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1 Preorders

Exercises 1.1

(1) Check that P (X) is a preorder–this is trivial.

(2) Check that Xop is a preorder if X is–this too is easy.

(3) If X and Y are preorders (that is, sets equipped with preorders ≤X and ≤Y) check

that so too is X×Y.

(4) Check that Sub(X) is a preorder.

Exercises 1.2

(1) If f : X →Y is any set function, then f−1 : P (Y) → P (X) defined by

f−1(B)
def
= { x∈ X | f (x) ∈ B }

is monotone. Verify the details.

(2) If f : X →Y and g : Y → Z are both monotone functions, then so too is the composi-

tion f ◦g : X → Z defined by (g◦ f )(x)
def
= g( f (x)) for any x∈ X. Verify this fact. Do the

collection of preorders and monotone functions form a category? Why?

(3) Let X and Y be preorders and X ×Y their cartesian product. Check that there are

monotone functions πX : X ×Y → X, (x,y) 7→ x and πY : X ×Y → Y, (x,y) 7→ y where

(x,y) ∈ X×Y.

(4) Verify that given monotone functions f : Z → X and g : Z →Y where Z is any given

preorder, there is a unique monotone function m : Z → X×Y for which f = πX ◦m and

g = πY ◦m. Can you explain what this means using categorical language? (If not, you may

just need to learn a little more about universal constructions . . . ).

(5) Find a counterexample to the following statement. A monotone function f : X →Y
between posets X and Y which is a bijection is necessarily an isomorphism.

(6) ∗ Let X be a poset and define a relation on the set X by saying that x≺ y just in case

x < y and there is no z∈ X for which x < z< y. Now let X be any set and Y be a poset.

Let X ⇒Y be the poset of functions X →Y ordered pointwise. Show that f ≺ g (where

f ,g∈ X ⇒Y) iff

(a) There is x̂∈ X for which f (x̂) ≺ g(x̂) in Y, and

(b) f (x) = g(x) for each x∈ X \{x̂}.

Now let X be a finite poset, and X ⇒Y the poset of monotone functions X →Y. Show

that f ≺ g iff (a) and (b) remains true, with this new definition of X ⇒Y.
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Exercises 1.3

(1) Write down some simple examples of isomorphic elements in any preorder Sub(X) of

injective functions with target X. This is often referred to as the category of subobjects of

X.

(2) Verify that the relation ∼= of isomorphism on preorders is an equivalence relation.

Exercises 1.4

(1) In (P (X),⊆), binary meets and joins are given by the operations of intersection and

union. Verify this. What are the top and bottom elements?

(2) Define the order d | n to mean that (∃k∈ N)(n = k∗d). With this order, binary meets

and joins are given simply by highest common factor and lowest common multiple respec-

tively. Give some informal arguments to show that this is correct.

(3) Think of some simple finite preordered sets in which meets and joins do not exist.

(4) Suppose that X is a poset (a preorder satisfying anti-symmetry). Show that meets

in a poset are unique if they exist. Hint: Suppose that, in each case, there are at least two

possibilities m and m′ and prove that m and m′ are equal.

(5) ∗ Try to work out how to compute meets (or joins) in Sub(X). See if you can solve

this problem without assitance; if you can’t, then once you know what pullbacks are,

have another attempt.

Exercises 1.5

(1) Verify that P (X) is a Heyting prelattice where A⇒ A′ def
= (X \A)∪A′.

(2) Verify that any finite predistributive lattice X is a Heyting prelattice in which

y⇒ z
def
=

_

{ l ∈ X | l ∧y≤ z}

(3) Consider the inverse image function f−1 : P (Y) → P (X). Verify that this is a homo-

morphism of Heyting prelattices.

(4) ∗ Let X be a Heyting lattice, and for each x ∈ X make the definition ¬x
def
= x ⇒ ⊥.

Prove that for any x,y∈ X, ¬(x∨y) = ¬x∧¬y.
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2 Categories

Exercises 2.1

(1) Choose three examples of categories of your choice and check in detail that the

axioms of a category hold.

(2) Given categories C andD, the objects of the category C×D are pairs (A,B) of objects

from C and D respectively. Convince yourself that there is such a category C ×D.

(3) The category Mon has objects monoids, that is, sets M with an associative operation

· : M×M → M and identity for the operation e∈ M. (For example, if A is a set, the set

[A] of lists over A is a monoid with list concatenation and empty list.) Check the axioms.

(4) The category Part has objects sets and morphisms partial functions. Show that this

is indeed a category by writing down the “most obvious” composition of morphisms and

checking the axioms of identity and associativity.

(5) Make sure you understand the definition of Cop.

Exercises 2.2

(1) Write down the definition you would expect of the product functor F ×G : C ×C ′ →

D×D ′ and check that F ×G is a functor.

(2) Check that we can define a functor P : Setop → Set by setting

f : B→ A 7→ f−1 : P (B) → P (A),

where f : A→ B is a function in Set, and the function f−1 is defined by

f−1(B′)
def
= {a∈ A | f (a) ∈ B′}

where B′ ∈ P (B).

(3) Define G : Set→Monby GA
def
= [A] and G f

def
= mapsq( f ), where mapsq( f ) : [A] → [B] is

defined by

mapsq( f )([a1, . . . ,an]) = [ f 2(a1), . . . , f 2(an)],

with [a1, . . . ,an] any element of [A] and f : A → B a function. Show that G is a not a

functor.

(4) Verify that the definition of a comma category does indeed give rise to a category.

(5) Let us say that a category C is tiny if the collection of objects forms a set and C is

discrete, that is, the only morphisms are identities; prove that a category C is tiny iff

given any category D with a set of objects obD and any set function f : obC → obD,

then f extends uniquely to a functor F : C →D. (Extends means that if A is an object of

C , then FA = f (A) ∈ obD.)
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Exercises 2.3

(1) Given categories C and D, verify that the functor category [C ,D] is indeed a cate-

gory.

(2) Given a diagram of categories and functors

C
I

- D
F,G,H

- E
J

- F

and natural transformations α : F → G and β : G→ H, we can define J∗ : [D,E ]→ [D,F ]

by J∗(F)
def
= J◦F on any object F and (J∗(α))D

def
= J(αD) where D is an object of D. Show

that J∗(β◦α) = J∗(β)◦J∗(α). There is also a functor I∗ : [D,E ] → [C ,E ]. Try to define I∗
and show that I∗(β◦α) = I∗(β)◦ I∗(α).

Note: make sure you understand in which categories the compositions are defined.

(3) Verify that FX : Set→ Set is a functor and that ev: FX → idSet is a natural transforma-

tion (see slides).

(4) Let S be the category of non-empty sets and set functions. Define a functor P : S → S

by sending f : X →Y in S to the function

P ( f ) : P (X) → P (Y) A 7→ f (A)
def
= { f (a) | a∈ A}.

Show that there is no natural transformation α : P → idS . (P ( f ) is sometimes written

f∗.)

Exercises 2.4

(1) Let C be a category and let f : A→ B and g,h : B → A be morphisms. If f ◦h = idB

and g◦ f = idA show that g = h. Deduce that any morphism f has a unique inverse if

such exists.

(2) Let C be a category and f : A → B and g : B → C be morphisms. If f and g are

isomorphisms, show that g◦ f is too. What is its inverse?

Exercises 2.5

(1) Two categories are said to be equivalent, if, roughly speaking, we can write down a

one to one correspondence between isomorphism classes of objects obtained from the

categories. More precisely, two categories C and D are equivalent if there are functors

F : C → D and G : D → C together with natural isomorphisms ε : F ◦G ∼= idD and η :
idC ∼= G◦F. We say that F is an equivalence with an inverse equivalence G and denote

the equivalence by F : C ≃D : G.
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Let Part be the category of sets and partial functions. Write 1 for a singleton set. An

object of the category 1/Set is a function f : 1 → A where A is a set (and hence in

particular A is non-empty). A morphism m : f → f ′ (where f ′ : 1 → A′) is a function

m : A → A′ for which m◦ f = f ′. Prove that Part ≃ 1/Set. Hint: Note that an object

f : 1→ A amounts to specifying an element a∈ A.

(2) The slice category Set/B is often referred to as the category of B-indexed families of

sets with functions preserving the indexing. First try to work out the definition of this

category, by referring to the previous exercise. Then to understand the description of

the category, note that a function f : X →B gives rise to the family of sets ( f−1(b) | b∈B),

and the family of sets (Xb | b∈ B) gives rise to the function

f : {(x,b) | x∈ Xb,b∈ B}→ B

where f (x,b)
def
= b. Note that we can regard the set B as a discrete category; then there

is an equivalence between the functor category [B,Set] and the slice Set/B. Formulate

this equivalence carefully and prove that your definitions really do give an equivalence.

Exercises 2.6

(1) Show that a category C has finite products just in case it has binary products and a

terminal object.

(2) Let C be a category with finite products and let

l : X → A f : A→ B g : A→C
h : B→ D k : C→ E

be morphisms of C . Show that (h×k)◦ 〈 f ,g〉= 〈h◦ f ,k◦g〉 and 〈 f ,g〉 ◦ l = 〈 f ◦ l ,g◦ l〉.

(3) Investigate the notion of a binary product in a category Cop.

(4) Prove the coproduct of any set-indexed family of objects is unique up to isomorphism

if it exists.

(5) ∗ Find an example of a functor F : C →D for which

F(A×B) ∼= FA×FB

in D for all pairs of objects A and B in C , but such that F does not preserve binary

products. Hint: think about countably infinite sets.

Exercises 2.7

(1) Show that the category Set is bicartesian closed.
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(2) Show that any category [C ,Set] has finite products and coproducts.

(3) Let A be an object of a cartesian closed category C . If C is locally small, show that

C (A,−) preserves finite products.

Exercises 2.8

(1) If ∆ : X → X×X is given by ∆(x)
def
= (x,x), verify that there are adjoints (∨ ⊣ ∆ ⊣ ∧).

(2) Verify that there is a natural bijection

(−) : Mon([A],M)∼= Set(A,UM) : (̂−)

(3) Verify that the diagonal functor ∆ : Set→ Set×Set taking a function f : A→ B to

( f , f ) : (A,A) → (B,B) has right adjoint Π taking any morphism ( f ,g) : (A,A′) → (B,B′)

of Set×Set to f ×g
def
= 〈 f ◦πA,g◦πB〉 : A×A′ → B×B′.

(4) Let C be a cartesian closed category and f : A→B and g : B→ (C⇒D) be morphisms

of C . Show that (g◦ f )⋆ = g⋆ ◦ ( f × idC), where if h : X → (Y ⇒ Z) then h⋆ def
= ev◦ (h× idY).

(5) Let f : A×B→C and g : C → D be morphisms of a cartesian closed category. Show

that λ(g◦ f ) = λ(g◦ev)◦λ( f ).

(6) Formulate precisely the definitions of the functors A ⇒ (−) : C → C and (−) ⇒ A :
Cop → C , where A is an object of a cartesian closed category C .

(7) Let A be an object of a cartesian closed category C . Show that A ⇒ (−) preserves

finite products.

(8) Formulate the notion of a finite coproduct preserving functor and show that A×(−) :
C → C is such a functor provided that C is cartesian closed.

(9) Make sure you can formulate the definition of a functor that preserves exponentials.

Exercises 2.9

(1) Prove the Yoneda Lemma.

(2) Let X be a preorder and let F : X → Set be a functor where we will write x 7→ Fx for

the operation on objects and x≤ y 7→ fx,y : Fx→ Fy for the operation on morphisms.

(a) If Fx is the empty set ∅, what can we say about x∈ X?

(b) Let a ∈ X. Show that to give a natural transformation α : Ha → F is to give an

element ex ∈ Fx for each x ∈ X satisfying a ≤ x, such that fx,y(ex) = ey whenever y∈ X
and x≤ y.

(c) Investigate the Yoneda lemma in this situation.

(3) ∗ Can you show that [C ,Set] is cartesian closed? Suppose that exponentials exist, and

apply the Yoneda Lemma.
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3 Categorical Type Theory

Exercises 3.1

(1) If Sg ⊲ Γ ⊢ M : σ, then we have Sg ⊲ πΓ ⊢ M : σ. Work through the details of the

proof.

(2) Prove that if Sg ⊲ Γ ⊢ M : σ, then the free variables of M appear in Γ.

(3) Fix a signature. Let x1 : σ1, . . . ,xn : σn ⊢ N : τ be a proved term, and Γ ⊢ Mi : σi proved

terms for each i. Prove that Γ ⊢ N[~M/~x] : τ is a proved term.

Exercises 3.2

(1) Work through the details of the derivation of the semantics of binary product types.

Be careful to understand the crucial fact that because the procedures of deriving proved

terms and performing substitutions commute, the procedures of deriving a proved term

can be modelled in an appropriate categorical structure by operations which are natural

in their arguments.

(2) (a) Use the Yoneda lemma to deduce that to soundly interpret rules

Γ ⊢ M : σ

Γ ⊢ Inlτ(M) : σ+ τ

Γ ⊢ N : τ

Γ ⊢ Inrσ(N) : σ+ τ

it is necessary and sufficient to give morphisms i : A→ A+B and j : B→ A+B of C for

all objects A and B, where we may define

[[Γ ⊢ Inlτ(M) : σ+ τ]] def
= i ◦ [[Γ ⊢ M : σ]]

[[Γ ⊢ Inrσ(N) : σ+ τ]] def
= j ◦ [[Γ ⊢ N : τ]].

(b) By writing down an appropriate family of functions on morphism sets which will

give a sound interpretation to

Γ ⊢ S: σ+ τ Γ,x : σ ⊢ E : δ Γ,y : τ ⊢ F : δ

Γ ⊢ Case(S, x.E | y.F) : δ

and considering naturality conditions, prove that your functions may be specified in

terms of a family of functions

ΦC : C (C×A,D)×C (C×B,D) −→ C (C× (A+B),D)

which are natural in C. We can then define

[[Γ ⊢ Case(S, x.E | y.F) : δ]]
def
=

Φ[[Γ]]([[Γ,x : σ ⊢ E : δ]], [[Γ,y : τ ⊢ F : δ]])◦ 〈id[[Γ]], [[Γ ⊢ S: σ+ τ]]〉.
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(c) Using the semantics assigned to proved terms, write down the equations which must

hold between morphisms of C in order that the equations-in-context involving coprod-

uct types are always satisfied. Deduce that the function

C (C× (A+B),D) - C (C×A,D)×C (C×B,D)

given by f 7→ ( f ◦ (idC× i), f ◦ (idC× j)) is a bijection. Hence show that the object A+B
is indeed the binary coproduct of A and B.

(d) By considering the bijection

C (C×A,D)×C (C×B,D) ∼= C ((C×A)+(C×B),D),

use the Yoneda lemma to prove that the binary products of C must distribute over

binary coproducts, that is for all objects A, B and C of C we have

C× (A+B) ∼= (C×A)+(C×B).

Thus to interpret the case syntax soundly we require a category with finite products and

binary coproducts, for which binary products distribute over binary coproducts.

Exercises 3.3

(1) Look at the details of the categorical semantics of λ×+-theories and understand the

ideas of such a model.

(2) Work through the details of the proof of the result that substitution is modelled by

categorical composition.

(3) Work through the details of the soundness theorem.

Exercises 3.4

(1) Prove that there is a canonical isomorphism [[σ]]F∗M
∼= F[[σ]]M.

(2) Given a proved term Γ ⊢ M : σ show by induction that the morphism [[Γ ⊢ M : σ]]F∗M
is given by the composition

[[σ1]]F∗M × . . .× [[σn]]F∗M
∼= F([[σ1]]M × . . .× [[σn]]M)

F[[Γ⊢M:σ]]M−→ F[[σ]]M.

Hence deduce that F∗M is a model of Th.

(3) Try to verify that Cl(Th) is a bicartesian closed category.

(4) Define µ : Cl(Th) →D by

(x : σ | M) : σ −→ τ - [[x : σ ⊢ M : τ]]M : [[σ]]M −→ [[τ]]M

Write down some of the details required to see that µ is a bicartesian closed functor.

(5) Prove that µ∼= µ′ is indeed a natural isomorphism.
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4 Applications

Exercises 4.1

(1) In the case of an algebraic theory, check that Cl(Th) is a category.

(2) Verify that the Yoneda embedding C (−,+) : C → [Cop,Set] is a full and faithful func-

tor for any locally small category C .

(3) Using the fact that I : Cl(Th) → Cl(Th′) is full and faithful:

Cl(Th)(γ,γ′)
∼=

- Cl(Th′)(Iγ, Iγ′)

prove the “existence” part of the Conservative Extension result.

(4) Write down some of the details that G l is a bicartesian closed category and the

obvious functor π2 : G l →D is a morphism of BCCCs.

(5) Convince yourself of the fact that I : Cl(Th) → Cl(Th′) is indeed full and faithful.
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