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Chapter 1

� Introduce some mathematics which we will

use throughout the module.
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Overview: Simple Mathematics

� Syntax and Semantics—words and their meaning.

� Sets—collections of things.

� Functions—data in and answers out.
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Syntax and Semantics

� Syntax refers to symbols, or notation.

� Semantics refers to “meaning”.

� Denotation is the relation between some syntax and

its semantics.
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Languages

� A language consists of syntax and semantics.

� The syntax consists of

• alphabet;

• rules for writing “words” from alphabet.

� In a programming language the “words” are program

instructions. Rules given in the programming manual.

� The semantics of a program is what happens when the

program runs.
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Sets

� A set is an unordered collection of objects in which any

object can appear at most once. Eg { ‘a‘, ‘g‘, ‘r‘, ‘t‘}.

� The objects in a set are called elements.

� ‘a‘ ∈ { ‘a‘, ‘g‘, ‘r‘, ‘t‘} and 4 6∈ { ‘a‘, ‘g‘, ‘r‘, ‘t‘}.

� N
def
= {0,1,2, . . .} set of natural numbers.

� Z
def
= { . . . ,−2,−1,0,1,2, . . .} set of integers.
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� The notation e ∈ A means “e is an element in A”.

� A is a set, but its elements are not known; neither do

we know what e actually is.

� A and e are variables—unknown quantities.

� When programming, you might write

n : int or int n.

to indicate that n is an integer, with an unknown value.

� Note that

n ∈ Z

means the same thing—and is “standard” in mathematics.
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Sequences

� {1,6,7,8} is the same as {6,8,1,7}.

� BUT 1678 is different from 6817 . . .

� . . . each is a sequence of digits.

� D
def
= {0,1,2,3,4,5,6,7,8,9}.

� Set of all sequences of length 2 is

D
2 def
= {00,01,02, . . . ,09,10,11, . . . ,99}
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� The set of all sequences of elements of A of length 4 is

denoted by A4.

� If A is D, then for example 1678 ∈ D
4.

� If u, v, w, x are four (variable) elements of A, then uvwx

denotes a single typical element of A4, ie uvwx ∈ A4.

� We typically write the variables as a3, a2, a1, a0, so that

a3a2a1a0 ∈ A4

Makes “position” of each variable clear; a2 in position 2.
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� An is the set of sequences of elements of A of length n.

� A typical element of An looks like an−1an−2 . . .a0, where

each ai ∈ A.

� We refer to variable ai, where i is the position 0, 1, or

. . . n−1.

� We sometimes call ai a component of the sequence.

� We sometimes write ~a = an−1 . . .a1a0.
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Functions

� A function is a machine which takes inputs and produces

outputs.

� For example function s where 3 7→ 9 and −2 7→ 4.

� To define a function, we give

• A set of inputs (eg Z);

• a set containing all of the outputs (eg Z);

• an output (eg z2) for every input (eg z).
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� G:{1,2,3,5} → {3,6,11,27,99}

G
def
= {(1,3),(2,6),(3,11),(5,27)}

� We can also define G by giving the recipe

G(i)
def
= i2 +2 ; G(i) is the output from input i

� Note that

1. For each input from {1,2,3,5} there is an output in

{3,6,11,27,99}.

2. For each input there is one, and only one, output.
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� We define a function f :A → B by

• either giving a formula f (a) where a is any input from

A, with each output f (a) in B;

• or drawing arrows a 7→ b, one for each a ∈ A (and no

others), with b ∈ B;

• or writing down a set of input/output pairs (a,b),

exactly one pair for each a ∈ A, with b ∈ B.

� We write f (a) or f a for this unique b ∈ B. For

example, G(3) = 32 +2 = 11.

� We say a is the argument of the function.

� Also say that f (a) is the output, for input a.
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� Consider the following set g of input/output pairs

{(3,8),(3,7),(9,10),(8,300)}

This is not a function {3,8,9} → {4,7,8,10,300}. Why?

� Let A
def
= {3,4,5} and B

def
= {4,7} and

f
def
= {(3,4),(4,7),(5,9)}

Then f :A → B is not a function from A to B. Why?
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� B= B
1 = {0,1} is the set of binary numbers with 1 digit.

� B
2 = {00,01,10,11} is the set of binary numbers with 2

digits.

� B
3 =? is the set of binary numbers with 3 digits.

� B
n is the set of binary numbers with n digits.

� We shall study functions f :Bn → B
m in CO1016.

� Such a function is an n | m-ary function.

� Computer circuits implement functions on binary numbers.
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Top Level Computer Organisation

� What is a Computer?

� The Central Processing Unit [CPU]

(calculating)

� Memory (storing)

� Input and Output (data in and data out)
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What is a Computer?

Computer = Hardware + Software
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Software (Programs)

a := 0;
c := 4;

L a := a+c;
c := c-1;

if c >= 1 then L;

exit;
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� An algorithm is a set of instructions or “recipe”.

� A computer program (software) is an

implementation of an algorithm.

� Programs can be written in assembly language (the

syntax).

� A program is a list of assembly instructions.

� Each instruction (eg a := 0) has a semantics.
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Hardware

Hardware = CPU
︸ ︷︷ ︸

Control + Datapath

+ Memory + I/O
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How does a computer work?

Central Processing Unit

Bus

Memory Input / Output
Control

Datapath
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Overview: The CPU

� How programs run on a computer.

� Basic details of a Central Processing Unit

• Datapath: The part that calculates.

• Control: The part that organzises the calculations

which are described by a program.
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Central Processing Unit

� Computers work by performing simple arithmetic.

That’s it!

� Graphics made from small dots of light. Position and

colour of a dots changes to produce “moving” images.

� The changes are calculated using complex

arithmetic—but complex calculations reduce to simple

arithmetic.
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� A program (list of instructions) will be stored in main

memory.

� Program execution: Control copies (“fetches”) each

instruction into the CPU. Fetched instructions are stored in the

Instruction Register (IR)

� There are many other registers. Each is computer memory;

they store instructions and more besides . . . .

� Each instruction is executed by the datapath.

� The datapath is “like” a calculator . . .
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� The syntax (assembly language) of our example

instruction I is add R, A, B.

� The semantics is to pass contents of A and B to the

ALU, calculate the sum, then store the result in R.

� Computer stores instruction as a sequence of 0s and

1s, eg 00111.0001.0011.0100. Called machine language.
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ALU

registers

IR PCA B

3 4 I

!A

!B

!A
+

!B

!A
+

!B

R

18

A

Datapath after execution of I = add R, A, B

IR 00111.0001.0011.0100
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Control performs a sequence of steps, called the

fetch-decode-execute (FDE) cycle.

� Fetch an instruction from main memory—copy it into

the IR;

� Decode the instruction—eg set the ALU to +;

� (update PC to point to next instruction;)

� Execute the instruction; and

� repeat the FDE-cycle.
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Overview: Memory

� A broad understanding of how data is stored in

computer memory.

� Knowledge of the different kinds of memory.

� Understanding of the technical details of how memory

works.

� Know one key reason why we can build fast and cheap

and big PCs.
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Memory Characteristics

� Memory is divided into primary memory (inboard

memory) and secondary memory.

1. CPU memory, where data is stored within the CPU, either

in registers or in a cache.

2. Main memory, where data is stored inside other computer

circuits, known as memory chips.

3. Outboard memory often located on the computer, such as

magnetic discs and so on.

4. Off-line memory such as magnetic tape.
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The Memory Hierarchy

� As you move down the memory list:

• decreasing cost per unit of storage;

• increasing capacity;

• increasing access time;

• decreasing access of memory by CPU.
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Bits

� Use the symbols 0 and 1 to represent information

(data). Eg 1,2,3,4 represented by 1, 11, 111, 1111.

� A computer can represent 0s and 1s as low and high

voltages. A bit is a “circuit” that can “store” a 0 or 1.

� We call 0 and 1 binary digits.
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High Level view of (Main) Memory

� storage facilities (filing cabinets)

� locations for storing objects (draws)

• Fundamental location is a k-bit cell.

� addresses of locations (draw labels)

• Each cell has a numerical address.

� contents of the locations (documents)
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Computer Memory Details

0

1

2

3

11

10

9

8

6

5

4

7

0

1

2

 8 bits

32 bits
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� A memory with n cells will have addresses 0 to n−1.

� If there are n bits in total, we call it an n-bit memory.

� The cell is the smallest individually addressable part of

a memory.

� Any cell is composed of k bits. The binary digits

contained in these bits are the contents of the cell.

� k-bit cell can hold 2k different binary digit sequences.

Why?
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� Many computers have a standard 8-bit cell called a byte

location.

� The address of a byte location is address of the

corresponding 8-bit cell.

� Groups of consecutive cells are called word

locations—used to store bigger data than will fit into a byte

location.

� The address of a word location is the smallest address of

its cells.

� The contents of a byte location are called a byte, and of a

word location a word.
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Organizing Memory - The Endian Systems

� How do we arrange cells (typically byte locations) into

word locations? Why is the arrangement important?

� Cells in any word location can be addressed from “left

to right”, or “right to left”.

� The left to right numbering is called big endian, and

the right to left little endian.
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0123

7 6 5 4

11 10 9 8

15 14 13 12

0

4

8

12

0

4

8

12

address addressBIG ENDIAN LITTLE ENDIAN

32-bit word 32-bit word

TOMT O M

00000000 00000000 00000000 00000000 00000000 0000000000000111 00000111

00000000 00000000

contents

cell address

word location word location

NB  contents at T O M would be corresponding binary
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� Integers are stored in word locations—they can be big!

Store 231 as 1~0
bin
= 1000 . . .000 bin—a 32-bit word.

� 7 will also be stored in a word location, as~0111
bin

.

� The 1s will appear in byte locations 3 or 7 or 11 or 15 in the

big endian system.

� ‘A‘ to ‘Z‘ will be represented by small integers, known as

character codes. Eg ASCII—‘A‘ is stored as the binary for 65.

� Thus codes are stored in cells (byte locations)—check this!

� Problems can arise when data is transferred from a big

endian (SPARC) to a little endian (Intel) computer . . .
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Physical Types of Primary Memory

Please read pages 20 to 22 which describe Random Access

Memory (RAM), Static RAM (SRAM) etc etc
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Cache Memory

� Can use hierarchy to build a modern computer:

• fast

• large capacity memory

• good price

� This is achieved (in part) by using a cache . . .

� Given any instruction, it is likely that the next few

instructions to be executed are nearby (local) in memory.

� This is called the locality principle.

� Such a small group of instructions is called a cluster.
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� Cache is fast memory found near, or on, the CPU. It

consists of lines.

� Each line stores (clusters of) instructions.

� Fetch cycle: control will check if the next instruction is

in a cache line. If so, it will be fetched from cache to CPU.

� If not, control will fetch the next instruction’s cluster

from main memory into the cache, and place the next

instruction into the CPU.

� We formalise the idea of a cluster as a block.
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K-1
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If instruction I is held in the cell with address a, then

• I appears in block a DIV K;

• block b is copied into cache line b MOD C; and

• the first cell in block b has address b∗K.
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Secondary Memory

� Secondary Memory Read Chapter 5 of Stallings.

Additional information can be found on pages 69 to 88 of

Tannenbaum. Non examinable.
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Digital Arithmetic

� Decimal Number Systems (10 fingers)

� Binary Numbers in Computers (2 fingers)

� Binary Addition (adding with 2 fingers)

� 2s-Complement Numbers (dealing with

negatives)

� Logical Operations (true and false)
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Overview: Radix Number Systems

� How to represent integers in a computer as binary

numbers.

� Learn about other representations.
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Representations of numbers

� N
def
= {0,1,2, . . .} and Z

def
= { . . . ,−1,0,1, . . .}.

� Recall Roman representation.

� A representation of N is given by

• a set of symbols S

• a (bijective) function [[−]]:S → N

� A symbol s denotes the number [[s]] ∈ N.
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Binary numbers

� binary numbers are a representation for integers.

� The binary digits are 0 or 1.

� A binary number is a sequence of binary digits, an element

of Bk, eg 10010 bin ∈ B
5.

� We often use d or di to stand for a binary digit.

� Write a k-digit binary number as

dk−1 . . .d0
bin ∈ B

k
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� dk−1 . . .d0
bin is a sequence of digits.

� It denotes an integer [[dk−1 . . .d0
bin]].

�

[[10 bin]] = 1∗21 +0∗20 = 21 +0 = 2+0 = 2

[[10100 bin]] = 24 +0+22 +0+0 = 16+0+2+0+0 = 20

� A digit di, 0 or 1, tells us how many 2i we have, zero or one!

In general

[[dk−1dk−2 . . .d0
bin]] = dk−1 ∗2k−1 +dk−2 ∗2k−2 + . . .+d0 ∗20
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Radix (Base)

� 10 and 2 are referred to as a radix or base.

� To represent a number in radix r, we take r different

symbols. Each symbol is called a digit.

� Each digit denotes a number; we write [[d]] for the integer

denoted by the digit d.

� A number is represented with radix r as dk−1 . . .d0
r, where

[[dk−1 . . .d0
r]]

def
= [[dk−1]]∗ rk−1 +[[dk−2]]∗ rk−2 + . . .+[[d0]]∗ r0
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Hexadecimal

� The radix in hexadecimal is 16.

� Digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F .

� We define [[0]]
def
= 0, [[1]]

def
= 1, . . . [[E]]

def
= 14, and [[F ]]

def
= 15.

� Thus B1A hex represents the integer 2842: here we have k = 3

digits and B in position 2

[[B1A hex]] = [[B]]∗162 +[[1]]∗161 +[[A]]∗160
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Overview: Binary Numbers in Computers

� How to store binary numbers in computers.

� A few technical definitions.
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Binary Numbers in Computers

� Store a binary number using bits.

� Must represent numbers within a finite range.

� In 4 bits, the largest number is given by 1111 bin, that is

23 +22 +21 +20 = 15 = 24 −1

� If k bits represent a number n, then 0 ≤ n ≤ 2k −1.

� We shall say the computer has k-bit numbers or

equivalently k-digit numbers.
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� Write a k-bit/digit number as dk−1 . . .d0
bin or ~d.

� We call dk−1 the most significant digit, and d0 the

least significant.

� If we have k
def
= 6 bits, then the number 3 is represented

by 000011 bin.
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� We call 0 and 1 complements of each other, and write

0
def
= 1 and 1

def
= 0.

� If ~d bin = dk−1 . . .d0
bin is a binary number, then its

digitwise complement is defined to be dk−1 . . .d0
bin

.

� We will sometimes denote the digitwise complement

of ~d bin by ~d bin or just simply ~d.
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Overview: Binary Addition

� How does a machine add binary numbers?

� Is the machine always right?
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Binary Addition

� In a+b, a and b are operands and + the operator.

� Recall digitwise addition. If d2d1d0
dec = 927 dec and

d′
2d′

1d′
0

dec = 436 dec, then the sum is

s3 = (0+0+ 1 ) MOD 10 = 1

s2 = (9+4+ 0 ) MOD 10 = 3

s1 = (2+3+ 1 ) MOD 10 = 6

s0 = (7+6+ 0 ) MOD 10 = 3
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� We describe formally the digitwize algorithm to

compute~s dec def
= ~d dec +~d′

dec
.

� carry0
def
= 0.

� If i ≥ 0 then si
def
= (di +d′

i + carryi) MOD 10 and

carryi+1
def
= (di +d′

i + carryi) DIV 10

� To add binary numbers, change 10 to 2.
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Check that 10 bin +111 bin = 1001 bin by showing that the

algorithm gives rise to the following table

~d bin 1 0

~d′
bin

1 1 1

~carry bin 1 1 0 0

~s bin 1 0 0 1
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Correctness

� Let z = [[~d bin]], and z′ = [[~d′
bin
]].

� Digitwise algorithm calculates~s bin from ~d bin and ~d′
bin

.

� The algorithm is correct if [[~s bin]] = z+ z′.

� We say z+ z′ is correctly represented by~s dec.

� Thus a formal statement of correctness is

[[~s bin]] = [[~d bin]]+ [[~d′
bin
]]

where = is test for equality (written == in Java).
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Example of Correctness

� In fact the algorithm is always correct.

� A computer may not always be correct . . .

~d bin 1 0 1

~d′
bin

+ 1 1 0

~s bin 1 0 1 1
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Overview: 2s-Complement Numbers

� How to represent any integer in a computer.

� How to add and subtract in a computer.

� Is the computer correct?
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2s-Complement Numbers

� Must represent all integers in a computer.

� In a k+1-bit 2s-complement system, the bit in position k

will be 0 for positive integers and zero, and 1 otherwise.

� Given a 2s-complement number dk . . .d0
bin, the actual

integer it represents is, by definition,

(|dk . . .d0
bin|)

def
= −dk ∗2k +[[dk−1 . . .d0

bin]] =

−dk ∗2k +(dk−1 ∗2k−1 +dk−2 ∗2k−2 + . . .+d0 ∗20)
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If k = 5, then

(|000111 bin|) =−0∗25 +7 = 7

but

(|100111 bin|) =−1∗25 +7 =−32+7 =−25

Note also that

25 = (|011001 bin|).
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� If m is any integer, its negation is defined to be −1∗m.

� Subtraction performed by adding the negation of an

integer.

� The negation of the integer represented by~b bin, is

represented by the k+1 2s-complement number number

~b bin +1 bin.

� Any integer z, to be representable with k+1 bits, must

lie in the range below

−2k ≤ z ≤ 2k −1
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Overview: Correctness and Overflow

� We look at what happens when numbers get too big

for a computer.

� We see that sometimes we can get unexpected, correct

results.
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Binary Numbers

� Recall correctness:

[[~s bin]] = [[~b bin]]+ [[~b′
bin
]] (EQ?)

� Idea: Given~b bin and ~b′
bin

, compute~s bin using the

Digitwise Alg. THEN check if EQ? is true or false.

� If true, algorithm (or computer) is correct.
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~b bin 0 1 1

~b′
bin

+ 1 0 0

~s bin 0 1 1 1

� On paper: [[0111 bin]] = 7 = 3+4 = [[011 bin]]+ [[100 bin]].

� 3-bits only: [[111 bin]] = 7 = 3+4 = [[011 bin]]+ [[100 bin]].
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~b bin 1 0 1

~b′
bin

+ 1 1 0

~s bin 1 0 1 1

� On paper: [[1011 bin]] = 11 = 5+6 = [[101 bin]]+ [[110 bin]]

� 3 bits: [[011 bin]] = 3 6= 5+6 = [[101 bin]]+ [[110 bin]]

A 3-bit computer would give incorrect answer
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In fact the following conditions are equivalent ways of

expressing k-bit correctness

� [[sk−1 . . .s0
bin]] = [[bk−1 . . .b0

bin]]+ [[b′k−1 . . .b
′
0

bin]]

� 0 ≤ [[bk−1 . . .b0
bin]]+ [[b′k−1 . . .b

′
0

bin]]≤ 2k −1

both true or both false.
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2s-Complement Numbers

Let k = 2, with 3 bits for 2s-complement numbers. There

may be a carry of 1, but with the computer sum (result)

correct!!!

1 1 1

+ 1 1 0

(1) 1 0 1

Here the computer sum is 101 with k+1 = 3 digits/bits.

The carry in position k+1 = 3 is (1).

(|101|) =−3 = (|111|)+(|110|)
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Sign-bit Conditions

• Let P be “the sign bits of the two operands are

complementary (bk = b′k)”;

• and let Q be “the sign bits of the two operands are

identical, and also the same as the sign bit of the

computer sum (bk = b′k = sk)”.

If P or Q is true, then the computer sum will be correct.

Result = Computer Sum = k+1-digit answer (excluding

any carry into position k+1—see previous slide).
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The following conditions are equivalent for 2s-complement

correctness.

• (|sk . . .s0
bin|) = (|bk . . .b0

bin|)+(|b′k . . .b
′
0

bin|)

• −2k ≤ (|bk . . .b0
bin|)+(|b′k . . .b

′
0

bin|)≤ 2k −1

• P or Q is true.
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Overview: Logical Operations

� We learn about simple logic, and some related

functions.

� We shall see how these functions might be used by a

computer.
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AND and OR

� Typically use 1 to denote truth, and 0 to denote falsity.

� We shall soon use the logic functions �:B2 → B and

+or:B2 → B. Refer to these as AND and OR.

� We will sometimes write seqeunces dk . . .d0 using

brackets: (dk, . . . ,d0). Call (d1,d0) a pair and (d2,d1,d0) a

triple.



CO1016 Computer Systems 2011/12 75'

&

$

%

� AND input pair (d,d′) is mapped to an output written

in infix notation d �d′.

� d �d′ is 1 precisely when both d and d′ are 1, and

otherwise d �d′ is 0.

� OR input pair (d,d′) is mapped to an output written in

infix notation d +or d′.

� d +or d′ is 1 precisely when at least one of d or d′ are 1,

and otherwise d +or d′ is 0.
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Truth Tables

We give the functions � and +or by explicitly listing inputs

and outputs in tables; in work on digital circuits we often

use A, B and C to stand for binary digits 0 or 1. The tables

give (A,B) 7→ A +or B where +or:B2 → B, and similarly �.

A B A +or B

0 0 0

0 1 1

1 0 1

1 1 1

A B A �B

0 0 0

0 1 0

1 0 0

1 1 1
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Zero Extension

� Sometimes, a binary number will be stored in k bits.

� We will then want to move the number into k′+ k bits, so

that its denotation is not changed.

� We fill the extra bits with k′ zeros. This is called a zero

extension.

� We can model it as a function

B
k −→ B

k′+k ~b 7→~0~b

where~0 denotes k′ zeros.

� We will sometimes write the output as zx(~b).
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Sign Extension

� To move a k+1 bit 2s-complement number δ~b into k′+ k+1

bits copy the sign bit into the new k′ positions. This is called a

sign extension.

� We can model it as a function

B
k+1 −→ B

k′+k+1 δ~b 7→~δδ~b

where~δ means a sequence of k′ δs.

� We will sometimes write the output as sx(δ~b).



CO1016 Computer Systems 2011/12 79'

&

$

%

Digital Electronics

� Learn about circuits which perform

calculations; and

� memory circuits that will store data.

� We learn how to design circuits, and how

they work.
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Overview: Switching Algebras and Basic Circuits

� We describe the Switching Algebra which gives a

mathematical model of simple circuits.

� Then we show how to use such models to design and

implement digital circuits.
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The Switching Algebra

� The switching algebra consists of the following five things:

(B, �,+or, ,0,1).

� The functions satisfy certain properties.

Property +or

Idempotent A +or A = A

Complement A +or A = 1

Associative A +or (B +or C) = (A +or B) +or C

� A �B +or C stands for ((A) �B) +or C.
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Implementing Functions by Circuits

� We implement n | m-ary functions over B as digital circuits.

For example, f :B3 → B
4 and (1,0,1) 7→ (1,1,0,0),

� We shall represent such circuits with pictures.

� The horizontal input lines denote wires with a voltage.

� Each voltage indicates a binary digit, which will be one of

the function’s input components.
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� We sometimes label input and output lines, eg by A.

� We talk about the “input line” A to mean the physical

wire into the circuit.

� The line A carries or holds a binary digit value.

� A gate is defined to be an electrical circuit which

computes certain simple functions over B.

� An AND gate computes �; there are other gates . . .
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� There are also m | 1-ary versions of � and +or. If m = 3

then �:B3 → B and we write A �B �C for the output to

input (A,B,C). The output A �B �C = 1 only when A = 1

and B = 1 and C = 1.

A B C A �B �C

0 0 0 0

0 0 1 0

0 1 0 0
...

1 1 0 0

1 1 1 1
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� We want to show how to build (implement) a circuit

for an n | m-ary function.

� Each such function is equivalent to m different n | 1-ary

functions . . . see pictures from the lecture.

� Thus we just demonstrate by example how to

implement n | 1-ary functions.

� We start from a truth table . . .
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Step 1: Sum-of-Products Example

We look at an example of a 2 | 1-ary function:

A B g(A,B)

0 0 1

0 1 0

1 0 0

1 1 1

We construct a Sum-of-Products expression . . .
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A B C f0(A,B,C)

0 0 0 1

0 1 0 0

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1
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Step 2: Implement S-o-P Example

� We have

g(A,B) = A �B +or A �B

f0(A,B,C) = A �B �C +or A �B �C +or A �B �C +or A �B �C

� It is easy to make a circuit to implement any n | 1-ary

function given by a Sum-of-Products expression. See the

notes and lectures.
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Simplifying Logic Expressions

Circuits may not be optimal:

A �B �C +or A �B �C +or A �B �C +or A �B �C

= A �B � (C +or C) +or (A +or A) �B �C

= A �B �1 +or 1 �B �C

= A �B +or B �C
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Overview: Combinational Circuits

� A circuit which implements an n | m-ary function is

known as a combinational circuit.

� We shall look at specific, useful combinational

circuits:

� Circuits for addition; for subtraction; for joining

circuits together to build a CPU and so on.
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Multiplexor

� A multiplexor has n+2n input lines which divide up

into n control input lines and 2n data input lines.

� Truth table when n is 3 (di ∈ B)

C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 M

1 0 1 d7 d6 d5 d4 d3 d2 d1 d0 d5

� Value of output is D[[C2C1C0]]. Thus we write

M(~C,~D) = D[[C2C1C0]].
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Decoders

� A decoder has n input lines and 2n output lines.

� For each of the 2n input tuples, one of the output lines

is set to 1 and the others are set to 0.

� Usually output line L[[~b]] = 1 where~b is the input tuple.

� Use a decoder to enable/disable one of many circuits.
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Clocks

� In many digital circuits, the timing of various

processes and tasks is crucial.

� A pulse is a voltage of 1 which lasts for a short time.

� A clock is a circuit which generates a series of pulses.

� Each pulse lasts for fixed time, and there is a fixed

interval between pulses during which the voltage

produced is 0.
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� The production of such a high and low voltage is

called a clock cycle.

� The total time taken for this is called the clock cycle

time or period.

� The start time of a clock pulse is called a rising edge;

the falling edge is when the pulse ends.
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Adders

� We want a circuit (full adder) to perform addition of

single binary digits.

� It will have three input lines for carryi, and di and d′
i .

� It will have two output lines for si and carryi+1.
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a b CarryIn CarryOut Sum

0 0 0 0 0

0 1 0 0 1

0 1 1 1 0

1 1 0 1 0

1 1 1 1 1
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Arithmetic Logical Units

� Two Data Input k-bit busses (each holding a k-digit binary

number ~a and~b).

� One Output k-bit bus value (holds result~r, given by a

selected function applied to the two k-bit integers).

� One Control Input bus which will be used to select the ALU

function. KEY IDEA.

� We shall design an ALU where k = 32, with functions from

Chapter 3, and . . .
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� the “set on less than” slt function which returns

r31 = 0, . . . ,r1 = 0,r0 = 1 if (|~a bin|)< (|~b bin|)

r31 = 0, . . . ,r1 = 0,r0 = 0 if otherwise

� A single bit output line Zero which returns 1 when any

result is~0, and 0 otherwise.

� A single bit output line which will hold 1 when a

function causes overflow, and will hold 0 otherwise.
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0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b
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Overview: Sequential Circuits

� Sequential circuits may have different “ouputs” for the

same “input”.

� (They implement relations.)

� These circuits can be used to build digital memory.
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Sequential circuits

� Combinational circuits are functions.

� A sequential circuit can have many allowed outputs for a

given input.

� Such circuits implement not functions, but relations.

� For such “allowed” input and output, the circuit is stable.

� Otherwise the circuit is unstable.

� We shall require a NOR gate to give examples . . .
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SR Latches

S

R

Qa

Qb
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S R Qa Qb

0 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

S R Qa Qb

0 1 0 1

0 0 1 1

Stable States Unstable States

S is the set line and R the reset line. Qb is a signal which can be

set (to 1) and reset (to 0). Qb will be used as a 1 bit memory.
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Clocked D Latches

� A model of 1-bit computer memory is a pad-locked

box storing 0s and 1s. The box has a glass window.

� Note: The words input/write/store mean the same

thing. The same goes for output/read.

� data line D provides the data (0 or 1) which we want

to store.

� clock line indicates when data can and cannot be

stored—a write enable line.

� Q holds the stored data.
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Q

D

C

Q
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Tri State Buffers

� A Tri State Buffer is an electronic switch.

� We use it to make a read enable line for a 1-bit

memory.

data in data out

control
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Example

Explain how to produce a 1-bit memory which has a read enable

line; only when the line is high should the stored data be readable.

Answer:

Latch
data out

data in 

clock

D

C Q

read enable

(write enable)
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Register Files

� A k-bit register is k 1-bit memories which have their

clock lines wired together to form a write enable line.

� A register file (for a CPU) consists of

• a set of k-bit registers;

• a set of read-register busses and a set of read-data

busses;

• a set of write-register busses and a set of write-data

busses; and

• a write enable line.
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Reading from/ Writing to the Register File:

Read register

number 1 Read


data 1

Read

data 2

Read register

number 2

Register file
Write

register

Write

data Write

(COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED.)
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Building Static Random Access Memory

Computers count in binary.

Kilo (K) 210

Mega (M) 220

Giga (G) 230

Tera (T) 240
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SRAM


32K × 8

8

15

8

Dout[7–0]

Address

Chip select

Output enable

Write enable

Din[7–0]

� The number of bits in a cell is sometimes called the

chip’s width, and the number of cells its height.

� We talk about an h×w-SRAM.
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D


latch Q

D

C

Enable

D


latch Q

D

C

Enable

D


latch Q

D

C

Enable

D


latch Q

D

C

Enable

D


latch Q

D

C

Enable

D


latch Q

D

C

Enable

D


latch Q

D

C

Enable

D


latch Q

D

C

Enable

2-to-4


decoder

Write enable

Address

Din[0]Din[1]

Dout[1] Dout[0]

0

1

2

3
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The Instruction Set Architecture Level

� We describe in detail the instructions (ISA)

which can be executed by a processor . . .

� Study ISA assembly language.

� Study ISA machine language.

� Look at simple ISA programs.
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Overview: Introducing the MIPS ISA

� Describe a MIPS processor.

� Explain the MIPS ISA language by example.
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ISA and MIPS Basics

� Recall

a := 0; c := 4;

L a := a+c;

c := c-1;

if c >= 1 then L;

� We introduce the MIPS ISA. It has instructions with syntax

like add $a, $a, $c.

� Such instructions run on the MIPS R2000 processor.

� This has a register file which contains 32 registers.
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� MIPS R2000 provides a 32-bit computer:

• CPU registers have 32 bits.

• Instructions stored in 32-bit main memory word

locations.

• Main memory cells have 8 bits: byte locations.

� Each register is denoted by a special (assembly

language) symbol. Eg $s4.
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� We identify a register by its assembly symbol (eg $s4)

or register number (CPU address), 0 to 31.

� The binary representations of 0 to 31 are the machine

language register numbers for the 32 registers.

� Note: The MIPS R2000 has 32 registers, and each

register has 32 bits. Do not let this confuse you!
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� MIPS R2000 instructions have two forms, machine

language and assembly language.

� MIPS ISA assembly example add $t0, $t1, $t2.

� There is a machine language form

– $t1 $t2 $t0 – add

000000 01001 01010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

� Each section is called a field.
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begin : addi $t0, $zero, 0

addi $t1, $zero, 0

addi $t2, $zero, 8

repeat : add $t1, $t1, $t0

addi $t0, $t0, 1

bne $t0, $t2, repeat

sw $t1, 0, $t3

finish :
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Overview: MIPS Assembly Language

� You will understand the details of CPU registers.

� You will learn about different ways of reading/writing

data between CPU and main memory.

� Learn some assembly instructions; SYNTAX and

SEMANTICS.

� Show that the instructions can be grouped into

categories.
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Registers, Locations and Assignment

� R denotes any MIPS register.

� To describe ISA semantics we shall use assignments.

� An assignment takes the form R := ω (eg $t1 :=~0)

� If the register has k bits, the word ω is a sequence of k

binary digits.

� We will stick to k = 32.
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� We will adopt a convention. We may write things like

R := 7. The convention is that this will be shorthand for

R :=~0111
bin

.

� We can describe the semantics of the instruction

add R1, R2, R3 as

R1 :=!R2+!R3

� !R2+!R3 is given by (32 digit) digitwise sum.
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� B[a] is the byte location at main memory address a.

� We have a similar notation W [a] for word locations.

� Program instructions stored in consecutive word

locations in main memory.

� Recall cells are 8 bits. So addresses of word locations

are multiples of 4. (IMPORTANT!!)

� The MIPS R2000 is big endian format.
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Introduction to Addressing

� Addressing refers to the ways in which data is read/written.

� Data copied from main memory into a register is loaded.

� Data copied from a register into main memory is stored.

� These forms of copying are data transfers.
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� Consider the two instructions

addi R1, R2, 5 add R1, R2, R3

� We refer to add and addi as instruction names.

� The registers Ri and the integer 5 are called instruction

arguments.

� The arguments tell us where data is read from or

written (stored) to.
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� R2 and R3 contain data to be (read and) added. We

call them source arguments.

� R1 specifies where the result is to be stored. We shall

call it a destination argument.

� Finally, we refer to the numbers to be added as

operands.
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Immediate Addressing

� The data is specified as part of the instruction.

� For example 24 in addi $t0, $t1, 24.

� The semantics of the instruction is given by

$t0 :=!$t1+24.

� We sometimes refer to data (operands) given by

immediate addressing as constants.

� + means digitwize sum; 24 is stored in binary.
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Register Addressing

� The data is given as the contents of a register.

� If the register is called R, the data is !R.

� add uses register addressing for its source arguments.

� The semantics of add $t0, $t1, $t2 is

$t0 :=!$t1+!$t2
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Register Indirect Addressing

� The data specified by R is !W [!R] or !B[!R]

� In this case, we refer to R as a pointer.
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Indexed Addressing

� Often need to load a sequence of words from memory,

all “quite near” to a base address k.

� An offset indicates how far data is located from the

base address. The offset equals !R.

� Instructions have a source argument k(R).

� The source data is given by the contents of W [!R+ k].
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� k has denoted any integer.

� So !R+ k means add the 32 digits of !R to a 32 digit

2s-complement representation of k.

� The machine code field for k ∈ Z is only 16 bits!!

� A 16-bit representation of k will be copied into a 32-bit

ALU. This will involve a sign extension.

� Note that

−215 ≤ k ≤ 215 −1



CO1016 Computer Systems 2011/12 135'

&

$

%

Arithmetic Category Instructions

Syntax Semantics

add R1, R2, R3 R1 :=!R2+!R3

sub R1, R2, R3 R1 :=!R2−!R3

addi R1, R2, k R1 :=!R2 + sx(k)

See example . . .
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Data Transfer Instructions

Syntax Semantics

lw R1, k(R2) R1 :=!W [sx(k)+!R2]

sw R1, k(R2) W [sx(k)+!R2] :=!R1

lb R1, k(R2) R1 := sx(!B[sx(k)+!R2])
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Conditional Instructions

repeat : add $t1, $t1, $t0

addi $t0, $t0, 1

bne $t0, $t2, repeat

next−instruction

Syntax Semantics

beq R1, R2, L if !R1 =!R2 then goto L

bne R1, R2, L if !R1 6=!R2 then goto L

slt R1, R2, R3 if !R2 <!R3 then R1 := 1 else R1 := 0



CO1016 Computer Systems 2011/12 138'

&

$

%

Overview: MIPS Machine Language

� Explain how to represent the ISA assembly

instructions inside the machine as binary digit sequences

(machine code).

� Each digit sequence is made up of special parts, called

fields. We give an algorithm for working out what the

fields are.

� Look at how to translate branch labels into actual

machine addressses.
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Instruction Fields

� Given any MIPS instruction, what is the corresponding

32-bit machine language instruction?

� Each machine instruction belongs to one of three

formats. These are know as R, I and J formats.

� Each format has a field layout, specifying how the 32

bits are divided up into sections known as fields.
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R-Format

Here is a field layout for name R1, R2, R3

Fields

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

~0 R2 R3 R1 ~0 name

~0 $s1 $s2 $t0 ~0 add

000000 10001 10010 01000 00000 100000
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� For R-format instructions the Opcode (op) is 0 dec.

� The Function field (funct) is derived from the

instruction name add. There is a look-up table in the

notes . . .

� The rs and rt fields specify the numbers of the source

registers (17 dec and 18 dec)

� The rd field, 8 dec, specifies the number of the

destination register.

� Finally, the shamt field is ALWAYS set to 0 dec in

CO1016.
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I-Format

Here is a field layout for name R1, k(R2)

op rs rt address

6 bits 5 bits 5 bits 16 bits

addi, andi, ori, lw, sw, lb, lbu, sb R2 R1 k
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Translating Assembly to Machine Language

� An assembler is a program that will translate

assembly language into machine language.

� We need the field layouts we have just looked at; and

� a field translation/look-up table on page 78 of notes;

and

� a register number table.
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Register number table on page 79 of the notes.

Register Usage

$zero 0 contents always zero

$v0 2 expression evaluation and function results

$v1 3 expression evaluation and function results

$a0 4 first argument component (preserved across call)

$t0 8 temporary (not preserved across call)

$t1 9 temporary (not preserved across call)

$t2 10 temporary (not preserved across call)

$fp 30 frame pointer (preserved across call)
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Example

What is the machine code for lw $s1, 8($t1) ?

• name R1, k(R2) is I-format.

• Use look-up table for lw opcode: 35.

• Use register number table for $s1: 17 and for $t1: 9.

6 bits 5 bits 5 bits 16 bits

lw R2 R1 k

100011 01001 10001 0000000000001000
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Machine Code for Branches

� Recall beq R1, R2, L.

• !R1 =!R2 TRUE: the label L “points” to the next

instruction to be executed.

• !R1 =!R2 FALSE: execute next instruction in memory.

� Such instructions are I-format:

op rs rt address

6 bits 5 bits 5 bits 16 bits

beq R1 R2 L
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� Looking up the opcode and register numbers is easy!

� The address field specifies the distance (offset) ow in words

from the address of the next instruction I in memory to the

address of the labelled instruction I′

a beq R1, R2, L

a+4 I . . . . . . 1 word
... 2,3,4, . . . words

. . . . . . ow words

a′ L : I′ . . . . . .
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� To be precise ow = (|address|) ∈ Z words. Thus we can work

out the address field. See my example on the OHP . . . if

ow = 2 ∈ Z, address =00000000.00000010 ∈ B
16.

� What about the address a′ of the labelled instruction?

a beq R1, R2, L

a+4 I . . . . . . 1 word
... 2,3,4, . . . words

. . . . . . ow words

a′ = (a+4)+ob L : I′ . . . . . .

� Addresses count cells (bytes); each word location consists of

four cells. So

ob = 4∗ow = 4∗ (|address|) ∈ Z
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Branch Semantics at Run Time

� The last section explained how to work out the

machine code for a branch instruction with label L by

using the position of the instruction labelled L.

� Suppose we know the machine code for a branch.

What happens at run time? Recall the SEMANTICS

if !R1 =!R2 then goto L

� As beq R1, R2, L STARTS to execute, suppose the PC

contains a ∈ Z.
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� The effect of execution is to specify the next

instruction to be executed. So the PC should be updated to

a′ = (a+4)+ob ∈ Z if test TRUE

a+4 ∈ Z if test FALSE

� The new binary value (in B
32) of the PC is given by

PC := (!PC+4)+(4∗address) if test TRUE

PC := (!PC+4) if test FALSE
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Chapter 6

� Build a datapath in which each ISA

instruction is executed in one clock cycle.

� Design control for this.

In notes; non-examinable:

� Build a datapath in which each ISA instruction

requires many clock cycles for execution, but the amount

of hardware is reduced.

� Design control for this.
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Introduction

� Show how to build a small CPU = datapath + control.

� Design of the CPU is called its architecture.

� Micro refers to CPU design, not overall computer design.

� We shall develop a micro architecture for

• The R-format instructions add, sub, and, or, and slt;

• the I-format instructions lw, sw, and beq.
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Overview: Datapath Components

� We give examples of the circuits in a datapath

responsible for the execution of different categories of

instruction.
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Basic Instruction Fetch and PC Increment

PC

Instruction

memory

Read

address

Instruction

4

Add
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R-Format Instructions

Instruction
Registers

Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

ALU

result

ALU

Zero

RegWrite

ALU operation
3

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

~0 #R2 #R3 #R1 ~0 name
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� These have the form name R1, R2, R3.

� Machine instruction I[31−0] ∈ B
32 passed along 32-bit wide

Instruction bus; the fields are divided up . . .

� The numbers of R2 and R3 ie I[25−21] ∈ B
5 and

I[20−16] ∈ B
5 are passed along 5-bit Read register 1 and

Read register 2. These are source registers.

� Destination register number I[15−11] ∈ B
5 passed along 5

bit Write register bus.

� Source operands !R1 and !R2 appear on the 32-bit Read

data 1 and Read data 2

� ALU operation is set by control and result is written . . .
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Load/Store Instructions

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory

Write

data

Read

data

Write

data

Sign


extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

6 bits 5 bits 5 bits 16 bits

name #R2 #R1 k
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� We examine lw R1, k(R2) where R1 :=!W [!R2 + sx(k)].

� The number of register R2 ie I[25−21] ∈ B
5 goes to Read

register 1

� 16-bit representation of k ie I[15−0] ∈ B
16 goes to Sign

extend.

� Contents of R2 go via Read data 1 to ALU, along with sign

extended k.

� Data memory gets Address a
def
=!R2 + sx(k) ∈ B

32.

� Data memory sends the contents of the word at a via Read

data into register file Write data.

� Register number of R1 ie I[20−16] ∈ B
5 is in Write

register, so !W [a] ∈ B
32 is written in R1.
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Branch if Equal Instruction

� Look at beq R1, R2, L with semantics

if !R1 =!R2 then goto L

� Need to check if !R1 =!R2 is true or false . . .

� ALU calculates~r
def
=!R1−!R2. Zero tests if~r =~0.

!R1 =!R2 ~r
def
=!R1−!R2 Zero

True =~0 1

False 6=~0 0
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16 32
Sign


extend

ZeroALU

Sum

Shift

left 2

To branch


control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

RegWrite

ALU operation
3

6 bits 5 bits 5 bits 16 bits

beq #R1 #R2 address
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� Executing beq updates the PC:

PC := (!PC+4)+(4∗address) if Zero= 1

PC := (!PC+4) if Zero= 0

a
def
= (|!PC|) ∈ Z beq R1, R2, L

a+4 I . . . . . . 1 word
... 2, . . . , (|address|) words

a′ = (a+4)+4∗ (|address|)
︸ ︷︷ ︸

Branch target

L : I′ . . . . . .
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PC

Instruction

memory

Read

address

Instruction

16 32

Add ALU

result

M

u

x

Registers

Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Shift

left 2

4

M

u

x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU

result

Zero
ALU

Data

memory

Address




Write

data

Read

data M


u

x

Sign

extend

Add
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� There is a control PCSrc for a multiplexor. In fact (see later

on) PCSrc is set equal to Zero when a branch instruction is

executed.

• So if PCSrc=Zero=0 then the PC will—see circuit—be

updated with !PC+4.

• And if PCSrc=Zero=1 the PC is updated with

(!PC+4)+(sx(I[15−0])≪ 2) = (!PC+4)+(4∗address).

� Eg 1011 ≪ 2
def
= 1011.00 and

(|1011.00|) =−20 = 4∗−5 = 4∗ (|1011|)
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Overview: A Single-Cycle Datapath with Control

� We assemble the datapath components into a single

cycle datapath (each instruction takes one clock cycle).

� We design a control unit.
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PC

Instruction

memory

Read

address

Instruction

[31–0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31  26]

4

16 32
Instruction [15  0]

0

0
M

u

x

0

1

Control

Add
ALU


result

M

u

x

0

1

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

PCSrc

Data

memory

Write

data

Read

data

M

u

x

1

Instruction [15  11]

ALU

control

Shift

left 2

ALU

Address
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Building Control

We decide on the effects on the datapath that actual control

signals must have.

We then draw up truth tables of control signal values to

ensure that various instructions are executed.
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Settings for control of

multiplexors and memory

read/write enable

Inst
Opcode field =

I[31-26]

R
e
g
D

st

A
L
U

S
rc

M
e
m

to
R

e
g

R
e
g
W

ri
te

M
e
m

R
e
a
d

M
e
m

W
ri

te

B
ra

n
ch

A
L
U

O
p
1

A
L
U

O
p
2

1w 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0

sw 1 0 1 0 1 1 X 1 X 0 0 1 0 0 0

beq 0 0 0 1 0 0 X 0 X 0 0 0 1 0 1

R-f’t 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
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In
st

ru
ct

io
n

(A
L
U

o
p
e
ra

ti
o
n

)

A
L
U

O
p
1

A
L
U

O
p
2

F
u

n
ct

F
ie

ld
=

I
[5

-0
]

A
L
U

-C
o
n

tr
o
l

O
u

tp
u

t:

se
ts

A
L
U

o
p
e
ra

ti
o
n

s

lw/sw (+) 0 0 X X X X X X 0 1 0

beq (-) 0 1 X X X X X X 1 1 0

add (+) 1 0 1 0 0 0 0 0 0 1 0

sub (-) 1 0 1 0 0 0 1 0 1 1 0

or (OR) 1 0 1 0 0 1 0 1 0 0 1

slt (Less) 1 0 1 0 1 0 1 0 1 1 1
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Overview: Timing and Performance

� Explain the timing and performance of a processor.

� Give equations for processor performance.
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Timing and Performance

� Recall that a clock generates pulses, each lasting for a

fixed period of time.

� Clock period called a cycle.

� Control unit will set datapath elements, using their

control busses (eg ALU to +), once per cycle.

� If an instruction can be executed in one clock cycle, we

call it a single cycle instruction.
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� If a datapath can execute each instruction in one cycle,

we call it a single cycle datapath.

� If a datapath requires multiple settings to execute at

least some instructions, we call it a multi cycle datapath.

� We look at timing issues for a multicycle processor.
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An instruction requires a number of clock cycles to execute.

Called the cycles per instruction or CPI. Write CI for the CPI of

instruction I.

A 6 instruction program P

Instruction I class cycles CI

lw . . . α 4

lw . . . α 4

add . . . β 5

sub . . . β 5

bne . . . γ 6

sw . . . α 4
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Write |P|c for the number of instructions in P of class c and Cc for

the number of cylces to run any class c instruction.

Class c |P|c

α 3

β 2

γ 1

Class c Cc

α 5

β 4

γ 6

Thus the number of clock cycles to execute P is

Total Clock Cycles =CP = (3∗5)+(2∗4)+(1∗6) = 29
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� Write ClCPI(P) for the set of classes of instructions with

identical CPI in a program P.

�

Total Clock Cycles =CP
def
= ∑

c∈ClCPI(P)

|P|c ∗Cc

� We shall write π for a clock period. Of course

tP =CP ∗π tI =CI ∗π

� It also follows that the time taken to execute P is

tP =

(

∑
c∈ClCPI(P)

|P|c ∗Cc

)

∗π


