are the rules of spelling, given by a dictionary. In a

programming language the syntax rules appear in the programming manual; they tell

us how to write computer programs which are syntactically correct. The semantics of a

program is usually defined to be what happens when the program runs on a computer.

1.2 Sets

Here we recall some of the basic ideas of the theory of sets. For the purpose of these

notes, a set is an unordered collection of objects in which any object can appear at most

once—and for the time being, these objects can be any objects you care to think of.

We shall not give a definition of the terms “unordered” or “collection.” These concepts
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will be left as being understood intuitively, at least for this introductory course. Recall

that in simple cases, the notation used to indicate a set is a pair of curly braces which

encloses the objects which make up the set; some examples of sets are

• { ‘a‘ , ‘b‘ } which is the set consisting of the first two letters (also called characters) of

the alphabet,

• {1,2,3,4,5,6} which is the set of the first six positive natural numbers, and

• { ‘pen‘ , ‘paper‘ , ‘ruler‘ }, a set consisting of three strings (a string is a sequence of

letters) where each string denotes a well known writing implement.

Note that any given set (collection of objects) has an important property:

Property

If we pick any object we like, it is either in the set just once or it is not in the set at all.

For example, ‘a‘ is in the set { ‘a‘ , ‘b‘ } but both 4 and ‘ fudge‘ are not. Note that the

property means that { ‘a‘ , ‘a‘ , ‘b‘ } is not a set as the ‘a‘ appears more than once.

The objects in a set are referred to as elements, so for example ‘a‘ is an element of

our first example of a set. We write ‘a‘ ∈ { ‘a‘ , ‘b‘ } to indicate this.

We use un-quoted letters to indicate variables. A variable is, roughly, an unknown

quantity. 1 We shall often say things such as “let A denote any set”. This means that A
is a variable denoting a set; we know that A is indeed a set, but we have no idea what

its elements actually are. Thus one might say that the “value” of A is variable. We write

e ∈ A as shorthand for “e is an element in A”. Here, e is a variable denoting an element.

If e is any object not in A, we denote this by e 6∈ A. For example if A happens to be the

set {5,7,88} and e is 2, then e 6∈ A. Note that we shall often, but not always, use capital

letters to denote sets, and small letters to denote elements of sets. Finally, it follows

from the property that given any A and e, either e ∈ A or e 6∈ A.

The symbol N will always denote the natural numbers. Its “value” does not alter (is

not variable). It is an example of a constant. We shall use the following definitions (of

constants)

B binary digits {0,1}
D decimal digits {0,1,2,3,4,5,6,7,8,9}
N natural numbers {0,1,2,3, . . .}
Z integers { . . . ,−2,−1,0,1,2, . . .}
Q rationals (fractions) {n/d | n,d ∈ Z;d 6= 0}

1.3 Sequences

Consider the natural number 1678. This is different from 6817. But the set {1,6,7,8} is

the same as {6,8,1,7}. The elements of this set are called digits and in this module we

1Do not confuse letters (characters) and variables—they are different.
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will often wish to consider large numbers in terms of the digits that make them up. 1678
is an example of a sequence of digits; the order in which the digits are written down is

crucial. 6817is a different sequence. But both sequences have length four.

Sometimes we want to consider the set of all sequences of a certain length. For

example, if the length is four, we denote the set of all decimal sequences of that length

by D4. A computer circuit typically has a fixed size; a calculator might display all

possible answers with four digits (written with leading zeroes, such as 0023). The set of

all “two digit numbers” is written as D2. Thus

D2 = {00,01,02, . . . ,09,10,11, . . .,99}

Suppose we have a (variable/unkown) set A. The set of all sequences of elements of

A of length 4 is denoted by A4. How do we write down a typical sequence in A4? We

could use variables u, v, w, x to each stand for an element of A. Then uvwx denotes

a typical element of A4—for example u = 1, v = 6, w = 7 and x = 8 gives the sequence

1678. However, as a typical element always consists of four elements, each from A,

we will typically write the variables as a3, a2, a1, a0, so that we can write things like

a3a2a1a0 ∈ A4. For the time being, try to understand what we are doing. Later on, why

we doing it will become clearer, and you will see why we count down to 0, and not 1.

Sometimes, instead of writing a3a2a1a0 ∈ A4 we will write (a3,a2,a1,a0) ∈ A4. The

notation is different, but the elements are equal. For example, if A = B, then 101∈ B3

and (1,0,1) ∈ B3, and 101= (1,0,1). B3 will be referred to as set of binary numbers

consisting of three digits. We will return to binary numbers later on. Exercise: Can you

think up a good reason for having two different notations for sequences?

Sometimes we will want to talk about sequences of elements of A of any length.

Suppose that n ∈ N is any natural number n ≥ 1. Then An is the set of sequences of

elements of A of length n. A typical element of An is usually written an−1 . . .a1a0 or

sometimes as (an−1, . . . ,a1,a0) where each ai ∈ A for 0 ≤ i ≤ n−1. An element written

using the notation (an−1, . . . ,a1,a0) is sometimes also called an n-tuple. The . . . are used

as n is a variable—think about this! Each ai is a variable, and there are n of them. You

can think of these variables as a (Java2) array of length n. So, essentially, tuple, sequence

and array are different words for the same basic idea. The element 10001101∈ B8 is a

sequence of binary digits and is an example of a binary number—see Chapter 3.

We often use a single letter with an arrow above it, ~a, to denote a sequence. If

we know it has length n, we might write ~a = an−1 . . .a1a0. We call each of the ai a

component of the sequence. Sometimes we call a particular ai the ith component of ~a.

Suppose that~a
def
= an−1 . . .a1a0 and~b

def
= bm−1 . . .b1b0. Informally, two sequences are equal

if they have the same length, and their components are equal taken in order. Thus ~a =~b
means that m = n, and ai = bi for each 0≤ i ≤ n−1.

Exercise 1.3.1 Let G
def
= {3,5,7}. Write down some examples of 4-tuples. Let L

def
=

2In Java, ai would be written a[i]
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{ ‘d‘ , ‘e‘ , ‘ t‘ , ‘a‘ , ‘ l‘ }. Then L4 can be thought of as the set of all strings whose individual

letters come from L. (We would usually write, for example, ‘d“a“ t“e‘ as ‘date‘ .) Write

down a few more examples of your own.

Are 123and 1234equal? Are (3,4,5) and 345equal? Are (1+1,2,3+5) and (2,2,8)
equal? What about 7589 and 758(4+5)? What might the brackets in 758(4+5) mean?

1.4 Functions

The notion of a function pervades mathematics and computer science. Before we define

functions, we give an informal introduction. A function is a mathematical model of

a machine (such as a computer), which takes an input (for example an integer) and

produces a single output (such as the integer squared). We often give a name to a

function, such as s. If s is our squaring example, then an input 3 to s gives output 9.

Suppose that the inputs z are selected from the integers Z. The outputs are also (non-

negative) integers. We can describe s by saying that an input z is mapped to output z2

for every z ∈ Z. In order to define a function we always give

• A set of inputs (eg Z);

• a set containing all of the outputs (eg Z);

• an output (eg z2) for every input (eg z).

A function always satisfies the property that for every possible input there is always an

output and only one output. Let’s have a look at another example. {1,2,3,5} is the

set of inputs, {3,6,11,27,99} the set containing the outputs, and G is the name of the

function. We often write G:{1,2,3,5}→ {3,6,11,27,99} to indicate this. For each input

i the output will be i2+2. This can be illustrated as an arrow diagram:

-

-

-

-

1

2

3

5

3

6

11

27

99

We also have notation for writing down inputs and outputs—some of this notation is

used in programming! We sometimes write G(2) = 6. Sometimes we might also write

G 2= 6. These are all different ways of writing the same thing—the input 2 to G yields

output 6. Notice that there are three ways to define the function (actually the second

and third are “the same”):
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• Either give a formula such as G(i) = i2+2 where i stands for any input, so that

each output can be calculated;

• or write down a diagram such as the one above, using arrows i 7→ o (eg 2 7→ 6);

• or instead of drawing an input/output arrow diagram, think of each input and

output as a pair, written (i,o), and give the set of input/output pairs

{(1,3),(2,6),(3,11),(5,27)}

In each case, i must be in {1,2,3,5} and each o must be in {3,6,11,27,99}.

Now we give the formal definition of a function; hopefully this will be understandable

given the previous discussion. For sets A and B we write f :A → B to mean that f is a

function where the set of inputs is A, and all outputs must be in B. We can define f by

• either giving a formula to calculate each output f (i) where i stands for any input

(from A), so that each output (in B) can be calculated;

• or writing down a diagram using arrows i 7→ o, where i ∈ A and o ∈ B, and there

is only one arrow for each i ∈ A;

• or writing down a set of input/output pairs (i,o), where i ∈ A and o ∈ B, and there

is only one pair for each i ∈ A.

We often write f (a) for this unique b ∈ B (eg G(i) above). Thus when a is the input

to the function f then f (a) is the output. Note that it follows from the definition that for

each input, there is a unique (only one) output. Occasionally we write f a instead of f (a).
We call A the source of the function f , and B the target of f . Note that we sometimes

say that f is a function between A and B, or from A to B. If we are given sets A and B,

and a function f :A → B, we sometimes just talk about the function f . You might like to

think of f as a computer program which takes values in A as inputs, and returns values

in B as outputs. We sometimes refer to the a in f (a) as an argument of the function f .

Examples 1.4.1

(1) We described the function s:Z → Z given by s(z) = z2. Notice that as the square

of any number is non-negative, we can also write s:Z→ N given by s(z) = z2. Exercise:

Should we still call the function s? Should it have a new name?

(2) There is a function c:Z→ Z given by c(z) = z3. Exercise: Is it true that c:Z→N? If not, why

not?

(3) Multiplication on the rationals is a function M:Q2 → Q, where M((n/m,n′/m′)) =

n∗n′/m∗m′ and the notation x ∗ y denotes, as usual, integer x multiplied by integer y.

Basic multiplication acts on two rationals (fractions), which we can regard as a sequence

of two rationals from Q2.
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(4) Here is a set of input/output pairs

{(3,8),(3,7),(9,10),(8,300)}

For example, 3 7→ 7, or equivalently, g(3) = 7. Exercise: Draw an arrow diagram. This is not

a function g:{3,8,9}→ {7,8,10,300}. Why? Because for the input 3 the output is not

unique.

(5) Let A
def
= {3,4} and B

def
= {4,7,6, ‘x‘ , ‘y‘ } and let f be defined by {(3,4),(4, ‘x‘)}. Then

f :A → B is a function from A to B. Check this!

(6) Let A
def
= {3,4,5} and B

def
= {4,7} and let f be {(3,4),(4,7),(5,9)}. Then f :A → B is

not a function from A to B because the “output” 9 is not in B.

(7) Let A
def
= {3,4,5} and B

def
= {4,7} and f be {(3,4),(4,7)}. Then f :A → B is not a

function from A to B because there is no output specified for the input 5.

The definition of a (mathematical) function says, informally, that for each (single)

input there is just one ouput. Our conceptual model was a machine which takes an

input and produces an output: for example, a computer might take an integer as input

and produce twice the integer as output. This model is quite limiting. What about

a computer which takes three numbers as “inputs” and gives two “outputs” consisting

of the sum and product of the three integers? We “feed in” n, m and l, and get back

n+m+ l and n∗m∗ l. We can model the computer c as a function

c:Z3 → Z2.

We call this function a 3 | 2-ary function, indicating its input is a 3-tuple (a sequence of

length 3), and output a 2-tuple. The input (1,2,1) is mapped to the output (4,2). Exercise:

Check this, writing down a formula for calculating c on an input lmn = (l,m,n) ∈ Z3.

More generally, we call a function of the form f :An → Am an n | m-ary function. Given

an input tuple (sequence) (an−1,an−2, . . . ,a0) we call the ai input components because

they are the components of the input tuple (sequence). In the remainder of this module,

we shall study functions of the form f :Bn → Bm where B = {0,1} so please ensure

you understand this important topic. Digital circuits can be modelled by such n | m-ary

functions.

Exercise 1.4.2 A typical example of the effect of c is c(3,4,5) = (12,60). The input

tuple is (3,4,5) and 3, 4 and 5 are the input components. Exercise: What is the output tuple,

and what are the output components?

Example 1.4.3 We can define a function f :Z2 −→Z2 by specifying f (n,m)
def
= (n,n+m).

Thus f (10,100) = (10,110). Exercise: If f (2,5) = P, what is P? Exercise: f is an x | y-ary function;

what are x and y? Exercise: What do you think is wrong with using the sequence notation in this example?
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We finish this section with a little more notation. Suppose that f :A2 → A is any

2 | 1-ary function. Given an input (a,a′), we have so far written f (a,a′) to denote the

output. There are two other ways of denoting the output, and each is frequently used

in computing

Descriptive Name Notation

prefix f (a,a′)
infix a f a′

postfix (a,a′) f

Note that addition is an example of a function of the form Z2 → Z whose outputs

are usually written using infix notation. Input (a,a′) gives output a+ a′. Computer

architects often call a and a′ the operands of the function.

1.5 Binary Numbers

We give an extremely brief introduction to binary numbers which will be useful when

reading Chapter 2, which comes before the main chapter on this topic. A binary num-

ber is a sequence of 0s or 1s, such as 1001bin, 111bin, 10101bin. Such a binary number

denotes an integer. Starting from the right, each digit stands for a power of 2, namely

20 = 1, 21 = 2, 22 = 4, 23 = 8, and so on. The integer denoted by 111bin is 1+2+4= 7.

10101bin denotes 16+0+4+0+1= 21. We will often write ~b to refer to an unknown

(variable) binary number.



2

Top-Level Computer Organization

2.1 A Brief History of Computing

Please see pages 13 to 24 of Tannenbaum, and the first chapter of Hennessy and Patter-

son. This material is non-examinable, but useful to know.

2.2 Overview of a Modern Computer

A modern computer consists of hardware and software. In this course, we concentrate

on learning about the hardware, and certain aspects of the software. So

Computer = Hardware + Software

We begin with a few words which lead to a definition of software. A digital computer is

a machine which performs a task by carrying out a sequence of instructions. The task

is often to solve some kind of problem; a very simple problem might be to add up the

first 100 natural numbers, and a difficult problem might be to provide a realistic flight

simulator. The sequence of instructions is called a program. The instructions might be

very simple, such as subtract 1 or check if a number is strictly greater than 0. Here is an

example of a simple program which will be explained in the lectures.

a := 0;
c := 10;

L a := a+c;
c := c-1;
if c >= 1 then L;
exit;

A computer has a collection of very primitive instructions, known as a machine lan-

guage. These instructions will be written in a specified syntax. Above, a := 0 is a typical

such instruction. A different syntax might be aBECOMES0. Each instruction has a seman-

tics which is a description of what happens when the instruction is run on the computer.

A more formal word for “run” is executed. The letter a stands for a memory location

which is a small part of a computer used to store data. When a := 0 is executed, 0 will

be stored in a. When a := a+c is executed, the values stored in a and c will be added,

and the sum stored in a (thus the contents of a will alter). An algorithm is a set of

instructions describing how to do something. A computer program is a particular rep-

resentation of an algorithm within a computer. We say that the program implements

the algorithm. In fact the program above is just one way we can represent an algorithm
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Central Processing Unit

Bus

Memory Input / Output
Control

Datapath

Figure 2.1: The Main Hardware Components

for adding the first ten numbers. The algorithm is: begin with 0, add 10, then 9, then 8,

and finally 1. The final sum is stored in a. Software refers to the actual implementation

of an algorithm on a computer. For example, if the program above is stored on a floppy

disc we would refer to the stored program as software.

A computer is made up of physical components known as hardware. Examples are

memories, cables, printer, integrated circuits, monitor and so on. We shall talk about

some of these things in detail later on. For now, we describe hardware in very general

terms. At its simplest, hardware can be seen as three top-level components, given in

Figure 2.1. These are Memory, Input/Output Devices, and the Central Processing

Unit or CPU. Note that the CPU is a combination of two sub-components, namely Con-

trol and the Datapath. We will give precise definitions of these components in later

chapters. We often simply refer to the CPU as the processor.

Hardware = CPU
︸ ︷︷ ︸

Control + Datapath

+ Memory + I/O

At its simplest, how does a real computer work? We answer this by drawing an analogy

between the main components (described above) and a more familiar real life situation.

The analogy involves Dr. Doitall, who goes to MFI and purchases a do it yourself kit for

a new bookcase. The analogies are
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• Control ↔ Dr. Doitall;

• Datapath ↔ Dr. Doitall’s toolbox;

• Memory ↔ workshop storage space;

• Input ↔ buying the MFI kit, Output ↔ producing the new bookcase; and

• Program and Data ↔ the MFI kit instruction manual and parts.

To get a computer to perform a task, we Input data, and a program; this corresponds

to the bookcase parts, and instruction manual (ie the MFI kit). The computer needs to

store and organize the data and program in Memory; this corresponds to opening up

the MFI kit, and laying the parts and instructions out in a workshop. The computer

then needs a way of reading the program instructions, one by one, and performing

(Controling) the tasks indicated; this corresponds to Dr. Doitall reading the manual,

and building the bookcase step-by-step. The execution of the individual program in-

structions requires the selection of various simple operations, such as addition and sub-

traction, together with certain operands, and performing the arithmetic (these tasks

are performed by the Datapath); this corresponds to Dr. Doitall selecting various tools,

and using them to build parts of the bookcase. Finally, the Output corresponds to the

completion of the bookcase.

In the remainder of this chapter, we will give more details of some of the main

components, although in this course we do not look at input/output in any detail, nor

large scale memory components.

2.3 The Central Processing Unit

2.3.1 Central Processing Unit Outline

At a superficial level, a computer works by performing very simple arithmetic operations

on numerical data. That’s it! So how does a computer manage to display extremely com-

plex graphical images, for example? Ultimately, everything that happens can be seen to

reduce to simple arithmetic and numerical data. For example, graphical images are built

up from thousands of small dots of light. The position and colour of the dots (which

change many times a second to give the eyes an impression of a smoothly changing im-

age) are all given inside the computer as simple numerical quantities. The changes are

calculated using complex arithmetic—but ultimately these complex calculations reduce

to many, many simple ones, such as adding two integers.

Mathematicians are able to show that in order to compute a wealth of complex func-

tions on just the natural numbers, all you need are some very simple functions (such as

just adding 1!) from which all the complex ones can be built (a typical building con-

struction might be the composition of functions). Using just the natural numbers, we
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can then define mathematically the integers, the rationals and the reals. So, in princi-

ple at least, if we can make a computer calculate the simple functions described above,

we can then go on to make it perform some very complex calculations. And if we can

represent many real life situations using things such as graphical images, it follows that

a computer can do quite a lot for us.

As we have seen, the CPU consists of control and a datapath. The CPU executes

a computer program stored in main memory—it can be thought of as the “brain” of

the computer. It will execute a program by using control to fetch the program instruc-

tions, one by one from the main memory, executing each one using the datapath before

fetching another instruction. By fetching an instruction we mean that a copy of the

instruction which is held in main memory is made within the datapath. When the

instructions are fetched, copies are stored within the datapath in special memory com-

ponents called registers. For the time being, think of a register as a container that may

hold any kind of data. A register has a name such as R. The data may be a number,

a letter, or even a program instruction. We call the data the contents of the register.

The datapath usually contains a small, fixed number of registers; 32 or thereabouts is

typical. The instruction currently being executed is stored in a special register called

the Instruction Register (IR) . The next instruction to be executed is specified by the

contents of a register called the Program Counter (PC). The PC does not store the next

instruction. The contents of the PC contains an “address” which tells us where to find

the next instruction in main memory. The next instruction will then be fetched into the

IR. Many of the other registers are used for different tasks at different times; they are

called general registers.

Note that the components in Figure 2.1 are joined by a bus. A bus is a collection of

wires arranged in parallel, along which all kinds of signals (data, instructions etc) can

be passed. Busses not only join the main components, but also the smaller components

of a computer. For example, the circuits making up a datapath will themselves be joined

by busses. We will discuss busses in greater detail in Chapter 4, when a number will

come along all at once.

2.3.2 Machine and Assembly Instructions

The instructions which will be executed by the datapath can be presented in two forms.

The first is a symbolic form which programmers can understand. An example instruction

is r := a+b or, in a different syntax, add R, A, B. Symbols denote addition, and the

registers used when the instruction is executed. This kind of notation is an example of

assembly language.

We shall see later on that a computer stores data by representing it by using two

symbols, usually denoted by 0 and 1. Inside the machine, these symbols are recorded as

low and high voltages. Thus, in order for the computer to store the assembly language

instruction, we have to represent it using 0s and 1s. The computer will record each



12 Chapter 2. Top-Level Computer Organization
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Figure 2.2: A Simple Datapath

“part” of an instruction as a sequence of 0s and 1s, for example add might be 00111,
R might be 0001, and A and B might be 0011 and 0100. The instruction will then

be represented by 00111000100110100, which is an example of a machine language

instruction. We shall explain these ideas in much greater detail later on in the course.

2.3.3 The Datapath

The key role of the datapath is to execute an individual instruction. A very simple

datapath is given in Figure 2.2. It has a program counter, and an instruction register.

The IR contains an instruction I which is about to be executed (or, informally, run);

we call it the current instruction. Inside a real machine this will be stored as machine

language. Suppose that I is add R, A, B and it is the 17th instruction in a program. A,

B and R are general registers. The datapath has an ALU or arithmetic logic unit. This

is a circuit which can perform functions such as addition. The rectangles to the left and

right of the ALU are also registers; we say the datapath has two input registers and one

output register . Note that we write !A to denote the contents of A.

We drew an analogy between Dr. Doitall’s toolbox, and the datapath. It is the job of

the datapath to actually execute the tasks given by the instruction I ’s semantics. The

syntax of our example instruction is add R, A, B. The semantics of the instruction is to

pass the contents of A and B to the ALU, first storing !A and !B in the input registers, use

the ALU to calculate the sum storing the result in the output register, and then store the

result in register R. Note that these steps occur in stages, and in the figure above we see

the state of the datapath at the end of all steps; we will give more details in the lectures. In

the figure, the contents of R will actually be 3+4= 7. The contents of the PC gives the

main memory “address” of the next instruction to be executed—more details later on!



2.4. An Overview of Computer Memory 13

2.3.4 Control

You should read pages 56 to 60 of Stallings. The key purpose of control is to execute

a complete computer program, making use of the datapath to execute each individual

instruction. In general, control will perform a sequence of small steps, together called

the fetch-decode-execute (FDE) cycle. These are

• fetch an instruction from main memory, and store it in the IR;

• update the PC to show where to find (in main memory) the next instruction;

• determine the instruction category (explained in lectures);

• execute the instruction; and

• repeat the FDE-cycle.

These steps give an algorithm for control. In fact the collection of FDE-steps is rather

like a simple program, consisting of a sequence of “instructions”. In fact we can write

a program whose instructions are precisely the steps of the FDE-cycle. We can illus-

trate this with the simple JAVA method (program) given in Figure 2.3. We call such a

program a microprogram. Thus its purpose is to execute other programs written by

programmers!

2.4 An Overview of Computer Memory

2.4.1 Introduction

We are familiar with the idea of storing things. For example, an office will have a

number of filing cabinets, in which documents are kept. The filing cabinets will have

labelled draws, and may also be lockable. If we wish to find some document, we look

at the labels on the draws to find its location, open the draw, and extract the document.

The key concepts here are

• storage facilities (filing cabinets)

• locations for storing objects (draws)

• addresses of locations (draw labels)

• contents of the locations (documents)

Computer inboard memory works along similar principles, but instead of storing (pa-

per) documents, stores “information”. How does it do this? We will see in detail, later

on, how all kinds of information can be represented as sequences of 0s and 1s. A com-

puter can store 0s and 1s as low and high voltages. A bit is a small device in a computer

which can “store” a 0 or 1 by producing either a low or high voltage. We call 0 and 1
binary digits. You can think of a bit as a “box” in which a single binary digit can be
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public class microprogram {
.
.
.

public static void microprog (int memory[], int starting_address) {

PC = starting_address;

while (run_bit) {

instr = memory[PC];
PC = PC + 1;
instr_category = get_instr_category(instr);
data_loc = find_data(instr,instr_category);
execute(instr_category,data);

}

}
.
.
.

}

Exercise: Fill in the missing parts of the JAVA code.

Figure 2.3: A Simple Microprogram, written in Java
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stored. Books often confuse bits and binary digits—in the lectures we shall see why it

is useful to keep a clear distinction between the two. Such “0/1” information is usually

stored in an electrical or also magnetic form, and we shall give further details later on.

Computer inboard memory consists of collections of locations. Each location is a short

sequence of bits in which data can be stored. So a location might consist of just a single

bit (rather like a draw with just one document) or a finite number of bits regarded as

a single entity (one draw, many documents). These groups of bits are known as cells.

If there are k bits in a group, we refer to a k-bit cell. In practice, k is very unlikely to

be 1, and is often 8 or 32. Each cell has an address so that we are able to find it (just

as draw labels allow us to find the draw we are looking for). In a computer an address

is given by a number. Often addresses are numbers which are obtained by physically

counting up the cells in a particular computer memory. In general an address is a means

by which we can locate something in a computer, typically an area of memory. Note that

in Figure 2.2 one can think of the register labels R, A and B as “addresses”.

Although there are many forms of memory, such as floppy discs, CDs etc, all memories

have certain characteristics, and we look at these now.

2.4.2 Characteristics of Memory Systems

Memory Hierarchy Memory can be divided into two kinds. These are known as pri-

mary memory and secondary memory. Below, (i) and (ii) describe the former,

and (iii) and (iv) the latter. Note that primary memory is sometimes called in-

board memory because all the data is stored inside the computer’s circuit boards.

We shall describe the so-called “memory hierarchy” in detail quite shortly. For the

time being it is enough to know that it is made up of the memories in the following

list.

(i) CPU memory, where data is stored within the CPU inside actual computer

circuits. Some of these circuits are registers, which we have already met. The

other kind of CPU memory circuit is known as a cache, and we will say more

about this later on.

(ii) Main memory, where data is stored inside other computer circuits, known as

memory chips

(iii) Outboard memory consists of storage which is often located on the computer,

such as magnetic discs, compact discs, digital versatile discs and so on.

(iv) Off-line memory consists of storage which is often located away from the

computer, such as magnetic tape.

Capacity This is a measure of how big or small the memory is. A memory will have

a certain capacity, which tells us how much data it can store. It will either be

measured as a number of bits or a number of bytes—a byte is eight bits. We

sometimes refer to a bit count per chip. We also talk about the density of the bits
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on a chip. Obviously the greater the density the greater the capacity of the chip.

Unit of Transfer This is a measure of how much information can be moved into or out

of memory, each time data is read or written. For example, the unit of transfer

might be a byte of data.

Method of Access There are different ways in which the units of data transferred out

of memory can be found.

(i) Sequential Access Data is stored in a linear sequence, like books in a long

corridor. To access the data you need, an accessing mechanism must bypass other

data which is not required.

(ii) Direct Access Data is grouped into blocks, rather like books on separate library

shelves. An accessing mechanism can access a block of data directly, but access

the block sequentially.

(iii) Random Access Each transferable unit of data can be accessed at random,

with no need to “bypass” redundant data.

Performance This refers to the time taken to find and retrieve data from a memory. We

do not study this in detail.

Physical Type Memories are constructed in a variety of ways, and employ different

methods for storing data. Some methods make use of semi conductors, magnetic

materials and optical materials. We look at some of these in detail later on.

Physical Characteristics We call a memory volatile if data is lost when power is

switched off; and non-volatile if data is kept when power is switched off. We

call a memory erasable if data can be removed when required; and non-erasable

if data is permanent.

2.4.3 The Memory Hierarchy

When designing a computer memory, three constraints are important. These are capac-

ity, performance and cost. Better performance usually means higher costs per unit of

data stored. So, for example, if we need high capacity memory, we may have to reduce

our costs by lowering overall performance. Different physical memory types provide

memories with these constraints in varying proportions. A typical modern PC must run

programs quickly, but must also have some memory of high capacity. This is achieved

by using different types of memory within the whole system. The list of memories given

on page 15 is a memory hierarchy, with registers at the top, and tapes at the bottom.

As you move down, the following occur:

• decreasing cost per unit of storage;

• increasing capacity;
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• increasing access time;

• decreasing frequency of access of the memory by the CPU.

How do we use the hierarchy to ensure we can build a fast PC with large capacity mem-

ory at a good price? In more detail, we want a PC which will run a program quickly, but

which can also store a large amount of data. The key here is that many programs have

a fairly typical behaviour, namely that small groups of program instructions are often

executed repeatedly. We refer to these groups of program instructions as “clusters”. The

idea that program instructions often appear in such clusters is known as the locality

principle. So at any point in time, we ensure that the instruction cluster, whose indi-

vidual instructions are about to be repeatedly executed by the CPU, is held in memory

found at the hierarchy top, that is fast access memory. All of the remaining instructions,

which (for the time being) the CPU is much less likely to require, are stored lower down

in slower access memory.

This fast memory is usually called a cache. It is usually physically located near to the

CPU. When a cluster is finished with, it is swapped for a new cluster which is copied into

the cache. In this way, most instruction access by the CPU is from fast cache memory,

ensuring that program run time is small.

2.5 Primary Memory

2.5.1 Main Memory Details

In this section we describe main memory in some detail. Suppose that a computer

memory has n cells. By convention, these will have addresses 0 to n−1, and adjacent

cells are numbered consecutively. Also, all cells will contain the same number of bits.

If a memory contains n bits in total, we call it an n-bit memory. Figure 2.4 gives two

examples of a 96-bit memory. The first example is a memory layout of 12×8-bit-cells;

the second example gives a memory layout of 3×32-bit-cells. These examples give

memory addresses as decimal natural numbers. Note that a computer will need to refer

to memory addresses, and thus the addresses themselves must be stored! In a computer,

an address is actually stored as binary natural number a (see Section 1.5). The machine

will store the address by using a sequence of bits to represent each of the binary digits

in a.

The cell is significant as it is the smallest individual, addressable part of a memory.

Given any cell, it is composed of a finite number of bits, by definition. We refer to the

sequence of binary digits contained in these bits as the contents of the cell. Note that a

k-bit cell can hold 2k different binary digit sequences; Exercise: why is this?.

Most computers have a standard 8-bit cell. Each such cell is called a byte location.

Groups of consecutive cells are called word locations. Typically, a word location will

be 4 byte locations long, and hence consist of 32 bits, but many other possibilities exist.
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Figure 2.4: Memory Cell Organization

By definition, the address of a byte location is precisely the address of the corre-

sponding 8-bit cell. The address of a word location is given by the smallest address

of the cells making up the word location. A computer location is a general term for

an “area of memory” which is used for storing data. Each location has an address, and

some means of identifying the size of the location. Thus registers, cells, byte locations

and word locations are all examples of the general concept of a computer location—

each has an address, and a given size. A register address is usually called a register

number. In particular, we refer to the contents of a byte location to mean the contents

of the corresponding cell, and the contents of a word location to mean the sequence

of binary digits given by the contents of the corresponding cells. We call the contents

of a byte location a byte, and the contents of a word location a word. Note that by

definition a byte is simply a sequence of eight binary digits.

Word locations are especially significant. In practice, an integer is typically stored in

a fixed amount of memory, usually a word location. This imposes a limit on the size of

integers which can be stored. Note also that individual program instructions will also,

typically, be stored in word locations. Thus if a computer has n-bit word locations, we

often refer to it as an n-bit computer.

We have said that word locations are groups of consecutive cells. We explain in detail

how to understand word locations. Recall that cells are fixed locations in memory, and

the addresses increase by 1 as we move from one cell to the next. Suppose a computer

has 2-bit cells. Then 10011110could be stored in a word location consisting of a group of

four consecutive cells, with addresses a, a+1, a+2 and a+3. Our number is composed

of 10, 01, 11 and 10. Each of these can be stored in a 2-bit cell. But there is a choice.

Does 10 go in cell a? Or a+2? Or even a+1? Informally, we might ask “how do we

‘arrange’ such four consecutive 2-bit cells so as to form a sequence (word location) of
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Figure 2.5: Endian Byte Location Ordering

8-bits”? There are a variety of ways of doing this. Here are two possibilities:

Fix the cell with address a. Then cell a+1 could then be “placed” to the left or right

of cell a. And then cell a+2 could again be “placed” to the left or right. And finally cell

a+3 could again be “placed” to the left or right. (Note that we either always place to the

left or always to the right.) Suppose that we picture each word location as a horizontal

group of four cells—remember, memory is not like this physically, but such a picture is a

useful descriptive tool—then, in general, the cells in any word location will be addressed

from left to right, or right to left.

Figure 2.5 shows part of the memory of a 32-bit computer; in the figure, word loca-

tions are composed of four cells, and each cell has eight bits (so each cell is in fact a

byte location). The left to right numbering is called big endian, and the right to left

little endian.

Big endian is used by some IBM mainframes, and SPARC stations. Little endian is

used by Intel. Within a single computer, it does not matter which system we choose,

providing that the designer chooses just one system and builds the machine correctly.

However, problems can arise when data is transferred from a big endian to a little

endian computer. To see this, we first examine in detail how various kinds of data are

stored in memory.

We mentioned that integers are often stored in word locations. If the word locations

consist of four byte locations, then a sequence of 32 binary digits will be used to store
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any particular integer. These digits will always be recorded in a word from left to right.

Thus, with reference to Figure 2.5, if we store 7 as ~0111
bin

(where there are 29 zeros)

then the 1s will appear in byte locations 3 or 7 or 11 or 15 in the big endian system,

and 0 or 4 or 8 or 12 in little endian.

Characters are stored in cells, not word locations. For example, each of the characters

A to Z will be denoted by an integer, known as a character code. Each code can be

stored in a cell, by using the integer’s binary representation. There are various systems

in use for assigning character codes. A well known one is ASCII, standing for American

Standard Code for Information Interchange. In fact each ASCII code requires 7 bits,

yielding 128 characters. The letters A to Z are represented by the codes 65dec to 90dec.

An English word such as TOM will be stored by placing T, O and then M in consecutive

cells, using a binary representation of the ASCII codes.

Sometimes we want to transfer data from one computer to another. There is a po-

tential problem with this. A naive way to move data in a big endian machine to a little

endian machine, is to transfer the contents of an individual cell to the corresponding

cell with the same address. Then all characters will be moved correctly. But an individ-

ual integer is stored in a word location. Thus although the contents of each cell making

up the word location will be transferred correctly, the order of the cells making up the

word location will be reversed. Thus the integer will be scrambled. Examples will be

given in lectures—try drawing pictures of examples.

Exercise 2.5.1 Write down a selection of examples involving character and integer

transfers, and make sure you understand the problems. Also make sure you understand

the differences between bytes, words, cells, byte locations and word locations.

Example 2.5.2 Suppose that the 32-digit word

01000000.00000000.00000100.00000001

is stored in a big endian machine in byte locations 0,1,2 and 3. The word denotes the

integer 230+210+1. It is moved to a little endian machine, with cell a moved to cell

a. If integers are stored in word locations, what integer is denoted by the contents of

word location zero of the little endian system? Is the integer copied correctly? What is

the (binary) content of cell 3?

Answer: The new word location contains

00000001.00000100.00000000.01000000

which represents 224+ 218+ 26. The integer is not copied correctly. Cell 3 holds

00000001.

2.5.2 Physical Types of Primary Memory

The primary memory found in a computer comes in a variety of forms. Registers and

cache memory are typically made from a form known as SRAM, which is one of those
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described below. Inboard main memory can be constructed from any of the forms below.

• Random Access Memory (RAM) is memory that can be both read and written at

random, through the use of electrical signals. (Note that the name is unfortunate;

all of the main memories described here have random access in the sense of the

earlier definition.) RAM is volatile, and comes in S and D types. RAM is provided

in the form of small, plastic devices which slot inside computers; each device is

known as a chip.

• Static RAM (SRAM) is made from circuits known as D latches or flip flops. We will

describe these in detail later on. SRAM is very fast and is often used in processor

registers and in cache memory, but correspondingly costly.

• Dynamic RAM (DRAM) is an array of transistors and capacitors. A capacitor can

store a small electrical charge, and the presence or otherwise of this charge is

interpreted as a binary digit. Capacitors can lose their charge, and so circuits are

required to refresh the stored data every few millisecs. Because each DRAM bit is

physically simple, it is also small and cheap. Being small we can get a very high

bit count per chip—thus we can fit a lot of memory in a small space. Thus DRAM

is often used for main memory, but it is also slow.

• The oldest RAM is Fast Page Mode DRAM. The individual bits are arranged in

a physical rectangular fashion on the chip, and are accessed by providing a row

address and column address.

• This has been replaced by Extended Data Output DRAM. Here, a second memory

access can begin before the first has finished. This is a simple form of pipelining

which means that more accesses per second can occur than in an ordinary system.

• Both of these kinds of RAM are asynchronous. This means that the control of

memory references is not timed against a single clock. SyncDRAM or SDRAM is

a hybrid of static and dynamic RAM, and is controlled by single clock. It has a

number of technical advantages, and its use is increasing.

• ROM or Read Only Memory stores data specified at manufacture. The bit pattern

is often made by a photosensitive masking process. ROMs are used for micro-

programming (see later) and to store libraries of common functions and system

operations. The advantage of a ROM is that stored data and programs need not

be retrieved from a slow secondary device. Exercise: Think up some disadvantages.

• The data stored on a PROM or programmable read only memory is set once

by a user or supplier. The PROM chip contains little fuses. The user can use

electricity to blow some of the fuses, and this leaves a pattern of working fuses

which represents the data to be stored.
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• EPROM or Erasable PROM is similar to PROM, but can be programmed many

times. Before each programming, the chip is exposed to UV light for 15 mins

which resets all of the bits. The chip is then written to electrically, and the new

data remains stable until another exposure to UV takes place.

• EEPROM is erased by electrical voltage, and can be reprogrammed in place. It

is typically half as fast as EPROM. EEPROMs are 10 times slower and 100 times

smaller than D/SRAMS. They are byte erasable, meaning that individual bytes can

be erased and re-programmed, rather than the whole chip at once. However, they

are expensive and not very dense.

• Flash memory is block erasable and writable, meaning that blocks of bytes can be

reprogrammed instead of the whole chip, but not individual bytes. The erasure is

very quick, and the chips are dense.

2.5.3 Cache Memory

We have already met the idea of a cache, which is extra fast memory found near, or on,

the CPU. We will give a few more details concerning the operation of a cache. Recall the

locality principle. If control requires an instruction from main memory, it is likely that

the next few instructions are nearby. In fact control will check to see if the instruction

is in the cache. If so, it will be fetched from the cache and brought into the CPU. If

not, control will fetch the instruction from main memory together with a cluster of other

instructions found nearby (local) into the cache, and place the (current) instruction into

the CPU. We shall explain more precisely how this works.

Consider the cache in Figure 2.6. For simplicity, we will assume that a program

instruction can be stored in a single cell.

Suppose main memory has 2n cells. These are divided into blocks of K cells where 2n

is divisible by K. Thus there are B
def
= 2n/K blocks, called block 0 , 1, . . . (2n/K)−1. The

cache consists of a set of C cache lines. Each line is a memory location with a capacity

equal to one block of memory. We often ensure that the number of blocks is divisible by

the number of cache lines C.

Informally, to get a rough idea of how the cache works, suppose that the CPU fetches

a sequence of instructions, one from each block in turn. Then the consecutive main

memory blocks will be copied into consecutive cache lines. When the cache is full (note

that C ≤ B) the process repeats itself. Data already in a cache line will be over-written

with new data. Thus each cache line will hold the contents of a different block on

different occasions. (Of course, in reality, the CPU will not fetch such a sequence of

instructions; but this example illustrates the general ideas.)

In order to know which block is in a cache line, we use a tag which is simply the

block number. The idea is that each memory block b is copied to a unique cache line

with number l and tag b.
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Figure 2.6: A Simple Cache

With some thought we can see that if an instruction I is held in the cell with address

a, then

• I appears in block a DIV K;

• block b is copied into cache line b MOD C; and

• the first cell in block b has address b∗K.

where DIV means integer division and MOD means remainder.

Example 2.5.3 Consider a cache with n = 10, C = 4, K = 8. The CPU requires cell 52
which is not in the cache. Into which cache line is the cell’s block copied? What is the

value of the cache line tag, and which cells are copied into the line?

Answer: Cell 52 appears in block 52DIV 8= 6, which is copied into line 6 MOD 4= 2.

The tag is 6. The cells copied in to the line have addresses 6∗8= 48 to 48+(K−1) = 55.

Exercise 2.5.4 Draw a picture of the last example.

2.5.4 Memory Packaging

In early times to early 1990s, most memory was supplied as single chip memories, from

1K bits to 1M bits. We now get 8 to 16 chips on a circuit board. These are either single
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4MB memory chip

connector

control

Figure 2.7: SIMM

inline memory module (SIMM) which have connectors on one board side, or dual

inline memory module (DIMM) with connections both sides. A SIMM is depicted in

Figure 2.7.

2.6 Secondary Memory

Read Chapter 5 of Stallings; this is non-examinable. Additional information can be

found on pages 69 to 88 of Tannenbaum.

2.7 Translation, Interpretation and Virtual Computers

Throughout this chapter we have been describing a computer by looking at the main

hardware components. Our final task in this chapter is to describe a computer in terms

of software. This will give us a very different but very useful perspective.

If you look back at the program in Section 2.2 you can see that it is composed of very

simple instructions, such as a := 0. These very simple machine (assembly) instructions

can often be executed directly on a CPU—each machine instruction is executed by an

electronic circuit. Designers often keep these machine instructions simple, as this can

reduce the complexity and cost of the electronics. The downside is that the very simple

instructions make it very tedious for people to write complicated programs. Such pro-

grams are likely to be long, because of the large number of simple instructions required

to make up more complex ones. The length makes it difficult to understand what the

program is supposed to do, that is, its semantics. There is potentially a gap between

the ways people can describe problems easily, and a description of the problem which

a computer can understand. This is better illustrated by an example. Consider our pro-
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gram again. Suppose that we want to multiply the first ten numbers. We could “do

this” by changing a := a+c to a := a∗c. But if our computer does not have circuits for

multiplication built in, we can’t do this. One way of proceeding is to implement multi-

plication in terms of addition. Instead of writing a := a∗c which our computer cannot

recognize, we replace this “invalid instruction” with a sequence of valid instructions

which perform the same task, by adding up c copies of a.

Exercise 2.7.1 Work out what this sequence might be.

Abstraction can be described as the process of building something new from smaller

parts, and then ignoring the details of the parts. For example, a car designer needs to

know the details of all the components. But a driver can deal with the car at a more

abstract level: (s)he can learn to drive without detailed understanding of the clutch,

engine etc. In computing, we have a similar situation. We might say that multiplication

is more abstract than addition because we can define the former in terms of the latter.

We can manipulate and understand multiplications without (necessarily) knowing the

details of the associated additions. We might say that multiplication is a higher level in-

struction than addition. A programmer can be given an abstract programming language

in which (s)he can deal with high level concepts. Providing the semantics of the high

level instructions are understood, the details of the sequences of simple instructions

they represent can be ignored. For example, consider

Language Instructions

L I1, I2, I3, I4,+
Labstracted I1, I2, I3, I4, I5,+,∗

Here I5 means “run I1 a hundred times” and a∗b will mean a+a+ . . .a where a appears

b times. A programmer begins with language L but soon finds that (s)he needs to run

I1 many, many times, and frequently needs to multiply numbers. Using Labstracted many

programs will become much shorter.

We often refer to the less abstract language as a low(er)-level language, and the

more abstract one as a high(er)-level. A real example, illustrating a very big abstrac-

tion, is JAVA (high-level) and Pentium-II machine code (low-level). The low level lan-

guage has instructions which can often be executed directly by a CPU. The high level

language has instructions, each of which can only be executed by running a correspond-

ing sequence of low level instructions. So we need to understand in general terms how

we can implement a high level language on a real machine.

Before we continue, look at Figure 2.8. This gives a very abstract view of a computer.

Data together with a program are fed in, and an output is produced. The output is

produced when the program is executed on the computer. Note that the input data

can consist of almost any kind of information—including program instructions! We use

this abstract picture to explain how we might implement a high level language. As the
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Figure 2.8: Abstract View of Computer Input/Output

module progresses we shall explain in greater detail what data and programs are. For

the time being, we shall assume the reader has an intuitive idea.

A high level language can be implemented in (at least) two ways, known as transla-

tion and interpretation. Suppose we have a computer C which can be programmed in a

language L. We want to be able to program in a more abstract language which we call

L′. Roughly, any instruction in L′ should correspond to a finite sequence of instructions

from L. We can achieve this by

• Given a program PL′ written in L′, replace each of the PL′ instructions by an equiva-

lent sequence of L instructions to produce a new program PL consisting entirely of L
instructions. This is known as a translation. The translation is performed by an L pro-

gram TransL running on C, with PL′ as data. This process is known as compilation. The

resulting output, namely the program PL, is then itself executed on C. We call PL the

compiled program. The time of the execution of PL is known as run time. You will

meet these ideas in MC103.

• Given a program PL′ written in L′, we run a program InterpL on C whose data is

PL′, which examines each of the instructions in PL′ in turn and for each instruction

immediately executes the corresponding sequence of L instructions. This process is

known as interpretation.

Example 2.7.2 We have already seen a simple example of translation. We wanted a

program to multiply the first ten numbers, but we only had a running language, L say,

with addition and subtraction. We could see how to write such a program in a similar

language, say L′, which also had multiplication, but which was not implemented. We

translated a program in L′ into L by leaving all instructions alone (we might say we

applied the identity translation) but translating the single multiplication instruction

into a sequence of L instructions.
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Exercise 2.7.3 Draw instances of the diagram in Figure 2.8 to illustrate translation

and interpretation. In each diagram, think carefully about the what the input program

and data are, and what the output is.

Suppose we have a computer C and a language L. C runs PL programs. By writing

either a translator or an interpreter, we end up with a new language L′ in which we can

write PL′ programs and have them executed. This gives rise to a virtual computer (call

it C′) that will take data, and a PL′ program as input, and produce output. Exercise: Draw

an abstract picture of these ideas.

We might hope that the language L′ could be “very” high level, and L′ “very” low

level, and hence L′ could be easily implemented on an actual computer with just one

translation. In practice, in turns out that L and L′ have to be quite similar in order

for L′ to be translated into L in one step. We will see why this is so as the course

progresses; for the moment, take it on trust that it is difficult to either translate or

interpret a high level language directly into a low level one. We thus have to repeat the

translation/interpretation process. Given any (virtual) computer Cn with language Ln,

we can produce a virtual computer Cn+1 with language Ln+1. We begin with n = 0 so

that L0 is a low level language, and produce a high level Ln which (hopefully) computer

users are happy to use. This is illustrated in Figure 2.9. Note that C0 is the physical

computer itself, made from circuits, often called the microarchitecture. In a typical

modern computer, we might find that n is about 5. Each level has a name:

(a) Instruction set architecture

(b) Operating System

(c) Assembly Language

(d) Problem Oriented language (eg Java, C, Pascal etc)

The instruction set architecture (ISA) level provides a language which is sometimes

referred to as machine language. This is the language described in manuals such as

“Machine Language Reference Manual for the Model-T Computer”. Thus the manual

describes instructions which are either directly executed by the microarchitecture cir-

cuits (direct hardware processor control), or are interpreted by a program (called the

microprogram) running on the microarchitecture. In the former case, the ISA language

corresponds to L0. In the latter, the microprogram is L0, and the ISA L1.

The operating system language (OSL) level provides a language which allows new

forms of control and organization. For example, this new language will allow two

programs (written in another language) to run concurrently. The language contains

some new instructions, but also contains many of the ISA level instructions as well.

Thus the ISA language is a subset of the OSL. This operating system language is partially

interpreted by a program running at the ISA level (that is, the interpreter is written in

machine code): the interpreter deals with the new OSL instructions. However, an ISA

instruction that is also an OSL instruction is executed as though it were a “normal”
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ISA level instruction. Note that some people call this (partial) interpreter the operating

system, as distinct from the operating system language.

The first three levels are known as system levels. The levels above are called appli-

cation levels. The former are for specialist programmers to design virtual computers

which will support good higher level programming languages. The latter are designed

for programmers to write code which solves real problems, or leads to programs which

have “real applications” (such as Tomb Raider for example :-)).

The assembly language level is really just a symbolic notation for one of the lower

levels (often the ISA level). It simply makes it easier for programs to be written in

the lower level. Note that this was the essential basis for our different levels from the

start—thus the operating system language has a rather special status. Programs written

in assembly language are translated into one of levels 0/1,2 or 3 as appropriate (usually

0/1), and then executed by the corresponding actual/virtual machine.

Finally the problem oriented level provides languages which are used by applica-

tions programmers—Java is an example and there are literally hundreds of others, such

as Haskell, C++, ML, Ada, Prolog, . . .
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Digital Arithmetic

3.1 Radix Number Systems

You will be familiar with the natural numbers N
def
= {0,1,2, . . .} and the integers Z

def
=

{ . . . ,−1,0,1, . . .}, where N ⊂ Z. In this course, we will be mainly concerned with the

integers. However, for the first two sections of this chapter we will only consider integers

which are either 0 or positive, that is elements of N.

Each integer can be represented in different ways. For example, you will be famil-

iar with decimal and Roman representation. If we write 9 and IX , although these are

different symbolic representations, you understand the concept of an integer quantity

of nine. Both 9 and IX denote the quantity nine. Again, 12 and XII both denote the

quantity twelve; and twelve is represented by both 12 and XII. We could make this idea

of representing integers a little more precise, by saying that a representation of N is

given by a set of symbols S (such as { I,II,III,IV,. . . }) and a function S → N which maps

each symbol to the integer it denotes. If XII is the symbol input to the function, then

the output integer is written [[XII]] where [[XII]] = twelve.

We introduce binary numbers which are a symbolic representation for integers. The

binary digits are 0 or 1. The symbols used to represent integers are sequences of binary

digits—each sequence is called a binary number. Typical binary numbers are 10010bin

and 1001bin. Recall that B = {0,1} is the set of binary digits. Note that 10010bin is by

definition a sequence of five binary digits, so 10010bin ∈ B5. We often use d or di to

stand for a binary digit. For example if d0 = 1, d1 = 0 and d2 = 1, then d2d1d0
bin stands

for 101bin. Note that there are three digits labelled using 0,1 and 2. We shall write a

variable k-digit binary number as dk−1 . . .d0
bin ∈ Bk = B×B× . . .×B

︸ ︷︷ ︸

k

.

Notice how careful we shall be with notation. The binary number dk−1 . . .d0
bin is a

sequence of digits. It denotes an integer which will be written [[dk−1 . . .d0
bin]]. What is the

integer? We proceed by example. The idea is that the digits stand for powers of 2. For

example
[[10bin]] = 1∗21+0∗20 = 21+0= 2+0= 2

[[10100bin]] = 24+0+22+0+0= 16+0+2+0+0= 20

A digit di indicates the integer di ∗2i. In general we have

[[dk−1dk−2 . . .d0
bin]] = dk−1∗2k−1+dk−2∗2k−2+ . . .+d0∗20 =

i=k−1

∑
i=0

di ∗2i

Note that the notation slickly specifies a program for converting a binary number into

an integer. The Σ notation, “for i = k−1 down to i = 0” is a for loop, and the di make up

an array (d[i])of length k. Try writing such a program in Java.
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Example 3.1.1 Calculate the integer denoted by 101010bin.

Answer: The integer is

[[101010bin]] = 1∗25+0∗24+1∗23+0∗22+1∗21+0∗20 = 32+8+2= 42.

Now we shall look at how to generalize these ideas. The integer 2 is referred to as a

radix or base. In general, any positive integer can be used as a radix. To represent an

integer in a general radix r, we take a fixed set of r different symbols. Each symbol is

called a digit. Each digit denotes an integer; we write [[d]] for the integer denoted by the

digit d. In general, an integer is represented with radix r as a finite sequence dk−1 . . .d0
r

of digits, where

[[dk−1 . . .d0
r]] =

i=k−1

∑
i=0

[[di]]∗ ri

In binary we work with radix 2, and the set of two digits is traditionally {0,1}. We can

write [[0]]
def
= 0 and [[1]]

def
= 1, and the formula above simplifies to the original one

[[dk−1 . . .d0
bin]] =

i=k−1

∑
i=0

di ∗2i

In computing, we also make frequent use of hexadecimal. The radix in hexadecimal

is 16. Thus we need 16 digits to represent integers in hexadecimal, and we choose

the symbols 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. The digits 0 to 9 denote the expected

numbers (!) and the letters A to F denote 10 to 15. Thus we define [[0]]
def
= 0, [[1]]

def
= 1, . . .

[[E]]
def
= 14, and [[F ]]

def
= 15. Thus the sequence of digits B1A hex denotes the number 2842:

[[B1A hex]]
def
=

i=2

∑
i=0

[[di]]∗16i = [[B]]∗162+[[1]]∗161+[[A]]∗160 = 11∗162+1∗161+10∗160

where, for example, d2 = B and [[B]] = 11. Check this!

In decimal notation, the usual representation of integers, the radix is 10. The digits

we use are 0, 1, . . . 9, which denote the obvious integers, namely [[0]]
def
= 0, [[1]]

def
= 1 etc.

Thus, for example,

[[25dec]] = [[2]]∗101+[[5]]∗100 = 2∗101+5∗100 = 25

as expected!

Exercises 3.1.2

1. Calculate [[1AF3 hex]] showing your steps.

2. Work out how to convert a number into a representation using a radix r and

sequences of r digits. Hint: First work out how to do this when r is 10 and the

representation is the usual decimal one, as this is easy! Then move on to r = 2,

and finally explain what to do for a general r.
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3.2 Binary Numbers in Computers

We can represent an integer in binary notation within a computer, by having a finite

collection of bits, each storing a binary digit. One thing to note here is that we can only

represent integers n within a finite range. For example, suppose we have a sequence of

eight bits. The smallest representable integer is clearly 0. The largest is represented by

11111111bin, that is

27+26+25+ . . . +21+20

This sum is equal to 28−1, so that 0≤ n ≤ 28−1. (Check that the sum is indeed 28−1.

We will explain why this is so in the lectures.) In general, if integers are represented

using k bits in a computer, we shall say the computer uses k-bit binary numbers. We

shall often write a typical k-digit binary number as dk−1 . . .d0
bin, and if the value of k is

fixed, we may abbreviate this to ~d bin.

We call dk−1 the most significant digit, and d0 the least significant. We also refer to

most and least significant bits. Note that in a computer, binary numbers stored in k-bits

may have zeros in the most significant bits. If k
def
= 6, then the number 3 is represented by

000011bin in the machine. However, we would write just 11bin if we were not concerned

with the issues of using k bits to represent the number in a machine.

We have one final definition. We call 0 and 1 complements of each other, and write

0
def
= 1 and 1

def
= 0. If ~d bin = dk−1 . . .d0

bin is a binary number, then its digitwise complement

is defined to be dk−1 . . .d0
bin

. We will sometimes denote the digitwise complement of ~d bin

by ~d bin or just simply ~d.

Example 3.2.1 Work out the binary number representation of 9 in a machine with

five-bit binary numbers. Give also the digitwise complement.

Answer: We first decompose 9 as powers of two; a little thought gives 9 = 8+1 =

23+20. We model five bits by the set B5. Thus 9 is represented by

01001bin ∈ B5

The digitwise complement, 01001bin, is 01001
bin

= 10110bin.

3.3 Binary Addition

First some notation. In the expression a+ b, where a and b denote numbers, we call

a and b operands and + the operator. Note also that addition can be regarded as a

function +:N×N→N with typical input (a,b) and output a+b.

Recall that to add two decimal natural numbers, say ~d
def
= dk−1 . . .d0

dec and ~d′ def
=

d′
k−1 . . .d

′
0

dec
we add corresponding pairs of digits di + d′

i (starting with the 0th digits).

So, for example, if d2d1d0
dec = 423dec and d′

2d′
1d′

0
dec = 111dec, then the sum is

s2s1s0
dec = (4+1)(2+1)(3+1) dec = 534dec
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Recall that there may be carried 1s. For example if d2d1d0
dec = 987dec and d′

2d′
1d′

0
dec =

456dec, then the sum is s3s2s1s0
dec =

(0+0+1)((9+4+1) MOD 10)((8+5+ 1 ) MOD 10)((7+6) MOD 10)
dec

= 1443dec

In position 0, we calculate d0+d′
0=7+6=13=10+3. Then s0=3 (the “units” position),

and we carry a 1 into the “tens” position (corresponding to the 10). Notice that these

values of 3 and 10 can be calculated directly. The sum digit (s0) is defined to be (7+
6) MOD 10= 13MOD 10 which is the remainder 3 when dividing by 10 and the carried

1 is defined to be (7+6) DIV 10.

Suppose that si represents the ith digit of the representation of the sum. Let ~s dec

be the sequence of digits representing the sum. We describe formally the algorithm to

compute~s dec by showing how to calculate each si:

• carry0
def
= 0.

• If i ≥ 0 then si
def
= (di+d′

i +carryi) MOD 10and carryi+1
def
= (di+d′

i +carryi)DIV 10where

di = d′
i = 0 if i ≥ k.

Because we compute the individual digits of ~s dec, we sometimes refer to an algorithm

for digitwise addition.

Example 3.3.1 Take the decimal numbers ~d dec def
= 473dec and ~d′

dec def
= 49dec. As 3+9+0=

12, the least significant digit of the sum, s0, is given by 12 MOD 10= 2, and carry1 =

12DIV 10= 1.

Exercises 3.3.2

(1) For the previous example, work out the values of all the di, d′
i and si.

(2) Take the decimal numbers 473dec and 49dec as above. What is d′
2? Compute the

decimal sum ~s dec using the algorithm above, making sure you understand the values of

each of the variables.

To convert the algorithm above to work out the sum of two binary numbers, simply

change the 10 to 2.

Exercises 3.3.3 Check that 1010bin +1111bin = 10001bin by showing that the algorithm

gives rise to the following table

~d bin [0] 1 0 1 0

~d′
bin

[0] 1 1 1 1

~carry bin 1 1 1 0 0

~s bin 1 1 0 0 1

where here k = 4 (e.g. we are given digits d3 to d0) and d4 = d′
4 = 0 by definition
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Do not forget that binary numbers are just a notation, or representation, for integers.

Suppose that integer z is represented by binary number ~d bin, and z′ by ~d′
bin

. The “dig-

itwise” algorithm for addition takes the binary number representations and produces

a binary number ~s dec. In order for the algorithm to be useful, we need to know that

the integer denoted by ~s dec is indeed z+ z′. In this case, we would say that the sum

z+ z′ is correctly represented by ~s dec, and that the algorithm is correct. Thus a formal

statement of correctness is that

[[~s bin]] = [[~d bin]]+ [[~d′
bin
]]

In fact this equality is always true, for any binary numbers ~d bin and ~d′
bin

, and we say

that the algorithm for adding binary numbers is correct. In a computer, we have already

mentioned that binary numbers will be stored using k bits. However, as we have seen,

if the operands of sum are large enough, the binary sum may have k+1 digits. Thus, if

k = 3,

~d bin 1 0 1

~d′
bin

+ 1 1 0

~s bin (1) 0 1 1

the digit s3 = 1 will be lost, as there are only three bits for the binary sum. In a computer,

this kind of problem is called overflow. We shall deal with this issue in more detail in

the next section, where we also deal with subtraction.

3.4 2s-Complement Numbers

We need to be able to represent all integers in a computer—we restricted ourselves to

the non-negative integers in the last two sections. Naively, we can represent all integers

much as we explained above for non-negative integers, but using an extra bit to indicate

whether the integer is positive or negative. This leads to various problems, such as two

possibilities for zero (+0 and −0), and that the computer will need a special algorithm

to work out the sign of any arithmetic calculation.

We shall in fact use a notation called 2s-complement. In a k+1-bit 2s-complement

system, the kth (most significant) bit will be 0 when representing positive integers and

zero, and 1 in the case of negative integers. We call this the sign bit. For example,

if k = 3, then 1001bin denotes a negative integer, and 0011bin a positive integer. What

are the integers denoted by these 2s-complement numbers? Given a 2s-complement

number dk . . .d0
bin, the actual integer it denotes is, by definition,

(|dk . . .d0
bin|)

def
= −dk2

k +[[dk−1 . . .d0
bin]] =−dk2

k +
i=k−1

∑
i=0

di ∗2i

Note that we use (|~d bin|) to mean the 2s-complement interpretation of a digit sequence,

and [[~d bin]] to mean the “standard” interpretation.
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Example 3.4.1 Thus, for example, if k = 5, then (|000111bin|) = −0∗ 25 + 7 = 7, but

(|100111bin|) = −1∗ 25+ 7 = −32+ 7 = −25. Note also that 25= (|011001bin|). We will

come back to this example shortly. Exercise: Make sure you understand these examples before

moving on.

If m is any integer, its negation is defined to be −1∗m. So, for example, the negation of

3 is −3, and the negation of −3 is 3. We shall see later in the course that it is useful for a

computer to always see subtraction as the process of adding the negation of an integer.

Thus we need to know how to compute the negations of 2s-complement numbers. In

fact we have the following result:

Fix a k ≥ 1. Let~b bin be any k+1 digit 2s-complement number other than 10. . .0
︸ ︷︷ ︸

k

. Then

the negation of the integer denoted by~b bin (that is (−1) ∗ (|~b bin|)) is represented by the

k+1 digit 2s-complement number~b bin +1 bin, where~b bin is the digitwise complement.

Example 3.4.2 As an example of this result, recall that 25= (|011001bin|). So the nega-

tion should be represented by

011001bin +1 bin = 100110bin +1 bin = 100111bin

and this agrees with our calculations above, namely −25= (|100111bin|).

Exercise 3.4.3 Try to prove this result, ie that for any k+1 digit 2s-complement num-

ber~b bin, other than 10. . .0
︸ ︷︷ ︸

k

, we have

(−1)∗ (|~b bin|) = (|~b bin +1 bin|)

Use the definitions in the notes to do this.

In a k+1-bit 2s-complement representation, note that some integers will be too large

to be represented. Any integer z, to be representable, must lie in the range below

−2k ≤ z ≤ 2k −1 (range for k+1-bit 2s-complement)

which follows from the definition of 2s-complement.

Example 3.4.4 Explain why −2k ≤ (|dk . . .d0
bin|).

Answer: We have (|dk . . .d0
bin|)

def
= −dk2k + [[dk−1 . . .d0

bin]]. In order for this integer to

be large and negative, we must make −dk2k “large”, and [[dk−1 . . .d0
bin]] which is always

non-negative, “small”. This happens if dk = 1 and all other digits are 0. The value is

then −2k as required.

Exercise 3.4.5 Show that (|dk . . .d0
bin|)≤ 2k −1.
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3.5 Correctness and Overflow

Recall that digitwise addition is a correct algorithm for ordinary binary numbers, that

is [[~s bin]] = [[~b bin]]+ [[~b′
bin
]]. We have to be careful with this statement. Suppose that~b bin =

bk−1 . . .b0
bin and ~b′

bin
= b′k−1 . . .b

′
0

bin
. Then ~s bin may have a 1 in the k-th position, from a

carry. So, to be more precise, we are really saying

[[sk . . .s0
bin]] = [[bk−1 . . .b0

bin]]+ [[b′k−1 . . .b
′
0

bin
]]

because sk might be 1.

If we were to work in a computer with k-bit numbers, this (non-zero) carry digit sk

would be lost. The machine can only store the digits sk−1 . . .s0
bin (the computer sum). If

there is no carry, so that the sum ~s bin has just k digits, then the integer denoted by ~s bin

will indeed be [[~b bin]]+ [[~b′
bin
]]. However, if there is a carry, then the integer denoted by

~s bin will not be [[~b bin]]+ [[~b′
bin
]].

Example 3.5.1 Consider a computer with 3-bit numbers. Given

~b bin 0 1 1

~b′
bin

+ 1 0 0

~s bin 1 1 1

the integer denoted by the three bit computer sum 111bin is [[111bin]] = 7. The integers

denoted by the operands are [[011bin]] = 3 and [[100bin]] = 4. As 3+4 = 7 the computer

sum is correct.

Given

~b bin 1 0 1

~b′
bin

+ 1 1 0

~s bin (1) 0 1 1

the integer denoted by the three bit sum is [[011bin]] = 3. The integers denoted by the

operands are [[101bin]] = 5 and [[110bin]] = 6. As 5+6 6= 3 the 3-bit computer sum is not

correct.

The correct integer sum must be [[bk−1 . . .b0
bin]] + [[b′k−1 . . .b

′
0

bin]]. (1) below is an exact

statement which says the computer sum, from the digitwize algorithm, is correct. Then

the following conditions are equivalent1 ways of expressing k-bit correctness

(1) [[sk−1 . . .s0
bin]] = [[bk−1 . . .b0

bin]]+ [[b′k−1 . . .b
′
0

bin]]

(2) 0≤ [[bk−1 . . .b0
bin]]+ [[b′k−1 . . .b

′
0

bin]]≤ 2k −1

1This means that if condition (1) is true then so is (2); and if (2) is true then so is (1).
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• Let P be “the sign bits of the two operands are complementary (bk = b′k)”;

• and let Q be “the sign bits of the two operands are identical, and also the same as

the sign bit of the computer sum (bk = b′k = sk)”.

If P or Q is true (that is, at least one of P or Q is true) then the computer sum will be

correct.

Table 3.1: Correctness Conditions for 2s-complement

Recall that k-bit binary numbers denote integers in the range 0 to 2k −1. So informally

this is saying that a computer will give a correct binary answer (computer sum) to the

addition of two binary numbers (1) exactly when the correct integer answer lies within

the range of integers that the computer can represent (2). Common sense!

Suppose now that we work in a computer with k+1-bit 2s-complement numbers. To

perform addition of k+1-digit 2s-complement numbers bk . . .b0
bin and b′k . . .b

′
0

bin
, we can

perform digitwise addition as described in Section 3.3. There may be a carry digit into

the k+1 position, which we can compute on paper, but in a computer this extra digit

will “disappear”, and only the other least significant digits sk . . .s0 of the digitwise sum

will be recorded. If we look at these k+1 digits sk . . .s0, which we call the computer sum,

in some cases this will be correct, and in other cases it will not be. It will be correct if

the conditions in Table 3.1 hold. In all other cases, the computer sum will be incorrect,

and in these cases, we say that overflow has occurred. Be careful with these facts,

which are slightly subtle. It is quite possible for a 1 to carry into the k+1 position, yet

the sum given by the least significant digits sk . . .s0 in the computer to be correct! Do

not confuse our definition of computer overflow, with an extra carried digit! They are

different!!

Example 3.5.2 For example, let k = 2, so that a computer uses 2+1 = 3 bits for 2s-

complement numbers. Consider

1 1 1

+ 1 1 0

(1) 1 0 1

where there is a lost carry of 1. However, the computer’s sum is correct. The 2s-

complement operands denote −4+2+1=−1 and −4+2+0=−2 with integer sum −3.

The 3-bit 2s-complement digitwize sum stored in the computer denotes −4+0+1=−3.

So the computer is correct!

Notice also that the sign bits are all 1, so that the second condition in Table 3.1 holds.
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Exercise 3.5.3 Write down examples of 2s-complement calculations, and check for

yourself that the overflow conditions work.

We finish by summarising some equivalent conditions which capture the correctness

of k +1-bit 2s-complement addition. It is a fact that if ~b bin and ~b′
bin

are two k + 1-bit

2s-complement numbers, then the following conditions are equivalent

• (|sk . . .s0
bin|) = (|bk . . .b0

bin|)+(|b′k . . .b
′
0

bin|) (literally: computer sum is correct)

• −2k ≤ (|bk . . .b0
bin|)+(|b′k . . .b

′
0

bin|)≤ 2k −1

• one of the conditions P or Q of Table 3.1 hold (P or Q is true).

where of course (|bk . . .b0
bin|)+(|b′k . . .b

′
0

bin|) is the correct integer sum. If any one of these

conditions is true, the others are too, and the computer sum is correct.

3.6 Logical Operations

Computer Scientists often need to know if statements are true or false. We sometimes

also use 1 to denote truth, and 0 to denote falsity. If we write � to denote and, and d and

d′ are binary digits, then we get a function �:B×B→ B which maps input (d,d′) to d �d′

where we write the output using infix notation. We define d � d′ to be 1 precisely when

both d and d′ are 1, and otherwise d �d′ is 0. Informally, d �d′ is “true” when both d and

d′ are “true”. We call � the and function. A similar idea applies to or. The function is

denoted by +or:B×B→ B which we call the or function; d +or d′ is 1 if and only if either

d or d′ is 1.

Example 3.6.1 Some examples are 0 �0= 0, 1 �1= 1, 1+or 1= 1 and 1+or 0= 1.

When we come to the chapters on the instruction set architecture, we shall see that

computers often need to compute “and” and “or” on pairs of digits selected from two

binary numbers. We define

dk . . .d0
bin AND d′

k . . .d
′
0

bin def
= (dk �d′

k) . . .(d0 �d′
0)

bin

dk . . .d0
bin OR d′

k . . .d
′
0

bin def
= (dk +or d′

k) . . .(d0 +or d′
0)

bin

and say that the functions act digitwise.

Example 3.6.2

(1) 0101AND 0110= (0 �0)(1 �1)(0 �1)(1 �0)= 0100.

(2) 0101OR 0110= 0111.
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Exercise 3.6.3 Both AND and OR are functions whose inputs are k-digit binary num-

bers. What size are the outputs? Thus what are the source and target of AND and

OR?

We complete this section with a couple of definitions that we will make use of in the

chapter on Microarchitecture. Please note that we make heavy use of notational conven-

tions, and these will be explained in the lectures in detail—however, you should be able

to understand this section with a little thought. Sometimes, either a 2s-complement

number or a binary number will be written using just k digits. In the machine, the

number will be stored in a memory space containing k bits. We will then want to move

the number into a space with k′+ k bits so that the integer denoted by the contents of the

k′+ k bits is the same as the integer denoted by the original binary number. In the case of

a normal binary number, we will fill the extra bits with k′ zeros. This is called a zero

extension. We can model it as a function

Bk −→ Bk′+k ~b 7→~0~b

where~0 denotes k′ zeros. We will sometimes write the output as zx(~b).

Example 3.6.4 Let k = 2 and k′ = 3. If 10∈ B2, then zx(10) = 00010∈ B5. Note that

[[00010]] = [[10]] = 2 as required.

What about 2s-complement numbers? We first look at an example.

Example 3.6.5 Let 1001bin be a 2s-complement number, denoting −7. It has 4 digits.

Suppose we want to store it in seven bits, with these bits also storing 2s-complement

numbers, with the most significant bit now regarded as the sign bit. So what should the

* below be?

* * * 1 0 0 1

We could try taking 1 for the sign bit (why?):

1 0 0 1 0 0 1

But this denotes −64+ 8+1 = −55. Or we could look at the sign bit from 1001 and

repeat it:

1 1 1 1 0 0 1

This denotes −64+32+16+8+1=−7. Yippee! The denotation is preserved.

In fact “repeating” the sign digit always works. Suppose that δ~b is a 2s-complement

number, where δ is the sign bit, and there are k+1 digits in total. Now we want to use

k′+ k+1 digits to represent the same integer. We can do this by looking at the k+1th
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sign digit of δ~b, namely δ, and copying it into the new k′ positions. This is called a sign

extension. We can model it as a function

Bk+1 −→ Bk′+k+1 δ~b 7→~δδ~b

where~δ means a sequence of k′ δs. We will sometimes write the output as sx(δ~b). In the

example above,~b = 001, δ = 1 and sx(1001) = 1111001.

Exercise 3.6.6 Why does our definition of sx(δ~b) work correctly, in the sense that the

denotations of 2s-complement numbers are preserved, that is [[δ~b]] = [[sx(δ~b)]]?

We can multiply by powers of 2 by shifting digit sequences to the left. To multiply
~b ∈ Bk by 2k′ , apply the k′-left-shift function

Bk −→ Bk+k′ ~b 7→~b~0

where~0 is a sequence of k′ zeros. We will sometimes write the output as~b ≪ k′.

Example 3.6.7 Let k = 4 and k′ = 5. Write ≪:B4 → B9 for the shift left function. What

is 1011≪ 5? Have we achieved multiplication by 25?

Answer: 1011≪ 5= 101100000. Note that [[1011]] = 11dec. We have

[[101100000]] = 256+64+32= 352.
352
25 = 11dec.

So, yes, the integer denoted by 1011has been multiplied by 25.

3.7 Further Examples

Examples 3.7.1

(i) Suppose that a computer can only represent numbers n using k bits. What range of

numbers can it represent if

1. k = 2,

2. k = 3, and

3. k = 5.

Explain your answers. What range does n lie in for general k ≥ 1? Give a careful

explanation.

Answer hints (you should give more details):

1. k = 2: 0≤ n ≤ 2+1= 3

2. k = 3: 0≤ n ≤ 4+2+1= 7

3. k = 5: 0≤ n ≤ 16+8+4+2+1= 31
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The smallest value of n is given when all bits are 0; so smallest n is 0. Largest value of n is

when all bits are 1. For general k, largest value must be 2k−1+2k−2+ . . .+2+1= 2k −1.

(ii) Consider ~d
def
= 346dec and ~d′ def

= 1664dec. With reference to Section 3.3 of the notes,

write down with explanation the values of di, d′
i and si. What values does i take?

Answer hints (you should give more details): d2 = 3, d1 = 4, d0 = 6 and d′
3 = 1, d′

2 = 6,

d′
1 = 6, d′

0 = 4. The digitwise sum ~s is 2010, that is s3 = 2, s2 = 0, s1 = 1, s0 = 0. i ranges

over 0, 1, 2 and 3.

(iii) For the following (pairs of) integers, work out the 5-bit 2s-complement binary num-

bers which represent the two integers. In each case, state whether addition of the 2s-

complement binary numbers gives computer overflow, with a brief explanation.

1. (5,−12)

2. (−3,8)

3. (−15,−9)

4. (13,8)

5. (−15,11)

Answer hints (you should give more details):

1. (5,−12) given by 00101bin and 10100bin. Bitwise sum is 11001which represents

−16+9=−7. 5+(−12) =−7, so no overflow.

2. (−3,8) given by 11101bin and 01000bin. Bitwise sum is (1)00101which represents

0+5= 5. −3+8= 5, so no overflow. (Note that there is a lost carry).

3. (−15,−9) given by 10001bin and 10111bin. Bitwise sum is (1)01000which represents

0+8= 8. −15+(−9) =−24, so overflow occurs. (Note that there is a lost carry).

4. (13,8) given by 01101bin and 01000bin. Bitwise sum is 10101which represents −16+
5=−11. 13+8= 21, so overflow occurs.

5. (−15,11) given by 10001bin and 01011bin. Bitwise sum is 11100which represents

−16+12=−4. −15+11=−4, so no overflow occurs.

In each case, overflow occurs only when the 5-bits of the digitwise sum do not represent

the correct answer, that is, for the pair (~b bin,~b′
bin
) overflow occurs if and only if

(|s4s3s2s1s0
bin|) 6= (|b4b3b2b1b0

bin|)+(|b′4b′3b′2b′1b′0
bin
|)

Also, one can check that the “sign bit” conditions given on page 28 of the notes hold.
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Digital Electronics

4.1 Motivation

As we have seen, a computer contains electrical circuits. These circuits contain wires

which have a measurable voltage. It is possible to distinguish between a (fixed) high

voltage and low voltage. We can use the high voltage to represent the integer 1, and

the low voltage to represent 0. So far so good. What we want to do is use electrical

circuits to perform computations of addition and subtraction on the integers, and to

design circuits that will perform other kinds of computation. We also want memory

circuits that will store data. In this chapter we shall explain how this can be done.

4.2 Boolean Algebras and the Switching Algebra

A Boolean algebra is a particular kind of mathematical structure. In this course, we shall

make use of one particular example, called the switching algebra. This consists of

the following five things: (B, �,+or, ,0,1), where B = {0,1}. We have already seen the

functions �, +or and in Chapter 3. The functions satisfy certain properties. Letting A,

B and C denote elements of the set B (ie binary digits!), the basic properties are given

below; notice that each property has two versions

Property � +or

Identity A �1= A A +or 0= A
Idempotent A �A = A A +or A = A
Complement A �A = 0 A +or A = 1
Commutative A �B = B �A A +or B = B +or A
Associative A � (B �C) = (A �B) �C A +or (B +or C) = (A +or B) +or C
Distributive A � (B +or C) = (A �B) +or (A �C) A +or (B �C) = (A +or B) � (A +or C)

We sometimes call A,B,C Boolean variables. Note that because of associativity, we can

sometimes omit brackets. For example, whatever A, B and C are,

A � (B �C) = (A �B) �C = A �B �C ( eg 1 � (0 �1) = (1 �0) �1= 0 )

Also, we say that � binds more tightly than +or, which means that A �B +or C stands for

(A �B) +or C. Further, binds most tightly, so that A �B +or C stands for ((A) �B) +or C.

Exercise 4.2.1 Check that the functions �, +or and , as defined in Chapter 3, do satisfy

the properties in the table above.

We can give the functions � and +or by explicitly computing all inputs and outputs in

tables; see below. The columns to the left of the double lines give the possible input
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circuit

n  input lines m output lines

Figure 4.1: Circuit for an n | m-ary function

components; each row specifies an input tuple (such as (A,B)). To the right of the

double line we have the outputs (such as A +or B). These tables are called truth tables.

A A

0 1
1 0

A B A +or B

0 0 0
0 1 1
1 0 1
1 1 1

A B A �B

0 0 0
0 1 0
1 0 0
1 1 1

4.3 Implementation of Switching Algebra Functions

We shall soon see that we need to be able to implement n | m-ary functions over B

as digital circuits. We shall represent such circuits using a picture such as the one in

Figure 4.1. The box denotes the circuit whose details are omitted. It implements a

function f :Bn → Bm. The horizontal input lines denote wires which carry a voltage;

each voltage indicates a binary digit, which will be one of the input components for

f . We say that the line carries or holds a binary digit value. The values of the lines

taken together specify an input tuple for f . The values on the m output lines specify

the corresponding output tuple. We sometimes call a collection of n parallel wires an

n-bit bus. For example, if f :B3 → B4 and f (1,0,1) = (1,1,0,0), there will be three input

lines with values 1, 0, and 1, and four output lines with values 1, 1, 0, 0.

A gate is an electrical circuit which computes certain simple m | 1-ary functions over

B. Note that, by definition, complementation is a 1 | 1-ary function, and the � and +or

functions above are 2 | 1-ary functions. A simple NOT gate computes complementation,

an AND gate computes �, and OR computes +or. These circuits are denoted by the

pictures in Figure 4.2. For example, if the values 0 and 1 are carried on the input lines

to AND, the value 0= 0 �1 will be carried on the output line.
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NOT AND OR

Figure 4.2: NOT, AND and OR Gates

There are also m | 1-ary versions of � and +or. Circuits which implement these are also

called gates, and denoted by the same pictures. Informally, given an m-tuple over B as

input to �, the output is 1 if all the input components are 1, and is otherwise 0. The

m | 1-ary function +or is similar. If m = 3 then (eg) the function � will map input (1,0,1)
to 0, that is �(101) = 0. We often write A �B �C instead of �(A,B,C)—an infix notation.

We can also draw up a truth table

A B C A �B �C

0 0 0 0
0 0 1 0
0 1 0 0

...

1 1 1 1

Exercise 4.3.1 Complete the table.

Note that we sometimes label input and output lines. An example is

A

B
O

We sometimes talk about the “input line” A to mean the physical wire at the “top” of

the circuit. We shall sometimes talk about the “value” of A to mean the voltage (0 or 1)

held on the input line at a given moment.

It is easy to see that an n | m-ary function f gives rise to m different n | 1-ary functions;

informally, the output of each function is given by simply selecting one of the m output

components of f . We call the functions f0, f1, . . . , fm−1. By definition, fi(dn−1, . . . ,d0)

is the ith component of f (dn−1, . . . ,d0). Exercise: Before moving on, make sure this is clear to

you. Thus we can present such n | m-ary functions f as truth tables which give the input

components, and corresponding output components. For example, the table in Table 4.1
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A B C f1(A,B,C) f0(A,B,C)
0 0 0 0 1
0 1 0 1 0
0 0 1 0 1
0 1 1 0 1
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 0 1

Table 4.1: Truth table of a 3 | 2-ary function f .

specifies a 3 | 2-ary function f :B3 → B2, where

f (A,B,C) = ( f1(A,B,C), f0(A,B,C)) eg f (0,1,1) = (0,1)

Let us first see how to implement n | 1-ary functions. We begin by example. By

computing the possible values of the expression on the right of = below, you can check

that the following equation holds

f0(A,B,C) = A �B �C +or A �B �C +or A �B �C +or A �B �C

Notice that there are four “�” (product) expressions in the right hand side—and that four

of f0’s outputs are 1 (ie f0(A,B,C) = 1 four times). Now look at each of the correspond-

ing four inputs—the 1s and 0s match up with the normal and complemented variables

in each of the “�” expressions. We call the expression on the right a sum-of-products.

We say it represents the function f0.

In fact, a simple generalization of this example gives us a method for producing a

sum-of-products expression which will represent any n | 1-ary function f :Bn → B on the

switching algebra B. The steps are

1. Write down the truth table for f using An−1, . . . ,A0 as the input variables;

2. count the number of lines (say l) in the table with f (An−1, . . . ,A0) = 1; write down

An−1 �An−2 � . . . �A0
︸ ︷︷ ︸

1

+or . . .+or An−1 �An−2 � . . . �A0
︸ ︷︷ ︸

l

(∗)

in which there are l “�” (product) expressions; finally
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A B C

f0(A,B,C)

denotes connecting wires

Figure 4.3: Circuit Implementing f0

3. for each of the l lines, look at the input variables Ai equal to 0 and complement

each corresponding Ai in the “�” expressions in (∗).

Example 4.3.2 Convince yourself that this general method works for f0 above, where

n = 2; A is A2, B is A1 and C is A0; and l = 4. Show also that f1(A,B,C) = A �B �C—is this

what you expected?

Example 4.3.3 We now show by example how one can “construct” a circuit which

computes a sum-of-products expression. The circuit in Figure 4.3 will compute the

function f0, by implementing the sum-of-products expression for f0. Look at the circuit,

and you should be able to see that it is almost “obvious” given the sum-of-products

expression. The small circles stand for NOT gates.

It is easy to describe a general method for producing a circuit to implement any

n | 1-ary function f . First, write down a sum-of-products expression for f , using the

variables An−1 to A0. Draw n vertical wires, labelling them An−1 to A0. Draw l different

n | 1-ary AND gates to the right of these wires (l being the number of “�” expressions),

and for each of these, draw horizontal lines connecting the n vertical lines to each AND

gate, and inserting a NOT gate for any complemented variable in the sum-of-products
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expression. Finally, take the l outputs of the AND gates, and feed into an OR gate. The

OR gate output will now be f (An−1,An−2, . . . ,A0).

Exercise 4.3.4 Apply this procedure to the sum-of-products expression for f0.

A Programmed Logic Array or PLA is an integrated circuit which contains AND

gates and OR gates which are arranged suitably for implementing circuits derived from

sum-of-products expressions. The user simply applies current which blows out fuses in

the PLA, leaving the required combinations of gates.

Such a naive method of circuit design will not normally be used in practice, because

the circuit it produces will not be optimal. We illustrate this point with the function f0.

The sum-of-products expression can be simplified using the rules for Boolean algebra:

A �B �C +or A �B �C +or A �B �C +or A �B �C = A �B � (C +or C) +or (A +or A) �B �C
= A �B �1+or 1 �B �C
= A �B +or B �C

We can now implement a far simpler circuit from the simplified expression. In actual

computer engineering, a variety of techniques will be used to perform this sort of sim-

plification.

Exercise 4.3.5 Draw a circuit for the simplified expression.

4.4 Combinational Circuits

4.4.1 The Fundamental Idea

A circuit which implements an n | m-ary function is known as a combinational circuit.

We have seen how a general n | m-ary function f gives rise to m different n | 1-ary func-

tions f1, . . . , fm. Moreover, we gave a method for implementing any n | 1-ary function.

Thus we can certainly implement f by combining the circuits for the fi “in parallel”.

Exercise 4.4.1 Explain in detail what “in parallel” means. For example, suppose you

have a function f :B3 → B2 given by f (x) = ( f1(x), f0(x)) and you have circuits C1 and

C2 implementing f1 and f0. Use these in a drawing of a circuit for f .

We look at some actual examples of circuits which we shall use later on in this course.

4.4.2 Multiplexors

A multiplexor is an implemention of a n+2n | 1-ary function M. The n+2n input lines

divide up into n control input lines and 2n data input lines.

Before explaining the general specification of M, let us look at one row of M’s truth

table in the example case when n is 3 (so M:B11 → B)

C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 M(~C,~D)

1 0 1 d7 d6 d5 d4 d3 d2 d1 d0 d5
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Each di is a binary digit, that is either 0 or 1. The values on the control input lines are

1,0,1 which is interpreted as representing 101bin. This denotes 5. The output value of

the multiplexor is then defined to be the same as the value on the “corresponding” data

line D5, namely d5.

In general, the output of the multiplexor M is precisely the value on one of the 2n data

input lines, namely the one “corresponding” to the integer denoted by the sequence of

binary digits held on the n control lines. There are, of course, 2n possible numbers.

Exercise 4.4.2 Explain carefully what “corresponding” means. (Hint: We usually count

the input lines down the page, starting from 0.)

A circuit diagram of a 2+22 multiplexor is given in Figure 4.4, along with an abstract

diagram which we shall use to denote a general multiplexor. Note that we draw

separate lines for the data lines, but we draw a single bus line for the n control lines.

The diagonal stroke and the n symbolise that the “bus” line on the drawing denotes n
input lines. We draw these as a bus to highlight the fact that the bus data is used to

select just one of the data lines to supply the output value.

4.4.3 Decoders

A decoder is a circuit with n input lines and 2n output lines. For example, if n = 2,

the output lines might be A0 and A1, and output lines B0,B1,B2,B3. The input lines can

therefore carry 2n different n-tuples of binary digits. For each of the 2n possible input

tuples, exactly one of the 2n output lines is set to 1 and all the others are set to 0. The

line that is set to 1 is usually given by the integer denoted by the input. The input lines

are A0 and A1, and we interpret them as a binary number A1A0. For example if A0 = 0
and A1 = 1 (denoting [[10]] = 2) then B0 = 0,B1 = 0,B2 = 1,B3 = 0. In general, the line

B[[A1A0]] is set to 1, and all others to 0.

Example 4.4.3 A computer contains many individual circuits. Each circuit often has a

switch which is controlled electronically. There is a special input wire. If its value is 0,

the circuit is off; if 1 it is on. We can use a decoder to reduce wiring. Suppose we have

32= 25 circuits. Instead of having 32 on/off wires we can feed just 5 into a decoder,

with just the 32 output wires from the decoder hooked up to the on/off wires. For each

of the 32 binary numbers which can be input to the decoder, just one circuit will be on,

and the others off.

Exercise 4.4.4 Draw a diagram of the example described here.

4.4.4 Clocks

In many digital circuits, the timing of various processes and tasks is crucial. A pulse is

a voltage of 1 which lasts for a (usually short) time. A clock is a circuit which generates
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n

C

D1

D2

D(2^n - 1)

D0

M( C , D )

D0

D1

D2

D3

C1 C0

Figure 4.4: A Multiplexor
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a series of pulses. Each pulse lasts for fixed time, and there is a fixed interval between

pulses during which the voltage produced is 0. The production of such a high and low

voltage is called a clock cycle. The total time taken for this is called the clock cycle

time or period. The clock frequency is the reciprocal of the period. The start time of

a clock pulse is called a rising edge; the falling edge is when the pulse ends. In the

lectures will will provide some diagrams, and explain how to use clock delays to provide

finer timing than a standard clock.

4.4.5 Adders

We saw in Chapter 3 that in order to compute the sum of two binary numbers, we

perform a bitwise addition with possible carries. Thus to design a circuit to perform

addition of k-bit integers, we first need a circuit to add single binary digits. Using a

notation similar to Chapter 3 (see page 33) this circuit will have three input lines and

two output lines:

Line Name Holds Data

a di

b d′
i

CarryIn carryi
Sum si

CarryOut carryi+1

For example, if di = 1 and d′
i = 0 and carryi = 0 then 1 bin + 0 bin + 0 bin = 01bin and the

carry out digit is carryi+1 = 0 and the sum is si = 1. If di = 1 and d′
i = 1 and carryi = 1

then 1 bin +1 bin +1 bin = 11bin, the carry in is 1, the carry out is 1 and the sum 1. A circuit

which implements this is a full adder. To implement a full adder, we can write down

the truth table, and produce the relevant circuit as in Section 4.3. The truth table, and

an abstract circuit diagram, appear in Table 4.2.

4.4.6 Arithmetic Logical Units

We need to construct an Arithmetic Logical Unit (ALU) in order to build a computer.

This is a circuit which will perform operations (functions) such as addition, subtraction

and so on. For any inputs, the desired operation can be selected. In a nutshell, the

input lines to the ALU will be two k-bit busses (each holding a k-digit binary number).

The main output value will be the selected operation applied to the two k-bit integers,

carried on a k-bit bus. There will also be a special control bus which will be used to

select the ALU operation (such as addition).

We shall design such an ALU where k = 32 and the operations are digitwize addition,

subtraction, AND and OR (recall Chapter 3). There is also a new operation called “set

on less than” which we shorten to slt. We explain what slt is. Suppose the inputs

are ~a bin = a31. . .a0
bin and~b bin = b31. . .b0

bin, with an output~r bin = r31. . .r0
bin. The inputs
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a

b

CarryIn

CarryOut

+ Sum

a b CarryIn CarryOut Sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 4.2: A Fulladder and Truth Table
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are interpreted as 2s-complement numbers, with digit 31 being the sign digit. The slt

operation returns~r bin given by

r31 = 0, . . . ,r1 = 0,r0 = 1 if (|~a bin|)< (|~b bin|)
r31 = 0, . . . ,r1 = 0,r0 = 0 otherwise

Informally, the 32-bit result denotes the integer 1 if the integer denoted by~a bin is strictly

less than the integer denoted by~b bin, and 0 if not.

There are are two other output lines, which we will make use of in Chapter 6.

The ALU will have a single bit output line Zero which will hold 1 when any result is
~0, and will hold 0 otherwise. We call this a test for zero. We will use it in the chapter

on microarchitecture.

The ALU will also have a single bit output line which will hold 1 when an operation

causes overflow, and will hold 0 otherwise. Its use is obvious—it indicates when the

ALU overflows!

ALU Step 1

The first step is to build an ALU which has single binary digit numbers and a carry in

digit as input components. The output is a carry out digit, and the result of a choice of �,

+or, + or − acting on the components. To perform the subtraction, we simply recall that

we can compute a−b as a+b+1; and further that we can compute b using a single NOT

gate. The ALU appears in Figure 4.5. Note the multiplexor which selects either b or b.

Note also that Operation is a 2-bit bus, used to select an output from one of the three

circuits for �, +or, or +. (The Operation line could select up to four circuits—why?) In

order to select the overall operation of the ALU, both Binvert and Operation are used

together. These are sometimes called the ALU’s control lines; together they form the

control bus. Exercise: Make sure this is clear to you—read the example.

Example 4.4.5 With the usual conventions about multiplexors, what values appear on

Binvert and Operation and CarryIn to select ALU subtraction of a and b?

Answer: We must compute a + b + 1. To complement b, Binvert must hold 1.

CarryIn must hold 1. Then the full adder will compute a+ b+1 and this value will

be sent to Result provided that Operation holds 10bin (which denotes 2).

ALU Step 2

The second step is to modify the ALU of the first step. The new ALU should have an

additional 1-bit input line, whose value can be passed directly as output. We call this

line Less. Its exact purpose will be explained later on. It will be used on those occasions

when we need to be able to set the result of the ALU to a specific value. The new ALU

also has an additional output line, Set, which will always hold the output of the full
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Input Line or Bus Purpose

a operation input

b operation input

CarryIn holds carry in digit

Binvert used to select complementation of b

Operation (2-bit bus) used to select (internal) operation on a and b

Output Line or Bus Purpose

Result holds result of operation

CarryOut holds carry out digit

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

(COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED.)

Figure 4.5: Step 1 ALU
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adder. Finally, we add some further circuits which will test for overflow—recall that

overflow was defined in Chapter 3. The ALU appears in Figure 4.6. Exercise: Make sure

that you understand the roles of the input lines to the overflow circuit.

ALU Step 3

The final step is to link 31 of the step 1 ALUs and one of the step 2 ALUs to make a

32-bit ALU as specified at the start of the section. The ALU appears in Figure 4.7.

The two 32-bit 2s-complement integers a31. . .a0 and b31. . .b0 are read in by feeding the

values ai and bi as single digits into ALUi. The operation to be performed by the big

ALU is selected using the Bnegate and Operation lines. These are sometimes called

the ALU’s control lines. The Bnegate line feeds the Binvert lines of each separate

small ALUi. In ALU0, it is also wired to the CarryIn line. This is because we only want

to complement the bi when performing subtraction; and to perform subtraction, recall

that we complement and add 1. So Bnegate is set to 1, and thus CarryIn of ALU0 is

also set to 1 ensuring we add 1. The Zero output line will always tell us if the result, the

32-bit integer given by the lines Result31 to Result0, is zero or not.

Example 4.4.6 Explain how to make the big ALU select the slt operation (by giving

suitable values for its control lines) and how the slt operation is computed.

Answer: We want to check if (|~a bin|)< (|~b bin|) or not. Using the method for computing

subtractions, we equivalently check that (|~a bin|)+(|~b bin +1 bin|)< 0. In the cases where no

overflow occurs, by correctness this is the same as checking if (|~a bin+~b bin+1 bin|)< 0. Thus

we set Bnegate to 1, and Operation to 11 which copies the value on each Less line

into the result lines. So Result1 to Result31 are all set to 0. But the value of Result0
comes from the Less line of ALU0, which is connected to the Set line of ALU31. By

examining ALU31, and recalling that Set is connected to the full adder in ALU31, we

see Set holds digit 31 of ~a bin +~b bin +1 bin. This is the sign digit. So it will be 1 precisely

when (|~a bin +~b
bin

+1 bin|)< 0 and will be 0 if not. Magic!

Exercise 4.4.7 Write down a table which gives the values of Bnegate and Operation
required to ensure the big ALU performs the various operations.

4.5 Sequential circuits

4.5.1 The Fundamental Idea

A combinational circuit implements a function between n-tuples with components from

B and m-tuples with components from B, that is a function Bn → Bm. There are two key

points encapsulated by the definition of function. These are

(i) for each input n-tuple, there is an output m-tuple; and
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Figure 4.6: ALU Step 2
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Figure 4.7: ALU Step 3
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S

R

Qa

Qb

Figure 4.8: An SR Latch

(ii) this m-tuple is unique.

A sequential circuit is a more general notion. Suppose that we specify an input tuple

and output tuple. If the circuit “allows” this input and output, we say that the circuit

is in a stable state. If not, we say that the circuit is in an unstable state. In practice,

for each input tuple, there may be many output tuples giving a stable state. Thus

sequential circuits are not functions (in fact they are simply relations). Examples appear

in Section 4.5.2, where it will become clear what we mean by “allows.”

4.5.2 Latches

SR Latches Figure 4.8 shows a circuit called an SR latch. It consists of two 2 | 1-ary

NOR gates wired together, and has two input lines (S,R) and two output lines (Qa,Qb).

A NOR gate is composed of an OR gate followed by a not gate. Exercise: Write down the

truth table for NOR before reading on. An SR latch has only five stable states, and (thus) eleven

unstable states; some of these are given in Table 4.3. We can check that the input tuple

(S,R) = (1,0) and output tuple (Qa,Qb) = (0,0) give rise to an unstable state: the lower

NOR gate has an input tuple (Qa,R) = (0,0) and hence Qb must be 1. But Qb = 0 by

assumption, a contradiction. Thus the I/O state ((1,0),(0,0)) is not allowed.

Exercise 4.5.1 Check some of the other states to see if they are stable or not.

Look at the stable states, and in particular S, R and Qb, and ignore the final row of the

stable state table. Note that when S and R are both 0, Qb can be anything. When S is 1,

Qb is 1, and when R is 1, Qb is 0. We call S the set line and R the reset line, and think of
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S R Qa Qb

0 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0

1 1 0 0

S R Qa Qb

1 0 0 0
0 1 0 1
0 0 1 1

Stable States Unstable States

Table 4.3: Examples of SR Latch States

Qb as a signal which can be set (to 1) and reset (to 0).

We shall soon use this property to design computer memory. The basic idea is that

an SR latch will be used to make a 1-bit memory. This will store a binary digit as the

value of Qb. We will change the stored value using the S and R lines.

Note that ignoring the final row of stable states, the values of Qa and Qb are comple-

ments, and are often written as Q and Q. Note that Q and Q are merely symbols for the

output lines, and that it is quite possible for their values not to be complementary: this

occurs in the final row above. However, in the circuits we use to build memory, we will

force the values of Qa and Qb to be complementary, so the final stable state never arises

in practice.

Clocked D Latches A good model of a simple 1-bit computer memory is a pad-locked

box in which one can store just 0s and 1s. This box has a glass window through which

one can see its contents. Thus we can unlock the box and store either a 0 or a 1; locking

the box ensures that the binary digit is stored permanently. One can then see the stored

binary digit through the window, and read the value as required. Note: The words

input/write/store are often used in different situations, but mean the same thing. The

same goes for output/read.

We can use the SR-latch to construct a circuit which captures this idea; it is called a

Clocked D-Latch, and is illustrated in Figure 4.9. Such a clocked D-Latch is a basic

circuit for a 1-bit computer memory. The input data line D holds the data (0 or 1)

which we want to store (what we put in our box). The other input line, called the clock

line, provides a signal which indicates when data can and cannot be stored (analogous

to unlocking and locking the box). (It is sometimes called a write enable or input

enable line.) The output line Q holds the value of the stored data (the contents of our

box). Note: Try not to be confused by the fact that the stored/written data corresponds

to the value on the “output” line Q. Measuring the voltage on the Q line amounts to
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Q

D

C

Q

Figure 4.9: A Clocked D-Latch

reading the stored data (looking through the box window). Note the presence of the

NOT gate—this ensures that the final stable state of Section 4.5.2 never arises.

Exercise 4.5.2 By considering the values that C and D can take, check that the final

stable state can never arise.

When the clock line (write enable line) holds 1 (unlocked), you can check that we

must have Q = D, ie Q takes on the value of the data line (data in box). When the clock

is 0 (locked), the value of Q is whatever it was when the clock line last held 1, no matter

the current value of D (we can continue to read the data through the box window, but

cannot put anything new in the box). We will explain this carefully in the lectures.

Notice that the clocked D-latch model as a “locked window box” is a little strange.

We might normally think of actually removing the contents of a locked box, rather than

just observing the contents through a window. In an actual circuit, the voltage on the

Q line is always present, whether high or low; the continuing presence is analogous to

peering through the window.

In fact, in an actual circuit, we shall sometimes want to be able to “turn off” the Q
voltage completely—memory circuits are often connected together, and this will prevent

data corruption. To do this, we use a tri state buffer, depicted in Figure 4.10. This is

an electronic “switch”. There is a data input line, a data output line, and a control

line. When control is high, the buffer acts as a single wire, so that the data input value

is precisely the output value. When control is low, the buffer breaks the connection

between the data input and output, rather like a physical switch breaks a connection.

We can add such a tri state buffer to the Q line of a clocked D-latch, which will allow

the stored data to be turned “on and off”. In such a case, we call the control line a read
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data in data out

control

Figure 4.10: A Tri State Buffer

enable line, or output enable line. In our model, you can think of the read enable line

being used to cover up, and uncover the box window.

Example 4.5.3 Explain how to produce a 1-bit memory which has a read enable line;

only when the line is high should the stored data be readable.

Answer:

Latch
data out

data in 

clock

D

C Q

read enable

(write enable)

Registers A k-bit register is simply a collection of k 1-bit memories, that is k clocked

D-latches, which have their clock lines wired together to form a single write enable line.

The idea is simply that we have k output lines (Q lines) each holding a “stored” digit,

k input data lines (D lines), and just one write enable line which simultaneously “locks

and unlocks (enables and disables)” the input lines. If the write enable line is high, each

of the k clock lines is high, so each clocked D-latch can be written to.

In Chapter 6 we describe a CPU in detail. One of the main components is a register

file which consists of

• a set of k-bit registers (each register has a number);

• a set of read-register busses and a set of read-data busses (the sets are the same

size);

• a set of write-register busses and a set of write-data busses; and
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Figure 4.11: A Register File

• a write enable line.

Here is the basic idea behind a register file. As a computer program runs, the CPU will

sometimes require data from main memory. In order for the CPU to use these data, they

will be written into registers in the register file. And the CPU will sometimes wish to

send data from the register file back to main memory. In order for the CPU to send these

data, they will be read from registers in the register file.

Writing to the Register File: In order to copy a word from main memory into the

register file, we need a bus to carry each word—awrite-data bus. We also need to specify

into which register the word is to be stored. We do that by specifying the number of

the register, which is carried on a write-register bus. We also need a write enable line to

ensure that the registers can be written to, that is, writing is enabled. The write enable

line for the register file is connected to the write enable line of each register.

Reading from the Register File: In order to read a word from the register file into main

memory, we need a bus to carry each word—aread-data bus. We also need to specify

from which register the word is to be read. We do that by specifying the number of the

register, which is carried on a read-register bus. The write enable line is normally low

when a read takes place. Sometimes there may be a read enable line.

In practice the sets of busses can be very small. A simple register file is given in

Figure 4.11, in which there are just two read-register busses with corresponding data

busses, and only one write-register bus, and one write-data bus. The write enable line

is denoted by just Write. There is no read enable line.

Exercises 4.5.4 Consider a very simple register file. It has eight 1-bit registers (so

each register is simply a clocked D-latch), a read-register bus of 3 lines, and a read-data

line. It also has a read enable line: if this is high, output can be read from the read-

data bus. Draw a circuit diagram which implements this register file, using eight 1-bit
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clocked D-latches, a multiplexor with 3+23 inputs, and a tri state buffer.

4.6 Computer Memory Circuits

4.6.1 Building Static Random Access Memory

Note the meanings of the following prefixes.

Kilo (K) 210

Mega (M) 220

Giga (G) 230

Tera (T) 240

A finite number of 1-bit memories each of which is written to simultaneously, provides

a basic building block for computer memory. For example, the MIPS computer has 8-bit

cells (bytes) as the smallest addressable memory unit.

A computer’s fast main memory is built from SRAMs, that is Static Random Access

Memorys. An abstract diagram of an SRAM appears in Figure 4.12. An SRAM is an

integrated circuit. It consists of a number of cells; in the example, the cells are 8 bits

wide, that is bytes. Each SRAM provides a fixed number of cells; in the example there

are 32K = 215 cells. The chip has an address bus which is used to indicate which cell

will be engaged in a read or write. The example has a bus with 15 lines, which can

be decoded into 215 addresses. Each cell can be written or read, requiring a data-input

(data-write) and data-output (data-read) bus; the example busses are each 8 bits wide.

There is a chip select line. If this is high, there is a possibility for the chip to be read or

written to. If low, no reading or writing can take place at all, and the chip is essentially

an isolated unit. Chip select “switches the chip on and off”. There is a write enable

line, which is connected to the cells’ clock lines, and an output enable line. When Chip

select is high, these two control lines determine whether writing or reading can actually

take place. (Output enable might also be called read enable.)

The number of bits in a cell is sometimes called the chip’s width, and the number

of cells its height. We talk about an h×w-SRAM; the example is a 32K × 8-SRAM.

Figure 4.13 gives some details of the construction of a 4×2-SRAM. Note that the Chip

Select and Output Enable lines have been omitted. Note that the Enable lines on each

bit control output from the individual bits—see Example 4.5.3.

Exercise 4.6.1 Draw in the Chip Select and Output Enable lines, together with any

circuits you need to implement these lines.

4.7 Further Examples

Examples 4.7.1
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Figure 4.12: A 32K x 8 SRAM
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Figure 4.13: A 4K x 2 SRAM
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(i) A (binary) NAND gate implements a function B2 → B. The output value is the nega-

tion of the ’and’ of the input pair. Show how to implement an AND gate using two

NAND gates.

Answer hints (you should give more details):

A

B

(ii) The function f :B3 → B has value 1 if an even number of input components are 1,

and is 0 otherwise. Show how to wire up a 3+23 | 1 multiplexor to produce a circuit

which implements f . You may assume that you have a power supply.

Answer hints (you should give more details):

+1V

0V (ground)

multiplexor

(iii) In this question, a bit is a clocked D-latch which does not have an output (read)

enable line. In each answer, you should show one Read Register bus and one Read
Data bus. You are not asked to show any Write busses or their associated circuit details.

1. Draw a circuit diagram of a 2× 2-bit register file, built from four bits and two

1+2 | 1-ary multiplexors.

2. Draw a circuit diagram of a 4×3-bit register file with an Output Enable line, built

from twelve bits, three 2+4 | 1-ary multiplexors and three tri-state buffers.
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Answer hints (you should give more details):

1.

QQ

read-register

Q Q

read-data

2.

QQ

read-register

Q Q

output-enable

Q

Q

Q Q Q

Q Q Q

read-data
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The Instruction Set Architecture Level

5.1 Introducing the MIPS Instruction Set Architecture

In Chapter 2 we saw that a modern computer contains a processor. We also saw that we

can write simple programs whose instructions can be executed by the processor. In this

chapter we explain in detail what many of these instructions look like, and how they

are represented inside a computer. The instructions are regarded as a programming

language; we call this language the instruction set architecture (ISA). In this chapter

we shall introduce the MIPS ISA. This is the language which is used to provide instruc-

tions for the MIPS R2000 processor. Before looking at an example MIPS instruction, we

explain a few details about the MIPS R2000. This processor has a register file which

contains 32 registers. These registers are used to store

• data which has been copied from main memory;

• the results of intermediate computations performed by the CPU;

• the values of arguments supplied to functions, procedures and methods;

• the final values of computations; and

• signals used in the control of the datapath;

and we will explain the details during the course of this chapter.

The MIPS R2000 ISA instructions can be supplied in two forms, namely in that of

machine language and assembly language, which are described in this chapter. We illus-

trate the idea using registers. First, recall that in Section 2.3 we defined a register as a

sequence of k bits, with k being 32 for the MIPS R2000. In fact the MIPS R2000 provides

a 32-bit computer, that is, all word locations are 32 bits long, both registers, and word

locations in the main memory.

So far, we have referred to registers using a symbolic notation. For example, on

page 12, we used A and B to denote registers. Using a symbol to denote a register is an

example of assembly language. In the MIPS R2000, we mentioned that there are only 32

registers. Each of these is denoted by a special assembly language symbol (constant). A

typical example is $s4. Please see Table 5.3 for the complete set. If we wish to refer to

an arbitrary (variable) register, we will call it R.

We can either refer to a specific register using its assembly symbol (eg $s4) or its

register number. In the MIPS R2000 register file these numbers are 0 to 31 and their

binary representations are the machine language numbers for the 32 registers. Note:
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The MIPS R2000 has 32 registers, and each register has 32 bits. Do not let this confuse

you!

Let us expand these ideas. Recall the simplified datapath of Section 2.3.3. When

the computer executes an instruction involving addition, the operands are copied from

the registers into the ALU, added, and the result stored in a register. MIPS provides an

assembly language instruction to perform this task; an example is

add $t0, $t1, $t2.

The register $t0 will hold the result of the addition. The operands are located in reg-

isters $t1 and $t2. This assembly language instruction has a corresponding form in

machine language, which looks like the middle row of

– $t1 $t2 $t0 – add

000000 01001 01010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

in binary notation. There are six sections representing the instruction. Each section

contains a fixed number of binary digits. The total number of digits is 32, so the machine

language instruction will fit into a word location. Each section is called a field, and codes

up part of the assembly instruction. For example, the last field tells the machine that the

word represents an instruction to add. The second field is the actual machine language

number of the (assembly) register $t1. This number is 9. Notice that we said the

MIPS R2000 has 32 registers. The register numbers can be represented in the machine

using 5-bits (why?), just as in our example. We will explain all of these ideas in greater

detail later on.

Now we look at an example MIPS program

begin : addi $t0, $zero, 1
addi $t1, $zero, 0
addi $t2, $zero, 8

repeat : add $t1, $t1, $t0
addi $t0, $zero, 1
bne $t0, $t2, repeat
sw $t1, 0, $t3

finish :

We shall look at this program in detail in the lectures; roughly, it sums the first seven

natural numbers. This will give you a flavour of how MIPS instructions work, before we

go on to the precise details. Exercise: Work out for yourself what the above program does; hint bne

stands for “branch if not equal” and sw for “store word”.

In order to explain the MIPS assembly language, we need to give an abstract defi-

nition of a program. A MIPS program consists of a finite sequence consisting of either

instructions or labelled instructions, each labelled instruction of the form L : I. Here I
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is a MIPS instruction, and L is a symbolic label. The program executes by having each

instruction in the sequence executed on the datapath. By default, the instructions are

executed in order, first to last. However, sometimes an instruction contains a label, and

the next instruction to be executed is the one indicated by the label.

The instructions we look at fall into groups known as categories. These are arith-

metic, logical, data transfer, conditional branch and jump. Later, we will see which

kind of instructions appear in which category.

5.2 MIPS Assembly Language

5.2.1 Registers, Locations, Assignment and Semantics

We shall use the symbol R to represent any one of the 32 MIPS registers. We will be

careful to distinguish a symbol denoting a location, and the contents of the location.

Recall that each register is an example of a location. Given a register, such as R, we

denote its contents by !R. This will be a 32-digit word.

As well as the 32 registers, we shall also want to refer to main memory word locations

and byte locations. We have already defined a byte location address (a byte location be-

ing the smallest addressable unit in a MIPS computer, an 8-bit cell) and a word location

address. It is convenient to have a notation to refer to the byte location at main memory

address a. The notation we use is B[a]. Similarly, W [a] denotes the word location with

word address a. It is also convenient to have a special notation to denote the contents of

byte locations and word locations: we write !B[a] for the contents of B[a], and similarly

for word locations. We can picture this as in Figure 5.1. Note that MIPS R2000 provides

a 32-bit computer. Program instructions will be held in consecutive word locations in

main memory. Because the cells are 8 bits long, the addresses of these word locations will

always be multiples of 4. Such addresses are said to be aligned. Finally, the MIPS R2000

processor will always operate in big endian format.

In this chapter we shall define the semantics of MIPS instructions. An instruction will

be written down using syntax such as assembly language. Its semantics is a description

of what actually happens in a computer when the instruction is executed. The semantics

does not tell us how the instruction is executed—this is a topic of Chapter 6.

In order to describe the semantics of instructions we shall use assignments. An

assignment takes the form R := ω where R denotes a register, and ω is a word. If the

register has k bits, the word ω must be a sequence of k binary digits. The assignment

means that the contents of R are changed or updated to ω. Thus we can describe

the semantics of the instruction add R1, R2, R3 as R1 :=!R2+!R3. This describes what

happens inside the machine when the instruction is executed. The + means digitwize

sum of two 32 digit binary numbers, namely !R2 and !R3.

We shall make use of a convention. We may write things like R := 3 where 3 is an

integer. The convention is that this will be shorthand for R :=~011
bin

(where there are
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30 zeros). We will also omit the bin when no confusion can arise. Thus R := 3 means

that the binary representation of 3 will be stored in R.

5.2.2 Addressing Modes

Consider the two instructions

addi R1, R2, 5 add R1, R2, R3

We refer to add and addi as instruction names. The registers Ri and the integer 5 are

called instruction arguments. In each case, the instruction name tells us, in principle,

what function or task or operation occurs at execution time. Here, it is some form of

addition. This is part of the instruction’s semantics. The arguments of the instruction

tell us where we find the data to be processed or acted on by the instruction, and where

to store the result. In the case of add above, the registers R2 and R3 contain data to

be processed by addition. We shall call them source arguments. In both instructions,

the register R1 specifies where the resulting sum is to be stored. We shall call it a

destination argument. Finally, we refer to the contents of a source argument as an

operand.

For example, in addi, the number 5 is both an argument and operand. The i stands

for immediate. We find the operand data “immediately”, it being the number 5 itself,

which will be used in the sum. In add, the register R3 is a source argument. Here, the

operand data is the contents of R3. In both instructions, R1 is the destination argument,

and R2 a source argument.

In general, there are a number of different ways in which source arguments allow

us to locate operands. The operand might be given directly/immediately, reside in a

register, or be in main memory. There are other possibilities, which we describe here.

In general, each MIPS source argument has a specific addressing mode which tells us

how to locate the corresponding operand.

Immediate Addressing The operand is specified directly as part of the instruction.

For example, in addi $t0, $t1, 24, the number 24 is an operand which is part of the

instruction. We sometimes refer to operands given by immediate addressing as con-

stants . The “i” in addi means immediate. The semantics of the instruction is given by

$t0 :=!$t1+24, which shows “immediate” use of the 24 in the sum. Thus the 32 digit

binary representation of 24 will be added digitwize to !$t1 and the result stored in $t0.

Register Addressing The operand is given as the contents of a register, and the reg-

ister is named in the instruction. If the register is called R, the operand is !R. As we

have seen, add uses register addressing for its source arguments. The semantics of

add $t0, $t1, $t2 is given by $t0 :=!$t1+!$t2. This notation shows very clearly the

use of register addressing to obtain the two operands. Register addressing is sometimes
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also called register direct addressing.

Register Indirect Addressing Suppose that an instruction involves a source argument

R. Register indirect addressing says that the operand is held in main memory at an

address, a say, and the address a is itself given by the contents of R. In this case, we

refer to R as a pointer. A main memory operand may come either from a byte location

or word location. Thus the operand specified by R is either !W [!R] or !B[!R].

Indexed Addressing It is often the case that we will need to load registers with a se-

quence of words from memory, and they will all be found “quite near” to one particular

address, called the base address. An analogous idea is getting books from a library on

one subject; once you have found one, the others are likely to be nearby. Indexed ad-

dressing allows the computer to use this idea. The source argument will usually look

something like k(R) where R is a register, and k is an immediate constant. k is called

a base (address). The contents of R are the offset , and indicate how far our data is

located from the base address. Thus the operand is held in memory at the address !R+k
which is the digitwize sum of !R and the 32 digit binary representation of k. We will see

that the operand may well be either a byte or a word, given by the contents of B[!R+ k]
or W [!R+ k].

Example 5.2.1 Suppose that !R =~01101 and that k = 2. What is the binary main

memory address given by the source argument k(R)?

Answer: The address is given by the digitwise sum !R+ k as defined above. The

binary for k is~010. So the address is~01111.

Direct Addressing The source argument for direct addressing is always a number,

say a. Unlike immediate “addressing”, with direct addressing this number refers to a

location whose address is a. Thus the operand is held in main memory at address a,

and is defined to be !W [a]. This addressing mode is not used in MIPS.

Exercise 5.2.2 Draw pictures of memory to illustrate each of the addressing modes.

Some of these will be given in lectures, but try the exercise before coming!

We shall now look at the syntax and semantics of various categories of instructions.

Before doing this, we have to explain a rather subtle point. So far, k has denoted an

integer, which may in fact be negative. Thus when we write, say, !R+ k, we actually

mean add the 32 digits of !R to a 32 digit 2s-complement representation of k. In fact in all

of the instructions we meet in this module, k ∈ Z must be stored in a computer within

16 bits. Thus we shall restrict k to the range

−215 ≤ k ≤ 215−1

which can be represented as a 16-bit 2s-complement number. Moreover, there will be

situations when the 16-bit representation of k is copied into a 32-bit register. When
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this happens, the most significant 16 register bits will be filled with 0s or 1s by either

zero extending or sign extending the 16-bit 2s-complement representation of k. Please

re-read Section 3.6.

5.2.3 Arithmetic Category Instructions

These instructions all function in a similar manner to the add instruction. The table

below shows some of those functions we shall be interested in

Syntax Semantics

add R1, R2, R3 R1 :=!R2+!R3

sub R1, R2, R3 R1 :=!R2−!R3

addi R1, R2, k R1 :=!R2+ sx(k)

Note that R2, R3 and k are all source arguments. The registers Ri employ register ad-

dressing, and k immediate addressing. This is indicated in the semantics column. The

integer k will be stored in the computer using 16 bits. In order for the 32-bit ALU to

add k to !R2, a circuit will be used to sign-extend the 16-bit 2s-complement number

which represents k to 32 digits. We write sx(k) for these 32 digits (even though, strictly

speaking, the sign extension is a function B16 → B32).

Example 5.2.3 Suppose that R2 contains 00000000.01000000.00000000.00000111and

that k =−32,760. What does R1 hold when addi R1, R2, k is executed?

Answer: We look for a power of 2 near 32760. In fact k =−215+8. Thus the 16-digit

2s-complement representation of k is 10000000.00001000. It follows that the 32-digit

representation of k is the sign extension of this value, namely

sx(10000000.00001000) = 11111111.11111111.10000000.00001000

Hence R1 will hold 000000000.00111111.10000000.00001111. Note: You can check this

by calculating the corresponding integer sum.

5.2.4 Logical Category Instructions

These instructions all function in a similar manner to the add instruction, but employ

logical operations. The logical functions are the digitwise AND and OR (see page 38).

The table below shows those functions we shall be interested in

Syntax Semantics

and R1, R2, R3 R1 :=!R2 AND!R3

or R1, R2, R3 R1 :=!R2 OR!R3

andi R1, R2, k R1 :=!R2 AND zx(k)
ori R1, R2, k R1 :=!R2 OR zx(k)
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The notation zx(k) means “zero-extend the 16-bit 2s-complement number which repre-

sents k.”

Example 5.2.4 Let k = −32760. Compute the contents of R1 when ori R1, R2, k is

executed. R2 holds b = 11111111.11111111.01111111.11110111.

Answer: k is represented in 16-bits by b′ = 10000000.00001000. Hence

zx(b′) = 00000000.00000000.10000000.00001000

So R1 will hold b OR zx(b′) shown below

11111111.11111111.01111111.11110111
00000000.00000000.10000000.00001000
11111111.11111111.11111111.11111111

5.2.5 Data Transfer Instructions

We have seen that data (and instructions) must be copied from main memory and stored

in registers to be processed by an ALU, and vice versa. When data is copied from

main memory into a register, we say it is loaded. When data is copied from a register

into main memory, we say it is stored. Try not to let these words confuse you—the

word “stored” applies to many situations, not just copying data from registers to main

memory. These forms of copying are referred to as data transfers. We examine various

examples.

Loading and Storing Words A example of a load word instruction looks like

lw $s1, 0($s2)

Informally, the semantics of the instruction entails finding a word which is stored in

main memory, and then copying it in the register $s1. The required word is found using

the source argument 0($s2) which employs indexed addressing. The base address is 0

the offset is a
def
= !$s2. Thus the word we seek is !W [a].

The general form of the load word instruction is lw R1, k(R2). The semantics is

similar to the above example, but we select the word location W with address the sum

of k and !R2, and store the contents of W in R1. Note that !R2 is the offset, and that the

constant k is the base address. Do not forget that k is stored in 16 bits, and that the

machine will perform a sign extension.

Storing (copying from a register to main memory) is accomplished using instructions

of the form sw R1, k(R2). Informally, we calculate a memory (word) address as the sum

of k and the contents of the register R2, and then copy the (word) contents of R1 into

main memory at the computed address. In summary:
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Syntax Semantics

lw R1, k(R2) R1 :=!W [sx(k)+!R2]
sw R1, k(R2) W [sx(k)+!R2] :=!R1

Loading and Storing Bytes Recall that we work with 8-bit cells, that is, a byte ad-

dressable machine. A example of a load byte unsigned instruction looks like

lbu $s1, 0($s2).

When this is executed, we examine the contents of $s2, which contains a memory ad-

dress, say a. We then use a as a byte location address, and we store the byte located

at a in the register $s1. The register contains a word, which consists of four bytes, so

where do we place the byte !B[a]? The u stands for unsigned. We place !B[a] in the least

significant $s1 bits, and set the other 32−8 = 24 bits to 0. Thus the semantics of the

instruction is $s1 :=~0~0~0!B[a], where~0 denotes a byte of 0s. B[a] has been zero extended.

There is also a load byte instruction. An example is lb $s1, 0($s2). In this case,

we examine !B[!$s2] which we regard as an 8-bit 2s-complement binary number. We

then copy it to the register $s1 in the least significant bits (as before) but sign extend

the register. Thus, for example, if !B[!$s2] represents a negative integer, then $s1 :=
~1~1~1!B[!$s2]. In the table below, we use the functions for zero and sign extension given

on page 39 to express these semantics.

Finally we have a store byte instruction. This works like sw except that the least

significant byte in R1 is stored into main memory. The contents of !R1 consists of the

four bytes β3 to β0.

Syntax Semantics

lb R1, k(R2) R1 := sx(!B[sx(k)+!R2])
lbu R1, k(R2) R1 := zx(!B[sx(k)+!R2])

sb R1, k(R2) B[sx(k)+!R2] := β0; β3β2β1β0
def
= !R1

Loading Constants We can load a constant into a register using the instruction

addi R, $zero, k

because its semantics is R :=~0+ k. The contents of $zero are 32 zeroes.

5.2.6 Conditional Instructions

A conditional branching instruction is one that will perform a small computation, such

as checking if two numbers are equal, and then depending on the result will make

program execution change to one of two possible instructions. We say that execution
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has two branches. Where it branches to depends, that is, is conditional on, the result

of the test. Such an instruction looks like bne R1, R2, L where R1 and R2 are any of the

MIPS registers, and L is a symbol known as an instruction label. (Of course, there is a

precise definition of the syntax for such labels, but this does not concern us here). We

have seen an example of bne before

repeat : add $t1, $t1, $t0
addi $t0, $zero, 1
bne $t0, $t2, repeat
next−instruction

Here, we use a label to execute repeatedly a piece of code. To execute bne we check

to see if !$t0 6=!$t2. If true, we execute (we say “branch to”) add $t1, $t1, $t0 again.

If false, we execute next−instruction. There is also an instruction to branch if two

numbers are equal, detailed below.

As well as branching to a new instruction, we may just want to record if a condition

is true or not. The instruction slt R1, R2, R3 checks to see if the contents of R2 is strictly

less than those of R3. If so, R1 is set to 1 (that is, it will hold~01), and if not to 0. Please

refer back to page 50.

Syntax Semantics

beq R1, R2, L if !R1 =!R2 then goto L
bne R1, R2, L if !R1 6=!R2 then goto L
slt R1, R2, R3 if !R2 <!R3 then R1 := 1 else R1 := 0

5.3 MIPS Machine Language

5.3.1 Introduction

We said that a MIPS assembly program was a sequence of (possibly labelled) instruc-

tions. When writing an assembly program, we do not put labels on all the lines. How-

ever, we could be obtuse, and put labels on each line, some being redundant. Then

a MIPS program will always look like this L1 : I1,L2 : I2, . . .Ln : In. The corresponding

machine language program will always have this kind of form. The labels will be com-

piled to actual machine addresses, and each instruction will be represented as a 32-digit

word. Recall that the PC is a register whose contents indicate the next instruction to be

executed; the contents will be machine addresses which correspond to the labels Li.

5.3.2 Instruction Fields

Given any MIPS assembly instruction, what is the corresponding 32-bit machine lan-

guage instruction? To answer this, we first explain instruction fields. Each machine

instruction belongs to one of three formats. These are known as R, I and J formats. In
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Format Fields

R op rs rt rd shamt funct

I op rs rt address/immediate

J op target address

# Bits 6 5 5 5 5 6

Table 5.1: Instruction Formats

this module we discuss only R and I formats. Each format specifies how the 32 bits are

divided up into sections known as fields. These are indicated in Table 5.1.

Before continuing, let us look at an example. Consider the instruction

I
def
= add $t0, $s1, $s2

This is an arithmetic category instruction, which by definition is R-format. The first field

is known as the opcode (abbreviated to op); for this instruction it is 0, and indicates an

R-format instruction. The final field is the function field (abbreviated to funct); for

this instruction it is 32 and indicates addition. The second and third fields indicate the

source arguments, that is, they specify the numbers of the registers which hold the two

source operands. For this instruction they are 17 and 18. The fourth field, 8, specifies

the destination register. Finally, the fifth field is 0. This field is called “shamt” standing

for shift amount. It is not required in any instruction in this course, and will always

hold 0. Putting this together, the above instruction is represented in the machine as the

following binary sequence

I= 000000.10001.10010.01000.00000.100000

whose fields were given above in decimal notation. Thus the second field of 5 digits in

positions 25 to 21 is 10001bin. We will sometimes write I[25−21] for these digits. See

Chapter 6.

Now back to the general definitions. We explain the roles of the various fields within

the three formats

R-Format In R-format instructions, the name of the instruction is indicated by using

the funct field.

• op: This field is the opcode. For the R-format instructions in this module the opcode

is always 0 (ie the actual field is 000000bin), and the operation is one of the arithmetic or

logical operations, or slt. There are other possibilities for the opcode, but this module

does not cover them. The exact operation performed is indicated by the funct field.
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• rs: This field specifies the number of the first source argument register.

• rt: This field specifies the number of the second argument register.

• rd: This field specifies the number of the destination register.

• shamt: This field is not used in the instructions covered by this course; it will be set

to zero.

• funct: The opcode indicates a set of operations, and the function field specifies the

actual operation. For example, with opcode 0 and function field 32, the operation is

addition, and the instruction name is add.

The R-format instructions are add, sub, and, or and slt. Note that each instruction has

the form name R1, R2, R3. We specify the use of each field using a table:

~0 R2 R3 R1 ~0 add, sub, and, or, slt

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Example 5.3.1 Which field and bits are used to store the number of register R1 in the

R-format instruction sub R1, R2, R3?

Answer: From the table, the register number is given by the rd field; this is stored in

bits 15 to 11.

I-Format

• op: This determines the instruction name, eg load word, store word, etc (instead of

the funct field which was the case for R-format).

• rs: This field specifies either a source or destination register.

• rt: This field specifies either a source or destination register.

• address: This field sometimes specifies an address offset, or sometimes a branch

address. In both cases, it uses immediate addressing. It can also be used to specify

an immediate constant in arithmetic and logical instructions; in such cases, the word

“address” is rather unfortunate!

The I-format instructions appear in the following tables. Those with the form name R1, k(R2)

are

addi, andi, ori, lw, sw, lb, lbu, sb R2 R1 k

op rs rt address

6 bits 5 bits 5 bits 16 bits

The branch instructions have the form name R1, R2, L with fields

beq, bne R1 R2 L

op rs rt address

6 bits 5 bits 5 bits 16 bits
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5.3.3 Translating Assembly to Machine Language

An assembler is a program that will translate assembly language into machine lan-

guage. The assembler specifies a function which maps assembly language instructions

into machine instructions. We can do this using the translation table given in Table 5.2.

The details will be given in the lectures. The idea is quite simple. To translate an assem-

bly instruction into machine language, use Table 5.2 to provide the opcode and function

fields. Then use the field layouts given in this Section 5.3.2, together with the register

number Table 5.3, to provide the values of the remaining fields.

Example 5.3.2 What is the machine code for lw $s1, 13($t1)?

Answer: The opcode for lw is 35. The number for $s1 is 17 and $t1 is 9. The 16 digit

representation of k = 13 is 0000000000001101. Hence the answer is

10011 01001 10001 0000000000001101

Note the “reversal” of the register numbers in the machine code.

5.3.4 Branch Addressing

When a branch instruction is executed, what happens? The processor calculates a

boolean test. Then the processor updates the PC to the address of the next instruc-

tion to be executed, according to the test result. Suppose the branch instruction is at

address a. If the test is false, the next instruction to be executed is simply the next one

in the physical memory: what is the address? If the test is true, the processor needs to

work out the address; for now let’s call it a′.

In the examples we have seen, symbolic labels were used in the branch instructions

beq R1, R2, L. The label L is used to point to the next instruction to be executed when

the branch test is true, ie the register contents are equal. Now the assembler will translate

branch instructions into machine code; in particular, we have seen that a symbolic label

L will be translated to a numerical (address) field which is only 16 bits long:

beq, bne R1 R2 L

op rs rt address

6 bits 5 bits 5 bits 16 bits

Warning: Note that there are two uses of the English word “address”, namely the physical

memory address of instructions (such as the branch), and the 16 digit so-called machine

code address field.

Suppose the test is true. In fact the address field measures (in binary) how far in words

the next instruction I′ to be executed (the labelled instruction) is from the next
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Table 5.2: MIPS Opcode Map



80 Chapter 5. The Instruction Set Architecture Level

Register Usage

$zero 0 contents always zero

$at 1 reserved for assembler

$v0 2 expression evaluation and function results

$v1 3 expression evaluation and function results

$a0 4 first argument component (preserved across call)

$a1 5 second argument component (preserved across call)

$a2 6 third argument component (preserved across call)

$a3 7 fourth argument component (preserved across call)

$t0 8 temporary (not preserved across call)

$t1 9 temporary (not preserved across call)

$t2 10 temporary (not preserved across call)

$t3 11 temporary (not preserved across call)

$t4 12 temporary (not preserved across call)

$t5 13 temporary (not preserved across call)

$t6 14 temporary (not preserved across call)

$t7 15 temporary (not preserved across call)

$s0 16 saved temporary (preserved across call)

$s1 17 saved temporary (preserved across call)

$s2 18 saved temporary (preserved across call)

$s3 19 saved temporary (preserved across call)

$s4 20 saved temporary (preserved across call)

$s5 21 saved temporary (preserved across call)

$s6 22 saved temporary (preserved across call)

$s7 23 saved temporary (preserved across call)

$t8 24 temporary (not preserved across call)

$t9 25 temporary (not preserved across call)

$k0 26 reserved for OS kernel

$k1 27 reserved for OS kernel

$gp 28 pointer to global area (preserved across call)

$sp 29 stack pointer (preserved across call)

$fp 30 frame pointer (preserved across call)

$ra 31 return address (after function call; preserved across call)

Table 5.3: Register Numbers and Their Usage
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instruction I in memory just after the branch. We call the integer denoted by the address

field an offset. Here is a picture in the case when the offset, ow, is at least three words:

a beq . . . . . .

a+4 I . . . . . . 1 word
... 2,3,4, . . . ,ow−1 words

J . . . . . . ow words

a′ = (a+4)+ob I′. . . . . .

So working out the integer offset ow (and hence the binary representation, address∈
B16) is easy: just count up the number of words ow which occur between the (address

of the) instuction I and the (address of the) labelled instruction I′. And we can also

calculate the integer offset ob in bytes (cells) since it is obviously ob = 4∗ow.

• The instruction I′ might occur at an address lower than a, that is, we branch

backwards. Thus the address field will be regarded as a 2s-complement number.

It will yield an offset which can be positive or negative.

• In simple examples we will be likely to work with integer offsets, and integer

addresses. Thus if a,a′ ∈ Z, but the address field itself is in B16, then we have

a′ = (a+4)+4∗ (|address|).

• In a real computer, the PC is updated to point to an instruction one word on from

the branch (ie with address a+4) BEFORE any branch test. That is why the address

field yields offsets from a+4. Note that if the labelled instruction were actually at

address a+4 (the case when I= I′) then the offset in words is actually 0 and the

machine will next execute the instruction found at address a+4.

Putting all this together, at the end of execution, the new value of the PC will be given

by

PC := (!PC+4)+(4∗address) if test TRUE

PC := (!PC+4) if test FALSE

Note that this is a form of indexed addressing, known as PC indexed addressing. Note

also that in an actual machine, !PC+4 means “digitwise addition of the 32 digit !PC to
~0100

bin
” and that the 16 digit address field will be sign extended to 32 digits.

Exercises 5.3.3

(i) Draw some diagrams of branch instructions in memory, and make sure you really

understand the details given above.

(ii) What is the offset range given by the address? (Care!)
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5.4 Compiling Real Programs

This section is non-examinable. See Hennessy and Patterson for more details.

Programs in a high level language are usually first translated into assembler. Such a

translation program is called a compiler. Of course, the assembly code is then assem-

bled into machine code to produce a program which can be run on the actual microar-

chitecture. We often refer (incorrectly) to this combined process as compilation. The

machine code is then executed at run time.

The process of compilation (high level to assembly) is very complex, and we could

devote whole modules to the topic. However, we do want to give a flavour of some of

the key ideas. We do this by example.

• Every program variable will be associated with a MIPS register.

• Every program construct (such as a conditional test, while loop, etc) will be associated

with a particular form of MIPS program (eg a branch or jump).

• Every program function will have its arguments stored in argument registers.

• Every program function will have its return variables stored in saved registers.

• Every program function will have its return expressions stored in value registers.

• The MIPS code for a function call must push those registers labelled as “preserved on

call” onto the stack, and hence save their values across the call.

5.4.1 Compiling A Conditional

The JAVA code is

if (x==y) f = 2;
else f = u + v;

We will associate the variables with saved registers as follows:

x 7→ $s1 y 7→ $s2 f 7→ $s3 u 7→ $s4 v 7→ $s5

The MIPS code is

bne $s1, $s2, Else
addi $s3, $zero, 2
j Exit

Else : add $s3, $s4, $s5
Exit :
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5.4.2 Compiling a While Loop and Array

The Java code is

while (A[i]==k) i = i+j;

Suppose that

i 7→ $s3 j 7→ $s4 k 7→ $s5

and that the assembler stores the address of the first array element in $s6.

The MIPS code is

Loop : add $t1, $s3, $s3
add $t1, $t1, $t1
add $t1, $t1, $s6
lw $t0, 0, $t1
bne $t0, $s5, Exit
add $s3, $s3, $s4
j Loop

Exit :

5.4.3 Compiling A Simple Function

The JAVA code is

int simple (int x, int y)
{
int f;
f = (x + y) + 8;
return f;

}

We will associate the variables with saved registers as follows:

x 7→ $a0 y 7→ $a1 f 7→ $s0

The MIPS code is
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Simple : subi $sp, $sp, 12
sw $s0, 8, $sp
sw $a0, 4, $sp
sw $a1, 0, $sp
add $t0, $a0, $a1
addi $s0, $t0, 8
add $v0, $s0, $zero
lw $a1, 0, $sp
lw $a0, 4, $sp
lw $s0, 8, $sp
addi $sp, $sp, 12
jr $ra

Exit :

5.5 Further Examples

Examples 5.5.1

(i) Suppose that

R2 = 00000011.10111001.00000000.11110000
R3 = 10000001.10101010.11111111.00001111

k = −32753

Give the contents of R1 after the execution of

1. add R1, R2, R3

2. and R1, R2, R3

3. addi R1, R2, k

4. andi R1, R2, k

5. ori R1, R2, k

Answer hints (you should give more details):

1.

00000011.10111001.00000000.11110000
10000001.10101010.11111111.00001111
10000101.01100011.11111111.11111111

2.

00000011.10111001.00000000.11110000
10000001.10101010.11111111.00001111
00000001.10101000.00000000.00000000
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3.

00000011.10111001.00000000.11110000
11111111.11111111.10000000.00001111
00000011.10111000.10000000.11111111

4.

00000011.10111001.00000000.11110000
00000000.00000000.10000000.00001111
00000000.00000000.00000000.00000000

5.

00000011.10111001.00000000.11110000
00000000.00000000.10000000.00001111
00000011.10111001.10000000.11111111

(ii) The memory byte location with address 15 contains 10001001. The MIPS instruction

multi R1, R2, k has semantics R1 :=!R2∗ k. The register $s0 contains

00000000.00000001.00000000.00000000

Write a MIPS program which uses just one lb instruction, together with your choice of

arithmetic category instructions and no other category of instruction, such that at the end

of the program run $t0 contains

00000000.00000000.10001010.00000000

Answer hints (you should give more details):

lb $t0, 15($zero)
multi $t0, $t0, 28

add $t0, $t0, $s0
addi $t1, $zero, 1
multi $t1, $t1, 28

add $t0, $t0, $t1

(iii) Suppose that $a0 contains a positive integer p ≥ 2. State in one simple but pre-

cise sentence what the contents of $v0 is after the following MIPS program has been

executed.
begin : addi $t0, $zero, 0

addi $t1, $zero, 0
repeat : slt $t2, $a0, $t1

bne $t2, $zero, finish
add $t0, $t0, $t1
addi $t1, $t1, 2
j repeat

finish : add $v0, $t0, $zero
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Now explain carefully and in detail how you came up with your answer.

Answer hints: $v0 will contain the sum of the first !$a0 DIV 2 even numbers.

Registers $t0 and $t1 are set to 0. There is a loop. Register $t1 is incremented in steps

of 2, and thus records the even numbers. Register $t0 keeps a running total, being

incremented by the value of $t1 which contains the next even number each time the

loop repeats. At the end of the first loop, registers $t0 and $t1 contain 0 and 2. At the

end of the second loop, registers $t0 and $t1 contain 2 and 4. Then 2+4 and 6. At the

end of the nth loop they will hold the sum of the first n−1 positive even numbers and

2∗ n. We break out of the loop when 2∗ n is first strictly greater than p, by setting the

flag $t2 to be 1, and branching to finish. But 2∗ n > p ≥ 2∗ n−2=⇒ (n−1) = p DIV 2
Thus the first p DIV 2 even numbers will be summed.



6

The Micro Architecture Level

6.1 Introduction

In this chapter we shall show how to use some simple circuits to build a small CPU.

There are many different ways of building a CPU. We refer to the overall design of the

CPU as its architecture. Micro reminds us that we are talking about the CPU design,

and not, for example, the overall computer design. We shall show how to develop a

micro architecture, that is, a CPU design, for a very small subset of the MIPS ISA. This

consists of

• The R-format instructions add, sub, and, or, and slt; and

• the I-format instructions lw, sw, and beq.

Recall the idea of a fetch-decode-execute (FDE) cycle, which is performed by the

CPU, and in particular the datapath and the control unit. Figure 6.1 shows an abstract

picture of a datapath. Note that there is more detail than in Chapter 2. Each thick

black arrow denotes a bus. Note also that the busses indicated in the diagram have dif-

ferent widths—the diagram just gives a rough idea of the CPU we will soon construct.

The rectangles (etc) denote electronic circuits. Data, represented by binary numbers,

is carried by the busses as high and low voltages, 1 and 0. We sometimes refer to the

data on a bus as a signal. The PC rectangle is indeed the program counter. Its contents

give the address of the next instruction to be executed. Thus the bus joining the PC to

Instruction memory is 32 bits wide. The address !PC is passed along the Address bus

and into the Instruction memory. The next instruction (I say) is “fetched” from the

Instruction memory. This means that its binary representation is passed along the 32

bit bus coming out of Instruction memory. Recall that the instruction is composed of

fields. Each field is passed along a bus to a part of the data path. For example, the fields

specifying register numbers are passed into the read-register busses Register# of the

register file Registers. Note that as the read-register busses Register# are used to

specify register numbers, they are therefore only 5 bits wide (there are 32 registers).

The contents of these registers will be passed out of the two 32 bit read-data busses

(the busses coming out of Registers) and into the ALU. The ALU performs any neces-

sary computations, and any Data memory reads/writes take place. This completes the

execution of the instruction.

Notice that the datapath is composed of combinational and sequential circuits. We

shall call separate circuits, which perform a special task, elements. For example, there

is a combinational ALU element. The sequential elements, such as Data memory, have

a state, which is the contents of all of the memory locations at a given time.
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Figure 6.1: Abstract Single Cycle Datapath

We will explain how to design a control unit later on. For the time being, just re-

member that it is used to “perform” the FDE cycle. In particular it will provide settings

for the datapath elements. For example, if the instruction is add, control will send sig-

nals to the ALU to ensure that the addition operation is selected (see Section 4.4.6 of

Chapter 4). We sometimes also say that the ALU has been set.

6.2 Datapath Components

In this section, we shall describe a number of components from which our datapaths

can be built.

During the first part of the FDE-control cycle, we use the contents of the PC to provide

an Instruction memory address. The instruction held at the word location given by

the address will be sent to the rest of the datapath along the Instruction bus. At

this stage of the FDE-control cycle, we update the PC to !PC+4 so that it points to the

(next) program instruction which is one word along from the current instruction. The

components in Figure 6.2 will implement this.

6.2.1 R-Format

These have the form name R1, R2, R3. Having fetched an instruction and updated the

PC, we now consider circuits which will execute R-format instructions. A suitable dat-

apath is given in Figure 6.3. The machine instruction is passed along the 32-bit wide

Instruction bus. It will be useful to write I[31−0] to denote the 32-digit instruction.

Recall that the machine code instruction has binary fields for the numbers of the two

source registers, and the number of the destination register. These fields are passed

into a register file, by using some of the lines from the 32-bit wide Instruction bus.
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Figure 6.2: Fetching Instructions and Incrementing the PC
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Figure 6.3: A Datapath for R-Format Instructions
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Figure 6.4: A Datapath for Load and Store Instructions

For example, the numbers for the source registers R2 and R3 are carried on the fields

I[25− 21] and I[20− 16]. These fields are passed along the 5 bit Read register 1
and Read register 2 busses, which are made from lines 25 to 21, and lines 20 to 16,

of the Instruction bus. The destination register number is passed along the Write
register bus. Note that although these busses are only 5 bits wide, this is not indi-

cated in the figure. The source operands (ie the contents of the source registers) now

appear on the 32 bit Read data 1 and Read data 2 busses, and are thus read into

an ALU which performs arithmetic or logic. Finally, the result of the ALU is written

into the destination register by passing the result along the 32-bit ALU result bus and

thus into the Write data bus of the register file. (Control will pass signals along the

ALU control bus ALU Operation to select the correct ALU operation. The 3 bit ALU
Operation consists of the 1 bit Bnegate line and 2 bit Operation bus.)

6.2.2 Load and Store

Next we look at load and store instructions which take the form

lw R1, k(R2) and sw R1, k(R2)

A suitable datapath is given in Figure 6.4. Recall the semantics of these two instruc-

tions:

R1 :=!W [sx(k)+!R2] W [sx(k)+!R2] :=!R1

Both compute a Data memory address a which is given informally by adding the offset k
to the base address given by the contents of R2. More precisely, as we saw in Chapter 5,
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a is the 32-bit word given by !R2+ sx(k). The datapath elements are set up to calculate

this address. We examine lw in detail. The source register (R2) number I[25− 21] is

passed into Read register 1, and the 16-bit representation of k which is I[15−0] is

passed into the Sign extend circuit. The contents !R2 of the source register are passed

via Read data 1 into the ALU, along with sx(k). The control selects the ALU operation

of addition. Thus a =!R2+ sx(k) is fed into Address. This causes the Data memory to

pass the contents of the word location at a, that is !W [a], into Read data and hence

into the register file’s Write data bus. The destination register (R1) number I[20−16]
will already have been passed into Write register, and so !W [a] will be written in R1

as required. (The RegWrite control line, which is a write enable line, will be set high

by control, to ensure the write can take place.)

Exercise 6.2.1 For store instructions, write down the (semantic) values which will be

carried on the various Datapath busses during passage of a clock cycle, just as we have

done for load instructions.

6.2.3 Branches

The “branch on equal” to instruction has the general form beq R1, R2, L. Recall the

semantics

if !R1 =!R2 then goto L

To execute it, first we calculate if !R1 =!R2 is true or false. Notice that this is the same as

checking if !R1−!R2 is zero or not. This can be done using the ALU. The control unit will

select ALU subtraction. Recall (page 52) that the ALU has an output line Zero which

“tests for zero”. This will carry 1 if the subtraction is zero, and carry 0 if not—and hence

indicate to the computer if !R1 =!R2 is true or false.

If the register contents are equal, the Datapath does not need to do any further work;

the PC will need to be updated so that the next sequential instruction is executed, but

that has already been done by another part of the Datapath (which we have already

looked at).

Otherwise, we need to calculate a value for the PC, namely the address of the instruc-

tion to branch to. Before going on, read Chapter 5 subsection 5.3.4 again, and review

the definition of the address field. We see that the new address is given by

(!PC+4)+(4∗I[15−0])

where I[15− 0] is the machine code arising from label L (the address field). In the

circuits, the 16-digit I[15−0] must be sign extended to 32 digits. Also, we can multiply

by 4 by shifting digits two places left; see page 40. Thus the address is given by the

digitwise sum (!PC+4)+(sx(I[15−0])≪ 2). A suitable datapath is given in Figure 6.5.

Exercise 6.2.2 Write down the values which will carried on the various Datapath

busses during the instruction execution.
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Figure 6.5: A Datapath for the Branch if Equal Instruction
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6.3 A Single-Cycle Datapath with Control

6.3.1 Building the Datapath

We now combine the separate datapaths into a single datapath that can implement all of

the instructions given in Section 6.1. The required datapath is given in Figure 6.6. This

datapath is essentially a direct conjunction of the datapath components, except for the

addition of three multiplexors and their control lines, PCSrc, ALUSrc and MemtoReg.

The new datapath provides two possible sources for the data to be written into the

PC, second ALU source, and Register File respectively, selected by the multiplexors.

The multiplexors have their control lines set by the CPU control unit. Our single cycle

datapath only requires a single use of the control unit for each instruction. For any

given instruction, the control unit will set the multiplexor control lines to ensure the

correct data is written into the PC, second ALU source, and Register File.

• PCSrc: If the instruction being executed is R-format, or data transfer, the next

instruction will be found at address !PC+4. In such cases, PCSrc will be set to

0 to ensure that !PC+4 is sent to the PC. If a branch instruction beq is executed,

and the conditional is true, then PCSrc will be set to 1 to ensure that (!PC+4)+
(sx(I[15−0])≪ 2) is sent to the PC.

• ALUSrc: the second ALU source comes from the Read data 2 bus in the case

of R-format and beq instructions. The second ALU source comes from the Sign
extend element in the case of both lw and sw instructions.

• MemtoReg: Exercise: Explain the two Write data sources for the Register file, and their selec-

tion using MemtoReg.

6.3.2 Building Control

We now explain how the single cycle control unit is built. First, look at the diagram

in Figure 6.7 which shows our single cycle CPU. You can see the Single Cycle Datapath

with control units added. By definition, each instruction will execute in a single clock

cycle. This means that we can set all of the control lines, once and for all, just prior to

the execution of each instruction. This will ensure that when the instruction is passed

into the datapath, the datapath elements are set correctly. The elements which have

control lines/busses are

• the multiplexors and memory elements, and

• the ALU.

There are two separate control units, Control and ALU Control. This is because the

settings for the multiplexors and memory elements are determined completely by the
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Figure 6.6: A Single Cycle Datapath for MIPS

instruction opcode I[31−26] and can have their own control unit. However, the setting

of the ALU also requires the instruction’s funct field I[5−0], and hence the ALU has a

separate control unit.

We consider how each of these elements is constructed. First note that each control

unit is a simple combinational circuit. Thus, to construct each one, all we need is a

truth table giving the input components and output components. The situation at the

moment is

Unit Inputs Outputs

Control I[31−26] settings for multiplexors and memories

ALU Control I[31−26] and I[5−0] settings for the ALU

However, we can simplify matters slightly, by reducing the number of inputs into the

ALU control unit. The opcode I[31−26] must be fed into Control. However, for our

small selection of instructions there are only four different opcodes, for lw, sw, beq and

any R-format instruction. beq requires subtraction. For any R-format instruction it is the

funct field I[5−0] which selects the ALU operation. Moreover, both lw and sw require

ALU addition. So the opcodes only specify 4−1= 3 different situations. Thus instead of

feeding I[31−26] directly into ALU Control, we use Control to feed simpler output

signals to ALU Control. We only require 4−1 = 3 signals, and these will be passed

to ALU Control along a 2-bit bus ALUop. The effects of these signals, and the signal

values, are given below.
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Instruction Opcode Effect on ALU Control ALUOp1 ALUOp0
lw ALU Control sets ALU to + 0 0

sw ALU Control sets ALU to + 0 0

beq ALU Control sets ALU to - 0 1

R-Format ALU Control sets ALU using funct 1 0

The situation now is

Unit Inputs Outputs

Control I[31−26] settings for multiplexors and memories

ALU Control ALUOp0, ALUOp1 and I[5−0] settings for the ALU

Let’s now build Control, and then ALU-Control, by constructing their truth tables.

Control The input tuple to the Control unit is the opcode field of the current instruc-

tion. The output tuple is given by the values on RegDst, Branch and so on. From the

previous section we know the values of the ALUOp components. All other output lines

are 1-bit. In Table 6.1 we record the effects which take place when these output lines

have value 0 or 1. We can now write down the Control truth table, from which we can

build the Control unit via a PLA. It appears in Table 6.2. An X means that the actual

value does not matter. Here are some explanations.

• When executing a lw instruction, the contents of a main memory word location

will be copied into the register file. Thus RegWrite must be 1 to enable the

copying to take place.

• When executing a sw instruction, nothing should be written into the register file.

Thus RegWrite must be 0 to disable writing to the file. And if writing is disabled,

the data held on Write data does not matter. Hence it does not matter what

MemtoReg holds.

Exercise 6.3.1 Justify the other entries in the table.

ALU Control This is now extremely simple. The input components come from the

ALUOp bus and the funct field. The output should select the correct ALU operation, by

giving the values of Bnegate and Operation which are the ALU’s control lines. See

Section 4.4.6 of Chapter 4 and Table 6.3. In Chapter 4, an example explains why the

three control lines are set to 111 for slt.

6.4 Timing and Performance

Recall that a computer has a clock which is a circuit that generates regular pulses of

a fixed length. These regular pulses are used to give a measure of time. Usually, the
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Signal Name Effect when 0 Effect when 1

RegDst The register destination number for the
Write register comes from the rt

field.

The register destination number for the
Write register comes from the rd

field.

Branch The contents of PC can only be updated
with !PC+4

The contents of PC may be updated
with a branch target; this only happens

if Zero is high.

RegWrite The register file cannot be written to. The register specified by the value of
the Write register input is written

with the value of the Write data in-

put.

ALUSrc The second ALU operand is the value

on Read data 2.

The second ALU input is the sign-

extended, lower 16 bits of the instruc-

tion.

PCSrc The contents of PC is updated with

!PC+4
The contents of PC is updated with a

branch target.

MemRead Data memory cannot be read from. Data memory contents specified by Ad-
dress input value are put on the Read
data output.

MemWrite Data memory cannot be read to. Data memory contents specified by Ad-
dress input value are replaced by the

value on the Write data input.

MemtoReg The value fed to the register Write
data input comes from the ALU.

The value fed to the register Write
data input comes from the Data mem-
ory.
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Instruction Opcode field R
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lw 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0

sw 1 0 1 0 1 1 X 1 X 0 0 1 0 0 0

beq 0 0 0 1 0 0 X 0 X 0 0 0 1 0 1

R-format 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0

Table 6.2: Control Unit Truth Table
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lw (+) 0 0 X X X X X X 0 1 0

sw (+) 0 0 X X X X X X 0 1 0

beq (-) 0 1 X X X X X X 1 1 0

add (+) 1 0 1 0 0 0 0 0 0 1 0

sub (-) 1 0 1 0 0 0 1 0 1 1 0

and (AND) 1 0 1 0 0 1 0 0 0 0 0

or (OR) 1 0 1 0 0 1 0 1 0 0 1

slt 1 0 1 0 1 0 1 0 1 1 1

Table 6.3: ALU-Control Unit Truth Table
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control unit will set up the datapath elements once during each cycle. Thus if a whole

instruction can be executed with just one setting of the datapath, we call it a single

cycle instruction. If the execution of an instruction requires the datapath to be set more

than once, we call the instruction multi cycle. If a datapath requires just a single setting

to execute any single instruction, we call it a single cycle datapath (we only cover these

kinds of datapath in the lectures). If there are instructions for which a datapath requires

multiple settings to execute any one of them, we call it a multi cycle datapath.

We refer to the number of clock cycles required to execute an instruction as the cycles

per instruction or CPI, and write CI for the CPI of instruction I. It is often the case that

a particular class of instructions can be found which all have the same CPI. In particular,

given a program P, the instructions which occur in P can be divided up into classes of

instructions with identical CPI. We shall write ClCPI(P) for the set of such classes, and

we will refer to a typical class c. Given a program P, we write |P|c for the number of

instructions in P of class c. We will also write Cc for the clock cycles required for any

instruction in the class c, CP for the total clock cycles required to execute the program

P, and CI for the total clock cycles required to execute the instruction I. Finally, the

number of clock cycles required to execute a program P must be

Total Clock Cycles =CP = ∑
c∈ClCPI(P)

|P|cCc

Time for an example.

Example 6.4.1 Suppose that data transfer instructions form a class called α requiring 5

cycles, arithmetic instructions a class called β requiring 4 cycles, and branch instructions

a class called γ requiring 6 cycles. Given a program P

lw . . .
lw . . .
add . . .
sub . . .
bne . . .
sw . . .

then ClCPI(P) = {α,β,γ}, and

Class c Cc

α 5

β 4

γ 6

Class c |P|c
α 3

β 2

γ 1

Thus the number of clock cycles to execute P is

Total Clock Cycles =CP = (3×5)+(2×4)+(1×6) = 29
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We shall write π and f for a clock period (time for a complete clock cycle) and

frequency. Of course

π = 1/ f tP =CPπ tI =CIπ

follows from the definitions, where tP is the time taken to execute P. The time taken

to execute an instruction is known as latency. It also follows that the time taken to

execute P is

tP =

(

∑
c∈ClCPI(P)

|P|cCc

)

π

This allows us to formulate Amdahl’s law which computes new execution times if we

are able to speed up instructions. Suppose that a class c′ of instructions can be speeded

up by a factor su, so that they now require Cc′/su cycles to execute. The new execution

time will be

New tP =

(

∑
c∈ClCPI(P) ;c6=c′

|P|cCc

)

π+ |P|c′(Cc′/su)π

6.5 A Multi-Cycle Datapath with Control

This section is non-examinable.

6.5.1 Building the Datapath

In a single cycle datapath, a complete instruction is executed during one clock cycle, and

each datapath element is set just once by control. The values of control are only altered

as we pass from one clock cycle to the next. If a complete instruction must be executed

during this clock cycle, then all combinational circuits used by the instruction must be

set correctly at the start of the cycle. Thus, for example, if two arithmetic operations

are to be performed during an instruction’s execution, then we shall require two ALUs;

we saw exactly this in our Single Cycle datapath (note the third ALU was used only to

update the PC).

In a multicycle CPU, combinational elements can be used more than once per instruc-

tion execution, provided that each use happens on a different clock cycle. This ensures

that when the element is used again, it has been correctly reset at the start of the new

clock cycle. In Figure 6.8 we see an abstract view of a multicycle datapath. Note that

just one ALU is used for all arithmetic operations, and that there is just one memory. In

the multicycle datapath, a clock cycle will be sufficient for just one of the following

(i) a Memory data transfer (load or store);

(ii) a Register File access (two reads or one write);

(iii) an ALU operation.
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Figure 6.8: Abstract Multi Cycle Datapath

In order to ensure that data is passed correctly between the memory, register file and

ALU elements, whose control settings change on each clock cycle, we build in new

registers between these elements. They can be seen on the CPU diagram. They are used

to store data which will be used by the current instruction but on a later clock cycle. If

they were not present, data might be corrupted when the control settings change. We

sometimes refer to the Instruction register as IR, and Memory data register
as MDR.

Now that we have looked at a basic outline for our multicycle datapath, we begin to

build a multicycle datapath for the instructions on page 87. First, we look at a basic

datapath for non-branching instructions (we will add in the control units later on). This

is given in Figure 6.9. Note that some of the multiplexors are identical to those in

the Single Cycle datapath. Some are extended versions of those in the Single Cycle

datapath. Others are new.

(i) There is a new multiplexor before the Memory Address line. In the multicycle ma-

chine, there is just one memory which stores both instructions and data, whereas in the

Single Cycle Datapath we had Instruction memory and Data memory. When a mem-

ory read takes place, we have to specify if the information read is in fact an instruction,

or some other data. If an instruction is read, then its address must be supplied by the

PC. Otherwise, if data is read, the address will come from the ALU. The choice is made

by the multiplexor.

(ii) The single ALU now has to increment the PC by 4 and deal with sign-extended

and shifted inputs. The ALU second source is connected to an extension of a previous

multiplexor to make these choices.
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Figure 6.9: A Multi Cycle Datapath for Non-Branching Instructions
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Exercise 6.5.1 Look at the other multiplexors and make sure you understand what

their roles are.

Finally, we can add in circuits for branch instructions, and also the new control unit

and control lines. The final multicycle datapath, together with control lines, appears

in Figure 6.10. Note that there are circuits to compute jump instructions. These will

not be part of this course, and are certainly non-examinable. We will not say anything

more here about the datapath. The way it works will become clearer as we study its

control units. The principles are the same as for the Single Cycle Datapath.

6.5.2 Building Control

6.5.2.1 The Effects of Control Settings In order to decide on the outputs of our con-

trol unit, we need to decide on the individual effects of the various signals. The ideas

are similar to the singlecycle datapath, so we will not say any more here, apart from

listing the effects. The effects of setting the control signals are given in Table 6.4.

6.5.2.2 Execution Steps In the Multicycle Datapath, the execution of one instruction

will be broken into a number of steps. Each step requires one clock cycle for its comple-

tion. (Previously, we had one instruction executing in one cycle. The control unit was

used only once.) Each of these steps forms part of a Fetch Decode Execute (FDE) pro-

cess. The first step (cycle) involves fetching an instruction. The second cycle decodes

the instruction. The remaining cycles involve a sequence of execution steps which vary

according to the instruction under consideration.

In order to describe the FDE process, we shall give the changes of state which occur

in the CPU on each of the clock cycles. These appear in Table 6.5. Note that R denotes

a register, and that R[n] is register n.

Next we provide some more detailed explanation for each of the steps in the FDE

cycle. You should read ahead, and then look back at the previous table which provides

a useful summary. Recall that we have to work relative to the constraints of page 100.

In the Fetch and Decode steps, we perform as many actions as possible which are appli-

cable to all instructions. Then we perform further Execution steps, tailored to individual

instructions.

(1) Fetch Two assignments are performed which change the state of the datapath by

altering the contents of the IR and the PC. Broadly speaking, we fetch (copy) the current

instruction into the IR, and update the PC to point to the next instruction. The control

settings required are
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Signal Name Effect when 0 Effect when 1

PCWriteCond The writing of the PC is determined by

PCWrite.

The PC is written if the ALU Zero line is 1.

PCWrite The writing of the PC is determined by

PCWriteCond.

The PC is written; the data source is con-

trolled by PCSource

IorD The Memory address is the value of the PC. The Memory address is the value of ALUOut.

MemRead Memory cannot be read from. Contents of Memory location specified by Ad-
dress input value are put on the MemData
output.

MemWrite Memory cannot be written to. Memory location specified by Address input

value is updated by the value on the Write
data input.

MemtoReg The value fed to the register Write data in-

put comes from the ALUOut register.

The value fed to the register Write data in-

put comes from the MDR.

IRWrite The IR cannot be written to. Memory output is written into the IR.

ALUSrcA The first ALU operand is the contents of the

PC.

The first ALU operand is the contents of the A
register.

RegWrite The register file cannot be written to. The register specified by the value of the
Write register input is updated with the

value of the Write data input.

RegDst The register destination number for the Write
register comes from the rt field.

The register destination number for the Write
register comes from the rd field.

Signal Name Effect when 00 Effect when 01 Effect when 10 Effect when 11

PCSource ALUresult sent to

PC

ALUOut sent to PC Jump Address
sent to PC

N/A

ALUOp ALU performs + ALU performs - ALU uses funct N/A

ALUSrcB Exercise: Exercise: Exercise: Exercise:
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Step R-Format Data Transfer Branches

Fetch IR :=!W [!PC]
PC :=!PC+4

Decode A :=!R[!IR[25−21]]
B :=!R[!IR[20−16]]

ALUOut :=!PC+(sx(!IR[15−0])≪ 2)

Execution 1 ALUOut :=!A op!B
ALUOut :=
!A+ sx(!IR[15−0])

!A=!B⇒ PC :=!ALUOut

Execution 2 R[!IR[15−11]] :=!ALUOut
MDR :=!W [!ALUOut]

or

W [!ALUOut] :=!B
Execution 3 R[!IR[20−16]] :=!MDR
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Signal Name Value

PCWriteCond X

PCWrite 1

IoD 0

MemRead 1

MemWrite 0

MemtoReg X

IRWrite 1

Signal Name Value

PCSource 00

ALUOp 00

ALUSrcB 01

ALUSrcA 0

RegWrite 0

RegDst X

We explain the choices for the settings

IR :=!W [!PC] We read an instruction from Memory, and store it in the IR. The (word)

address for the instruction is given by the PC. Control does the following: The instruc-

tion is read from Memory, so we MemRead is set to 1. To store it, we set IRWrite = 1.

The address for the instruction comes from the PC, so we set IorD to 0 to select the PC.

PC :=!PC+4 We also increment the PC by 4 during this step. Control does the follow-

ing: We set ALUSrcA to 0 to send the PC contents to the ALU, ALUSrcB to 01 to send 4
to the ALU, and ALUOp to 00 to select ALU addition. We then store the sum back into

the PC, so PCSource is set to 00, and of course PCWrite is set to 1.

In this cycle, Memory is not written to, so MemWrite is set to 0. Registers is also

not written to, so RegWrite is set to 0. The settings of certain multiplexors do not

matter during the fetch cycle, and can be set to either 0 or 1, which is denoted by

X . For example, MemtoReg selects the data which would be written to the register file

Registers. But as RegWrite is set to 0, this does not matter.

(2) Decode Having fetched the current instruction into the IR, and updated the PC, we

have performed as many tasks as possible subject to the constraints of page 100. We

once again perform as many tasks as possible which are applicable to all instructions.

This cycle is called the decode cycle. The control settings required are

Signal Name Value

PCWriteCond 0

PCWrite 0

IoD X

MemRead 0

MemWrite 0

MemtoReg X

IRWrite 0

Signal Name Value

PCSource X

ALUOp 00

ALUSrcB 11

ALUSrcA 0

RegWrite 0

RegDst X

A :=!R[!IR[25−21]] and B :=!R[!IR[20−16]] We store the rs and rt fields of the current

instruction in A and B repectively. The current instruction has been stored in the IR IR,

and these fields are found in !IR[25−21] and !IR[20−16]. This will happen essentially

automatically after the Fetch step—no control signals need to be high. (Note that the

register file does not have a read enable line: if it had, then this would need to be set to

1.)
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ALUOut :=!PC+(sx(!IR[15−0])≪ 2) We shall also compute a branch target address

using the ALU and store the result in ALUOut—see page 81. This address will only be

used if the current instruction is indeed beq and its conditional test is true. However,

nothing is lost by computing the address on each decode cycle. Note that in this cycle

the PC has already been updated by 4 during the fetch cycle. Thus the first operand

used to compute the branch target address comes from the PC, so ALUSrcA is set to

0. The second operand comes from the output of the Shift left 2 element; this

requires ALUSrcB set to 11. Note that the sign extension has already been done, with

the extended number fed into the Shift left 2 element.

Exercise 6.5.2 Explain the remaining control settings in detail.

(3) Execution 1 In this cycle, the control unit settings are different for each instruction

category.

In the case of arithmetic and logical category instructions, the datapath will perform

the ALU operation determined by the instruction’s funct field. The result is stored in

ALUOut. For data transfer instructions, the memory address is computed and stored in

ALUOut. For branches, we test the operands for equality (stored in A and B). If they are

equal, the branch address computed in the Decode step will be stored in the the PC. In

fact this step is the final one for branch execution.

Arithmetic and Logical The control settings required are

Signal Name Value

PCWriteCond 0

PCWrite 0

IoD X

MemRead 0

MemWrite 0

MemtoReg X

IRWrite 0

Signal Name Value

PCSource X

ALUOp 10

ALUSrcB 00

ALUSrcA 1

RegWrite 0

RegDst X

ALUOut :=!A op!B The ALU operation is determined by the funct field of the instruction,

and this occurs when ALUOp holds 10—the details are the same as those for the single

cycle CPU. We have to pass the contents of A and B into the ALU. This will happen if

ALUSrcA is set to 1, and ALUSrcB is set to 00. All other settings are 0.

Data Transfer The control settings required are
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Signal Name Value

PCWriteCond 0

PCWrite 0

IoD X

MemRead 0

MemWrite 0

MemtoReg X

IRWrite 0

Signal Name Value

PCSource X

ALUOp 00

ALUSrcB 10

ALUSrcA 1

RegWrite 0

RegDst X

ALUOut :=!A+ sx(!IR[15−0]) The ALU must perform addition, so ALUOp is set to 00.

The first operand comes from A so ALUSrcA is set to 1. The second operand comes from

Sign extend so ALUSrcB is set to 10.

Exercise 6.5.3 Explain the remaining control settings.

Branches The control settings required are

Signal Name Value

PCWriteCond 1

PCWrite 0

IoD X

MemRead 0

MemWrite 0

MemtoReg X

IRWrite 0

Signal Name Value

PCSource 01

ALUOp 01

ALUSrcB 00

ALUSrcA 1

RegWrite 0

RegDst X

Example 6.5.4 Explain the control settings in detail.

Answer: The datapath must perform !A=!B⇒ PC :=!ALUOut . In order to send the

contents of A and B to the ALU, ALUSrcA must be set to 1, and ALUSrcB must be set

to 00. Recall that the equality is found to be true or false by seeing if the difference

of the numbers is zero. Thus the ALU computes !A−!B so ALUOp is set to 01. The PC

has already been updated to point to the next instruction. Only if the subtraction yields

0 do we update the PC to a new branch address. We set PCSource to 01 so that the

branch address is sent along the PC input bus. PCWriteCond is set to 1. This value is

fed into an AND gate, along with Zero. If Zero holds 1 (which it will if !A−!B= 0) then

the AND gate output will be 1, and the PC will be updated. If Zero holds 0 (which it

will if !A−!B 6= 0) then the AND gate output will be 0, and the PC will not be updated.

For a branch, the updating of the PC is conditional. Thus by setting PCWrite to 0, and

feeding this into an OR gate, the PC control line’s value is given by the PCWriteCond
value (see above). The memory is neither read from or written to, and the register file

and IR are not written to. Hence MemRead, MemWrite, RegWrite and IRWrite are all

set to 0. A consequence is that the multiplexors which supply data to the memory and

register file can have any setting X .



110 Chapter 6. The Micro Architecture Level

(4) Execution 2 The control settings required are

Arithmetic and Logical The control settings required are

Signal Name Value

PCWriteCond 0

PCWrite 0

IoD X

MemRead 0

MemWrite 0

MemtoReg 0

IRWrite 0

Signal Name Value

PCSource X

ALUOp X

ALUSrcB X

ALUSrcA X

RegWrite 1

RegDst 1

Data Transfer The control settings required for load word and store word are

Signal Name Value

PCWriteCond 0

PCWrite 0

IoD 1

MemRead 1

MemWrite 0

MemtoReg X

IRWrite 0

PCSource X

ALUOp X

ALUSrcB X

ALUSrcA X

RegWrite 0

RegDst X

Signal Name Value

PCWriteCond 0

PCWrite 0

IoD 1

MemRead 0

MemWrite 1

MemtoReg X

IRWrite 0

PCSource X

ALUOp X

ALUSrcB X

ALUSrcA X

RegWrite 0

RegDst X

Exercise 6.5.5 Explain the control settings in detail.

(5) Execution 3 Only a load word instruction requires a third execution step.

Data Transfer The control settings required are

Signal Name Value

PCWriteCond
PCWrite
IoD
MemRead
MemWrite
MemtoReg
IRWrite

Signal Name Value

PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

Exercise 6.5.6 Fill in the control settings for Execution 3.
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6.6 Microprogrammed Control

This section is non examinable.

We have now studied the steps of the FDE process which take place when certain

MIPS instructions execute. For each step, we know the required output of the control

units. Now we have to explain how to design a control unit so that for any given

instruction, the correct step signals are produced on each clock cycle.

Let us recall Dr. Doitall from Chapter 2. A computer program was represented by the

instruction leaflet that came with the bookcase. Dr. Doitall represented control. In this

case, Dr. Doitall knew how to proceed with the bookcase building. He has to read an

instruction, work out the tools needed, and then carry out the required task. He then

goes on to the next instruction. This gives a model of the FDE process. We also saw

in Section 2.3.4 that the FDE process can be considered as a simple algorithm which

describes the various tasks which take place. The key idea here is that we implement

algorithms as software. We actually write a program which will perform the FDE process.

In order that we do not confuse this program with the “users” program in memory,

we call it a microprogram. This will consist of a sequence of instructions which tell

Control what values should appear on the output lines. To avoid confusion, we call

these instructions microinstructions. Thus the sequence of MIPS execution steps given

on page 103 corresponds (essentially) to the execution of the microinstructions, with

each microinstruction setting the Control output lines for each FDE step. Note that

in each Execution step, the control settings are different for each instruction category.

These different settings will be implemented by branching within the microprogram.

A microprogram has a layout similar to a MIPS program, namely a sequence of labels

and instructions. Also, each microinstruction consists of seven fields. Six of these are

used to set the values of Control output, and the seventh provides a label indicating the

next microinstruction to be executed. The field semantics are given in Table 6.6. The

specific values of the fields, and the corresponding semantics appear in Table 6.7. The

actual microprogram appears in Table 6.8.

Exercise 6.6.1 Try “running” the microprogram on paper, with a sample MIPS instruc-

tion, checking that the instruction is executed as you would expect.

An abstract picture of the implementation of the microprogram is given in Fig-

ure 6.11. The lectures will explain the details. Here, the microprogram will be im-

plemented in hardware.
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Field Name Field Function

ALU Control Select ALU operation; output always to ALUOut
SRC1 Specify source of first ALU operand

SCR2 Specify source of second ALU operand

Register Control Specify read or write, and write source

Memory Specify read or write, with write source or read destination

PCWrite Specify writing of the PC

Sequencing Specify how to choose the next microinstruction

Table 6.6: Microinstruction Field Semantics

Microcode 
storage

Datapath

Control

Outputs

input

microprogram counter

Adder

inputs from instruction

register opcode field

Next address 

Figure 6.11: Abstract Microprogram Implementation
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Field Field Values Semantic Comments

Label Any string Use for microcode sequencing

Add Clear

ALU-Control Subt Clear

Func code Use funct field to determine ALU oper-

ation

SRC1 PC Clear

A Clear

B Clear

SRC2 4 Clear

Extend Use output of sign extend element

Extshft Use output of shift element

Read Use rs and rt fields of IR as Read reg-

ister numbers. Send the Read data 1

and 2 ouputs to A and B
Register Control Write ALU Write the Register file. Write register

is the rd field of IR; and Write data is

contents of ALUOut
Write MDR Write the Register file. Write register

is the rt field of IR; and Write data is

contents of MDR
Memory Read PC Read memory with PC as address;

write contents into IR

Read ALU Read memory with ALUOutas address;

write contents into MDR

Write ALU Write memory with ALUOutas address;

contents of B as data

PCWrite Control ALU Send ALU output to PC

ALUOut-cond If ALU Zero is asserted, write ALUOut

into PC

Jump address Send jump address to PC

Sequencing Seq Move to the following instruction

Fetch Goto Fetch label

Dispatch i Use ROM dispatch tables to calculate

next instruction

Table 6.7: Microprogram Field Values and Semantics
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Label ALU control SRC1 SRC2 Reg control Memory PCWrite control Sequencing

Fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

LW2 Read ALU Seq

Write MDR Fetch

SW2 Write ALU Fetch

RFormat1 Func code A B Seq

Write ALU Fetch

BEQ1 Subt A B ALUOut-cond Fetch

JUMP1 Jump address Fetch
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6.7 Further Examples

Examples 6.7.1

(i) Question 5 from January 2000 exam (see booklet of Exam Papers).

Answer hints:

1. The first three are trivial from the table. In iv, the Zero control line is used in bne

which will fail.

2. (a) Input bus is 001000. Also

Instruction R
e
g
D

st

A
L
U

S
rc

M
e
m

to
R

e
g

R
e
g
W

ri
te

M
e
m

R
e
a
d

M
e
m

W
ri

te

B
ra

n
ch

A
L
U

O
p
1

A
L
U

O
p
2

addi 0 1 0 1 0 0 0 - -

(b) 00. Yes; the function field of lw is ignored by the ALU Control unit when

ALUOp has 00.

3. (a)

IM RF ALU DM RF Time

add y y y y 4

sw y y y y 5

lw y y y y y 6

(b) t = 20∗1∗4+10∗1∗5+10∗1∗6= 190.

(c) t = 20∗1∗3+10∗2∗3+10∗2∗3= 180.

(d) t = (20∗ (1/2)∗3)/2+10∗2∗3+10∗ (2/10)∗3= 81.
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Central Processing Unit, 9

character code, 20

chip, 21
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clock line, 58

Clocked D-Latch, 58

combinational, 47

compact discs, 15

compilation, 26, 82

compiled program, 26

compiler, 82
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computer program, 8
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constants, 70

contents, 11, 17, 18

Control, 93

control bus, 50, 52

control input lines, 47

control lines, 52, 54
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correct, 34

correctly, 34

CPI, 99

CPU, 9

CPU memory, 15

current, 12

cycles per instruction, 99

data, 11

data input lines, 47

data line, 58

data transfer, 68

data transfers, 73

Decode, 107

decoder, 48

denote, 1

density, 15

destination, 70

digit, 31

digital versatile discs, 15

digitwise, 38

digitwise addition, 33

digitwise complement, 32

Direct Access, 16

direct addressing, 71

DIV, 23

DRAM, 21

dual inline memory module (DIMM), 24

Dynamic, 21

EEPROM, 22

element of set, 2

elements, 87

EPROM, 22

equal, 3

erasable, 16

Erasable PROM, 22

executed, 8

executes, 68

Execution 1, 108

Execution 2, 110

Execution 3, 110

Extended Data Output DRAM, 21

falling edge, 50

Fast Page Mode DRAM, 21

Fetch, 103

fetch-decode-execute (FDE), 13

fetching, 11

fields, 76

Flash, 22

formats, 75

full adder, 50

funct, 77

function, 77

argument of set —, 5

set —, 5

source of set —, 5

target of set —, 5

gate, 43

gates, 44

general registers, 11

hardware, 9

height, 62

high, 42

high(er)-level, 25

higher level, 25

holds, 43

I, 75

implements, 8

inboard memory, 15

infix, 7

input components, 6

input enable, 58

input lines, 43

input register, 12

input/output

— pairs, 5

Input/Output Devices, 9

instruction label, 75

Instruction Register (IR), 11

instruction set architecture, 27

instruction set architecture (ISA), 27, 66
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interpretation, 26

ith, 3

J, 75

jump, 68

labelled instructions, 67

language, 1

latency, 100

least significant, 32

little endian, 19

load byte, 74

load byte unsigned, 74

loaded, 73

locality principle, 17

location, 18

logical, 68

low, 42

low(er)-level, 25

machine language, 8, 27

machine language instruction, 12

magnetic discs, 15

magnetic materials, 16

magnetic tape, 15

Main memory, 15

Memory, 9

memory chips, 15

Memory Hierarchy, 15

memory hierarchy, 16

Method of Access, 16

Micro, 87

microarchitecture, 27

microinstructions, 111

microprogram, 13, 27, 111

MIPS, 66

MOD, 23

most significant, 32

multi cycle, 99

multi cycle datapath, 99

multiplexor, 47

name, 11

names, 70

negation, 35

non-erasable, 16

non-volatile, 16

NOR, 57

NOT, 43

number, 60

Off-line memory, 15

offset, 71, 81

op, 76, 77

opcode, 76

operand, 70

operands, 7, 32

operating system language (OSL), 27

operator, 32

optical materials, 16

OR, 43

or, 38

Outboard memory, 15

output enable, 60, 62

output lines, 43

output register, 12

overflow, 37

pairs

input/output —, 5

passed, 87

PC indexed addressing, 81

Performance, 16

period, 50

Physical Characteristics, 16

Physical Type, 16

PLA, 47

pointer, 71

postfix, 7

prefix, 7

primary memory, 15

problem oriented level, 29

processor, 9

program, 8

Program Counter (PC), 11

programmable read only memory, 21
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Programmed Logic Array, 47

PROM, 21

pulse, 48

R, 75

radix, 31

RAM, 21

Random Access, 16

Random Access Memory, 21

rd, 77

read enable, 60

Read Only Memory, 21

read-data, 60

read-register, 60

register, 60

register file, 60

register number, 18, 66

registers, 11

representation, 30

represents, 45

reset, 57

rising edge, 50

ROM, 21

rs, 77

rt, 77

rules, 1

run time, 26, 82

SDRAM, 21

secondary memory, 15

semantics, 1, 68

semi conductors, 16

sequences, 3

sequential, 57

Sequential Access, 16

set, 1, 57, 88

— function, 5

argument of — function, 5

element of —, 2

source of — function, 5

target of — function, 5

set on less than, 50

settings, 88

shamt, 77

sign, 34

sign extension, 40

signal, 87

single cycle, 99

single cycle datapath, 99

single inline memory module (SIMM), 24

Software, 9

source, 70

— of set function, 5

SR latch, 57

SRAM, 21, 62

stable, 57

state, 87

Static, 21

Static Random Access Memory, 62

store byte, 74

stored, 73

sum-of-products, 45

swapped, 17

switching algebra, 42

SyncDRAM, 21

syntax, 1

system, 29

target

— of set function, 5

test for zero, 52

translation, 26

tri state buffer, 59

truth tables, 43

Unit of Transfer, 16

unstable, 57

updated, 68

value, 43

virtual computer, 27

volatile, 16

width, 62

word, 18

word locations, 17
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write enable, 58, 61, 62

write-data, 60

write-register, 60

zero extension, 39
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