
CO1016 Computer Systems 2011/12 1'

&

$

%

Chapter 1

� Introduce some mathematics which we will

use throughout the module.

CO1016 Computer Systems 2011/12 2'

&

$

%

Overview: Simple Mathematics

� Syntax and Semantics—words and their meaning.

� Sets—collections of things.

� Functions—data in and answers out.

CO1016 Computer Systems 2011/12 3'

&

$

%

Syntax and Semantics

� Syntax refers to symbols, or notation.

� Semantics refers to “meaning”.

� Denotation is the relation between some syntax and

its semantics.

CO1016 Computer Systems 2011/12 4'

&

$

%

Languages

� A language consists of syntax and semantics.

� The syntax consists of

• alphabet;

• rules for writing “words” from alphabet.

� In a programming language the “words” are program

instructions. Rules given in the programming manual.

� The semantics of a program is what happens when the

program runs.

CO1016 Computer Systems 2011/12 5'

&

$

%

Sets

� A set is an unordered collection of objects in which any

object can appear at most once. Eg { ‘a‘, ‘g‘, ‘r‘, ‘t‘}.

� The objects in a set are called elements.

� ‘a‘ ∈ { ‘a‘, ‘g‘, ‘r‘, ‘t‘} and 4 6∈ { ‘a‘, ‘g‘, ‘r‘, ‘t‘}.

� N
def
= {0,1,2, . . .} set of natural numbers.

� Z
def
= { . . . ,−2,−1,0,1,2, . . .} set of integers.

CO1016 Computer Systems 2011/12 6'

&

$

%

� The notation e ∈ A means “e is an element in A”.

� A is a set, but its elements are not known; neither do

we know what e actually is.

� A and e are variables—unknown quantities.

� When programming, you might write

n : int or int n.

to indicate that n is an integer, with an unknown value.

� Note that

n ∈ Z

means the same thing—and is “standard” in mathematics.

CO1016 Computer Systems 2011/12 7'

&

$

%

Sequences

� {1,6,7,8} is the same as {6,8,1,7}.

� BUT 1678 is different from 6817 . . .

� . . . each is a sequence of digits.

� D
def
= {0,1,2,3,4,5,6,7,8,9}.

� Set of all sequences of length 2 is

D
2 def
= {00,01,02, . . . ,09,10,11, . . . ,99}

CO1016 Computer Systems 2011/12 8'

&

$

%

� The set of all sequences of elements of A of length 4 is

denoted by A4.

� If A is D, then for example 1678 ∈ D
4.

� If u, v, w, x are four (variable) elements of A, then uvwx

denotes a single typical element of A4, ie uvwx ∈ A4.

� We typically write the variables as a3, a2, a1, a0, so that

a3a2a1a0 ∈ A4

Makes “position” of each variable clear; a2 in position 2.

CO1016 Computer Systems 2011/12 9'

&

$

%

� An is the set of sequences of elements of A of length n.

� A typical element of An looks like an−1an−2 . . .a0, where

each ai ∈ A.

� We refer to variable ai, where i is the position 0, 1, or

. . . n−1.

� We sometimes call ai a component of the sequence.

� We sometimes write ~a = an−1 . . .a1a0.

CO1016 Computer Systems 2011/12 10'

&

$

%

Functions

� A function is a machine which takes inputs and produces

outputs.

� For example function s where 3 7→ 9 and −2 7→ 4.

� To define a function, we give

• A set of inputs (eg Z);

• a set containing all of the outputs (eg Z);

• an output (eg z2) for every input (eg z).

CO1016 Computer Systems 2011/12 11'

&

$

%

� G:{1,2,3,5} → {3,6,11,27,99}

G
def
= {(1,3),(2,6),(3,11),(5,27)}

� We can also define G by giving the recipe

G(i)
def
= i2 +2 ; G(i) is the output from input i

� Note that

1. For each input from {1,2,3,5} there is an output in

{3,6,11,27,99}.

2. For each input there is one, and only one, output.

CO1016 Computer Systems 2011/12 12'

&

$

%

� We define a function f :A → B by

• either giving a formula f (a) where a is any input from

A, with each output f (a) in B;

• or drawing arrows a 7→ b, one for each a ∈ A (and no

others), with b ∈ B;

• or writing down a set of input/output pairs (a,b),

exactly one pair for each a ∈ A, with b ∈ B.

� We write f (a) or f a for this unique b ∈ B. For

example, G(3) = 32 +2 = 11.

� We say a is the argument of the function.

� Also say that f (a) is the output, for input a.

CO1016 Computer Systems 2011/12 13'

&

$

%

� Consider the following set g of input/output pairs

{(3,8),(3,7),(9,10),(8,300)}

This is not a function {3,8,9} → {4,7,8,10,300}. Why?

� Let A
def
= {3,4,5} and B

def
= {4,7} and

f
def
= {(3,4),(4,7),(5,9)}

Then f :A → B is not a function from A to B. Why?

CO1016 Computer Systems 2011/12 14'

&

$

%

� B= B
1 = {0,1} is the set of binary numbers with 1 digit.

� B
2 = {00,01,10,11} is the set of binary numbers with 2

digits.

� B
3 =? is the set of binary numbers with 3 digits.

� B
n is the set of binary numbers with n digits.

� We shall study functions f :Bn → B
m in CO1016.

� Such a function is an n | m-ary function.

� Computer circuits implement functions on binary numbers.

CO1016 Computer Systems 2011/12 15'

&

$

%

Top Level Computer Organisation

� What is a Computer?

� The Central Processing Unit [CPU]

(calculating)

� Memory (storing)

� Input and Output (data in and data out)

CO1016 Computer Systems 2011/12 16'

&

$

%

What is a Computer?

Computer = Hardware + Software

CO1016 Computer Systems 2011/12 17'

&

$

%

Software (Programs)

a := 0;
c := 4;

L a := a+c;
c := c-1;

if c >= 1 then L;

exit;

CO1016 Computer Systems 2011/12 18'

&

$

%

� An algorithm is a set of instructions or “recipe”.

� A computer program (software) is an

implementation of an algorithm.

� Programs can be written in assembly language (the

syntax).

� A program is a list of assembly instructions.

� Each instruction (eg a := 0) has a semantics.

CO1016 Computer Systems 2011/12 19'

&

$

%

Hardware

Hardware = CPU
︸ ︷︷ ︸

Control + Datapath

+ Memory + I/O

CO1016 Computer Systems 2011/12 20'

&

$

%

How does a computer work?

Central Processing Unit

Bus

Memory Input / Output
Control

Datapath

CO1016 Computer Systems 2011/12 21'

&

$

%

Overview: The CPU

� How programs run on a computer.

� Basic details of a Central Processing Unit

• Datapath: The part that calculates.

• Control: The part that organzises the calculations

which are described by a program.

CO1016 Computer Systems 2011/12 22'

&

$

%

Central Processing Unit

� Computers work by performing simple arithmetic.

That’s it!

� Graphics made from small dots of light. Position and

colour of a dots changes to produce “moving” images.

� The changes are calculated using complex

arithmetic—but complex calculations reduce to simple

arithmetic.

CO1016 Computer Systems 2011/12 23'

&

$

%

� A program (list of instructions) will be stored in main

memory.

� Program execution: Control copies (“fetches”) each

instruction into the CPU. Fetched instructions are stored in the

Instruction Register (IR)

� There are many other registers. Each is computer memory;

they store instructions and more besides

� Each instruction is executed by the datapath.

� The datapath is “like” a calculator . . .

CO1016 Computer Systems 2011/12 24'

&

$

%

� The syntax (assembly language) of our example

instruction I is add R, A, B.

� The semantics is to pass contents of A and B to the

ALU, calculate the sum, then store the result in R.

� Computer stores instruction as a sequence of 0s and

1s, eg 00111.0001.0011.0100. Called machine language.

CO1016 Computer Systems 2011/12 25'

&

$

%

ALU

registers

IR PCA B

3 4 I

!A

!B

!A
+

!B

!A
+

!B

R

18

A

Datapath after execution of I = add R, A, B

IR 00111.0001.0011.0100

CO1016 Computer Systems 2011/12 26'

&

$

%

Control performs a sequence of steps, called the

fetch-decode-execute (FDE) cycle.

� Fetch an instruction from main memory—copy it into

the IR;

� Decode the instruction—eg set the ALU to +;

� (update PC to point to next instruction;)

� Execute the instruction; and

� repeat the FDE-cycle.

CO1016 Computer Systems 2011/12 27'

&

$

%

Overview: Memory

� A broad understanding of how data is stored in

computer memory.

� Knowledge of the different kinds of memory.

� Understanding of the technical details of how memory

works.

� Know one key reason why we can build fast and cheap

and big PCs.

CO1016 Computer Systems 2011/12 28'

&

$

%

Memory Characteristics

� Memory is divided into primary memory (inboard

memory) and secondary memory.

1. CPU memory, where data is stored within the CPU, either

in registers or in a cache.

2. Main memory, where data is stored inside other computer

circuits, known as memory chips.

3. Outboard memory often located on the computer, such as

magnetic discs and so on.

4. Off-line memory such as magnetic tape.

CO1016 Computer Systems 2011/12 29'

&

$

%

The Memory Hierarchy

� As you move down the memory list:

• decreasing cost per unit of storage;

• increasing capacity;

• increasing access time;

• decreasing access of memory by CPU.

CO1016 Computer Systems 2011/12 30'

&

$

%

Bits

� Use the symbols 0 and 1 to represent information

(data). Eg 1,2,3,4 represented by 1, 11, 111, 1111.

� A computer can represent 0s and 1s as low and high

voltages. A bit is a “circuit” that can “store” a 0 or 1.

� We call 0 and 1 binary digits.

CO1016 Computer Systems 2011/12 31'

&

$

%

High Level view of (Main) Memory

� storage facilities (filing cabinets)

� locations for storing objects (draws)

• Fundamental location is a k-bit cell.

� addresses of locations (draw labels)

• Each cell has a numerical address.

� contents of the locations (documents)

CO1016 Computer Systems 2011/12 32'

&

$

%

Computer Memory Details

0

1

2

3

11

10

9

8

6

5

4

7

0

1

2

 8 bits

32 bits

CO1016 Computer Systems 2011/12 33'

&

$

%

� A memory with n cells will have addresses 0 to n−1.

� If there are n bits in total, we call it an n-bit memory.

� The cell is the smallest individually addressable part of

a memory.

� Any cell is composed of k bits. The binary digits

contained in these bits are the contents of the cell.

� k-bit cell can hold 2k different binary digit sequences.

Why?

CO1016 Computer Systems 2011/12 34'

&

$

%

� Many computers have a standard 8-bit cell called a byte

location.

� The address of a byte location is address of the

corresponding 8-bit cell.

� Groups of consecutive cells are called word

locations—used to store bigger data than will fit into a byte

location.

� The address of a word location is the smallest address of

its cells.

� The contents of a byte location are called a byte, and of a

word location a word.

CO1016 Computer Systems 2011/12 35'

&

$

%

Organizing Memory - The Endian Systems

� How do we arrange cells (typically byte locations) into

word locations? Why is the arrangement important?

� Cells in any word location can be addressed from “left

to right”, or “right to left”.

� The left to right numbering is called big endian, and

the right to left little endian.

CO1016 Computer Systems 2011/12 36'

&

$

%

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0123

7 6 5 4

11 10 9 8

15 14 13 12

0

4

8

12

0

4

8

12

address addressBIG ENDIAN LITTLE ENDIAN

32-bit word 32-bit word

TOMT O M

00000000 00000000 00000000 00000000 00000000 0000000000000111 00000111

00000000 00000000

contents

cell address

word location word location

NB contents at T O M would be corresponding binary

CO1016 Computer Systems 2011/12 37'

&

$

%

� Integers are stored in word locations—they can be big!

Store 231 as 1~0
bin
= 1000 . . .000 bin—a 32-bit word.

� 7 will also be stored in a word location, as~0111
bin

.

� The 1s will appear in byte locations 3 or 7 or 11 or 15 in the

big endian system.

� ‘A‘ to ‘Z‘ will be represented by small integers, known as

character codes. Eg ASCII—‘A‘ is stored as the binary for 65.

� Thus codes are stored in cells (byte locations)—check this!

� Problems can arise when data is transferred from a big

endian (SPARC) to a little endian (Intel) computer . . .

CO1016 Computer Systems 2011/12 38'

&

$

%

Physical Types of Primary Memory

Please read pages 20 to 22 which describe Random Access

Memory (RAM), Static RAM (SRAM) etc etc

CO1016 Computer Systems 2011/12 39'

&

$

%

Cache Memory

� Can use hierarchy to build a modern computer:

• fast

• large capacity memory

• good price

� This is achieved (in part) by using a cache . . .

� Given any instruction, it is likely that the next few

instructions to be executed are nearby (local) in memory.

� This is called the locality principle.

� Such a small group of instructions is called a cluster.

CO1016 Computer Systems 2011/12 40'

&

$

%

� Cache is fast memory found near, or on, the CPU. It

consists of lines.

� Each line stores (clusters of) instructions.

� Fetch cycle: control will check if the next instruction is

in a cache line. If so, it will be fetched from cache to CPU.

� If not, control will fetch the next instruction’s cluster

from main memory into the cache, and place the next

instruction into the CPU.

� We formalise the idea of a cluster as a block.

CO1016 Computer Systems 2011/12 41'

&

$

%

.

.

.

.

.

.

.

.

.

.

.

.

.

block 1

block B-1

0
1
2

2^n-1

0

1

C-1

block 0

K cells

tag

K-1

CO1016 Computer Systems 2011/12 42'

&

$

%

If instruction I is held in the cell with address a, then

• I appears in block a DIV K;

• block b is copied into cache line b MOD C; and

• the first cell in block b has address b∗K.

CO1016 Computer Systems 2011/12 43'

&

$

%

Secondary Memory

� Secondary Memory Read Chapter 5 of Stallings.

Additional information can be found on pages 69 to 88 of

Tannenbaum. Non examinable.

CO1016 Computer Systems 2011/12 44'

&

$

%

Digital Arithmetic

� Decimal Number Systems (10 fingers)

� Binary Numbers in Computers (2 fingers)

� Binary Addition (adding with 2 fingers)

� 2s-Complement Numbers (dealing with

negatives)

� Logical Operations (true and false)

CO1016 Computer Systems 2011/12 45'

&

$

%

Overview: Radix Number Systems

� How to represent integers in a computer as binary

numbers.

� Learn about other representations.

CO1016 Computer Systems 2011/12 46'

&

$

%

Representations of numbers

� N
def
= {0,1,2, . . .} and Z

def
= { . . . ,−1,0,1, . . .}.

� Recall Roman representation.

� A representation of N is given by

• a set of symbols S

• a (bijective) function [[−]]:S → N

� A symbol s denotes the number [[s]] ∈ N.

CO1016 Computer Systems 2011/12 47'

&

$

%

Binary numbers

� binary numbers are a representation for integers.

� The binary digits are 0 or 1.

� A binary number is a sequence of binary digits, an element

of Bk, eg 10010 bin ∈ B
5.

� We often use d or di to stand for a binary digit.

� Write a k-digit binary number as

dk−1 . . .d0
bin ∈ B

k

CO1016 Computer Systems 2011/12 48'

&

$

%

� dk−1 . . .d0
bin is a sequence of digits.

� It denotes an integer [[dk−1 . . .d0
bin]].

�

[[10 bin]] = 1∗21 +0∗20 = 21 +0 = 2+0 = 2

[[10100 bin]] = 24 +0+22 +0+0 = 16+0+2+0+0 = 20

� A digit di, 0 or 1, tells us how many 2i we have, zero or one!

In general

[[dk−1dk−2 . . .d0
bin]] = dk−1 ∗2k−1 +dk−2 ∗2k−2 + . . .+d0 ∗20

CO1016 Computer Systems 2011/12 49'

&

$

%

Radix (Base)

� 10 and 2 are referred to as a radix or base.

� To represent a number in radix r, we take r different

symbols. Each symbol is called a digit.

� Each digit denotes a number; we write [[d]] for the integer

denoted by the digit d.

� A number is represented with radix r as dk−1 . . .d0
r, where

[[dk−1 . . .d0
r]]

def
= [[dk−1]]∗ rk−1 +[[dk−2]]∗ rk−2 + . . .+[[d0]]∗ r0

CO1016 Computer Systems 2011/12 50'

&

$

%

Hexadecimal

� The radix in hexadecimal is 16.

� Digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F .

� We define [[0]]
def
= 0, [[1]]

def
= 1, . . . [[E]]

def
= 14, and [[F]]

def
= 15.

� Thus B1A hex represents the integer 2842: here we have k = 3

digits and B in position 2

[[B1A hex]] = [[B]]∗162 +[[1]]∗161 +[[A]]∗160

CO1016 Computer Systems 2011/12 51'

&

$

%

Overview: Binary Numbers in Computers

� How to store binary numbers in computers.

� A few technical definitions.

CO1016 Computer Systems 2011/12 52'

&

$

%

Binary Numbers in Computers

� Store a binary number using bits.

� Must represent numbers within a finite range.

� In 4 bits, the largest number is given by 1111 bin, that is

23 +22 +21 +20 = 15 = 24 −1

� If k bits represent a number n, then 0 ≤ n ≤ 2k −1.

� We shall say the computer has k-bit numbers or

equivalently k-digit numbers.

CO1016 Computer Systems 2011/12 53'

&

$

%

� Write a k-bit/digit number as dk−1 . . .d0
bin or ~d.

� We call dk−1 the most significant digit, and d0 the

least significant.

� If we have k
def
= 6 bits, then the number 3 is represented

by 000011 bin.

CO1016 Computer Systems 2011/12 54'

&

$

%

� We call 0 and 1 complements of each other, and write

0
def
= 1 and 1

def
= 0.

� If ~d bin = dk−1 . . .d0
bin is a binary number, then its

digitwise complement is defined to be dk−1 . . .d0
bin

.

� We will sometimes denote the digitwise complement

of ~d bin by ~d bin or just simply ~d.

CO1016 Computer Systems 2011/12 55'

&

$

%

Overview: Binary Addition

� How does a machine add binary numbers?

� Is the machine always right?

CO1016 Computer Systems 2011/12 56'

&

$

%

Binary Addition

� In a+b, a and b are operands and + the operator.

� Recall digitwise addition. If d2d1d0
dec = 927 dec and

d′
2d′

1d′
0

dec = 436 dec, then the sum is

s3 = (0+0+ 1) MOD 10 = 1

s2 = (9+4+ 0) MOD 10 = 3

s1 = (2+3+ 1) MOD 10 = 6

s0 = (7+6+ 0) MOD 10 = 3

CO1016 Computer Systems 2011/12 57'

&

$

%

� We describe formally the digitwize algorithm to

compute~s dec def
= ~d dec +~d′

dec
.

� carry0
def
= 0.

� If i ≥ 0 then si
def
= (di +d′

i + carryi) MOD 10 and

carryi+1
def
= (di +d′

i + carryi) DIV 10

� To add binary numbers, change 10 to 2.

CO1016 Computer Systems 2011/12 58'

&

$

%

Check that 10 bin +111 bin = 1001 bin by showing that the

algorithm gives rise to the following table

~d bin 1 0

~d′
bin

1 1 1

~carry bin 1 1 0 0

~s bin 1 0 0 1

CO1016 Computer Systems 2011/12 59'

&

$

%

Correctness

� Let z = [[~d bin]], and z′ = [[~d′
bin
]].

� Digitwise algorithm calculates~s bin from ~d bin and ~d′
bin

.

� The algorithm is correct if [[~s bin]] = z+ z′.

� We say z+ z′ is correctly represented by~s dec.

� Thus a formal statement of correctness is

[[~s bin]] = [[~d bin]]+ [[~d′
bin
]]

where = is test for equality (written == in Java).

CO1016 Computer Systems 2011/12 60'

&

$

%

Example of Correctness

� In fact the algorithm is always correct.

� A computer may not always be correct . . .

~d bin 1 0 1

~d′
bin

+ 1 1 0

~s bin 1 0 1 1

CO1016 Computer Systems 2011/12 61'

&

$

%

Overview: 2s-Complement Numbers

� How to represent any integer in a computer.

� How to add and subtract in a computer.

� Is the computer correct?

CO1016 Computer Systems 2011/12 62'

&

$

%

2s-Complement Numbers

� Must represent all integers in a computer.

� In a k+1-bit 2s-complement system, the bit in position k

will be 0 for positive integers and zero, and 1 otherwise.

� Given a 2s-complement number dk . . .d0
bin, the actual

integer it represents is, by definition,

(|dk . . .d0
bin|)

def
= −dk ∗2k +[[dk−1 . . .d0

bin]] =

−dk ∗2k +(dk−1 ∗2k−1 +dk−2 ∗2k−2 + . . .+d0 ∗20)

CO1016 Computer Systems 2011/12 63'

&

$

%

If k = 5, then

(|000111 bin|) =−0∗25 +7 = 7

but

(|100111 bin|) =−1∗25 +7 =−32+7 =−25

Note also that

25 = (|011001 bin|).

CO1016 Computer Systems 2011/12 64'

&

$

%

� If m is any integer, its negation is defined to be −1∗m.

� Subtraction performed by adding the negation of an

integer.

� The negation of the integer represented by~b bin, is

represented by the k+1 2s-complement number number

~b bin +1 bin.

� Any integer z, to be representable with k+1 bits, must

lie in the range below

−2k ≤ z ≤ 2k −1

CO1016 Computer Systems 2011/12 65'

&

$

%

Overview: Correctness and Overflow

� We look at what happens when numbers get too big

for a computer.

� We see that sometimes we can get unexpected, correct

results.

CO1016 Computer Systems 2011/12 66'

&

$

%

Binary Numbers

� Recall correctness:

[[~s bin]] = [[~b bin]]+ [[~b′
bin
]] (EQ?)

� Idea: Given~b bin and ~b′
bin

, compute~s bin using the

Digitwise Alg. THEN check if EQ? is true or false.

� If true, algorithm (or computer) is correct.

CO1016 Computer Systems 2011/12 67'

&

$

%

~b bin 0 1 1

~b′
bin

+ 1 0 0

~s bin 0 1 1 1

� On paper: [[0111 bin]] = 7 = 3+4 = [[011 bin]]+ [[100 bin]].

� 3-bits only: [[111 bin]] = 7 = 3+4 = [[011 bin]]+ [[100 bin]].

CO1016 Computer Systems 2011/12 68'

&

$

%

~b bin 1 0 1

~b′
bin

+ 1 1 0

~s bin 1 0 1 1

� On paper: [[1011 bin]] = 11 = 5+6 = [[101 bin]]+ [[110 bin]]

� 3 bits: [[011 bin]] = 3 6= 5+6 = [[101 bin]]+ [[110 bin]]

A 3-bit computer would give incorrect answer

CO1016 Computer Systems 2011/12 69'

&

$

%

In fact the following conditions are equivalent ways of

expressing k-bit correctness

� [[sk−1 . . .s0
bin]] = [[bk−1 . . .b0

bin]]+ [[b′k−1 . . .b
′
0

bin]]

� 0 ≤ [[bk−1 . . .b0
bin]]+ [[b′k−1 . . .b

′
0

bin]]≤ 2k −1

both true or both false.

CO1016 Computer Systems 2011/12 70'

&

$

%

2s-Complement Numbers

Let k = 2, with 3 bits for 2s-complement numbers. There

may be a carry of 1, but with the computer sum (result)

correct!!!

1 1 1

+ 1 1 0

(1) 1 0 1

Here the computer sum is 101 with k+1 = 3 digits/bits.

The carry in position k+1 = 3 is (1).

(|101|) =−3 = (|111|)+(|110|)

CO1016 Computer Systems 2011/12 71'

&

$

%

Sign-bit Conditions

• Let P be “the sign bits of the two operands are

complementary (bk = b′k)”;

• and let Q be “the sign bits of the two operands are

identical, and also the same as the sign bit of the

computer sum (bk = b′k = sk)”.

If P or Q is true, then the computer sum will be correct.

Result = Computer Sum = k+1-digit answer (excluding

any carry into position k+1—see previous slide).

CO1016 Computer Systems 2011/12 72'

&

$

%

The following conditions are equivalent for 2s-complement

correctness.

• (|sk . . .s0
bin|) = (|bk . . .b0

bin|)+(|b′k . . .b
′
0

bin|)

• −2k ≤ (|bk . . .b0
bin|)+(|b′k . . .b

′
0

bin|)≤ 2k −1

• P or Q is true.

CO1016 Computer Systems 2011/12 73'

&

$

%

Overview: Logical Operations

� We learn about simple logic, and some related

functions.

� We shall see how these functions might be used by a

computer.

CO1016 Computer Systems 2011/12 74'

&

$

%

AND and OR

� Typically use 1 to denote truth, and 0 to denote falsity.

� We shall soon use the logic functions �:B2 → B and

+or:B2 → B. Refer to these as AND and OR.

� We will sometimes write seqeunces dk . . .d0 using

brackets: (dk, . . . ,d0). Call (d1,d0) a pair and (d2,d1,d0) a

triple.

CO1016 Computer Systems 2011/12 75'

&

$

%

� AND input pair (d,d′) is mapped to an output written

in infix notation d �d′.

� d �d′ is 1 precisely when both d and d′ are 1, and

otherwise d �d′ is 0.

� OR input pair (d,d′) is mapped to an output written in

infix notation d +or d′.

� d +or d′ is 1 precisely when at least one of d or d′ are 1,

and otherwise d +or d′ is 0.

CO1016 Computer Systems 2011/12 76'

&

$

%

Truth Tables

We give the functions � and +or by explicitly listing inputs

and outputs in tables; in work on digital circuits we often

use A, B and C to stand for binary digits 0 or 1. The tables

give (A,B) 7→ A +or B where +or:B2 → B, and similarly �.

A B A +or B

0 0 0

0 1 1

1 0 1

1 1 1

A B A �B

0 0 0

0 1 0

1 0 0

1 1 1

CO1016 Computer Systems 2011/12 77'

&

$

%

Zero Extension

� Sometimes, a binary number will be stored in k bits.

� We will then want to move the number into k′+ k bits, so

that its denotation is not changed.

� We fill the extra bits with k′ zeros. This is called a zero

extension.

� We can model it as a function

B
k −→ B

k′+k ~b 7→~0~b

where~0 denotes k′ zeros.

� We will sometimes write the output as zx(~b).

CO1016 Computer Systems 2011/12 78'

&

$

%

Sign Extension

� To move a k+1 bit 2s-complement number δ~b into k′+ k+1

bits copy the sign bit into the new k′ positions. This is called a

sign extension.

� We can model it as a function

B
k+1 −→ B

k′+k+1 δ~b 7→~δδ~b

where~δ means a sequence of k′ δs.

� We will sometimes write the output as sx(δ~b).

CO1016 Computer Systems 2011/12 79'

&

$

%

Digital Electronics

� Learn about circuits which perform

calculations; and

� memory circuits that will store data.

� We learn how to design circuits, and how

they work.

CO1016 Computer Systems 2011/12 80'

&

$

%

Overview: Switching Algebras and Basic Circuits

� We describe the Switching Algebra which gives a

mathematical model of simple circuits.

� Then we show how to use such models to design and

implement digital circuits.

CO1016 Computer Systems 2011/12 81'

&

$

%

The Switching Algebra

� The switching algebra consists of the following five things:

(B, �,+or, ,0,1).

� The functions satisfy certain properties.

Property +or

Idempotent A +or A = A

Complement A +or A = 1

Associative A +or (B +or C) = (A +or B) +or C

� A �B +or C stands for ((A) �B) +or C.

CO1016 Computer Systems 2011/12 82'

&

$

%

Implementing Functions by Circuits

� We implement n | m-ary functions over B as digital circuits.

For example, f :B3 → B
4 and (1,0,1) 7→ (1,1,0,0),

� We shall represent such circuits with pictures.

� The horizontal input lines denote wires with a voltage.

� Each voltage indicates a binary digit, which will be one of

the function’s input components.

CO1016 Computer Systems 2011/12 83'

&

$

%

� We sometimes label input and output lines, eg by A.

� We talk about the “input line” A to mean the physical

wire into the circuit.

� The line A carries or holds a binary digit value.

� A gate is defined to be an electrical circuit which

computes certain simple functions over B.

� An AND gate computes �; there are other gates . . .

CO1016 Computer Systems 2011/12 84'

&

$

%

� There are also m | 1-ary versions of � and +or. If m = 3

then �:B3 → B and we write A �B �C for the output to

input (A,B,C). The output A �B �C = 1 only when A = 1

and B = 1 and C = 1.

A B C A �B �C

0 0 0 0

0 0 1 0

0 1 0 0
...

1 1 0 0

1 1 1 1

CO1016 Computer Systems 2011/12 85'

&

$

%

� We want to show how to build (implement) a circuit

for an n | m-ary function.

� Each such function is equivalent to m different n | 1-ary

functions . . . see pictures from the lecture.

� Thus we just demonstrate by example how to

implement n | 1-ary functions.

� We start from a truth table . . .

CO1016 Computer Systems 2011/12 86'

&

$

%

Step 1: Sum-of-Products Example

We look at an example of a 2 | 1-ary function:

A B g(A,B)

0 0 1

0 1 0

1 0 0

1 1 1

We construct a Sum-of-Products expression . . .

CO1016 Computer Systems 2011/12 87'

&

$

%

A B C f0(A,B,C)

0 0 0 1

0 1 0 0

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

CO1016 Computer Systems 2011/12 88'

&

$

%

Step 2: Implement S-o-P Example

� We have

g(A,B) = A �B +or A �B

f0(A,B,C) = A �B �C +or A �B �C +or A �B �C +or A �B �C

� It is easy to make a circuit to implement any n | 1-ary

function given by a Sum-of-Products expression. See the

notes and lectures.

CO1016 Computer Systems 2011/12 89'

&

$

%

Simplifying Logic Expressions

Circuits may not be optimal:

A �B �C +or A �B �C +or A �B �C +or A �B �C

= A �B � (C +or C) +or (A +or A) �B �C

= A �B �1 +or 1 �B �C

= A �B +or B �C

CO1016 Computer Systems 2011/12 90'

&

$

%

Overview: Combinational Circuits

� A circuit which implements an n | m-ary function is

known as a combinational circuit.

� We shall look at specific, useful combinational

circuits:

� Circuits for addition; for subtraction; for joining

circuits together to build a CPU and so on.

CO1016 Computer Systems 2011/12 91'

&

$

%

Multiplexor

� A multiplexor has n+2n input lines which divide up

into n control input lines and 2n data input lines.

� Truth table when n is 3 (di ∈ B)

C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 M

1 0 1 d7 d6 d5 d4 d3 d2 d1 d0 d5

� Value of output is D[[C2C1C0]]. Thus we write

M(~C,~D) = D[[C2C1C0]].

CO1016ComputerSystems2011/1292
'

&

$

%
n

C

D
1

D
2

D
(2^n - 1)

D
0

M
(C

 , D
)

D
0

D
1

D
2

D
3

C
1

C
0

CO1016 Computer Systems 2011/12 93'

&

$

%

Decoders

� A decoder has n input lines and 2n output lines.

� For each of the 2n input tuples, one of the output lines

is set to 1 and the others are set to 0.

� Usually output line L[[~b]] = 1 where~b is the input tuple.

� Use a decoder to enable/disable one of many circuits.

CO1016 Computer Systems 2011/12 94'

&

$

%

Clocks

� In many digital circuits, the timing of various

processes and tasks is crucial.

� A pulse is a voltage of 1 which lasts for a short time.

� A clock is a circuit which generates a series of pulses.

� Each pulse lasts for fixed time, and there is a fixed

interval between pulses during which the voltage

produced is 0.

CO1016 Computer Systems 2011/12 95'

&

$

%

� The production of such a high and low voltage is

called a clock cycle.

� The total time taken for this is called the clock cycle

time or period.

� The start time of a clock pulse is called a rising edge;

the falling edge is when the pulse ends.

CO1016 Computer Systems 2011/12 96'

&

$

%

Adders

� We want a circuit (full adder) to perform addition of

single binary digits.

� It will have three input lines for carryi, and di and d′
i .

� It will have two output lines for si and carryi+1.

CO1016 Computer Systems 2011/12 97'

&

$

%

a b CarryIn CarryOut Sum

0 0 0 0 0

0 1 0 0 1

0 1 1 1 0

1 1 0 1 0

1 1 1 1 1

CO1016 Computer Systems 2011/12 98'

&

$

%

Arithmetic Logical Units

� Two Data Input k-bit busses (each holding a k-digit binary

number ~a and~b).

� One Output k-bit bus value (holds result~r, given by a

selected function applied to the two k-bit integers).

� One Control Input bus which will be used to select the ALU

function. KEY IDEA.

� We shall design an ALU where k = 32, with functions from

Chapter 3, and . . .

CO1016 Computer Systems 2011/12 99'

&

$

%

� the “set on less than” slt function which returns

r31 = 0, . . . ,r1 = 0,r0 = 1 if (|~a bin|)< (|~b bin|)

r31 = 0, . . . ,r1 = 0,r0 = 0 if otherwise

� A single bit output line Zero which returns 1 when any

result is~0, and 0 otherwise.

� A single bit output line which will hold 1 when a

function causes overflow, and will hold 0 otherwise.

CO1016 Computer Systems 2011/12 100'

&

$

%

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

CO1016ComputerSystems2011/12101
'

&

$

%

03

R
e
su

lt

O
p

e
ra

tio
n

a

1

C
a

rry
In

C
a

rry
O

u
t

01

B
in

v
e
rt

b
2

L
e
ss

03

R
e
su

lt

O
p

e
ra

tio
n

a

1

C
a

rry
In

01

B
in

v
e
rt

b
2

L
e
ss

S
e
t

O
v
e
rflo

w

d
e
te

ctio
n

O
v
e
rflo

w

a
.

b
.

CO1016ComputerSystems2011/12102
'

&

$

%
S

e
t

a
3

10

R
e
su

lt0
a

0

R
e
su

lt1
a

10

R
e
su

lt2
a

20

O
p

e
ra

tio
n

b
3

1

b
0

b
1

b
2

R
e
su

lt3
1

O
v
e
rflo

w

B
n

e
g
a

te

Z
e
ro

A
L

U
0

L
e
ss

C
a

rry
In

C
a

rry
O

u
t

A
L

U
1

L
e
ss

C
a

rry
In

C
a

rry
O

u
t

A
L

U
2

L
e
ss

C
a

rry
In

C
a

rry
O

u
t

A
L

U
3

1

L
e
ss

C
a

rry
In

CO1016 Computer Systems 2011/12 103'

&

$

%

Overview: Sequential Circuits

� Sequential circuits may have different “ouputs” for the

same “input”.

� (They implement relations.)

� These circuits can be used to build digital memory.

CO1016 Computer Systems 2011/12 104'

&

$

%

Sequential circuits

� Combinational circuits are functions.

� A sequential circuit can have many allowed outputs for a

given input.

� Such circuits implement not functions, but relations.

� For such “allowed” input and output, the circuit is stable.

� Otherwise the circuit is unstable.

� We shall require a NOR gate to give examples . . .

CO1016 Computer Systems 2011/12 105'

&

$

%

SR Latches

S

R

Qa

Qb

CO1016 Computer Systems 2011/12 106'

&

$

%

S R Qa Qb

0 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

S R Qa Qb

0 1 0 1

0 0 1 1

Stable States Unstable States

S is the set line and R the reset line. Qb is a signal which can be

set (to 1) and reset (to 0). Qb will be used as a 1 bit memory.

CO1016 Computer Systems 2011/12 107'

&

$

%

Clocked D Latches

� A model of 1-bit computer memory is a pad-locked

box storing 0s and 1s. The box has a glass window.

� Note: The words input/write/store mean the same

thing. The same goes for output/read.

� data line D provides the data (0 or 1) which we want

to store.

� clock line indicates when data can and cannot be

stored—a write enable line.

� Q holds the stored data.

CO1016 Computer Systems 2011/12 108'

&

$

%

Q

D

C

Q

CO1016 Computer Systems 2011/12 109'

&

$

%

Tri State Buffers

� A Tri State Buffer is an electronic switch.

� We use it to make a read enable line for a 1-bit

memory.

data in data out

control

CO1016 Computer Systems 2011/12 110'

&

$

%

Example

Explain how to produce a 1-bit memory which has a read enable

line; only when the line is high should the stored data be readable.

Answer:

Latch
data out

data in

clock

D

C Q

read enable

(write enable)

CO1016 Computer Systems 2011/12 111'

&

$

%

Register Files

� A k-bit register is k 1-bit memories which have their

clock lines wired together to form a write enable line.

� A register file (for a CPU) consists of

• a set of k-bit registers;

• a set of read-register busses and a set of read-data

busses;

• a set of write-register busses and a set of write-data

busses; and

• a write enable line.

CO1016 Computer Systems 2011/12 112'

&

$

%

Reading from/ Writing to the Register File:

Read register

number 1 Read

data 1

Read

data 2

Read register

number 2

Register file
Write

register

Write

data Write

(COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED.)

CO1016 Computer Systems 2011/12 113'

&

$

%

Building Static Random Access Memory

Computers count in binary.

Kilo (K) 210

Mega (M) 220

Giga (G) 230

Tera (T) 240

CO1016 Computer Systems 2011/12 114'

&

$

%

SRAM

32K × 8

8

15

8

Dout[7–0]

Address

Chip select

Output enable

Write enable

Din[7–0]

� The number of bits in a cell is sometimes called the

chip’s width, and the number of cells its height.

� We talk about an h×w-SRAM.

CO1016 Computer Systems 2011/12 115'

&

$

%

D

latch Q

D

C

Enable

D

latch Q

D

C

Enable

D

latch Q

D

C

Enable

D

latch Q

D

C

Enable

D

latch Q

D

C

Enable

D

latch Q

D

C

Enable

D

latch Q

D

C

Enable

D

latch Q

D

C

Enable

2-to-4

decoder

Write enable

Address

Din[0]Din[1]

Dout[1] Dout[0]

0

1

2

3

CO1016 Computer Systems 2011/12 116'

&

$

%

The Instruction Set Architecture Level

� We describe in detail the instructions (ISA)

which can be executed by a processor . . .

� Study ISA assembly language.

� Study ISA machine language.

� Look at simple ISA programs.

CO1016 Computer Systems 2011/12 117'

&

$

%

Overview: Introducing the MIPS ISA

� Describe a MIPS processor.

� Explain the MIPS ISA language by example.

CO1016 Computer Systems 2011/12 118'

&

$

%

ISA and MIPS Basics

� Recall

a := 0; c := 4;

L a := a+c;

c := c-1;

if c >= 1 then L;

� We introduce the MIPS ISA. It has instructions with syntax

like add $a, $a, $c.

� Such instructions run on the MIPS R2000 processor.

� This has a register file which contains 32 registers.

CO1016 Computer Systems 2011/12 119'

&

$

%

� MIPS R2000 provides a 32-bit computer:

• CPU registers have 32 bits.

• Instructions stored in 32-bit main memory word

locations.

• Main memory cells have 8 bits: byte locations.

� Each register is denoted by a special (assembly

language) symbol. Eg $s4.

CO1016 Computer Systems 2011/12 120'

&

$

%

� We identify a register by its assembly symbol (eg $s4)

or register number (CPU address), 0 to 31.

� The binary representations of 0 to 31 are the machine

language register numbers for the 32 registers.

� Note: The MIPS R2000 has 32 registers, and each

register has 32 bits. Do not let this confuse you!

CO1016 Computer Systems 2011/12 121'

&

$

%

� MIPS R2000 instructions have two forms, machine

language and assembly language.

� MIPS ISA assembly example add $t0, $t1, $t2.

� There is a machine language form

– $t1 $t2 $t0 – add

000000 01001 01010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

� Each section is called a field.

CO1016 Computer Systems 2011/12 122'

&

$

%

begin : addi $t0, $zero, 0

addi $t1, $zero, 0

addi $t2, $zero, 8

repeat : add $t1, $t1, $t0

addi $t0, $t0, 1

bne $t0, $t2, repeat

sw $t1, 0, $t3

finish :

CO1016 Computer Systems 2011/12 123'

&

$

%

Overview: MIPS Assembly Language

� You will understand the details of CPU registers.

� You will learn about different ways of reading/writing

data between CPU and main memory.

� Learn some assembly instructions; SYNTAX and

SEMANTICS.

� Show that the instructions can be grouped into

categories.

CO1016 Computer Systems 2011/12 124'

&

$

%

Registers, Locations and Assignment

� R denotes any MIPS register.

� To describe ISA semantics we shall use assignments.

� An assignment takes the form R := ω (eg $t1 :=~0)

� If the register has k bits, the word ω is a sequence of k

binary digits.

� We will stick to k = 32.

CO1016 Computer Systems 2011/12 125'

&

$

%

� We will adopt a convention. We may write things like

R := 7. The convention is that this will be shorthand for

R :=~0111
bin

.

� We can describe the semantics of the instruction

add R1, R2, R3 as

R1 :=!R2+!R3

� !R2+!R3 is given by (32 digit) digitwise sum.

CO1016 Computer Systems 2011/12 126'

&

$

%

� B[a] is the byte location at main memory address a.

� We have a similar notation W [a] for word locations.

� Program instructions stored in consecutive word

locations in main memory.

� Recall cells are 8 bits. So addresses of word locations

are multiples of 4. (IMPORTANT!!)

� The MIPS R2000 is big endian format.

CO1016 Computer Systems 2011/12 127'

&

$

%

Introduction to Addressing

� Addressing refers to the ways in which data is read/written.

� Data copied from main memory into a register is loaded.

� Data copied from a register into main memory is stored.

� These forms of copying are data transfers.

CO1016 Computer Systems 2011/12 128'

&

$

%

� Consider the two instructions

addi R1, R2, 5 add R1, R2, R3

� We refer to add and addi as instruction names.

� The registers Ri and the integer 5 are called instruction

arguments.

� The arguments tell us where data is read from or

written (stored) to.

CO1016 Computer Systems 2011/12 129'

&

$

%

� R2 and R3 contain data to be (read and) added. We

call them source arguments.

� R1 specifies where the result is to be stored. We shall

call it a destination argument.

� Finally, we refer to the numbers to be added as

operands.

CO1016 Computer Systems 2011/12 130'

&

$

%

Immediate Addressing

� The data is specified as part of the instruction.

� For example 24 in addi $t0, $t1, 24.

� The semantics of the instruction is given by

$t0 :=!$t1+24.

� We sometimes refer to data (operands) given by

immediate addressing as constants.

� + means digitwize sum; 24 is stored in binary.

CO1016 Computer Systems 2011/12 131'

&

$

%

Register Addressing

� The data is given as the contents of a register.

� If the register is called R, the data is !R.

� add uses register addressing for its source arguments.

� The semantics of add $t0, $t1, $t2 is

$t0 :=!$t1+!$t2

CO1016 Computer Systems 2011/12 132'

&

$

%

Register Indirect Addressing

� The data specified by R is !W [!R] or !B[!R]

� In this case, we refer to R as a pointer.

CO1016 Computer Systems 2011/12 133'

&

$

%

Indexed Addressing

� Often need to load a sequence of words from memory,

all “quite near” to a base address k.

� An offset indicates how far data is located from the

base address. The offset equals !R.

� Instructions have a source argument k(R).

� The source data is given by the contents of W [!R+ k].

CO1016 Computer Systems 2011/12 134'

&

$

%

� k has denoted any integer.

� So !R+ k means add the 32 digits of !R to a 32 digit

2s-complement representation of k.

� The machine code field for k ∈ Z is only 16 bits!!

� A 16-bit representation of k will be copied into a 32-bit

ALU. This will involve a sign extension.

� Note that

−215 ≤ k ≤ 215 −1

CO1016 Computer Systems 2011/12 135'

&

$

%

Arithmetic Category Instructions

Syntax Semantics

add R1, R2, R3 R1 :=!R2+!R3

sub R1, R2, R3 R1 :=!R2−!R3

addi R1, R2, k R1 :=!R2 + sx(k)

See example . . .

CO1016 Computer Systems 2011/12 136'

&

$

%

Data Transfer Instructions

Syntax Semantics

lw R1, k(R2) R1 :=!W [sx(k)+!R2]

sw R1, k(R2) W [sx(k)+!R2] :=!R1

lb R1, k(R2) R1 := sx(!B[sx(k)+!R2])

CO1016 Computer Systems 2011/12 137'

&

$

%

Conditional Instructions

repeat : add $t1, $t1, $t0

addi $t0, $t0, 1

bne $t0, $t2, repeat

next−instruction

Syntax Semantics

beq R1, R2, L if !R1 =!R2 then goto L

bne R1, R2, L if !R1 6=!R2 then goto L

slt R1, R2, R3 if !R2 <!R3 then R1 := 1 else R1 := 0

CO1016 Computer Systems 2011/12 138'

&

$

%

Overview: MIPS Machine Language

� Explain how to represent the ISA assembly

instructions inside the machine as binary digit sequences

(machine code).

� Each digit sequence is made up of special parts, called

fields. We give an algorithm for working out what the

fields are.

� Look at how to translate branch labels into actual

machine addressses.

CO1016 Computer Systems 2011/12 139'

&

$

%

Instruction Fields

� Given any MIPS instruction, what is the corresponding

32-bit machine language instruction?

� Each machine instruction belongs to one of three

formats. These are know as R, I and J formats.

� Each format has a field layout, specifying how the 32

bits are divided up into sections known as fields.

CO1016 Computer Systems 2011/12 140'

&

$

%

R-Format

Here is a field layout for name R1, R2, R3

Fields

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

~0 R2 R3 R1 ~0 name

~0 $s1 $s2 $t0 ~0 add

000000 10001 10010 01000 00000 100000

CO1016 Computer Systems 2011/12 141'

&

$

%

� For R-format instructions the Opcode (op) is 0 dec.

� The Function field (funct) is derived from the

instruction name add. There is a look-up table in the

notes . . .

� The rs and rt fields specify the numbers of the source

registers (17 dec and 18 dec)

� The rd field, 8 dec, specifies the number of the

destination register.

� Finally, the shamt field is ALWAYS set to 0 dec in

CO1016.

CO1016 Computer Systems 2011/12 142'

&

$

%

I-Format

Here is a field layout for name R1, k(R2)

op rs rt address

6 bits 5 bits 5 bits 16 bits

addi, andi, ori, lw, sw, lb, lbu, sb R2 R1 k

CO1016 Computer Systems 2011/12 143'

&

$

%

Translating Assembly to Machine Language

� An assembler is a program that will translate

assembly language into machine language.

� We need the field layouts we have just looked at; and

� a field translation/look-up table on page 78 of notes;

and

� a register number table.

CO1016 Computer Systems 2011/12 144'

&

$

%

Register number table on page 79 of the notes.

Register Usage

$zero 0 contents always zero

$v0 2 expression evaluation and function results

$v1 3 expression evaluation and function results

$a0 4 first argument component (preserved across call)

$t0 8 temporary (not preserved across call)

$t1 9 temporary (not preserved across call)

$t2 10 temporary (not preserved across call)

$fp 30 frame pointer (preserved across call)

CO1016 Computer Systems 2011/12 145'

&

$

%

Example

What is the machine code for lw $s1, 8($t1) ?

• name R1, k(R2) is I-format.

• Use look-up table for lw opcode: 35.

• Use register number table for $s1: 17 and for $t1: 9.

6 bits 5 bits 5 bits 16 bits

lw R2 R1 k

100011 01001 10001 0000000000001000

CO1016 Computer Systems 2011/12 146'

&

$

%

Machine Code for Branches

� Recall beq R1, R2, L.

• !R1 =!R2 TRUE: the label L “points” to the next

instruction to be executed.

• !R1 =!R2 FALSE: execute next instruction in memory.

� Such instructions are I-format:

op rs rt address

6 bits 5 bits 5 bits 16 bits

beq R1 R2 L

CO1016 Computer Systems 2011/12 147'

&

$

%

� Looking up the opcode and register numbers is easy!

� The address field specifies the distance (offset) ow in words

from the address of the next instruction I in memory to the

address of the labelled instruction I′

a beq R1, R2, L

a+4 I 1 word
... 2,3,4, . . . words

. ow words

a′ L : I′

CO1016 Computer Systems 2011/12 148'

&

$

%

� To be precise ow = (|address|) ∈ Z words. Thus we can work

out the address field. See my example on the OHP . . . if

ow = 2 ∈ Z, address =00000000.00000010 ∈ B
16.

� What about the address a′ of the labelled instruction?

a beq R1, R2, L

a+4 I 1 word
... 2,3,4, . . . words

. ow words

a′ = (a+4)+ob L : I′

� Addresses count cells (bytes); each word location consists of

four cells. So

ob = 4∗ow = 4∗ (|address|) ∈ Z

CO1016 Computer Systems 2011/12 149'

&

$

%

Branch Semantics at Run Time

� The last section explained how to work out the

machine code for a branch instruction with label L by

using the position of the instruction labelled L.

� Suppose we know the machine code for a branch.

What happens at run time? Recall the SEMANTICS

if !R1 =!R2 then goto L

� As beq R1, R2, L STARTS to execute, suppose the PC

contains a ∈ Z.

CO1016 Computer Systems 2011/12 150'

&

$

%

� The effect of execution is to specify the next

instruction to be executed. So the PC should be updated to

a′ = (a+4)+ob ∈ Z if test TRUE

a+4 ∈ Z if test FALSE

� The new binary value (in B
32) of the PC is given by

PC := (!PC+4)+(4∗address) if test TRUE

PC := (!PC+4) if test FALSE

CO1016 Computer Systems 2011/12 151'

&

$

%

Chapter 6

� Build a datapath in which each ISA

instruction is executed in one clock cycle.

� Design control for this.

In notes; non-examinable:

� Build a datapath in which each ISA instruction

requires many clock cycles for execution, but the amount

of hardware is reduced.

� Design control for this.

CO1016 Computer Systems 2011/12 152'

&

$

%

Introduction

� Show how to build a small CPU = datapath + control.

� Design of the CPU is called its architecture.

� Micro refers to CPU design, not overall computer design.

� We shall develop a micro architecture for

• The R-format instructions add, sub, and, or, and slt;

• the I-format instructions lw, sw, and beq.

CO1016 Computer Systems 2011/12 153'

&

$

%

Overview: Datapath Components

� We give examples of the circuits in a datapath

responsible for the execution of different categories of

instruction.

CO1016 Computer Systems 2011/12 154'

&

$

%

Basic Instruction Fetch and PC Increment

PC

Instruction

memory

Read

address

Instruction

4

Add

CO1016 Computer Systems 2011/12 155'

&

$

%

R-Format Instructions

Instruction
Registers

Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

ALU

result

ALU

Zero

RegWrite

ALU operation
3

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

~0 #R2 #R3 #R1 ~0 name

CO1016 Computer Systems 2011/12 156'

&

$

%

� These have the form name R1, R2, R3.

� Machine instruction I[31−0] ∈ B
32 passed along 32-bit wide

Instruction bus; the fields are divided up . . .

� The numbers of R2 and R3 ie I[25−21] ∈ B
5 and

I[20−16] ∈ B
5 are passed along 5-bit Read register 1 and

Read register 2. These are source registers.

� Destination register number I[15−11] ∈ B
5 passed along 5

bit Write register bus.

� Source operands !R1 and !R2 appear on the 32-bit Read

data 1 and Read data 2

� ALU operation is set by control and result is written . . .

CO1016 Computer Systems 2011/12 157'

&

$

%

Load/Store Instructions

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory

Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

6 bits 5 bits 5 bits 16 bits

name #R2 #R1 k

CO1016 Computer Systems 2011/12 158'

&

$

%

� We examine lw R1, k(R2) where R1 :=!W [!R2 + sx(k)].

� The number of register R2 ie I[25−21] ∈ B
5 goes to Read

register 1

� 16-bit representation of k ie I[15−0] ∈ B
16 goes to Sign

extend.

� Contents of R2 go via Read data 1 to ALU, along with sign

extended k.

� Data memory gets Address a
def
=!R2 + sx(k) ∈ B

32.

� Data memory sends the contents of the word at a via Read

data into register file Write data.

� Register number of R1 ie I[20−16] ∈ B
5 is in Write

register, so !W [a] ∈ B
32 is written in R1.

CO1016 Computer Systems 2011/12 159'

&

$

%

Branch if Equal Instruction

� Look at beq R1, R2, L with semantics

if !R1 =!R2 then goto L

� Need to check if !R1 =!R2 is true or false . . .

� ALU calculates~r
def
=!R1−!R2. Zero tests if~r =~0.

!R1 =!R2 ~r
def
=!R1−!R2 Zero

True =~0 1

False 6=~0 0

CO1016 Computer Systems 2011/12 160'

&

$

%

16 32
Sign

extend

ZeroALU

Sum

Shift

left 2

To branch

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

RegWrite

ALU operation
3

6 bits 5 bits 5 bits 16 bits

beq #R1 #R2 address

CO1016 Computer Systems 2011/12 161'

&

$

%

� Executing beq updates the PC:

PC := (!PC+4)+(4∗address) if Zero= 1

PC := (!PC+4) if Zero= 0

a
def
= (|!PC|) ∈ Z beq R1, R2, L

a+4 I 1 word
... 2, . . . , (|address|) words

a′ = (a+4)+4∗ (|address|)
︸ ︷︷ ︸

Branch target

L : I′

CO1016 Computer Systems 2011/12 162'

&

$

%

PC

Instruction

memory

Read

address

Instruction

16 32

Add ALU

result

M

u

x

Registers

Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Shift

left 2

4

M

u

x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU

result

Zero
ALU

Data

memory

Address

Write

data

Read

data M

u

x

Sign

extend

Add

CO1016 Computer Systems 2011/12 163'

&

$

%

� There is a control PCSrc for a multiplexor. In fact (see later

on) PCSrc is set equal to Zero when a branch instruction is

executed.

• So if PCSrc=Zero=0 then the PC will—see circuit—be

updated with !PC+4.

• And if PCSrc=Zero=1 the PC is updated with

(!PC+4)+(sx(I[15−0])≪ 2) = (!PC+4)+(4∗address).

� Eg 1011 ≪ 2
def
= 1011.00 and

(|1011.00|) =−20 = 4∗−5 = 4∗ (|1011|)

CO1016 Computer Systems 2011/12 164'

&

$

%

Overview: A Single-Cycle Datapath with Control

� We assemble the datapath components into a single

cycle datapath (each instruction takes one clock cycle).

� We design a control unit.

CO1016 Computer Systems 2011/12 165'

&

$

%

PC

Instruction

memory

Read

address

Instruction

[31–0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M

u

x

0

1

Control

Add
ALU

result

M

u

x

0

1

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

PCSrc

Data

memory

Write

data

Read

data

M

u

x

1

Instruction [15 11]

ALU

control

Shift

left 2

ALU

Address

CO1016 Computer Systems 2011/12 166'

&

$

%

Building Control

We decide on the effects on the datapath that actual control

signals must have.

We then draw up truth tables of control signal values to

ensure that various instructions are executed.

CO1016 Computer Systems 2011/12 167'

&

$

%

Settings for control of

multiplexors and memory

read/write enable

Inst
Opcode field =

I[31-26]

R
e
g
D

st

A
L
U

S
rc

M
e
m

to
R

e
g

R
e
g
W

ri
te

M
e
m

R
e
a
d

M
e
m

W
ri

te

B
ra

n
ch

A
L
U

O
p
1

A
L
U

O
p
2

1w 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0

sw 1 0 1 0 1 1 X 1 X 0 0 1 0 0 0

beq 0 0 0 1 0 0 X 0 X 0 0 0 1 0 1

R-f’t 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0

CO1016 Computer Systems 2011/12 168'

&

$

%

In
st

ru
ct

io
n

(A
L
U

o
p
e
ra

ti
o
n

)

A
L
U

O
p
1

A
L
U

O
p
2

F
u

n
ct

F
ie

ld
=

I
[5

-0
]

A
L
U

-C
o
n

tr
o
l

O
u

tp
u

t:

se
ts

A
L
U

o
p
e
ra

ti
o
n

s

lw/sw (+) 0 0 X X X X X X 0 1 0

beq (-) 0 1 X X X X X X 1 1 0

add (+) 1 0 1 0 0 0 0 0 0 1 0

sub (-) 1 0 1 0 0 0 1 0 1 1 0

or (OR) 1 0 1 0 0 1 0 1 0 0 1

slt (Less) 1 0 1 0 1 0 1 0 1 1 1

CO1016 Computer Systems 2011/12 169'

&

$

%

Overview: Timing and Performance

� Explain the timing and performance of a processor.

� Give equations for processor performance.

CO1016 Computer Systems 2011/12 170'

&

$

%

Timing and Performance

� Recall that a clock generates pulses, each lasting for a

fixed period of time.

� Clock period called a cycle.

� Control unit will set datapath elements, using their

control busses (eg ALU to +), once per cycle.

� If an instruction can be executed in one clock cycle, we

call it a single cycle instruction.

CO1016 Computer Systems 2011/12 171'

&

$

%

� If a datapath can execute each instruction in one cycle,

we call it a single cycle datapath.

� If a datapath requires multiple settings to execute at

least some instructions, we call it a multi cycle datapath.

� We look at timing issues for a multicycle processor.

CO1016 Computer Systems 2011/12 172'

&

$

%

An instruction requires a number of clock cycles to execute.

Called the cycles per instruction or CPI. Write CI for the CPI of

instruction I.

A 6 instruction program P

Instruction I class cycles CI

lw . . . α 4

lw . . . α 4

add . . . β 5

sub . . . β 5

bne . . . γ 6

sw . . . α 4

CO1016 Computer Systems 2011/12 173'

&

$

%

Write |P|c for the number of instructions in P of class c and Cc for

the number of cylces to run any class c instruction.

Class c |P|c

α 3

β 2

γ 1

Class c Cc

α 5

β 4

γ 6

Thus the number of clock cycles to execute P is

Total Clock Cycles =CP = (3∗5)+(2∗4)+(1∗6) = 29

CO1016 Computer Systems 2011/12 174'

&

$

%

� Write ClCPI(P) for the set of classes of instructions with

identical CPI in a program P.

�

Total Clock Cycles =CP
def
= ∑

c∈ClCPI(P)

|P|c ∗Cc

� We shall write π for a clock period. Of course

tP =CP ∗π tI =CI ∗π

� It also follows that the time taken to execute P is

tP =

(

∑
c∈ClCPI(P)

|P|c ∗Cc

)

∗π

